N
Check for
Updates

Unveiling Causal Attention in Dogs’ Eyes with Smart Eyewear

YINGYING ZHAO" and NING LI*, School of Computer Science, Fudan University, China and Shanghai
Key Laboratory of Data Science, Fudan University, China

WENTAO PAN, School of Computer Science, Fudan University, China and Shanghai Key Laboratory of Data
Science, Fudan University, China

YUJIANG WANGT, Department of Engineering Science, University of Oxford, United Kingdom
MINGZHI DONGT, School of Computer Science, Fudan University, China and Shanghai Key Laboratory of
Data Science, Fudan University, China

XIANGHUA (SHARON) DING, School of Computer Science, University of Glasgow, United Kingdom
QIN LV, Department of Computer Science, University of Colorado Boulder, United States

ROBERT P. DICK, Department of Electrical Engineering and Computer Science, University of Michigan,
United States

DONGSHENG LI, Microsoft Research Asia, China

FAN YANG, School of Microelectronics, Fudan University, China

TUN LU, NING GU, and LI SHANG, School of Computer Science, Fudan University, China and Shanghai
Key Laboratory of Data Science, Fudan University, China

Our goals are to better understand dog cognition, and to support others who share this interest. Existing investigation methods
predominantly rely on human-manipulated experiments to examine dogs’ behavioral responses to visual stimuli such as
human gestures. As a result, existing experimental paradigms are usually constrained to in-lab environments and may not

reveal the dog’s responses to real-world visual scenes. Moreover, visual signals pertaining to dog behavioral responses are
empirically derived from observational evidence, which can be prone to subjective bias and may lead to controversies. We

“Equal contribution
Corresponding authors

Authors’ addresses: Yingying Zhao, yingyingzhao@fudan.edu.cn; Ning Li, 20210240206 @fudan.edu.cn, School of Computer Science, Fudan
University, Shanghai, China, 200438 and Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China, 200438; Wentao Pan,
21110240007 @m.fudan.edu.cn, School of Computer Science, Fudan University, Shanghai, China, 200438 and Shanghai Key Laboratory of
Data Science, Fudan University, Shanghai, China, 200438; Yujiang Wang, yujiang. wang@eng.ox.ac.uk, Department of Engineering Science,
University of Oxford, Oxford, United Kingdom; Mingzhi Dong, mingzhidong@gmail.com, School of Computer Science, Fudan University,
Shanghai, China, 200438 and Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China, 200438; Xianghua (Sharon) Ding,
xianghua.ding@glasgow.ac.uk, School of Computer Science, University of Glasgow, Glasgow, Lanarkshire, United Kingdom, 200438; Qin Lv,
qinlv@colorado.edu, Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States, 80309; Robert P.
Dick, dickrp@umich.edu, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, United
States, 48109; Dongsheng Li, , Microsoft Research Asia, Shanghai, China, 201203; Fan Yang, yangfan@fudan.edu.cn, School of Microelectronics,
Fudan University, Shanghai, China, 201203; Tun Lu, lutun@fudan.edu.cn; Ning Gu, ninggu@fudan.edu.cn; Li Shang, lishang@fudan.edu.cn,
School of Computer Science, Fudan University, Shanghai, China, 200438 and Shanghai Key Laboratory of Data Science, Fudan University,
Shanghai, China, 200438.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.

2474-9567/2022/12-ART199 $15.00

https://doi.org/10.1145/3569490

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 199. Publication date: December 2022.



HTTPS://ORCID.ORG/0000-0001-5902-1306
HTTPS://ORCID.ORG/0000-0002-2428-0516
HTTPS://ORCID.ORG/0000-0001-7868-5829
HTTPS://ORCID.ORG/0000-0002-6220-029X
HTTPS://ORCID.ORG/0000-0002-8897-5931
HTTPS://ORCID.ORG/0000-0001-8122-6252
HTTPS://ORCID.ORG/0000-0002-9437-1376
HTTPS://ORCID.ORG/0000-0001-5428-9530
HTTPS://ORCID.ORG/0000-0003-3103-8442
HTTPS://ORCID.ORG/0000-0003-2164-8175
HTTPS://ORCID.ORG/0000-0002-6633-4826
HTTPS://ORCID.ORG/0000-0002-2915-974X
HTTPS://ORCID.ORG/0000-0003-3944-7531
https://orcid.org/0000-0001-5902-1306
https://orcid.org/0000-0002-2428-0516
https://orcid.org/0000-0001-7868-5829
https://orcid.org/0000-0002-6220-029X
https://orcid.org/0000-0002-8897-5931
https://orcid.org/0000-0001-8122-6252
https://orcid.org/0000-0002-9437-1376
https://orcid.org/0000-0001-5428-9530
https://orcid.org/0000-0001-5428-9530
https://orcid.org/0000-0003-3103-8442
https://orcid.org/0000-0003-2164-8175
https://orcid.org/0000-0002-6633-4826
https://orcid.org/0000-0002-2915-974X
https://orcid.org/0000-0003-3944-7531
https://doi.org/10.1145/3569490
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569490&domain=pdf&date_stamp=2023-01-11

199:2 « Zhao and Li, et al.

aim to overcome or reduce the existing limitations of dog cognition studies by investigating a challenging issue: identifying
the visual signal(s) from dog eye motion that can be utilized to infer causal explanations of its behaviors, namely estimating
causal attention. To this end, we design a deep learning framework named Causal AtteNtlon NEtwork (CANINE) to unveil
the dogs’ causal attention mechanism, inspired by the recent advance in causality analysis with deep learning. Equipped
with CANINE, we developed the first eyewear device to enable inference on the vision-related behavioral causality of canine
wearers. We demonstrate the technical feasibility of the proposed CANINE glasses through their application in multiple
representative experimental scenarios of dog cognitive study. Various in-field trials are also performed to demonstrate the
generality of the CANINE eyewear in real-world scenarios. With the proposed CANINE glasses, we collect the first large-scale
dataset, named DogsView, which consists of automatically generated annotations on the canine wearer’s causal attention
across a wide range of representative scenarios. The DogsView dataset is available online to facilitate research.

CCS Concepts: « Human-centered computing — Mobile devices.
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1 INTRODUCTION

Equipped with unmatched social cognition capabilities [28, 51, 75], domestic dogs play a variety of vital roles in
modern society: pet dogs relieve stress and improve emotional welfare, guard dogs protect their companions
from harm, and seeing-eye dogs assist those with impaired vision; they also protect livestock, remove pests, help
their companions hunt, and find lost people [5, 32, 41, 64, 72, 84]. The study of dog cognition is therefore of
interest to researchers working in numerous areas [5, 7, 18, 34, 84]. From a scientific standpoint, the investigation
of canine cognitive mechanisms can promote a series of dog-related studies, such as Human-Dog Interaction
[5, 34, 34, 34, 58, 62, 79], dog’s social/non-social cognition [3, 5], and Animal-Computer Interaction [31, 33]. It
can also improve our knowledge of human cognition and brains, e.g., the theory of how early humans formulate
their social awareness can benefit from the study on canine cognition [26], while our understanding of human
cognitive dysfunctions like Alzheimer’s disease can also be deepened from the observations of the development
of mental deficiencies in dogs [30]. Other academic fields that can benefit from dog cognition studies include
the comparative phylogenetics [48] and the ontogenetics [67]. From an application viewpoint, a better grasp of
canine cognition can enable improvements in canine training 8], thus enabling dogs to complete their assigned
duties better.

Visual perception is arguably the most widely applied cognitive clue in canine cognition research, and visual
tasks are the most prevalent paradigm for examining dog behaviors [5]. In those experiments, the experimental
subjects, i.e., dogs, are required to perceive the presented visual stimulations. Then, the subject’s behaviors in
response to those stimuli are recorded and analyzed by human experimenters. This paradigm is commonly applied
in canine vision research, including studies of object permanence [13, 22], discrimination learning [2, 54, 55],
spatial cognition [11, 20, 21], human-dog interactions [1, 25, 27, 40, 52, 83], etc. A representative example is the
classic two-choice paradigm used in Human-Dog Interactions (HDI) [1, 27, 83]. Two potential food sources are
provided with a human demonstrator standing between them. One site contains food as a reward, while another
does not. The experimenter will then instruct the dog to choose the one with the reward through certain visual
human cues, e.g., pointing to the target with arms/legs, gazing at the preferable site, or turning the head. Whether
dogs understand these social clues is then measured by their responses, e.g., whether they select the genuine
food source.
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In the experimental paradigm described above, the entire process is manually controlled, observed, and analyzed
by human experimenters. Those human-controlled experiments have considerably expanded our canine cognitive
knowledge; however, overly relying on human manipulation can be a double-edged sword. As indicated by
Pfungst [63], humans’ unintentional cues can influence the behaviors and expectations of social animals, a
phenomenon named the Clever Hans effect [63]. This is especially the case in canine studies, as domestic dogs
possess highly sensitive mental states and can respond to the subtle gestures made by their owners [53, 81].

