

Thermal analysis requirements

- $\cdot\,$ Non-linear impact on reliability and other design characteristics
- Must be accurate
- · Speed necessary for thorough design exploration
- $\cdot\,$ Architectural design or synthesis require many thousands of invocations

Robert P. Dick Temperature-Aware and Low-Power Design and Synthe

• Must be extremely fast

 \cdot Problem definition

Research prerequisites

Unified architectura nd physical synthes (DAC'05)

ast, accurate therma

analysis (DATE'06, ICCAD'06, TCAD'07)

Temperaure-aware

high-level synthesis (ASP-DAC'06)

Thermal and power analysis

Overview of thermal analysis section

Floorplan-aware power profile (existing work by Raghunathan, Josepl

- Steady-state thermal analysis
- Short time scale dynamic thermal analysis
- · Long time scale dynamic thermal analysis

Robert P. Dick Temperature-Aware and Low-Power Design and Synthe

Fast temperature dependent power model (DATE'07)

⋪

Robert P. Dick Temperature-Aware and Low-Power Design and Synthe

Robert P. Dick Temperature-Aware and Low-Pe

- · Anisotropic thermal gradients
- · We generalize to hybrid oct-tree
- · Arbitrary partitioning on each axis

Thermal and power analysis Steady-state thermal analysis evaluation

Robert P. Dick Temp

Test cases	Multigrid_HM			Const. k		
	CPU	Memory	Elemente	Peak	Average	
	time (s)	use (KB)	Elements	temp. (°C)	temp. (°C)	
IBM chip	2.2	4,506	32,768	85.2	53.8	
MIT Raw	6.9	4,506	32,768	83.1	77.5	

	Spatial adaptation						
Test cases	Peak	Average	Error	CPU	Speedup	Memory	Elemente
	temp. (°C)	temp. (°C)	(%)	time (s)	(×)	use (KB)	Elements
IBM chip	90.7	54.8	1.7	0.08	27.50	252	1,800
MIT Raw	88.0	81.3	0.7	0.01	690.00	108	888

Robert P. Dick Temperature-Aware and Low-Power Design and Syn

00

Spatial adaptation can improve performance w.o. loss of accuracy

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis

Hybrid oct-tree

0.0

ature-Aware and Low-Power Design and !

Example ASIC thermal profile

Temperature (°C) 9888776665594435 90 85 80 75 70 65 60 55 60 55 50 45 40 Position (mm)

		Spatial adaptation				Multigrid_HM	
Problem	CPU	Speedup	Mem.	Error	CPU	Mem.	CPU
	time (s)	(×)	(KB)	(%)	time (s)	(KB)	time (s)
chemical	0.78	53.06	265	0.35	41.39	4,506	40.02
dct_wang	2.52	37.08	264	0.24	93.43	4,506	301.37
dct_dif	2.4	37.63	266	1.5	90.31	4,506	71.60
dct_lee	6.1	27.64	268	0.5	168.6	4,506	132.15
elliptic	2.31	32.38	267	0.43	74.79	4,506	38.07
iir77	3.35	29.27	265	0.2	98.06	4,506	77.93
jcb_sm	1.63	21.64	277	0.13	35.27	4,506	151.95
mac	0.26	79.08	264	0.12	20.56	4,506	12.32
paulin	0.13	202.85	264	0.25	26.37	4,506	4.06
pr2	8.29	22.53	285	0.55	186.75	4,506	220.81

rt P Dick Temp Thermal and power analysi Thermal and power analysis R(C) model Time-domain thermal analysis · Conventional time marching slow · Adaptive Runge–Kutta faster · However, synchronous · Still not fast enough

- · Observation: Most ideal step sizes far greater than minimum

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis

Thermal and power analysis Histogram of minimum safe step sizes

Asynchronous temporal adaptation can improve performance w.o. loss of accuracy

Robert P. Dick Temperature-Aware and Low-Power Design and Syn

Thermal and power analysi Asynchronous elements

- · Extrapolation expensive for higher-order methods
- · For each element, compute partial results based on n neighbors $n = (4d^3/3 + 2d^2 + 8d/3)$

Robert P. Dick Temperature-Aware and Low-Power Design and

- · Discretized octahedron
- $\cdot |E|$ is the number of elements
- \cdot d is the transitive neighbor depth

	Ť_₽ ≸	
and the	=	Ξ

ert P. Dick Temperature-Aware and Low-Power Design and Synthesis

Robert P. Dick Temperature-Aware and Low-Power Design and Sy

Robert P. Dick Temperature-Aware and Low-Power Design and Synt

- Partition into 3-D elements (diagram 2-D for simplicity) $Thermal\ resistance \quad \leftrightarrow \quad Resistance$ Heat flow Current \leftrightarrow For dynamic: Heat capacity $\leftrightarrow \quad {\sf Capacitance}$

Formulation

· Allow step sizes to differ in space and time

Thermal and pow

· This eliminates local time synchronization

Thermal and power analysis

· How to handle steps when neighbors at different time? · Extrapolate?

