Novel device technologies

- Slides largely based on presentation Li Shang and I gave at Tsinghua University
- Some of the images might be copyrighted by others: don't charge or distribute

Overview

- Historic overview of technology scaling
- CMOS: current status and challenges
- Nanotechnologies: An introduction
- Nano circuit and architecture design
 - Carbon nanotube technology
 - Single electron tunneling transistor
- Open questions

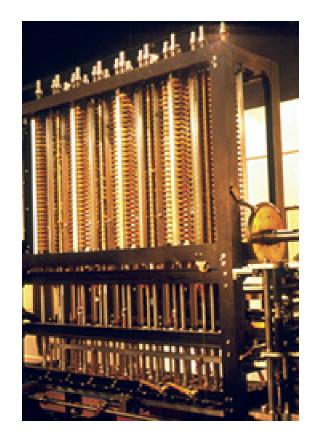
Evolution of electronics

Mechanical

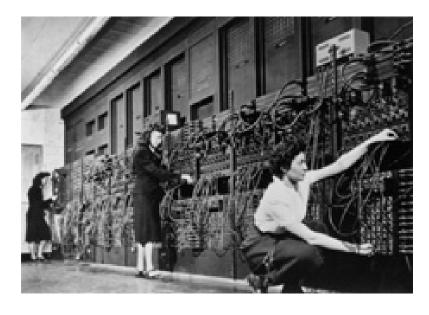
Electro-Mechanical

Electronic-VT

Bipolar

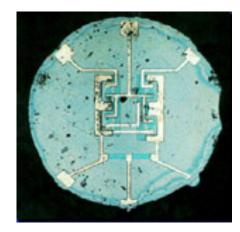


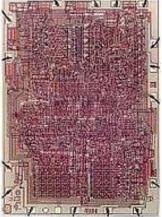
The first computer

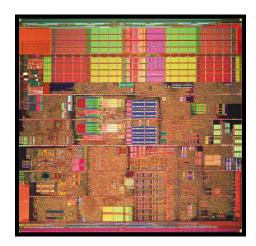

Babbage difference Engine

- (1822)
 - 4000 components
 - Three tons
 - 31 digits
- Pros automatic
- Cons slow, expensive, not flexible

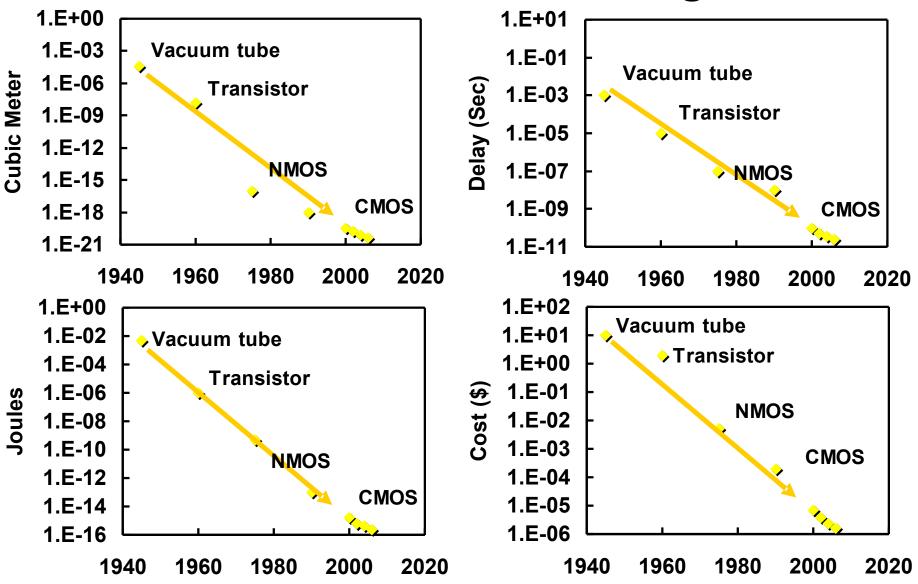
The first electronic computer


- Electrical numerical integrator and computer ENIAC (1946)
 - 18,000 vacuum tubes
 - 30 tons
 - 100,000 calculations per second
- Pro faster, flexible
- Con too big, not reliable