There are two main limitations in the existing experimental protocols, e.g., the two-choice paradigm. Firstly, it
is often vulnerable to the subjective bias introduced by human experimenters either consciously or subconsciously.
For instance, if a human demonstrator in a two-choice HDI experiment points to the desired food site with arms
or fingers as scheduled, the gaze point may fall onto another site unintentionally. This subconscious behavior can
be observed and be prioritized over the pointing gesture by the dog, perhaps leading to an incorrect conclusion,
although the correct conclusion would have been reached without the distraction of the demonstrator’s gaze.
Such unpredictable deviations can occur and accumulate without being realized by experimenters, undermining
study reliability. The subjective bias can also result from the overwhelming reliance on human experts to conclude
experimental outcomes, as different experimenters can judge the same phenomenon differently. Controversies
and debates can emerge as a consequence, e.g., a consensus has not been achieved on the true meaning of the
dog’s looking-back behavior in the problem-solving task [47], which is interpreted as the indication of asking for
help by some researchers but as a result of being attracted by the human’s involuntary actions among others.

The predominantly adopted in-lab setting is another significant drawback of the current dog cognitive research.
Most experimental paradigms are constrained to in-lab environments, e.g., the aforementioned two-choice
protocol. Only human-controlled visual signals are delivered to dogs. This is essentially a compromise of the
limited analytical scope of human experts. Dogs in the open world will indeed receive multiple complicated
visual signals simultaneously and behave correspondingly. It is nearly impossible for human brains to detect
and interpret which visual signal the dog is focusing on and should therefore be associated with the observed
behavior. A vast majority of dog cognition studies are designed for laboratories as a result. However, experiments
conducted in such a constrained environment may improperly reflect the behavioral reactions of dogs to real-
world scenes pertaining to their daily duties. Although several works have already described these problems and
have introduced more complex scenarios involving two human instructors [45, 46], the gap between laboratory
and real-world conditions remains large.

To relieve the subjective bias and facilitate unconstrained dog cognition research, we propose employing deep
learning techniques to understand dog vision from a more objective, accurate, and flexible perspective. Noticeably,
the application of deep learning in dog cognition studies, or even in the animal cognition area, is surprisingly
rare compared with its impressive success in human visual tasks such as face recognition [16]. To the best of
our knowledge, the most relevant works are the applications of eye-tracking techniques to analyze the gazing
behavior of dogs [41, 44, 70, 71, 79, 87]. The obtained gaze points are seen as indicators of canine visual attention
and the gaze patterns are used to analyze the dog’s visual cognition of human faces [4, 71, 72], objects within
pictures [70], the implications of oxytocin [73], and so on. Simple as it is from a technology perspective and even
without deep networks, the works of this branch have already yielded several interesting discoveries. For example,
it is reported by Somppi et al. [70] that canine visual attention generally focuses on more informative regions in
pictures, while facial images of conspecifics are preferred over other objects. Despite these findings, the canine
eye-tracking apparatus can only detect the gaze point, which can only provide a rough estimate of the dog’s
observation. Thus, the presented visual stimuli still need to be carefully selected by humans to avoid potential
ambiguities. The problem of comprehending real-world canine visual attention in detail remains unsolved.
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We take a substantial step towards this beautiful vision by developing a deep-learning-based eyewear device
for dogs. This device can analyze the causal attention ! in dog visions, an ambitious task that requires the accurate
determination of whether the dog is in a visually attentive state (looking at something attentively) and discovering
the visual perceptions that lead to its behavioral response. That is, we would like to identify the visual attention
that can reveal the causes of a dog’s behavioral responses, and the potential benefits are promising. Awareness
of causal attention allows the canine cognitive experiments to be conducted in unconstrained environments
where dogs can behave more naturalistically and realistically. It can also provide an objective evaluation of the
specific visual signals that produce particular behavioral responses and, therefore, can significantly eliminate
those potential subjective biases in dog cognitive studies.

Revealing such causal attention, however, is not a straightforward task. Considering a simple two-choice
experiment, i.e., a person points to a ball, and then the dog walks towards the ball as expected. The former can
be deemed as the cause of the latter. We first need to explicitly understand what is observed in the dog’s eyes,
especially in terms of semantic meanings, e.g., (person - pointing to - ball) in this case. Expressing it as a
simple triplet graph allows us to discover its causal relationships with the demonstrated behavior. Moreover,
there can be multiple such triplet graphs in real-world scenarios, each corresponding to a different visual signal
perceived by the dog and serving as a possible cause. Determining causal attention signal(s) can be challenging;
dogs cannot verbally describe the reasons for their behaviors. We know only the behaviors following visual
attention.

This study addresses this problem from an unprecedented perspective, leading to the first eyewear system
capable of discovering causal attention in dogs’ vision. Standing at the heart of this eyewear is a deep neural
network named Causal AtteNtlon NEtwork (CANINE). In CANINE, the visual attention of dogs, e.g., human body
actions under HDI scenarios, are interpreted as a semantic graph consisting of multiple triplets. Each triplet is in
the form of (subject - relationship - object) and stands for a perceived visual signal. Motivated by recent
advances in recommendation systems [59], we rely on an effective assumption to estimate causal attention. That
is, we aim to find the minimum set of the visual attention graph that is most informative to predict the dog’s
behavioral responses, and we name the resulting set as the rationale graph following [59]. The rationale graph is
the most compact graph that maximizes the probability of predicting the dog’s responsive behaviors.

We design a rationale graph generator that is integrated with CANINE to obtain the rationale graph from
a dog’s visual attention. The training of CANINE, as a result, has a specific requirement for data annotations,
e.g., whether the dog is watching attentively, the type of dog behaviors following an attentive session, and the
ground-truth causality, which cannot be found in a public dataset. We first collect a dataset under the HDI scenario
to satisfy the training requirement and then manually annotate all the required information. This annotated
dataset is used to train the proposed CANINE network. The performance of the resulting CANINE network
surpasses that of other baseline methods. To facilitate dog cognition research, we have applied CANINE eyewear
to a wide range of representative experimental scenarios, including the two-choice experiment [43], the dog’s
understanding of misleading signals [19, 49], and a food quantity preference test [64]. Dogs’ visual attention and
causal attention in those sessions are automatically inferred by our CANINE glasses, and we name the resulting
dataset DogsView. The DogsView dataset is publicly released to facilitate relevant research on dog cognition,
HDI, dog-computer interaction, and more.

To the best of our knowledge, the CANINE eyewear is the first smart glasses device that infers the causes
of the canine wearer’s behaviors. In the above representative canine cognition experiments, the rationale
graph predicted by CANINE eyewear is consistent with the causality estimates of expert human analysts. That

Note that the word “attention” should be distinguished from its usages in the related fields like computer vision [85], which has very distinct
semantic meanings. In this work, causal attention refers to the process of finding the visual signal(s) that can lead to particular behavioral
responses.
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Fig. 1. The proposed CANINE smart eyewear system.

justifies our assumption of finding causal attention with the rationale graph. We have also performed in-field

trials to investigate the CANINE glasses’ performance under additional real-world scenarios, demonstrating its

applicability over unconstrained environments. Figure 1 provides an overview of the CANINE eyewear system.
This study makes the following contributions:

e We propose to analyze the causal attention in the canine visual system, which is to discover the causality of
the dog’s responsive behavior. To the best of our knowledge, this is the first time that such an issue has
been explicitly stated and investigated.

o We develop a deep network named CANINE to reveal the causal attention, based on the assumption that
the rationale graph can appropriately reflect the behavioral causality.

o We develop an eyewear device equipped with the proposed CANINE network to reveal the causal attention
in dogs’ eyes, which opens a gate into dog cognition and behavior studies in the wild. The assumption of
the rationale graph has been justified through its extensive applications in various dog cognitive study
scenarios.

o We construct the first-ever dataset (dubbed DogsView), featuring dogs’ causal attention across multiple
representative dog cognitive experiments and applications, which is the first to include time-aligned
dog eye-area video data and the egocentric scene video data, as well as extensive annotations about dog
attention, behavior, and behavioral causality.

o The generality of the proposed CANINE eyewear to unconstrained real-world environments has also been
illustrated through in-field trials, exhibiting substantial potential for dog cognitive research.

2 PROBLEM DEFINITION

This paper aims to address the core issue of visual causal attention for dogs. However, since most existing
techniques and tasks are developed for humans, and the visual systems of humans and dogs are not entirely
identical, it is necessary to clarify the key concepts and assumptions in this work to avoid confusion.

Eye Movements As shown in relevant literature [44, 70, 71, 74, 79, 87], the patterns of a dog’s eye movements
are generally similar to those of a human, which both can be divided into distinct stages of saccades, smooth
pursuits, and fixations. Such similarities make the direct application of human eye-tracking systems to dogs a
viable option. However, the eye movements of humans and dogs are not identical. A notable difference is that the
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movements of dogs’ eyes, when compared with those of humans, typically exhibit longer fixation periods and
shorter saccade durations [74]. This timing difference should be considered when applying human eye-tracking
methods to dogs to reflect the biological deviations better.

