Temperature-Aware and Low-Power Design and Synthesis of Integrated Circuits and Systems

Robert P. Dick

http://robertdick.org/talp L477 Tech 847–467–2298

Department of Electrical Engineering and Computer Science Northwestern University

Forced air and heatsinks Alternative technologies Solid State

Multiple modes common in real applications

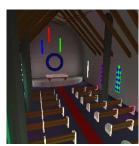
Robert P. Dick

Temperature-Aware and Low-Power Design and Synthesis

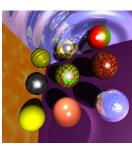
Introduction Forced air and heatsinks Alternative technologies

Radiative cooling

$$P = Ae\sigma T^4 - Ae\sigma T_A^4$$


- · P: Power in W
- · A: Surface area
- e: Emissivity of surface [0:1]
 - · 0.3 for Cu, 0 for rough black surface
- \cdot $\sigma :$ Stefan-Boltzmann constant = 5.67×10^-8 W/(m² K)
- · T: Temperature
- · T_A: Ambient temperature
- · Why does a thermos have mirrored walls?

Robert P Dick


Temperature-Aware and Low-Power Design and Synthesis

Forced air and heatsinks
Alternative technologies
Solid State

Other uses of radiation

Radiosity

Ray tracing

Introduction

- · Cooling fundamentals
- · Multiple cooling methods
 - · Combinations often used in real applications

Robert P Dic

Temperature-Aware and Low-Power Design and Synthesis

Introduction

orced air and heatsinks Alternative technologies Solid State

Conduction

 $P = A\kappa \cdot \Delta T/d$

- · P: Power in W
- · A: Area
- \cdot κ : Thermal conductivity
- · ΔT : Difference in temperature
- · d: Depth

Robert P. Dick

Temperature-Aware and Low-Power Design and Synthesis

Introduction Forced air and heatsinks Alternative technologies

Radiative interaction

$$k = \frac{A\cos\theta}{4\pi r^2}$$

- · k: Patch interaction coefficient
- \cdot A: Patch area
- \cdot θ : Angle between patches
- · r: Distance between patches

Robert P. Di

Temperature-Aware and Low-Power Design and Synthesis

Introduction Forced air and heatsinks Alternative technologies

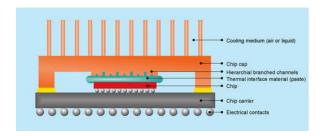
Convection

Convection:

 $P = 2hA(T_S - T_F)$ $h \approx k_1(T_S - T_F)^{1/4}$

Therefore,

 $I \propto (T_S - T_F)^{5/4}$


- · P: Power in W
- · h: Heat transfer coefficient
- \cdot $\it k_1$: Constant for film coefficient and film conductance (0.0021 W/(m 2 K))
- · A: Area of one side of plate
- \cdot T_S and T_F : Solid and fluid temperatures

Forced air heatsink

How to improve?

- · Increase fluid flow rate, decreasing surface film thickness
- · Or increase film conductance
 - · Increases k1
- · Increase surface area
- · Increase temperature difference (?)
- · Increase conductance to heatsink

Heatsink attachment

- · IBM proposes cutting tree-structure trenches in chip cap
- · Thinner interface material, less pressure, few details

lon pump cooling

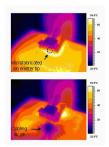
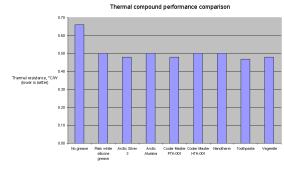



Image credit to N. Jewell-Larsen.

Liquid cooling

- · Specific heat capacity of water $4\times$ air
- · Thermal conductivity 25× air
- · Passive: Vat of oil
- · Active: Recirculating pump
 - · Where does heat go?
- · Microchannel

Thermal compounds

Credit to Dan's Data and Vegemite.

Forced air and hea Heatsink attachment

Image credit to IBM.

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis

Ion pump operation

- · High-voltage positive electrode ionizes air
- · lons travel to negative electrode (chip)
- · Air pulled along
- \cdot Cooled a few mm 2 by 25 $^{\circ}\text{C}$ this way
- · Claiming 180 W/(mm² K) at 4.5 kV, 2 mm²

Microchannel

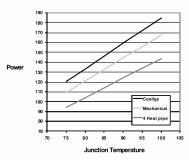
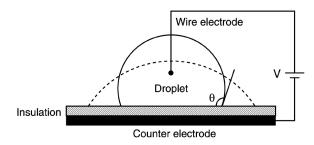
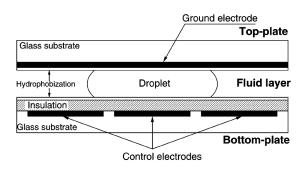



Image credit to Cooligy.