Semiconductors

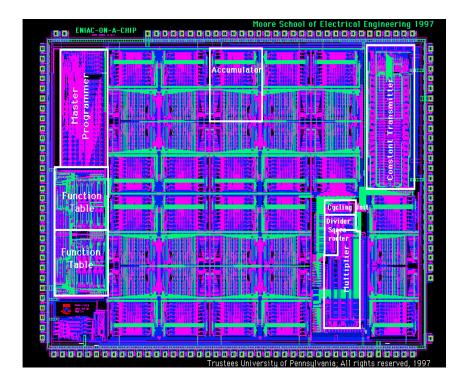


The first integrated circuit



N

Pentium® 4


4004

Benefits of scaling

ENIAC-on-a-chip


- 40 mm²
 - 174,000 transistors
- 0.5 W
- 20 MHz

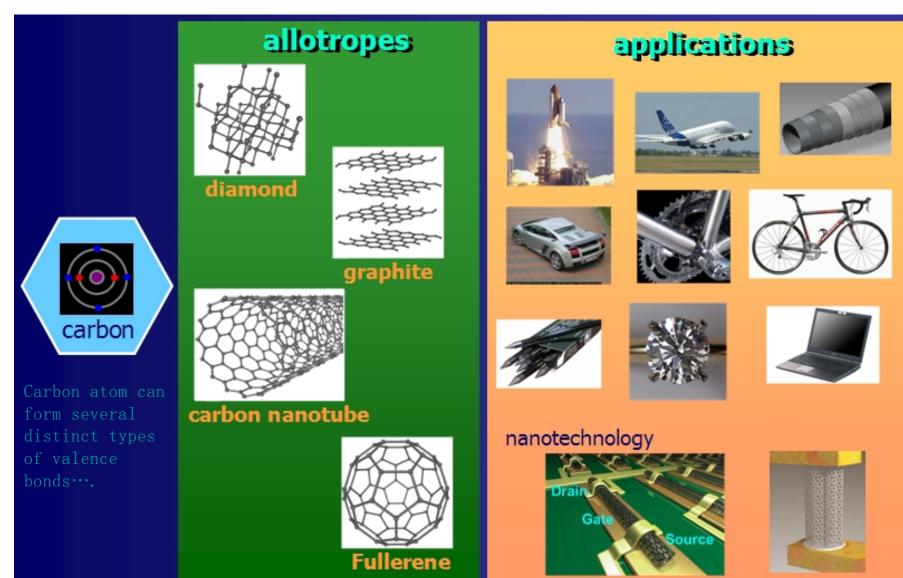
Technology outlook

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018		
Technology Node (nm)	90	65	45	32	22	16	11	8		
Integration Capacity (BT)	2	4	80	16	32	64	128	256		
Delay = CV/I scaling	0.7	~0.7	>0.7	De	Delay scaling will slow down					
Energy/Logic Op scaling	>0.35	>0.5	>0.5	Ene	nergy scaling will slow down					
Bulk Planar CMOS	Hig	h Proba	bility		Low Probability					
Alternate, 3G etc	Low	Probal	oility			High	Probab	oility		
Variability	Medium Hig				h	Ve	ery High			
ILD (K)	~3 <3 Redu				luce slowly towards 2-2.5					
RC Delay	1	1	1	1	1	1	1	1		
Metal Layers	6-7	7-8	8-9	0.5 to 1 layer per generation						

CMOS research continues...

Nanotechnology outlook

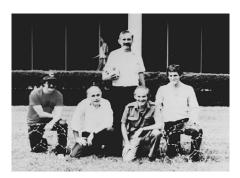
- Why CMOS technology?
 - Performance
 - · Gain, low noise
 - Area
 - Massive integration
 - Power
 - Reliability
 - Fabrication difficulty & cost
- Status & challenges
 - 65 nm Intel, IBM, TSMC, etc.
 - Power challenge
 - Energy, thermal issues
 - Fabrication cost
 - Photolithograph masks are expensive
 - Reliability
 - Soft errors
 - Electromigration, dielectric breakdown, etc.
 - Process variation


- Why nanotechnology?
 - To continue technology scaling to further scale integration, reduce cost, improve performance, and minimize power consumption
- Candidates
 - Carbon nanotube
 - Nanowire
 - Single electron device