Visual Attention Although no prior work has explicitly defined the visual attention of dogs, multiple pieces
of evidence support the associations between the patterns of a dog’s eye movement and its attentive states.
Somppi et al. [70] studied whether a dog can focus on the informative region of an image via examining its gazing
behaviors. If fixations of eyes are detected, the dog is considered to be attending to the gazing region. On the
other hand, smooth pursuit is also a significant indicator of a dog’s attention, based on works studying the dog’s
attention to moving objects [86]. Following those studies, we consider both fixation and smooth pursuit as the
proxy for visual attention of dogs, which is generally similar to human attention [12]. However, dogs can neither
verbally tell us what they are watching nor perform self-annotations; hence it is challenging to obtain ground
truths for dogs’ visual attention. Besides, clear definitions of dogs’ visual attention remain untouched in prior
dog cognitive studies, requiring clarifications from both theoretical and practical perspectives. This work defines
canine visual attention as a function of three easy-to-assess conditions: (1) its current eye movement pattern is
either smooth pursuits or fixation, (2) the duration of the current gaze pattern has exceeded a threshold, and (3)
there is a meaningful visual stimulus near the gaze location. The motivations of the first two requirements are
to ensure dogs are gazing attentively. They are easily determined by existing smart eyewear. The last criterion
excludes cases where dogs are staring at nothing, as it is a clear sign of being mentally unfocused; It also allows
us to focus on the central visual field of the dog’s vision, which captures at higher resolution than the peripheral
visual field. With all three conditions satisfied, it is reasonable to conclude that the dog is attentively looking
at something meaningful, i.e., visual attention is established. We can therefore proceed to analyze the attended
visual stimuli.

Visual Stimulus The visual systems of dogs and humans are not identical. Physiologic studies have clarified
that dogs’ eyes are different from humans’ in several ways, including color perception [37, 56], sensitivity to
light [56, 65], and visual acuity [56, 57], which are not the focus of this work. Instead, we are interested in the
implications of visual stimuli and attention processing for dog cognition and behavior studies. Formally, a visual
stimulus is defined to be a particular vision, either short-term or long-term, that may lead to a behavioral response.
Typical examples include the body actions of the human companion, bouncing balls, flying insects, etc. Dog
cognition studies usually categorize those signals into social or non-social cognition [5], depending on whether a
human is involved. Without loss of generality, we will mainly employ human body motion in HDI scenarios as
the visual stimuli, which fall into the social cognition domain, to illustrate the proposed pipeline of extracting
causal attention. Other visual stimuli, whether social or non-social, can be addressed likewise.

Semantic Graphs Multiple visual stimuli can be perceived simultaneously. We are interested in determining
which signals provide causal explanations for the dog’s behaviors. From this perspective, a throughout under-
standing of the semantic meanings of the visual stimulus is necessary, as it is those semantics that can reveal
the underlying causality of the responsive behaviors. For instance, when a human experimenter is pointing in a
direction with arms or legs, there can be multiple possible semantic meanings for this gesture. The demonstrator
may be pointing to some food or a ball nearby. If the dog perceives the former, it will approach the food, while in
the latter case, it will pick up the ball. Merely knowing that a pointing gesture occurs is not enough to determine
the cause of the dog’s behavior, it is the semantic meaning of the visual attention that can provide us with a
reasonable explanation. Therefore, we represent each visual stimulus as a triplet semantic graph [38] in the form of
(subject - relationship - object), e.g., {(person - pointing at - food) and (person - pointing at - ball),
which can unambiguously describe behavioral causality. Multiple visual stimuli will be represented as a semantic
graph consisting of multiple such triplets.

Causal Attention The concept causal attention refers to the perceived visual signal(s) that can be seen as the
causal explanation of a behavioral response. With those attentive visual stimuli described as a semantic graph,
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discovering causal attention essentially turns into locating the triplet(s) in the semantic graph of visual attention
that can lead to responsive behaviors. In other words, given a scene graph of visual attention, our goal is to find a
sub-graph that appropriately describes the behavioral causality. This is an unseen task with two major challenges.

The first one arises from how to determine the ground truths of dogs’ causal attention, as we cannot rely
on the self-annotations from our canine subjects. To address this issue, we have carefully designed the in-lab
experiments to identify the causality with high confidence. For example, when a person is pointing to a ball,
the dog attends and walks to the indicated ball. Unlike humans, dogs are more mentally straightforward with
more predictable behaviors. Thus we can reasonably assume the behavioral causality as (person - pointing at
- ball), which needs to be selected out of the graph of visual stimuli.

Obtaining the causal triplet(s) is another difficulty. Few studies have investigated the proper associations of
potentially complicated visual signals with behaviors in the real world or determined their causes. Inspired by
recent progress in recommendation systems [59], we follow an innovative perspective to address this issue. In
particular, we find the rationale graph of visual attention, i.e., the minimum set of the semantic graph that can
maximize the predictivity for the dog’s behavioral responses. The intuition is similar to finding the Markov
boundary [60] of the target (behaviors in this case) under assumptions in [60]. The learned rationale graph
contains substantial evidence of behavioral causality, and we have shown that this rationale graph indicates the
causal attention in most dog cognitive study scenarios.

3 SYSTEM DESIGN
3.1 CANINE Network

3.1.1  Overall Pipeline. The general framework of the proposed CANINE network is illustrated in Fig 2. The
inputs consist of 1). the dog’s eye regions captured by the inward-facing eye camera, and 2). the scene images that
are shot with the outward-facing world camera. The first step is to analyze gaze time-series and scene images to
find the durations in which the dog is visually attending to something within the scene. For each detected visual
attention session, we apply visual masking to each scene image to highlight the regions near the gaze points and
to reduce the significance of less relevant parts.

The masked scene images are subsequently fed into a Scene Graph Generator (SGG) [77] to extract the score
matrix (a matrix containing posterior probabilities of all semantic triplets) of scene graphs, and then we adopt
the BERT model [17] and a temporal pooling method to refine the score matrix and to aggregate the temporal
information to a fixed value. The resulting score matrix contains all the possible scene semantics that can lead
to the dog’s responsive behaviors, and therefore it is defined as the complete set. A named complete predictor is
designed to predict the dog’s behavior from the complete set.

Following Pan et al. [59], we train a rationale generator to reveal the rationales from the complete set. The
output of the rationale generator is essentially a binary mask (or rational mask) of the same size as the complete
set, and this mask will be multiplied element-wise with the complete set to obtain a masked set, which is named
the rationale set, or the rationale score matrix in particular. This rationale set, as illustrated previously, is intended
to be the minimum set that can maximize the predictivity of the dog’s behavior. For this purpose, we attach a
rationale predictor to the rationale score matrix to predict the dog’s behavior, and we learn the rationale generator
to minimize the prediction gap between the complete predictor and the rationale predictor, following Pan et
al. [59].

When produced by a well-trained rationale generator, the rationale set is the most compact set that consists of
the maximum amount of semantic information regarding the dog’s responsive behavior, and it can be visualized
in the form of scene graphs, or the rationale graph, more intuitively. We adopt a Multi-Layer Perceptron (MLP)
to summarize the rationale score matrix into a single human action triplet (since we focused on Human-Dog
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Fig. 2. The framework of CANINE Network.

Interactions, the causality can be assumed as a human action triplet) such that the causal attention can be
expressed in a short, human-readable sentence.

3.1.2 Attention Session Detection. The first step of the CANINE pipeline is to find the temporal sessions during
which the dog is visually attentive. The stage is achieved by analyzing the dog’s gaze patterns and the scene images.
At a time step ¢, we consider video frames in time range [t — N, t + N] to be the most relevant ones at this time step
and use information from this range to predict the attentive state in step t. Let Ef = {E;_n, E;_n+1, ..., Ex+n } De the
dog’s eye image sequence of this range where E; refers to the eye image at step i, and let I* = {I;_n, [;-nN+15 - LrenN }
denote the scene sequence of the same range where I; is the scene image at step i. We first employ Pupil [42]
% to obtain the gaze position from each eye image. Let g; be the gaze position at time step i, and from the eye
sequence E! we can obtain a sequence of gaze points g’ = {g;_n, 8- N+1> ---» &+~ }- We also employ a Scene Graph
Generator (SGG) [77] to the scene sequence I’ to extract a score matrix from each image, i.e., s; = Nsgg(1;)
where s; represents the score matrix at step i and Nsg denotes the SGG network, and denote the score matrices
of the sequence as s’ = {S;_N, S;—N+1, ..» St+N -

With gaze points g’ and score matrices s’ obtained, we aim to predict whether dog is visually attentive at time
step t. Specifically, we use Temporal Pooling (TP) to score matrices s’ to summarize the temporal information in
the scene sequence, while we also compute the differences between consecutive gaze points to summarize the
gaze movement. The temporally reduced score matrix and frame differences of gaze points are concatenated

2https://pupil-labs.com
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together and then fed into a Multi-Layer Perceptron (MLP) to produce a binary prediction, i.e., whether the dog
is visually attentive in time step ¢.