- · Abrupt change in heat capacity
- · Result in transfer in large amount of energy
 - · Rate bound results in mixed state
- · Latent heat: Amount of energy released or absorbed during evaporation
- · 855 J/g for ethyl alcohol at 78 °C
- · 1086 J/g for methyl alcohol at 65 °C
- $\cdot~2258\,J/g$ for water at $100\,^{\circ}\text{C}$

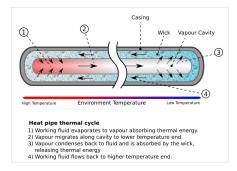

Electrowetting

Credit to M. G. Pollack for image.

Robert P. Dick Temperature-Aware and Lo

Electrowetting microactuator

Credit to M. G. Pollack for image.


Thermoelectric interdependence

In the same electric field, hot electrons travel faster than cold electrons inducing heat flow

$$\vec{J_Q} = D\vec{E}$$

Charge flows faster from hot regions to cold regions $\vec{J_e} = \textit{C}\,\vec{\textit{G}}$

$$\vec{l}_{o} = C\vec{G}$$

Electrowetting

$$\gamma_{SL} = \gamma_{SL}^0 - \frac{\epsilon V^2}{2 \cdot d}$$

- · $\gamma_{\it SL}$: Solid-liquid interfacial tension
- \cdot V applied voltage
- · γ_{SL}^0 : Solid-liquid interfacial tension at V=0
- \cdot ϵ : Dielectric constant for insulating film
- · d: thickness of insulating film

Electrical and thermal fields

$$ec{J_Q} = ^+ \kappa ec{G}$$
 $ec{J_e} = \delta ec{E}$

- $\vec{J_Q}$: Heat flow
- \cdot κ : Thermal conductivity
- \cdot \vec{G} : Temperature gradient
- \cdot $\vec{J_e}$: Electrical current
- · δ : Electrical conductivity
- \vec{E} : Electric potential gradient

Credit to Prof. Grayson for his notes on this topic.

Themroelectric effects

$$\vec{J_e} = \delta \vec{E} + C \vec{G}$$

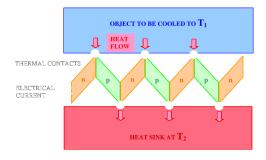
$$\vec{J_Q} = \kappa \vec{G} + D \vec{E}$$

where T is temperature.

Introduction ed air and heatsinks ernative technologies

Themroelectric devices

Solve for \vec{E} and $\vec{J_Q}$


$$ec{E} = ec{J_e}/\delta - S ec{G}$$
 $ec{J_Q} = \pi ec{J_e} + (\kappa - \delta S \pi) ec{G}$
 $\pi = ST$

Robert P. [

Temperature-Aware and Low-Power Design and Synthesis

Forced air and heatsinks Alternative technologies

Peltier heat pumps

Robert P. Di

Temperature-Aware and Low-Power Design and Synthesis

Forced air and heatsinks Alternative technologies Solid State

Stacked Peltier

Credit for image to TE Technology, Inc.

Robert P. E

Forced air and hea Alternative techno

Peltier effect

$$\vec{J_Q} = \pi \vec{J_e} \Rightarrow I_Q = \pi I_e$$

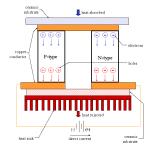
where $\emph{I}_{\emph{q}}$ is the total heat current and $\emph{I}_{\emph{e}}$ is the total electrical current. Within a piece of metal

$$I_Q^{in} = I_Q^{out} = \pi I_e$$

However, at junction

$$I_Q^{in} - I_Q^{out} = (\pi_A - \pi_B)I_e$$

Thus heat can be transported from one junction to another via charge carriers.


Robert P. Di

Temperature-Aware and Low-Power Design and Synthesis

Introduction
Forced air and heatsinks
Alternative technologies
Solid State

Peltier heat pumps

Schematic of a Thermoelectric Cooler

Credit for image to TE Technology, Inc.

Robert P. Dick Temperature-Aware and Low-Power Design and Synthes