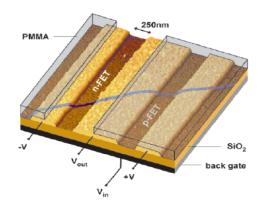
Emerging nano devices

$\frac{1}{2} + \frac{1}{2} + \frac{1}$									
$\frac{FETER}{Types} = \left\{ \begin{array}{c} ID \ Structures}{Tunneling Devices} & SET & Molecular & logic & Spin Frances logic & Spin Frances & CNT FET \\ NW FET \\ NW FET \\ NW FET \\ Si CMOS & N'' FET \\ NW Fetero-structure & RIT & SET \\ Supported Architectures & Consentional \\ and Cross-bor \\ nanoschuteture & RIT & SET \\ Supported Architectures & Conventional \\ and Cross-bor \\ and CNN \\ CNN \\ Conventional \\ and Cross-bor \\ and CNN \\ CNN \\ CON \\ CON \\ CON \\ Molecular QCA \\ QCA$	Device						\neg		
$ I_{yper} : I_{yper}$			FET [B]	1D structures		SET	Molecular		Spin transistor
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Types		Si CMOS	NW FET NW hetero- structures Crossbar		SET	Molecular transistor	wall	Spin transistor
	Supported .	Architectures	Conventional			CNN		Reconfigure logic and	Conventional
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	Cell Size	Projected	100 nm	100 nm [C]	100 nm [C]	40 nm [L]	10 nm [Q]	140 nm [U]	100 nm [C]
$\frac{(device(cm^2))}{(device(cm^2))} = \frac{1}{Demonstrated} = 2.8E8 = 4E7 = 1E7 = 2E8 = 2E7 = 1.6E9 = 1E4$ $\frac{(device(cm^2))}{Projected} = 12 \text{ THz} = 6.3 \text{ THz} [E] = 16 \text{ THz} [I] = 10 \text{ THz} [M] = 1 \text{ THz} [S] = 1 \text{ GHz} [U] = 40 \text{ GHz} [Y]$ $\frac{Projected}{Demonstrated} = 1 \text{ THz} = 200 \text{ MHz} [F] = 700 \text{ GHz} [J] = 2 \text{ THz} [N] = 100 \text{ Hz} [R] = 30 \text{ Hz} [V, W] = Not known$ $\frac{Projected}{Demonstrated} = 5.6 \text{ GHz} = 220 \text{ Hz} [G] = 10 \text{ GHz} [C] = 1 \text{ GHz} [L] = 1 \text{ GHz} [Q] = 10 \text{ MHz} [W] = Not known$ $\frac{Projected}{Demonstrated} = 5.6 \text{ GHz} = 220 \text{ Hz} [G] = 10 \text{ GHz} [Z] = 1 \text{ MHz} [F] = 100 \text{ Hz} [R] = 30 \text{ Hz} [W] = Not known$ $\frac{Projected}{Demonstrated} = 3E-18 $	(spatial pitch)	Demonstrated	590 nm	~1.5 µm [D]	3µm [H]	~700 nm [M]	~2µm [R]	250 nm [V, W]	100 µm [X]
$\frac{Projected}{Projected} = \frac{12 \text{ Hz}}{12 \text{ Hz}} = \frac{12 \text{ Hz}}{12 $		Projected	1E10	4.5E9	4.5E9	6E10	1E12	5E9	4.5E9
Switch SpeedDemonstrated1 THz200 MHz [F]700 GHz [J]2 THz [N]100 Hz [R]30 Hz [V, W]Not knownCircuit Speed $Projected$ 61 GHz61 GHz [C]61 GHz [C]1 GHz [C]1 GHz [L]1 GHz [Q]10 MHz [U]Not known $Demonstrated$ 5.6 GHz220 Hz [G]10 GHz [Z]1 MHz [F]100 Hz [R]30 Hz [V, W]Not knownSwitching $Projected$ 3E-183E-183E-18>3E-18 1×10^{-18} [L] $5E-17$ [T] $-1E-17$ [V]3E-18Switching $Projected$ 3E-183E-18 $23E$ [I] $1E-13$ [K] 8×10^{-17} [O] $5E-17$ [T] $-1E-17$ [V] $3E-18$ Binary Throughput, GBit/ns/cm² $Projected$ 238238 [C]238 [C]101000 $5E-2$ Not known $Operational TemperatureRTRT4.2 – 300 K20 K [L]RTRTRTRTMaterials SystemSiSi, Ge, III-V,In20, SiC,III-VIII-VOrganicSi-GeSiSi, III-V,Si-GeSiOrganicSiFerromagneticalloysSi, III-V,complexmetals$	(device/cm ²)	Demonstrated	2.8E8	4E7	1E7	2E8	2E7	1.6E9	1E4
$\frac{1}{1} = \frac{1}{1} $	Projected		12 THz	6.3 THz [E]	16 THz [I]	10 THz [M]	1 THz [S]	1 GHz [U]	40 GHz [Y]
$\frac{Circuit Speed}{Demonstrated} = \frac{1}{Demonstrated} = \frac{5.6 \text{ GHz}}{1.6 \text{ GHz}} = \frac{220 \text{ Hz}}{220 \text{ Hz}} \begin{bmatrix} 3 \ 10 \text{ GHz}} \begin{bmatrix} 2 \ 1 \text{ MHz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 00 \text{ Hz}} \begin{bmatrix} 1 \ 30 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \begin{bmatrix} 1 \ 100 \text{ Hz}} \end{bmatrix} \\ \frac{1}{200 \text{ Hz}} \end{bmatrix} $	Switch Speed	Demonstrated	1 THz	200 MHz [F]	700 GHz [J]	2 THz [N]	100 Hz [R]	30 Hz [V, W]	Not known
$\frac{Demonstrated}{Materials} System = \frac{5.6 \text{ GHz}}{Materials} = \frac{220 \text{ Hz}}{System} = \frac{5.6 \text{ GHz}}{Si} = \frac{220 \text{ Hz}}{220 \text{ Hz}} = \frac{10 \text{ GHz}}{Si} = \frac{10 \text{ GHz}}{10 \text{ GHz}} = \frac{100 \text{ Hz}}{100 \text{ Hz}} = 100 \text{ Hz$	Circuit Sured	Projected	61 GHz	61 GHz [C]	61 GHz [C]	1 GHz [L]	1 GHz [Q]	10 MHz [U]	Not known
Switching Energy, JProjected3E-183E-18>3E-18 $[>1.5\times10^{-17}][O]$ 5E-17 [T]~1E-17 [V]3E-18Demonstrated1E-161E-11 [G]1E-13 [K] $[>1.5\times10^{-17}][O]$ $3E-7$ [R] $6E-18$ [W]Not knownBinary Throughput, GBit/ns/cm2Projected238238 [C]238 [C]1010005E-2Not knownDemonstrated1.61E-80.12E-42E-95E-8Not knownOperational TemperatureRTRT4.2 - 300 K20 K [L]RTRTRTRTMaterials SystemSiSiCNT, In ₂ O ₃ , ZnO, TiO ₂ , SiC,III-VIII-VOrganic SiFerromagnetic alloysSi, III-V, complex metals 	Сисин эреви	Demonstrated	5.6 GHz	220 Hz [G]	10 GHz [Z]		100 Hz [R]	30 Hz [V]	Not known
$\frac{Demonstrated}{Binary} = \frac{Projected}{Projected} = \frac{238}{238} = \frac{238}{238} \begin{bmatrix} 1 \\ 1 \\ E-13 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ E-13 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ E-13 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ E-13 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ E-13 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Switching Energy, J		3E-18	3E-18	>3E-18	[>1.5×10 ⁻¹⁷][O]	5E-17 [T]	~1E-17 [V]	3E-18
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1E-16	1E-11 [G]	1E-13 [K]		3E-7 [R]	6E-18 [W]	Not known
	Binary	Projected	238	238 [C]	238 [C]	10	1000	5E-2	Not known
Materials System Si CNT, Si, Ge, III-V, In ₂ O ₃ , ZnO, TiO ₂ , SiC, III-V III-V Organic Si Ferromagnetic molecules Si, III-V, alloys		Demonstrated	emonstrated 1.6 1E-8 0.1 2E-4		2E-4	2E-9	5E-8	Not known	
Materials System Si Si, Ge, III-V, In ₂ O ₈ , ZnO, TiO ₂ , SiC, III-V III-V Organic Si Ferromagnetic molecules Si, II-V, alloys	Operationa	l Temperature	RT	RT	4.2 – 300 K	20 K [L]	RT	RT	RT
Research activity [A] 171 88 65 204 25 102			Si	Si, Ge, III-V, In ₂ O ₃ , ZnO,			-		complex metals
	Research activity [A]		171	88	65	204	25	102	

Carbon nanotube


Forms of carbon...

A bit of history....



Edison's original carbon-filament lamp US Patent 223898

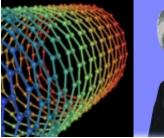
Discovery of Fullerenes (Smalley)

1985

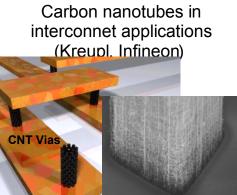
Carbon nanotube transistor based logic-performing ICs (IBM)

2001

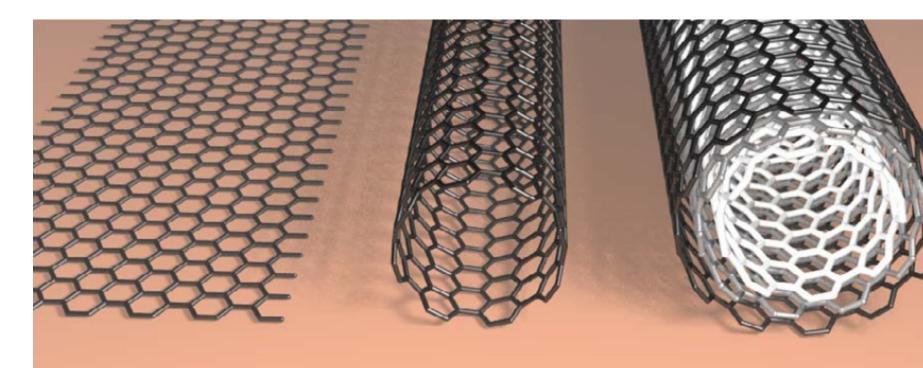
1880



F/A-18 Hornet The first aircraft with carbon fiber wings



1991


Nanotubes discovered at NEC, by Japanese researcher Dr. Sumio lijima

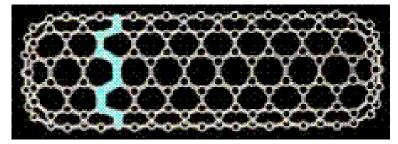
2002

What are carbon nanotubes?

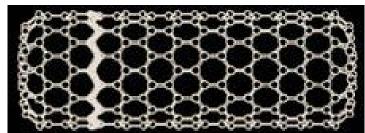
Graphene

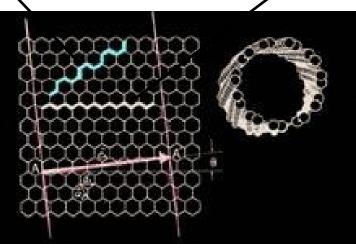
Single-Walled Nanotube (SWCNT)

Multi-Walled Nanotube (MWCNT)


Eg $^{\sim}1/d$: Thick (>5nm) MWCNTs have a vanishing band gap at 300K, hence metallic....

Courtesy: F. Kreupl, Infineon

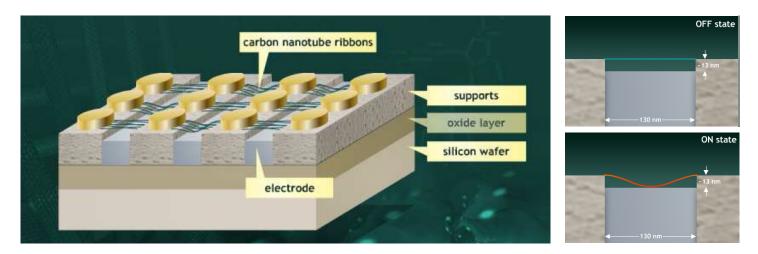

What are carbon nanotubes?


SWCNTs

Armchair Nanotube (metallic)

Various roll-ups possible depending on chirality Zigzag Nanotube (semi-conducting)

Chiral nanotube


Properties

Carbon nanotube

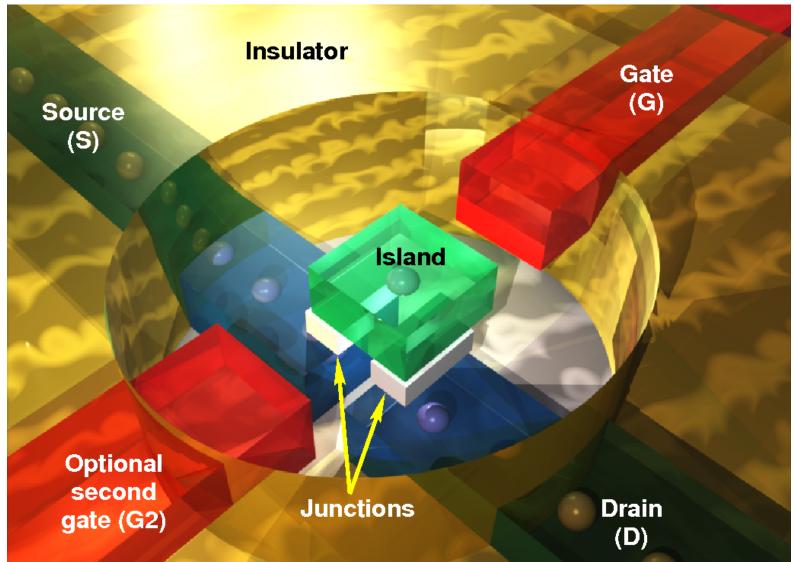
- Single-wall or multi-wall
- Diameter: 0.4-100nm
- Length: up to millimeters
- Ballistic transport
- Excellent thermal conductivity
- Very high current density
- High chemical stability
- Robust to environment
- Tensile strength: 45 TPa! (high strength steel ~ 2TPa)
- Temperature Stability: up to 2800 °C in vacuum and up to 700 °C in air