This binary prediction process is performed in a frame-wise manner, and for each frame we predict whether
the dog is visually attentive. A temporal session is seen as an attention session if the dog is visually attentive in
most of the frames, which triggers analysis of causal attention.

3.1.3 Complete Predictor. After an attention session is detected, the target is to find the dog’s behavioral causality
in this session. To achieve this, a complete predictor is designed to predict the dog’s behavior from all possible
semantics of the dog’s visual attention.

In particular, assume there are a total of K attention sessions during training, let UV = {Iy,1;, ... I7} be the scene
sequence of the j-th attention session of duration T + 1 where j € [0,K) NZ, and let g/ = {g, g1, ..., g7} be the
predicted gaze points of the same session. Following MemX [12], we first apply Gaussian Relaxation to convert
those gaze points g/ into heatmaps and apply them as visual masks on the corresponding scene images. The
intuition is to focus the model on regions closer to the gaze points, as the locations near the gaze points are areas
of potential interest to subjects [12, 61]. This can be denoted as I} = VM(I;, g;) where I is the masked scene
image at step i, and VM refers to this Visual Masking processing. The masked scene sequence can be denoted as
V={I1, .. I}}.

After visual masking, we employ a Scene Graph Generator (SGG) to extract the score matrix of the scene
graph from each scene image. We generally follow the implementation of Tang et al. [77], i.e. the SGG consists
of a Faster R-CNN [66] and a Casual Analysis Predictor (CAP). Denote the SGG network as Nsgg, we have
si = Nsgg(I7) where s; is the score matrix at step i, and let s/ = {s¢, 51, ..., s7} be the extracted score matrices for
this attention session.

To filter semantically meaningless triplets in the extracted graph score matrices, we apply a BERT [17] model
tos/,ie., s/ = Nggrr(s’/), where s/’ is the filtered score matrix and Nggrr is the BERT model. Since attention
sessions may have different lengths, we use Temporal Pooling (TP) to s/’ to reduce the time dimension to be a
fixed value (e.g., 10), i.e., C/ = TP(s’’), where C/ stands for the temporally reduced graph score matrix and TP
refers to the Temporal Pooling operation.

The extracted score matrix C’/ contains all semantically meaningful information that is related to the dog’s
behavior and is therefore called the complete set. We design a complete predictor, which is essentially an MLP
model consisting of a linear layer and a soft-max layer, to predict the dog’s behavior from the complete set. N¢ is
the complete predictor. gjjc = Nc(C/), where f/jc is the predicted type of canine behavior based on the complete
set. Let y/ be the ground-truth of the dog’s behavioral response for this session. A Cross-Entropy loss is defined
to train the complete predictor, which can be written as

Le =) CE(y,4)), (1)
J

where L is the loss of the complete predictor over all attention sessions during training, and CE is the Cross-
Entropy loss.

Since the complete set contains all the semantic information, it is heavily redundant, making it difficult for us
to retrieve a reasonable behavioral causality. As such, we design a rationale generator & predictor to reveal the
pursued causal attention.

3.1.4 Rationale Generator & Predictor. As mentioned before, we aim to learn a rationale set, the most compact
subset of the complete set, that can maximize the predictivity of the dog’s behavior.

Following Pan et al. [59], we first apply a rationale generator to generate a binary mask from the complete set
C/ and also from the weights of the linear layer of the complete predictor Nc. The binary mask has the same size
as the complete set and indicates whether each element in the complete set should be kept or discarded.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 199. Publication date: December 2022.



199:10 . Zhao and Li, et al.

The rationale generator, Ng, is also essentially an MLP model. The weights of the linear layer in the complete
predictor Nc are Wc. We concatenate W with C/ and then input them to N to obtain a rationale score, i.e.,
r/ = NG((C/ @ W¢)), where & refers to channel-wise concatenation and r/ refers to the predicted rationale score.
The rationale score matrix r/ is the same size as the complete set C/, and each element of r’/ has a normalized
value between [0, 1).

Intuitively, a larger rationale score value in r/ indicates that the element of the same position in C/ has a higher
probability of being the rationale, i.e., being more relevant to causal attention. Following Pan et al. [59], we round
1/ into a binary rationale mask b/, and then multiply it, element-wise, with the complete set C/ to produce the
rationale set, i.e., R/ = b/ ® C/, where R’ stands for the rationale set, ® refers to the Hadamard product.

After obtaining the rationale set R/, we input it into a rationale predictor to predict the dog’s behavioral
response. Let NVg be the rationale predictor, which is a MLP model. This can be denoted as % = Nr(R/), where

gﬁ is the predicted dog behavior based on the rationale set. Similar to the complete predictor’s loss, we define a
Cross-Entropy loss for the rationale predictor as

Lr= ) CE(. 9}, (@)
J

where L is the loss of the rationale predictor over all training sessions. However, L is not the only loss that is
used to learn the rationale generator Ng and the rationale predictor Ng.

3.1.5 Training Objectives. There are two major components to learn in the CANINE network: the complete
predictor N¢, and the rationale-related networks, i.e., the generator Ng and the predictor Nx. Since training the
complete predictor N does not reply on Ng or Ng, we first invoke the loss L in Eq. 1 to train N, temporarily
ignoring Ng and Ng.

After learning the complete predictor N¢, we freeze its weights for simplicity and continue to train the rationale
generator and predictor. Following Pan et al. [59], we would like to minimize the prediction gap between the
complete predictor and rationale predictor since the rationale set should maintain the maximum predictivity
from the complete set. This can be written as

Lrc =ReLU(Lc — L), 3)

where ReLU refers to the ReLU operation. The intuition of Eq. 3 is that the predictivity of the rationale set should
be as close to that of the complete set as possible.

We require the rationale set to be a most compact set of the complete set. As such, we add another regularization
loss to satisfy this requirement, which can be written as

Lreg =E(IRIl1) — 7, 4)

where 7 is a pre-defined gap level, and E(||(R)||1) refers to the proportion of the non-zero elements in all rationale
sets. In other words, we would like the rationale set to be as sparse/compact as possible.
The final loss used to train the rationale generator and rationale predictor can be written as

Lo =Lr+alrc+ BLrey (5)
= > CE(y/, g}) + aReLU(Lc — Lr) + BE(IRIL) - ), (©)
J

where L represents the final loss to train Ng and Ng, a, and f are the weights of different loss terms, respectively.
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3.1.6  Obtaining Causal Attention. The learned CANINE network can generate the rationale set R/ for an attention
session; however, it is still one step away from what we would like to achieve: the causal attention that can be
intuitively understood by humans. Therefore, we further applied an MLP network to R/, which outputs the type
of visual stimulus that can be seen as the cause of the dog’s behavioral response. For example, this paper focuses
on the scenarios of HDI, and therefore we design the output to be different types of human actions; however, this
framework can be easily extended to other dog cognition studies.

With the last piece of the puzzle in place, we are now able to describe the causal attention of dogs in clear, human-
readable sentences. Since the expected behavior of the dog has already been provided by the complete/rationale
predictor, we can assemble it with the behavioral causality and predict the causal attention as, e.g., “The dog is
staring and walking towards because a person is pointing at a paper plate.”

The rationale set R/ is still extremely useful, as it can reveal how the predicted causal attention occurs temporally.
In this paper, we convert R/ into a series of temporally consistent scene graphs to intuitively explain how the
causal attention emerges and changes.

3.2 Hardware Design

The CANINE network is integrated into prototype smart eyewear. The implementation of the prototype hardware
generally follows that of EMOShip [89], but we have also made some modifications to suit the use of canines.
In this work, we presume that wearing CANINE glasses will not significantly change the behaviors of dogs. To
this end, we have employed multiple strategies, including 1) developing a lightweight and comfortable hardware
prototype and 2). using a carefully designed training paradigm that allows dogs to acclimate to the eyewear. The
hardware of CANINE is retrofitted from commercially available goggles specially designed for dogs with two
lightweight cameras: one inward-facing eye camera and one outward-facing world camera.

For the first generation of prototype eyewear, we adopt SHETU SQ11 1080p camera module (1920x1080@30fps)
as the eye camera and use an additional IR LED light to light up the iris regions. The world camera is essentially
an Insta360 GO 2 (1920x1080@301fps) camera that collects the visual contents adjusted with the canine’s FoV.
We capture 30 frames per second in this work, as this is adequate for detecting dig eye movement patterns
such as fixations, the durations of which are typically longer than 100 ms [61, 74]. A higher frame rate would
unnecessarily reduce battery lifespan. The video streams from the two cameras are synchronized by aligning
their time stamps, following Pupil [42]. Figure 3 (a) and (b) show the front and lateral views, respectively, of a
dog wearing CANINE eyewear.