· For higher-order Runge-Kutta, most computations can be

- reused/amortized
- $\cdot\,$ However, asynchronous operation makes this impractical
- · Asynchronous temporal adaptation will favor lower-order methods
- Try it anyway

Asynchronous elements

hermal and power analysis Steady-state thermal analysis in IC Synthesis

 $0=\sum_{i=1}^{6}\frac{T(t)-T_i\cdot u(t)}{R_i}+C\frac{dT}{dt}-P\cdot u(t)$

Allows computation of temperature after time step.

Thermal and power analysis

Error

transform

Step size adaptation

Temperature

By Laplace transform, linearity theorem, and inverse Laplace

 $\frac{dT}{dt} = \left(\frac{\sum_{i=1}^{6} T_i/R_i + P - T(0^-) \cdot \sum_{i=1}^{6} 1/R_i}{C}\right) \cdot e^{-t/C \sum_{i=1}^{6} 1/R_i}$

ature-Aware and Low-Power Design and Sy

Asynchronous temporal adaptation

Thermal and power analysis

- · Neighbors at different times
 - · Extrapolate neighbor temperatures to take step
 - · Adapt step size by taking two 3/4 h, one 3/2 h steps and comparing

$$s_i(t_i) = u \cdot \sqrt[y]{\left|\frac{dT_i}{dt}(t_i) \cdot \frac{3}{2} \cdot h_i - \frac{3}{4} \cdot h_i\left(\frac{dT_i}{dt}(t_i) + \frac{dT_i}{dt}(t_i + \frac{3}{4} \cdot h_i)\right)\right|}$$

where v is the order of the method in use

Wave propagation and update order

Thermal and power analysis

· Bound neighbor difference to prevent wave propagation problem

$$h'_i = \min\left(s_i(t_i), \min_{n \in N_i}(w \cdot (t_n + h_n - t_i))\right)$$

Robert P. Dick Temperature-Aware and Low-Power Design and S

Temperature-Aware and Low-Power Design and Synthe

- w a small constant, e.g., 3
- $\cdot\,$ Asynchronous times, which element to update?
- · Discrete event simulator
- · Used event queue ordered by earliest step target time $t_i + h_i$

Robert P Dick

hermal and power analy

Long tin	ne scale	e thermal	analysis
----------	----------	-----------	----------

Time-domain method	Moment matching frequency-domain technique
 Accurate early in time period Little start-up cost Accumulate estimation error for long time scales 	 Uses approximate analytical expression for direct temperature calculation Accurate for long time scales: Doesn't accumulate error Higher start-up cost Very low cost for each new time point

Robert P Dick Ter

Thermal and power analysis

Moment matching technique

 $\mathbf{C}\frac{d\mathbf{T}(t)}{dt} = \mathbf{AT}(t) + \mathbf{P}U(t)$ Laplace Transform $T(s) = -A^{-1}(I - sCA^{-1})^{-1}(P/s + CT(0^{-}))$ Expand $(\mathbf{I} - s\mathbf{C}\mathbf{A}^{-1})^{-1}$ about s = 0 $T(s) = (m_0 + m_1 s^1 + m_2 s^2 + \dots)(P/s + CT(0^-))$

Thermal and power analysis

Moment matching technique

estimate

3/h 3/h

Time Robert P. Dick Temperature-Aw

3/ h

Thermal and power analysis

Asynchronous time marching validation

		ISAC			GAR	K4
Problem	CPU	Speedup	Mem.	Error	CPU	Mem.
	time (s)	(×)	(KB)	(%)	time (s)	(KB)
chemical	1.35	1354	463.47	0.13	1827.41	4,506
dct_wang	0.39	1457	312.64	0.09	568.22	4,506
dct_dif	0.40	1807	332.91	0.05	722.64	4,506
dct_lee	0.85	1071	439.22	0.04	910.88	4,506
elliptic	2.24	1361	412.23	0.02	3042.61	4,506
iir77	0.86	1521	803.09	0.08	1305.25	4,506
jcb_sm	0.58	1890	357.30	0.11	1092.98	4,506
mac	1.65	1105	403.47	0.45	1817.71	4,506
paulin	0.77	1439	354.28	0.18	1111.68	4,506
pr2	1.06	1831	489.36	0.35	1932.95	4,506

Robert P. Dick Temperature-Aware and Low-Power Design and S

Robert P. Dick Temperature-Aware and Low-Power Design and Syn

Keep only first q moments

 $T(s) = (m_0 + m_1 s^1 + m_2 s^2 + \dots + m_{q-1} s^{q-1})(P/s + CT(0^-))$ Transform back to time domain, for element j