	CNT	Cu
Max current density (A/cm²)	>1x10 ⁹ Wei, et al., <i>APL</i> , 2001	<1x10 ⁷
Thermal conductivity (W/mK)	5800 Hone, et al., <i>Phys. Rev.</i> <i>B</i> , 1999	385
Mean free path (nm) @ room temp	>1000 McEuen, et al., <i>Trans.</i> <i>Nan</i> o., 2002	40

NRAM

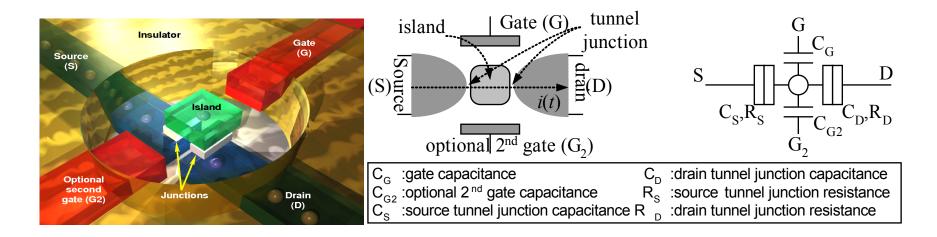
Source: Nantero

Non-volatile nanotube random-access memory (NRAM)


- Mechanically bent or not: determines bistable on/off states
- Fully CMOS-compatible manufacturing process
- Prototype chip: 10 Gbit NRAM
- Will be ready for the market in the near future

NRAM

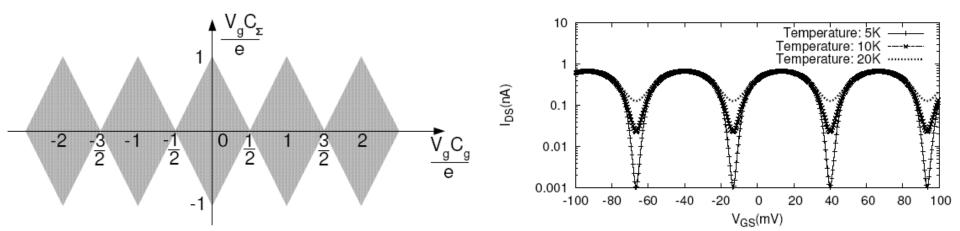
- Properties of NRAM
 - Non-volatile
 - Similar speed to SRAM
 - Similar density to DRAM
 - Chemically and mechanically stable


Single-electron tunneling transistor (SET)

SET structure

SET background

- Device structure
 - A nanometer-scale conductive island embedded in an insulating material
 - Electrons travel between the island and electrodes through tunneling junctions



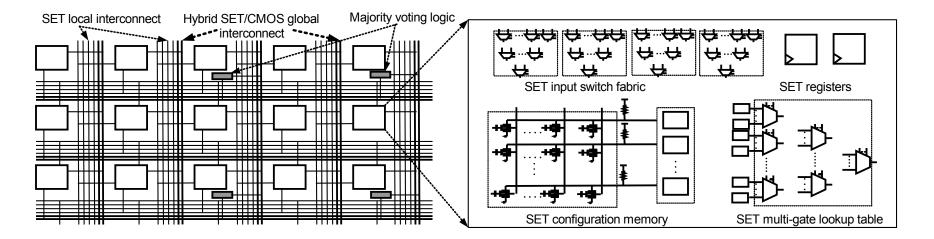
SET background

- Coulomb blockade effect
 - Electrostatic charge: e²/C
 - Island has a minimal-energy number of electrons
 - When integer, tunneling in and out blocked
 - When $\frac{1}{2}$ integer, tunneling permitted
 - Can tune with applied gate voltage, V_{G}

SET characteristics

- Periodic I-V characteristics
- This is not due to de Broglie wavelength!

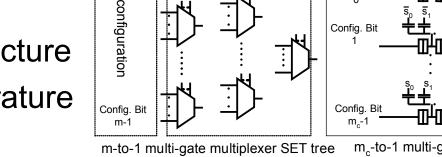
SET characteristics


- Ultra-low power consumption
- Strong temperature dependency $e^2/C \ge K_B T$
- Fabrication challenge
- Reliability concern
 - Random background charge noise
- Low drive strength $R \ge h/e^2 \approx 26 K \Omega$
- Low circuit gain

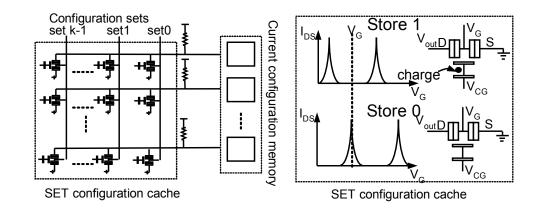
$$g = C_G / (C_S + C_D)$$

ICE-FLEX: hybrid SET/CMOS reconfigurable architecture design

- Design space
 - Power consumption
 - Performance
 - Fabrication challenge
 - Room-temperature operation
 - Reliability concerns

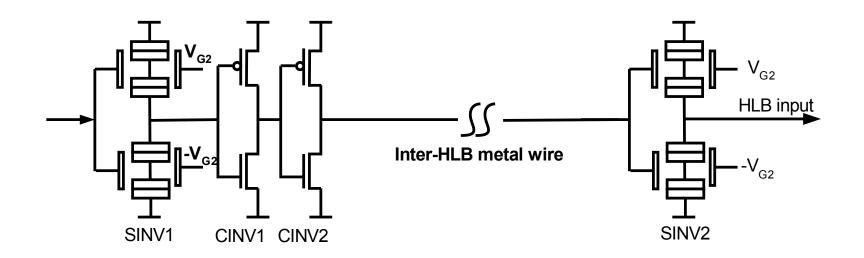

- Reconfigurable Architecture
 - SET logic block
 - SET/CMOS interconnect
 - SET configuration memory
 - SET/CMOS majority voting logic

SET reconfigurable logic


Config. Bit

- SET multi-gate look-up table
 - Multi-gate structure
 - Strong temperature dependence

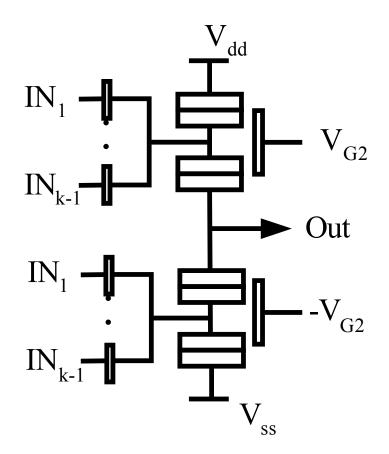
- SET configuration memory
 - Phase shifting controlled by Coulomb charge



Config. Bit

SET interconnect

- SET local interconnect
 - Static power dominant
- Hybrid SET/CMOS global interconnect


- Dynamic power dominant

Majority voting & arithmetic logic

SET MVL

- Efficient implementation
- Suffer from random background charge effect itself
- SET arithmetic logic
 - Threshold logic
 - Non-unate functions

Characterization

	FPGA			IceFlex						
	Xilinx Vertex-II			Non-Redundant			Non-Redundant			
Benchmarks	XC2V2000				Low Power			High Performance		
	Freq	Power	Energy req.	Freq	Power	Energy req.	Freq	Power	Energy Eff.	
	(MHz)	(mW)	(J/cycle)	(MHz)	(mW)	(J/cycle)	(MHz)	(mW)	(J/cycle)	
ARM7	20.32	424	2.09e-08	1.00	0.13	1.33e-10	109.35	12.47	1.14e-10	
ASPIDA DLX	97.09	611	6.29e-09	5.88	0.09	1.51e-11	645.16	8.37	1.30e-11	
Jam RISC	74.05	469	6.33e-09	6.54	0.06	8.83e-12	716.85	5.44	7.59e-12	
LEON2 SPARC	66.33	886	1.34e-08	4.52	0.27	5.87e-11	496.28	25.01	5.04e-11	
Microblaze RISC	88.94	460	5.17e-09	8.40	0.04	4.61e-12	921.66	3.65	3.96e-12	
miniMIPS	67.96	235	3.46e-09	4.90	0.11	2.33e-11	537.63	10.78	2.00e-11	
MIPS	62.12	449	7.23e-09	5.35	0.06	1.04e-11	586.51	5.22	8.89e-12	
Plasma	58.21	468	8.04e-09	4.52	0.08	1.72e-11	496.28	7.33	1.48e-11	
UCore	105.34	613	5.82e-09	6.54	0.09	1.31e-11	716.85	8.06	1.12e-11	
YACC	55.68	466	8.37e-09	9.80	0.07	7.38e-12	1075.27	6.81	6.34e-12	
AES	158.63	387	2.44e-09	14.71	0.08	5.62e-12	1612.90	7.79	4.83e-12	
AVR	55.55	105	1.89e-09	4.90	0.06	1.29e-11	537.63	5.94	1.11e-11	
CORDIC	209.95	205	9.76e-10	58.82	0.03	4.44e-13	6451.61	2.46	3.81e-13	
ECC	30.24	105	3.47e-09	5.88	0.09	1.46e-11	645.16	8.07	1.25e-11	
FPU	21.96	155	7.06e-09	1.31	0.26	2.00e-10	143.37	24.60	1.72e-10	
RS	383.73	35	9.12e-11	29.41	0.00	1.05e-13	3225.81	0.29	9.04e-14	
USB	132.57	305	2.30e-09	19.61	0.07	3.53e-12	2150.54	6.52	3.03e-12	
VC	88.19	775	8.79e-09	11.76	0.29	2.50e-11	1290.32	27.75	2.15e-11	
Avg Energy Imp.						$201.38 \times$			234.60×	
				•						

Characterization

	FPGA			IceFlex						
	Xilinx Vertex-II			Redundant			Redundant			
Benchmarks	XC2V2000				Low Power			High Performance		
	Freq	Power	Energy Eff.	Freq	Power	Energy req.	Freq	Power	Energy req.	
	(MHz)	(mW)	(J/cycle)	(MHz)	(mW)	(J/cycle)	(MHz)	(mW)	(J/cycle)	
ARM7	20.32	424	2.09e-08	0.96	0.92	9.56e-10	102.72	86.52	8.42e-10	
ASPIDA DLX	97.09	611	6.29e-09	5.67	0.61	1.08e-10	606.06	57.69	9.52e-11	
Jam RISC	74.05	469	6.33e-09	6.29	0.40	6.36e-11	673.40	37.72	5.60e-11	
LEON2 SPARC	66.33	886	1.34e-08	4.36	1.85	4.24e-10	466.20	174.21	3.74e-10	
Microblaze RISC	88.94	460	5.17e-09	8.09	0.26	3.26e-11	865.80	24.89	2.87e-11	
miniMIPS	67.96	235	3.46e-09	4.72	0.79	1.67e-10	505.05	74.44	1.47e-10	
MIPS	62.12	449	7.23e-09	5.15	0.38	7.42e-11	550.96	36.00	6.53e-11	
Plasma	58.21	468	8.04e-09	4.36	0.54	1.25e-10	466.20	51.29	1.10e-10	
UCore	105.34	613	5.82e-09	6.29	0.59	9.39e-11	673.40	55.71	8.27e-11	
YACC	55.68	466	8.37e-09	9.44	0.50	5.30e-11	1010.10	47.12	4.67e-11	
AES	158.63	387	2.44e-09	14.16	0.57	4.04e-11	1515.15	53.86	3.55e-11	
AVR	55.55	105	1.89e-09	4.72	0.44	9.26e-11	505.05	41.18	8.15e-11	
CORDIC	209.95	205	9.76e-10	56.65	0.17	3.08e-12	6060.61	16.46	2.72e-12	
ECC	30.24	105	3.47e-09	5.67	0.57	1.00e-10	606.06	53.45	8.82e-11	
FPU	21.96	155	7.06e-09	1.26	1.83	1.45e-09	134.68	172.10	1.28e-09	
RS	383.73	35	9.12e-11	28.33	0.02	7.39e-13	3030.30	1.97	6.52e-13	
USB	132.57	305	2.30e-09	18.88	0.47	2.50e-11	2020.20	44.48	2.20e-11	
VC	88.19	775	8.79e-09	11.33	2.04	1.80e-10	1212.12	192.19	1.59e-10	
Avg Energy Imp.						$27.05 \times$			30.85×	

Characterization

- Ultra-low power sensor applications
 - AVR (4 MHz) can run for 9.7 years on one AA battery
 - Scavenging indoor solar energy is sufficient to power AVR at 1.6 MHz
- Power-efficient high-performance computing
 - LEON2 SPARC: 1.6 Terra IPS at 100 W power budget, 16 Terra IPS under 1 kW power budget

Open questions

- Will nanotechnologies replace CMOS completely?
 - CMOS: high-performance, low cost, mature fabrication, reliable, relatively low power
- When will nanotechnologies be ready?
 - Nanotechnologies: fabrication challenge (10–15 years to mature), reliability challenge, performance concern, etc.
- What can we do?
 - CAD support, circuit design, architecture research

Open questions

- Characterizing impact of new technologies on applications: start with technology library
- Changes to classical problems: buffer insertion
- Nano modeling: Compact fast models validated against reported results and Monte-Carlo
- Reliability models: Correlations, distributions, rates
- Reliability solutions: Markov random fields or modular redundancy