The smart glasses must be lightweight for the sake of comfort. We developed a newer CANINE glasses prototype
in which the mechanical design is overhauled to reduce weight, optimize mechanical reliability, and improve
comfort. A key modification is detaching the battery and the control board from the headset and organizing them
into a small backpack carried by the dog. This modification reduces the weight of the headset to improve comfort.
The resulting headset weighs approximately 72.4 g. The weight of the backpack is 369.8 g. Figure 3 shows a dog
wearing the CANINE eyewear.

The proposed system is essentially an offline one. The headset records the video streams with the two cameras,
and the recorded data are uploaded to the cloud infrastructure that processes those computation-intensive tasks
such as model inferences.

4 DOGSVIEW DATASET CONSTRUCTION

We apply the proposed CANINE system to construct a dog egocentric vision dataset, called DogsView, to support
research communities studying dog cognition, HDI, dog-computer interaction, and more. The DogsView dataset
covers a wide range of applications and is designed to overcome key obstacles faced by decades-long research on
dog cognition, HDI, and dog-computer interaction, namely (1) the potential subjective bias of manual analysis
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Fig. 3. CANINE eyewear hardware prototype.

results and (2) the limitations of in-lab experiments. Understanding the visual cognitive abilities of dogs is a
challenging problem because its scope is broad. This work narrows the problem to automatically capturing visual
attention in dogs and discovering the rationale for visual stimuli that lead to their behavioral responses in the
open world.

This is the first time that such a dataset has been presented. We have been collecting data over the past two
and a half months. The DogsView dataset is available online [15] and we have engaged pilot HDI researchers
to support their research using the dataset. As an ongoing effort, we will continue to collect and enrich the
DogsView dataset, covering more open-world scenarios and richer HDI signal annotations. It is our hope that
the CANINE system and the DogsView dataset will enable interdisciplinary HDI research. All experimental
procedures are approved by the ethical committee at Fudan University.

The DogsView dataset is summarized as follows.

o The dataset targets representative applications regarding dog cognition, HDI, and dog-computer interaction.
We record dog egocentric scene videos and eye-tracking videos with aligned timelines for representative
applications. The egocentric scene videos cover dog visual scenes, which are used for visual semantic
understanding by extracting objects (e.g., human subjects) and interactions in dog visual scenes using
image and video analysis. Eye-tracking videos capture dog visual attention. Scene and eye-tracking videos
are aligned spatially and temporally to reveal dog visual attention over time, identify the corresponding
HDI signals, quantify the rationale score of each signal, and then support canine visual causal reasoning.

o The dataset is automatically annotated in terms of frame-by-frame visual attention of dogs, human commu-
nication signals (i.e., body actions) and representative scene graphs for each attention session. It contains
more than twenty types of human communicative signals in the context of human-dog interactions. These
signals contain the seven human communicative signals that have been identified and extensively studied
in prior work, such as hand gestures [58] and eye-gaze contact [58]. They also contain 14 new signals that
have been mostly ignored due to the limitations of existing studies. This rich set of features may enable
researchers to gain insight into dogs’ visual cognition by comprehensively and quantitatively measuring
how human communicative signals affect dog behaviors, and further reveal why and how dogs continually
learn from unseen signals.

4.1 Training Paradigm

We follow the training paradigm of Park et al. [74] to acclimate a dog to wearing glasses and maintain its mental
status in appropriate conditions. In each data collection session, we ask an experimenter to bring the dog to the
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target location. At the beginning of the session, the dog is allowed to act freely, typically barking and running, for
around 20 minutes to adapt to the new environment. We then place the CANINE system on the dog and reward
the dog for wearing the CANINE eyewear with treats and human praise. It is allowed to acclimate to the device
to reduce disturbance from wearing the hardware. After the dog behaves naturally for a few minutes without
any stress signals, we turn on the CANINE system and start data collection. The human experimenters observe
the behaviors of the dog to ensure it is in an appropriate mental state during the data recording of CANINE. If
any unusual signals are spotted, like the dog lying on the ground even after it is rewarded, we immediately stop
the recording and take corrective actions (e.g., replacing the tired dog with the one full of energy). Figure 4 (left)
shows a dog interacting with a human participant. Figure 4 (middle) and Figure 4 (right) show an example of the
captured eye images and scene images with aligned timelines, respectively.

Fig. 4. A photo of data collection procedure (left); Example image frames of the dog’s eye image (middle) and the scene
image (right) with aligned timelines.

4.2 Applications

The current version of the DogsView dataset covers the following three representative applications related to
research on dog cognition, human-dog interaction, and dog-computer interaction, summarized as follows.

4.2.1 Application I: Human-Dog Interaction. Human communicative signals that are easily perceived by dogs and
trigger their interactive behavioral responses have long been studied. However, the types of signals identified and
extensively studied are limited [5], mostly focusing on hand pointing [58], eye-gaze contact (or eye glances) [79],
back-turning [34], and arm extension [34]. In addition, prior research has studied whether dogs can recognize
misleading communicative signals from humans [62] and continuously learn new human communicative sig-
nals [34]. For example, a previous study found that dogs do not blindly follow misleading human behaviors, such
as pointing gesture [62].

Application I is designed with two goals: (1) exploring the visual cognitive processes in dogs perceiving,
encoding, and processing misleading communicative signals from humans, and further inferring why dogs can
recognize these signals and (2) automatically and quantitatively explaining how dogs learn from new/unknown
human communicative signals, and inferring possible causes. We designd Application I as a two-step data
collection process. The first step involves manually designed human communicative signals, including actual,
misleading, and new/unseen human communicative signals for dogs. In contrast, the second step is exploratory.
That is, we take dogs into unconstrained open-world scenarios to collect data on their visual attention, aiming to
explore and discover potentially interesting but unknown human interaction cues.
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4.2.2  Application 1I: Dog Cognition. In addition to Application I, which focuses on the social aspect of dog
cognition, we also investigate the non-social aspect of dog cognition related to visual stimuli. Application II
explores how dogs perceive the physical stimuli [5] of their surroundings, resulting in decisions producing
behavioral responses. The importance of non-social aspects of dog cognition has been demonstrated in the
past in laboratory settings, but the scope of the previous work is limited in physical stimuli and environmental
diversity [5].

In Application II, we instruct the experimenter to take the dog outdoors to experience various daily life
environmental scenarios. During this process, the experimenter and the dog interact with the environment
freely. During the process, CANINE is used to collect the visual attentive content of dogs in the open world, and
automatically analyze dog visual attention as well as the reasons behind it.

4.2.3  Application Ill: Animal-Computer Interaction. The possible scenarios covered by the field studies described
in Application II are important but limited. Meanwhile, as an important subfield of human-computer interaction
(HCI), research into animal-computer interaction has investigated how dogs interact with video content, which
can potentially cover a wide range of real-world social and non-social scenarios and supplement the studies
described in Section II.

We take a dog into a room with an LED screen playing short videos collected from an online platform, such as
Tik Tok® or YouTube?. A person familiar with the dog stays in the same room to make sure the dog is comfortable
and relaxed. The dog is free to decide whether to watch the video or not. Thus far, we have collected visual
attention data for dogs on 14 online video segments with total length of approximately 20.00 minutes. We further
classify these videos into four categories based on their content. Three are socially relevant, such as humans,
dogs, and other animals. One is non-socially relevant, containing inanimate objects. To enable a fair comparison,
we play an equal number of segments, with similar durations, from each video category, i.e., six video segments
and four minutes per category on average.To ensure a diversity of visual stimuli, each category consists of three
or more scenarios. For example, we play the animals category, including four kinds of animals, i.e., tigers, wolves,
and ducks.

4.3 Data Statistics

Table 1 summarizes the DogsView dataset. A total of 213.00-minute timeline-aligned eye-scene videos are
constructed, including 63 pairs of eye-scene video clips. The scene video has a spatial resolution of 1,920x1088
pixels, while the eye video has a spatial resolution of 1,920x1080 pixels. Both videos have a sampling rate of 30 fps.
Figures 5, 6, and 7 show three examples of time-series scene image frames for the above three applications—HDI,
dog cognition, and animal-computer interaction, respectively, in the DogsView dataset.

Table 1. Distribution of the DogsView.

. Representative Video # of # of human action Human actions  Attention  Dog behavior
Applications . . . .
scenarios minutes videos categories annotated annotated annotated
Human-Dog Interaction ~ Various communicative signals
(HDI) from humans for dogs 124.30 8 2 v v v
In pet stores,
Dog Cognition shopping malls, 68.27 11 21 v v v
and parks
Animal-Cotpputer Socially‘relevant 20.43 14 13 v v v
Interaction and non-socially relevant

Shttps://www.douyin.com
4https://www.youtube.com
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Fig. 5. Time-series image frames of two scenarios in HDI application. Dogs following (top row) and not following (bottom
row) misleading communicative signals (“throwing an object”) from an experimenter.

Fig. 6. Time-series image frames of two scenarios in dog cognition application. How dogs visually observe two kinds of
passing persons in their private territory (in their home, for example): “walking” (top row) and “running” (bottom row).