 $T_j(t) = l_{0,j} + k_{0,j} e^{p_{0,j}t} + k_{1,j} e^{p_{1,j}t} + \dots + k_{q-1,j} e^{p_{q-1,j}t}$ Temperatures computed directly without time-domain integration

Robert P. Dick Temperature-Aware and Low-Power Design and Synt

Thermal and power analysis

Thermal and power analysis Temperature-aware synthesis Accuracy of long time scale thermal analysis

- \cdot Matrix operations, including inversion and multiplication, are computation and memory intensive
- · Model granularity critical

Solution

- $\cdot\,$ Spatial adaptation based on predicted thermal gradient to maximize modeling efficiency
- \cdot Efficient numerical solvers, i.e., multigrid matrix inversion, LAPACK for many matrix operations

Robert P. Dick Temperature-Aware and Low-Pe

Thermal and power analysis Temperature-aware synthesis Thermal optimization

- $\cdot\,$ Used ideas in thermal-aware architectural synthesis system
- · Optimize area, power, temperature under performance constraints

perature-Aware and Low-Power Design and Syn

- · Required architectural and physical optimizations
- · Relies on high-performance unified incremental high-level synthesis and floorplanning

Thermal and power analysis Temperature-aware synthesis Efficiency of time of moment matching technique

Duchlow	Elts.	Static	Static M	Static H	Periodic	Dynamic
Problem		A^{-1} (s)	mul. (s)	coeff. (s)	(ms)	(μs)
chemical	3,383	93.44	16.53	0.80	104.35	0.26
dct_dif	2,282	32.28	8.54	0.42	55.37	0.20
dct_lee	2,430	42.23	7.78	0.40	50.91	0.18
dct_wang	3,206	371.31	23.39	0.84	106.25	0.20
elliptic	3,009	194.44	19.46	0.74	91.31	0.20
iir77	5,862	509.74	214.84	19.58	359.65	0.21
jcb_sm	2,608	125.93	12.63	0.58	72.45	0.20
mac	2,945	221.84	17.93	0.72	90.51	0.19
paulin	2,586	66.21	8.47	0.42	54.25	0.18
pr2	3,572	287.97	31.98	1.06	132.92	0.20

Robert P. Dick Temperature-Aware and Low-Power Design and Sy Thermal and power analysis Temperature-aware synthesis

Example floorplan

29 functional units have temperatures higher than $85^{\circ}\mathrm{C}$

Robert P. Dick Temperature-Aware and Low-Power Design and Sy

Thermal and power analysis Temperature-aware synthesis Thermal optimization results

Peak temperature comparison

Thermal and power analysis Temperature-aware synthesis Floorplan with voltage islands

Robert P. Dick Tem

- \cdot Improvement: Using three voltage islands improves things
- $\cdot\,$ Still have 19 functional units $> 85^{\circ}{\rm C}$
- $\cdot\,$ Use thermal-aware binding and floorplanning moves to further improve

Robert P. Dick Temperature-Aware and Low-Power Design and S

Benchmarks

Thermal and power analysis Temperature-aware synthesis

- $\cdot\,$ Thermal-aware binding of operations to functional units
- \cdot Voltage island generation to reduce temperature
- · Thermal-aware floorplanning

Thermal optimization summary

- $\cdot\,$ Together, result is 12.5 $^{\circ}\text{C}$ temperature reduction
- $\cdot~$ 9.9% area reduction under peak temperature constraint

Related work I

Thermal modeling

- P. Li, L. T. Pileggi, M. Ashghi, and R. Chandra. Efficient full-chip thermal modeling and analysis. In *Proc. Int. Conf. Computer-Aided Design*, pages 319–326, November 2004
- Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankaranarayanan, and David Tarjan.
 Temperature-aware microarchitecture. In *Proc. Int. Symp. Computer Architecture*, pages 2–13, June 2003

Robert P. Dick Temperature-Aware and Low-Power Design and Sy

· COMSOL Multiphysics (FEMLAB)

Temperature-aware synthesis

Robert P. Dick Temperature-Aware and Low-Power Design and Sy

Thermal and power analysis Temperature-aware synthesis

Related work II

Thermal modeling

Lorenzo Codecasa, Dario D'Amore, and Paolo Maffezzoni. An Arnoldi based thermal network reduction method for electro-thermal analysis. *Trans. Components and Packaging Technologies*, 26(1):168–192, March 2003

Thermal-aware synthesis

- Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik. Temperature-aware resource allocation and binding in high-level synthesis. In *Proc. Design Automation Conf.*, June 2005
- W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada, and J. Conner. Temperature-aware voltage islands architecting in system-on-chip design. In *Proc. Int. Conf. Computer Design*, October 2005

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis