Robert P. Dick http://robertdick.org/talp

L477 Tech 847-467-2298

Department of Electrical Engineering and Computer Science

Northwestern University

Today's goals

 $^{\circ}$ $\,$ Know how to get access to the resources you'll need for this course

ert P. Dick Temperature-Aware and Low-Power Design and S

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis

- $\cdot\,$ Books, computer lab, website, and mailing list
- Understand work and grading policies
- * Rough understanding of topics we'll cover in course

Administration

Lectures

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis

- Tuesdays and Thursdays from 12:30–2:00
 Tech L158
- PDF files for some lectures will be posted to http://robertdick.org/talp

· Advanced Digital Logic Design

· Computer Architecture

Class prerequisites

VLSI Systems Design

Projec Hor

Topic prerequisites

- · Basic electrical circuit analysis
- \cdot Digital logic design
- · VLSI design
- · Computer architecture

Administration Project ideas Homework

Course structure

- $\cdot\,$ We will start on research projects almost immediately
- $\cdot\,$ Each project will have a research, design, and presentation component

Robert P. Dick Temp

- $\cdot~$ The class meetings will be a mix of lectures and paper discussions
- Main purpose of class: Prepare students for independent research on temperature-aware and low-power design and synthesis of integrated circuits and systems

Administration Project ideas Homework	
Grading policies	
Literature summaries:	10%

Literature summaries.	10/0
Exams:	15%
Mini-project presentation:	7%
Project presentation:	18%
Mini-project quality and report:	15%
Project quality and report:	35%

- Active class participation by students is strongly encouraged
- \cdot There will be two projects
 - $\cdot\,$ Mini-project due approximately 1/2 through the course
 - Final project

Administration Project ideas Homework Decide office hours

rt P. Dick Temr

I can reschedule office hours based on your comments

Person	Day	Time	Room
Robert Dick	Tuesday	2:00-4:00	L477 Tech
Robert Dick	Thursday	2:00-4:00	L477 Tech

er Design and S

- · Open to individual project goals
- · Will also provide a few default projects
- · Some will require teams
- $\cdot\,$ Multiple people may work on the same topic and collaborate
- · However, each person must describe/present his/her own work

- $\cdot\,$ Please subscribe to the TALP mailing list by sending a to listserv@listserv.it.northwestern.edu with no subject and a body of SUBSCRIBE TALP [Firstname] [Lastname]
- · Useful for getting questions rapidly answered
- · If you email an academic question to me, I'll will post the question and the answer to the newsgroup/mailing list but remove your name

10 Robert P. Dick	Temperature-Aware and Low-Power Design and Synthesis	11	Robert P. Dick	Temperature-Aware and Low-Power Design and Synthesis
Administration Project idear			Administration	
Project ideas Homework			Project ideas Homework	
Lab access		Course goa	ls	

Depending on your project, you may need access to one or more of the following resources

- · Solaris machines running HSPICE
- · Linux machines running ISAC or HotSpot
- · Infrared cameras
- · Solaris machines running Mentor Graphics layout software

bert P. Dick Temperature-Aware and Low-Power Design and Synthesi

Course topics

- · Integrated circuit power consumption
- · Power macromodeling
- · Heat flow analysis
- · Temperature-aware and power-aware physical design
- · Temperature-aware and power-aware behavioral synthesis
- · Temperature-aware and power-aware microarchitectures
- · Temperature-aware and power-aware system-level architectures
- · Advances in cooling technologies
- · Power and temperature implications of novel device technologies
- · Reliability models

rt P. Dick Temperature-Aware and Low-Po Modeling

- · Design and fabricate an integrated circuit to determine the impact of wire density and anisotropy on thermal conductance
- \cdot Design and fabricate an integrated circuit to validate existing, or develop new, temperature-dependant wear process models, e.g., electromigration
- · Use Monte Carlo techniques to develop a transistor-level macromodel that accurately considers non-equilibrium conditions between optic and acoustic phonons and integrate it within an architectural-level Fourier heat transfer analysis infrastructure

After finishing this course you should

- · Be prepared for independent research in temperature-aware or low-power design or synthesis of integrated circuits or systems
- $\cdot\,$ Have a high-level understanding the major research topics in the area
- $\cdot\,$ Have completed a project that can naturally be developed into substantial and novel research

Robert P. Dick Temperature-Aware and Low-Power Design and Synthe

Available infrastructure

- · ISAC thermal analysis algorithms
- · MILP optimal temperature-aware real-time scheduling formulation and CPLEX
- · Integrated floorplanning and high-level synthesis algorithm
- · 3-D temperature-aware floorplanning software
- $\cdot\,$ M5 multiprocessor simulator instrumented with power and thermal models
- Single-electron tunneling transistor SPICE models
- · User-driven laptop DVFS infrastructure
- · Fast temperature-dependent leakage power estimation techniques

Robert P. Dick Temperature-Aware and Low-Power Design and Syr

Modeling

- · Model and evaluate novel cooling structures using ANSYS or **COMSOL** Multiphysics
- · Develop and validate models for interface layers between dissimilar materials
- · Develop new numerical methods for rapid and accurate steady-state thermal analysis

bert P. Dick Temperature-Aware and Low-Power Design and Syn

Design and synthesis

Online management and cooling

- · Temperature-aware global routing
- New ideas in temperature-aware floorplanning (many already exist), e.g., graph-space stochastic gradient descent
- $\cdot\,$ Optimal and heuristic allocation, assignment, and scheduling
- · Temperature-aware reliable architectures
- · Architectural evaluation of novel device technologies
- · Temperature-aware test scheduling

- · Predict optimal power states of system devices
- Develop novel techniques of controlling power states, e.g., camera and backlight trick
- · Validate power deregulation
- · Invent and test a new cooling technology

19 Robert P. Dick	Temperature-Aware and Low-Power Design and Synthesis	20 Robert P. Dick	Temperature-Aware and Low-Power Design and Synthesis
Administration Project ideas Homework		Administration Project idaas Homework	
Reading assignment		Determine tentative project t	topics

- $\cdot\,$ Introduction attempting to unify power, thermal, and reliability modeling
- High-level introduction to thermal problems (review for many) Li Shang and Robert P. Dick. Thermal crisis: Challenges and potential solutions. *IEEE Potentials*, 25(5), September 2006
- Details on impact of process scaling on power Ali Keshavarzi. Power-aware architectural synthesis. In Wai-Kai Chen, editor, *The VLSI Handbook*. CRC Press, 2006

· Due next class

- · Propose a mini-project topic
- · One of your two papers for Tuesday will be based on the topic
- $\cdot\,$ You will need to provide evidence of the following things next

Robert P. Dick Temperature-Aware and Low-Power Design and Synth

- week
- Novelty
- Potential for usefulness
- \cdot Feasibility of evaluating idea

Administration Project Ideas Homework

ert P. Dick Temperature-Aware and Low-Power Design and Synthesis

· Power consumption

- · Dynamic and leakage power models
- · Relationship between power and other characteristics

Robert P. Dick Temperature-Aware and Low-Power Design and Synthesis