Fig. 7. Time-series image frames of two scenarios in animal-computer interaction application. Dogs prefer to watch videos of
the same species (bottom row) compared to other videos (top row).

Figure 8 provides a distribution illustration regarding the ratio of each action type to the number of action
signals in the DogsView dataset. There are 21 human action categories, including 7 types of human signals
commonly used in previous HDI studies and 14 unintentional signals (marked in blue). The seven types of human
signals commonly used in previous HDI studies are: 1) eye-gaze contact [79] or “watch” in this paper, 2) “hand
pointing” [58] or “point to” in this paper, 3) “arm extension” [34] (including “carry/hold”, 4) “give/serve (an object)
to”, 5) “throw”, 6) hand wave, and 7) hand clap [78]. Those seven signals are mostly related to eye/arm/hand
movements, and such actions are carefully selected such that the human experimenters can manually identify
and analyze them. Unlike previous works, we devise CANINE eyewear to recognize human actions, which allows
for the analysis of more complicated and more subtle visual signals as long as the network has been properly
trained. We add a total of 14 new human actions (more signals may be added in the future) that are common in
real life but are not well-investigated by previous HDI works. This is also a significant advantage of our system
compared to previous HDI works.
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Fig. 8. lllustration of action frequency distribution in the DogsView dataset.

5 EVALUATION

This section reports the performance of CANINE eyewear on three tasks: dog attention recognition, behavior
recognition, and causal attention reasoning.

5.1 Experimental Setup

5.1.1 Data Preparation. Before evaluating CANINE, we first need a qualified dataset to train the CANINE
network. A qualified training dataset should consist of: (1) time-aligned videos of the dog’s eye region and videos
of visual scenes reflecting dogs’ field-of-view, and (2) annotations of dogs’ visual attention and behaviors. As
there are no publicly available datasets that can be directly used to train the CANINE network, we need to first
collect training data and test data using CANINE eyewear, and label them.

(1) Training and Test Data Collection. We recruit five domestic dogs for data collection to train and test the
CANINE system. Specifically, we put the CANINE glasses on each dog and instruct an experimenter to interact
with the dog by showing various communication signals, i.e., body actions, that are intended to communicate with
dogs. These signals consist of seven intentional human behaviors: “watch”, “point to”, “carry/hold”, “give/serve
(an object) to”, “throw”, “hand wave”, and “hand clap”. Several involuntary behaviors also occur during data
collection. The seven voluntary signals enable us to identify the behavioral causality of dogs with high confidence.

In total, we collect 32.46-minute eye/scene video data with aligned timelines.

(2) Labeling Process. Then, we employ two human annotators to manually label dogs’ frame-level visual
attention, following the same criteria of the dog’s visual attentive state defined in Section 2. We also ask human
experimenters to observe dogs’ behaviors during the experiments and record the category of behaviors. As for
the ground truth of behavioral causes, we have carefully designed the experiments such that those causalities
can be easily identified with high confidence. For instance, in a two-choice experiment, if the dog rushes to a
food site immediately after the pointing action, we can reasonably assume that the action causes its behavior. We
also ask the experimenters to determine whether the selected cause is correct based on their experiences. To
accelerate the labeling process, we develop a labeling tool using a Python GUI Figure 9 shows two examples of
time-series attentive image frames for a dog with different behaviors.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 199. Publication date: December 2022.



Unveiling Causal Attention in Dogs’ Eyes with Smart Eyewear « 199:17

Fig. 9. Examples of two human communicative signals and the corresponding dogs’ different behavioral responses. Top row:

a person is “carrying/holding (an object)”; a dog is “staring and walking towards”. Bottom row: a person is “pointing to (an
object)”; a dog is “staring”.

After CANINE is trained, we apply CANINE to examine more scenarios to reveal dogs’ visual attention. The
data in this stage is used to construct the DogsView dataset stated in Section 4.

5.1.2  Evaluation Metrics. We aim to address an unseen task in this work, i.e., discovering the causal attention in
dogs, which is complicated and challenging to evaluate with a single measure. This work mainly examines three
aspects of this task: 1). prediction of the dog’s attentive state, of which the measures are Accuracy, Precision, and
Recall, 2). prediction of the dog’s behavioral responses to visual stimulus, which is evaluated with multilabel-based
measures, namely Accuracy, weighted-averaged Precision, and weighted-averaged Recall, and 3). finding causes
of dog behaviors. The third aspect is difficult to quantify; our analysis is more hands-on in this case. For each
experimental session, we visualize the predicted rationale set, a temporally consistent semantic graph, and
manually determine whether it has successfully captured the ground truth cause of behavior. The predicted
Rationale Score (RS), an implicit but quantitative indicator of behavioral causality, is also visualized and analyzed
as a side measurement of the prediction quality.

5.1.3 Baselines. Comparisons with prior work are difficult, as the problem of causal attention in dogs has not
been considered before. To better understand the effects of CANINE components, we conduct ablation studies.

(1) Visual Attention Recognition. 1) SG-mask method. This method jointly uses eye tracking and scene graph
method [77] for attention recognition. In contrast to CANINE, the SG method is set up for an ablation study
without using dog visual masks. 2) Eye-tracking method. This method is designed to identify dog visual attention
using eye tracking only. The semantic meaning of visual content is not used. It first predicts dog gaze points and
then identifies the occurrence of visual attention, i.e., when most gaze points are located in a relatively small
region for an adequate duration. This method is similar to the eye-tracking baseline method of Chang et al. [12].
3) Saliency method, which uses saliency prediction [69] to estimate dog visual attention. The saliency prediction
method estimates the regions that attract viewer attention. This task is related to ours, so we adopt it as a baseline
methods.

(2) Dog Behavior Recognition. 1) Complete method. Compared with the CANINE network, the complete method
is designed to use only the trained complete generator and predictor for dog behavior recognition, in which the
complete generator and predictor are disabled. 2) Complete-mask method. Like complete method, the complete-
mask method also employs the complete generator and predictor for dog behavior recognition; however, dog
visual masks are disenabled. 3) Rationale-mask method. Unlike CANINE, the rationale-mask method does not use
dog visual masks.
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5.2 Results

5.2.1 Visual Attention Recognition. Table 2 shows the performance comparison of visual attention recognition
between CANINE and the baseline methods. CANINE outperforms the baseline methods in terms of Accuracy,
Precision, and Recall, indicating the necessity of combining the dog visual mask, dog gaze behavior information,
and the semantic meaning of visual stimuli to estimate visual attention.

5.2.2 Dog Behavior Recognition. Table 3 shows the performance comparison of CANINE and the baseline
methods for dog behavior recognition. As we can see, CANINE achieves the best performance in terms of
Accuracy, Precision, and Recall, demonstrating the effectiveness of using the rationale predictor and dog visual
mask.

5.2.3 Causal Attention Reasoning. We summarize the following three representative scenarios from existing
work [34, 43, 50, 62] to understand causal attention in dogs.

(1) Whether the dogs follow humans’ misleading communicative signals and why. Previous research found that
dogs do not always follow misleading human communicative signals [62]. For example, if one holds an object
(e.g., a toy ball) when playing with a dog, the dog will stare at one’s hand or the object. If one throws the ball,
the dog will likely direct its gaze to where it lands. If one only pretends to throw a ball, will the dog’s behavior
change? What visual stimuli make dogs follow or ignore human “throwing” actions? This scenario aims to answer
the above questions by examining how dogs respond to misleading and straight-forward communicative signals
from humans.

Table 2. Performance comparison of visual attention Table 3. Performance comparison of dog behavior
recognition. recognition.
Method Accuracy Precision Recall Method Accuracy Precision! Recall?
CANINE (Ours)  80.13% 7231%  70.68% CANINE (Ours)  80.27% 79.38% 80.27%
SG-mask 77.18% 65.16% 68.53% Complete 78.23% 76.89% 78.23%
Saliency 56.21% 40.82%  53.90% Complete-mask  66.67% 67.42% 66.67%
Eye-tracking 45.86% 34.82%  61.56% Rationale-mask  67.35% 67.84% 67.35%

The experimental procedure follows. We put CANINE on a dog in a room familiar to it. A human experimenter
stands in front of the dog, looks at the dog, and throws a small bag. This session includes five trials for each dog.
After that, the experimenter repeats the above process in five additional trials. However, during these trials, the
experimenter only pretends to throw an object.

We count the proportion of trials in that a dog obeys the two pre-assigned human signals: a straight-forward
“throw” behavior and a deceptive “throw”, and the results are shown in Figure 10. It can be seen that the five
dogs follow the actual “throw” in most trials, while the majority of dogs recognize the experimenter’s misleading
“throw” and ignore it in most trials.

Figure 11 provides further understanding of how dogs respond to the straight-forward “throw” and the deceptive
“throw” by showing the mean Rationale Score (RS). RS reflects the degree of influence visual stimuli have on dog
behavior. We can see that the RSs of the deceptive “throw” cases are higher than those of the straight-forward
throw cases. Intuitively, dogs can recognize the experimenter’s deceitful “throw” action, and therefore, they may
stare at the human experimenter to gather further information, resulting in higher RS. The colored background

Irefers to weighted-averaged Precision
Zrefers to weighted-averaged Recall
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in Figure 11 indicates the standard deviation of RS in each trial for the five dogs. The variation increases with the
number of trials in both the straight-forward “throw” case and the misleading “throw” case. That is in line with
our intuition because the dog’s physical state differs from trial to trial. In later trials, dogs may become tired.
Also, repeated similar communicative signals and interactions with dogs can cause the dog to become fatigued,
leading to a big variation in RS.

We also conduct an analysis of variance (ANOVA) to study the effect of different dogs on the RS response in
actual “throw” and misleading “throw” cases, respectively. In each case, we make five observations for every dog.
The null hypothesis Hy for the overall F-test is that all five dogs produce the same RS response, on average. The
critical value is Fy 9 = 2.25 at @ = 0.1000. In the actual “throw” case, we obtain F = 5.35 > 2.25 (p = 0.0043). The
result is significant at the 10% significance level. We reject the null hypothesis, concluding that there is strong
evidence that the expected values in the five dogs differ. In other words, there is a big individual variation of
RS among dogs’ responses to the straight-forward “throw”. The similar observation can also be found in the
misleading “throw” case where F = 2.58 > 2.25 (p = 0.0689).

0.50

§ BN Actual Actual
~ , Misleading ~0.45 —e— Misleadin
‘%D 1 00 100% 100% 100% 100% (é g
2 20 30.40
=o )
he! ) A 0.35 ‘\o/'/\'
!.45 60 60% 60% 2 .
(5] 2]
%0 40 40% 8 030
k= =
% 20 20% Qﬁ 025
[aW}

“d1 D2 D3 D4 D5 0205 3 3 4 5

Dog subject Trial number

Fig. 10. Percentage of following human actual and mislead-  Fig. 11. Variation of mean Rationale Score (RS) when dogs
ing signals, respectively. response to human’s actual and misleading signals, respec-
tively.

We select two illustrative cases from the above ten trials to show the causal attention reasoning of CANINE, as
shown in Figure 12. Figure 12 (top row) shows the following actual action case. From the image frames, we can
observe that the dog first stares at the bag in the experimenter’s hand, then the dog walks toward the place where
the bag falls. The causal attention inferred by CANINE is that the dog is staring and walking towards because
of a person’s actions: “put down”, “watch”, “crouch/kneel”, and “give/serve”. That cause can also be observed
from the semantic graphs that contain the triplets explaining the dog’s behavior, e.g., (hand - of - person),
(hand - holding - bag). In contrast, Figure 12 (bottom row) shows a case where the dog does not blindly follow
the experimenter’s deceptive action. We can see that the dog is always staring at the experimenter. The causal
attention inferred by CANINE is that the dog is staring because of a person’s actions: “stand” “watch”, and “walk”.
The main triplets that explain the dog’s behavior are ¢(hand - of - person), (hand - carrying/holding - ), and
{person - had - leg).

(2) How the dogs learn from new/unknown human communicative signals. Dogs are known to have the ability
to learn and reason continuously. For example, dogs are adept at interpreting humans’ communicative signals,
such as hand gestures or gaze contact. They can also learn known signals to rapidly understand new ones. This
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Fig. 12. Two example trials of examining whether dogs follow humans’ misleading communicative signals. Top row: the dog
follows an actual communicative signal “throwing”. Bottom row: the dog does not follow a deceitful signal.

scenario is designed to examine how dogs perceive known communicative signals and generalize them to new
signals. This study compares the known human cue of “hand pointing” with a relatively the under-studied cue of
“leg pointing” to understand the dogs’ causal attention. More kinds of human cues can be examined in the same
way.

The experiment procedure follows. We place two balls on each side of an experimenter. The experimenter
stands in front of the dog and looks at the dog. Then, the experimenter uses a finger to points to one of the balls.
This process is repeated five times. After that, the experimenter points to a ball with a leg, and the process is also
repeated five times.

Figure 13 shows the percentage of trials for each dog following two different human signals. One is “hand
pointing”, a known signal that dogs are well-known to follow, and the other is “leg pointing”, which is an
understudied signal that we consider a novel (to the dogs) signal. As expected, the five dogs follow “hand pointing”
in most trials (80% or higher), while 3 out of 5 dogs do not follow the “leg pointing” in most trials. We suspect
the reason is that the three dogs cannot understand the intention cue from “leg pointing” conveyed by human
experimenters.

Figure 14 shows the variation of mean RS in these trials. We can see that the RSs in “hand pointing” cases are
consistently higher than those of “leg pointing” cases. Moreover, the variation of RSs for “hand pointing” cases is
less than that of “leg pointing” cases. This is because dogs are better at understanding “hand pointing” than “leg
pointing”, and therefore, dogs will be more attracted by “hand pointing” for gathering communicative information.
After ANOVA, F = 4.09 > 2.25 (p = 0.0140) for “hand pointing” case, and F = 3.61 > 2.25 (p = 0.0225) for “leg
pointing” cases, indicating that there is a large difference in the response degree of the dogs to these two signals.
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Fig. 13. Percentage of following a well-known “hand point-  Fig. 14. Variation of mean Rationale Score (RS) when dogs
ing” signal and an unknown/new signal “leg pointing”, re-  response to known and new signals, respectively.
spectively.

Figure 15 provides two example trials to study how dogs learn a relatively new human communicative signal
“leg pointing” from a well-known one “hand pointing”. Figure 15 (top row) shows that dog attention focuses on
parts of the experimenter’s body, e.g., hand, finger, and leg. The causal attention inferred by CANINE is that
the dog’s behavior is “staring and walking towards” because of humans’ actions: “crouch/kneel” and “point to”.
The semantic graphs provides further insights. For example, in the middle of the attention session, the main
triplets reflecting the causes of the dog’s behavior are (person - has - hand), (hand - has - finger), (person -
in front of - spherical object), and (spherical object - under - hand). Figure 15 (bottom row) provides
an example of a “leg pointing” action. The dog first focuses on the experimenter’s leg. Then, the dog notices that
the leg is close to a spherical object, and the dog walks toward it. Therefore, CANINE concludes that the dog’s
behavior is also “staring and walking towards”. However, it states that the human behavior that causes the dog’s
behavior is “crouch/kneel”.

(3) Do the dogs make counterproductive choices and why. Previous work has shown that dogs make counterpro-
ductive choices when they notice humans’ ostensive signals [43, 50]. For example, in Prato-Previde et al.’s food
quantity preference test [64], if humans show an explicit preference for dogs to choose smaller amounts of food,
dogs will ignore their nature of choosing larger quantities and follow humans’ preference. We design a similar
food quantity preference task to automatically reveal that dogs make counterproductive choices in response to
overt cues from humans in an open-world environment.

We prepare two plates of food in a dog’s daily room, one with more food and one with less. We alternately
show the two plates of food to the dog and place the two plates on two sides of an experimenter. An assistant
holds and pets the dog, preventing the dog from eating the food immediately. The experimenter looks at the dog
and points to the plate with the smaller amount of food. The assistant then lets the dog go, allowing the dog to
choose a plate. This process is repeated ten times. The dog is permitted to rest for a few minutes between trials.

Figure 16 shows the percent of trials in which every dog makes counterproductive choices in the food quantity
preference test. It can be seen that all dogs make counterproductive choices in most trials, which demonstrates
that, in most cases, dogs ignore their nature of choosing larger quantities and follow human preference. As we
can see in Figure 17, mean RS is stable, as the number of trials increases despite fluctuation and has less variation
than those in the above two scenarios, which demonstrates that there is a relatively low difference in the response
degree of dog subjects (p = 0.1004).
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relatively new action “leg pointing” (Bottom row), respectively.
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Fig. 16. choice for five dogs in the food quantity preference  Fig. 17. Variation of mean Rationale Score (RS) for five dogs.
test.

Figure 18 shows an example trial of the food quantity preference test. In this trial, the dog looks and walks
toward the smaller amount of food, following the experimenter’s explicit body actions, including “watch”,
“crouch/kneel”, “point to”, and “give/serve”. We can see that, the main time-series triplets that reflect the cause
of the dog’s behavior in the scene graphs are (person - of - hand), (person - in front of - paper/plate),
(person - looking at - paper/plate), (paper/plate - under - arm), and {person - of - finger).
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Fig. 18. Examples of semantic graphs generated by CANINE in a trial when the dog makes counterproductive choice.

6 FIELD TRIALS

This section presents the results of field trials to explore the potential use of the proposed CANINE system in
open-world scenarios. The CANINE system enables the automatic capture of dog visual attention and provides
quantitative causal analysis. CANINE can potentially be used to support various research topics, including
human-dog interaction [23, 36], dog cognition [5], dog-computer interaction [31], and more. Based on multi-
round interviews with pet owners and researchers, we selected three representative scenarios corresponding to
the aforementioned research topics for our field trials:

o dogs in safeguarding roles [68];

e comparing visual attention between dogs and humans [84]; and

e dogs watching videos [33].
Next, we detail the procedures and results of the three field trials and illustrate how the CANINE system can be
used to support various research related to visual cognition in dogs.

6.1 Scenario I: Dogs in Safeguarding Roles

Dogs play many roles in our society, and safeguarding has always been one of the most important. Therefore,
we chose dog safeguarding as the first scenario. According to related existing research [29, 35], domestic dogs
naturally assert and protect their private territory. Haug et al. [29] indicate that domestic dogs usually have
territorial behavior in their home and yard. They are generally wary of anyone entering their territory and
respond differently depending on factors such as whether they are familiar with the intruder. In this context,
studying how and why dogs direct their visual cognitive focuses to different objects can help better understand
dog visual cognition behind the safeguarding practices.

6.1.1  Procedure. This study aims to capture how and why dogs allocate visual cognitive resources differently to
different people passing by or traversing their private territories. To this end, the experiment consists of three
steps. (1) We place the dog indoors, facing a floor-to-ceiling glass window and a glass door to ensure the dog can
see people passing by or entering the door. (2) We put the CANINE system on the dog, and let the dog face the
window and the door. (3) We summarize a 2 (“familiar person” or “unfamiliar person” with dogs) x 6 (“close to
the door, running” or “close to the door, walking” or “far away from the door, running” or “far away from the
door, walking” or “entering the door, walking” or “entering the door, running”) confounding variable matrix and
use all combinations of these variables to examine the various situations a dog might face.

6.1.2  Results. We infer how dogs visually notice people passing by or entering their private territories by
computing RS for different human actions, including “passing by”, “running”, and “entering”. Table 4 shows the
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results. The key observation is that dogs show the highest RS for familiar participants near the door, and the
lowest RS for unfamiliar participants running far from the door.

Table 4. Rationale score (RS) of different actions for a familiar participant and an unfamiliar one.

Passing-b .
Running = Walking Entering
Far from | Close to | Far from | Close to | Running | Walking
Familiar participant 0.28 0.34 0.34 0.38 0.33 0.33
Unfamiliar participant 0.17 0.36 0.34 0.37 0.33 0.37

The following case further helps to intuitively explain the reasons behind the observation. Take for example
the “familiar participant, close to the door” and “unfamiliar participant, far away from the door”. Figure 19 shows
the time-series of image frames for a dog spotting a familiar passing person who is walking near a door and an
unfamiliar person who is running far from the door. As can be seen from Figure 19, the dog has been staring at
the familiar person walking near the door. In contrast, the dog does not stare an unfamiliar person when they
walk away. A plausible explanation is that the dog does not recognize the unfamiliar person and therefore does
not continue to visually inspect them when they are far away from the door.

Raw
1mages Familiar
- Walking
. Close to
Images with
attentive view
Raw
images Unfamiliar
Running
Far from
Images with
attentive view

Fig. 19. Time-series image frames for a dog when it faces a familiar person who is walking close to a door and an unfamiliar
person who is running far from a door.

As we have seen, the proposed system can help support research on dogs in safeguard roles by providing
intuitive and quantitative insights into their reasoning based on casual attention.

6.2 Scenario Il: Comparing Visual Attention between Dogs and Humans

Comparing visual cognition between dogs and humans has long been an attractive research topic [82]. As shown
in previous work [74], dogs have similar yet simpler visual cognitive abilities. However, our understanding of
their similarities and differences is still very limited [7]. With the proposed CANINE system, we hope to broaden
and deepen our understanding by automatically capturing and quantitatively comparing dog visual attention
data in a variety of real-world situations.
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Fig. 20. Comparison of visual attention proportion for dogs and humans in three places.

Section 2 defines dog visual attention, here we define human visual attention in a similar way to yield comparable
results. Specifically, we define a human visual attention event to satisfy the following three conditions: (1) the
person’s eye movement phase is a fixation or smooth pursuit; (2) there is a fixation target (or informative
region [70]) that the person is looking at or a moving target that the person’s gaze is steadily following; and (3)
the fixation or smooth pursuit phase continues for a period of time. To capture human visual attention events,
we adopt MemX [12] and slightly adjust its software to meet our requirements.

6.2.1 Procedure. To illustrate how this system might help explore causal attention in dogs compared to humans,
we recruit five human participants into the study to experience a variety of everyday environmental scenarios
along with dogs. Each human participant is randomly teamed up with a dog that has participated in previous
laboratory experiments. We select the following three scenarios to explore how the CANINE system can help
reveal their causal attention differences: (1) shopping malls, where dogs may be more attracted to the variety of
commodities, e.g., persons or stores, than humans; (2) parks, where humans may find something more appealing
than dogs; and (3) pet stores, where it is hard to predict how they will be drawn to different things. We equip
the dog and human participants with smart eyewear, and ask each human participant to experience the three
environments described while accompanying a leashed dog. In this way, we ensure both the dog and participant
experience a similar visual environment and frequently have overlapping fields of view.

6.2.2 Results. Figure 20 shows the visual attention proportion of the attentive image frames to the total frames
for dogs and humans participating in this study. Dogs have significantly higher attention proportions than
humans (0.59 vs. 0.27) at the shopping mall, but the opposite is true at the park (0.34 vs. 0.43). Interestingly, when
they are in the pet store, the number of attentive events are similar (0.52 vs. 0.51).

Their attentive content is significantly different, as shown in Figure 21. In the park, the dog is attracted to
persons with more body movements or other inanimate elements, and it ignores the intentional communicative
signals from other pedestrians, such as eye contact or waving to the dog. We guess dogs can deliberately ignore
human interactive signals and selectively shift attention to their attentive ones.

6.3 Scenario lll: Dogs Watching Videos

Animal-computer interaction (ACI) is emerging as a subfield of HCI [33]. Dog-video interaction is a popular ACI
research topic, e.g., studying dogs’ visual habits while watching videos [33] and understanding how dogs interact
with video screens [31]. The CANINE system may facilitate investigation and the design of video interactive
technologies for dogs, thereby promoting the dogs’ welfare.
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Fig. 21. Visual attention differs in dogs vs. humans at different places.

6.3.1  Procedure. We intend to explore how the CANINE system can automatically capture and measure visual
attention when dogs watch videos. We take a dog into a room with an LED display playing short videos from the
websites such as Tik Tok® and YouTube®. A person familiar with the dog is in the same room, making sure the
dog is comfortable and relaxed. The dog can freely choose whether to watch the video or not. Figure 22 (left)
shows a picture of the dog in this trial.

6.3.2  Results. In this study, we play a collection of short videos with a total length of 20.42 minutes. We found
that that the dog only spends 4 minutes watching videos. This result is consistent with our expectations and also
the findings reported in related studies [33]. For example, an existing study points out that human-preferred
video content may not attract the attention of dogs [32]. Furthermore, the CANINE system allows us to easily
identify and quantify how the different video content attracts dog visual attention and potentially explain why.
The collected video content is divided into four categories, socially relevant such as Humans, Dogs, and Other
Animals, and non-socially relevant such as Inanimate Elements. Figure 22 shows the percentage of frames that
grab dogs’ visual attention as a percentage of the total video frames. We can see that the video categories that
attracts dog attention most frequently are Dogs first, then Humans, followed by Other Animals and Inanimate
Elements. As suggested by relevant studies [5, 6, 18, 70], dogs have inherent social characteristics [5, 6], and while
finding their own species more attractive [70], their attention is also attracted by humans due to their long-term
co-living with humans [18].

7 DISCUSSION AND LIMITATIONS

This study provides a new way to understand cognitive attention in dogs by using smart eyewear to automatically
capture the visual attention of dogs in the open world, and further quantify attention events as well as infer
related causes.

Shttps://www.douyin.com
Shttps://www.youtube.com
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Fig. 22. Left: A picture of a dog is watching projected videos. Right: Proportion of the number of frames that attract dog
visual attention to the total frame numbers in different video class.

7.1 General Discussion

In this study, eye-tracking is the primary step toward successfully uncovering causal attention in dogs. Studies
have shown that dogs and humans share many aspects of the visual system. There are also works that directly
apply human-based eye-tracking to dogs while using different predetermined thresholds to categorize eye
movements for humans and dogs. In this work, we adopt a human-based eye-tracking method and empirically
tune the hyper-parameters to obtain decent performance in recognizing dog visual attention. However, affected
by many factors such as evolution and environment [74], dog eye movements differ from those of humans. There
are also large differences in eye movement patterns from dog to dog, and these differences are reported to exceed
those of humans. Therefore, it is valuable in the future to develop dog-specific eye-tracking approaches capable
of enabling more general studies of visual systems and cognition by accommodating individual differences.

The definition of dog visual attention in this paper is based on a summary of existing literature and the
assumptions of reference to human visual attention; experts might disagree with our definition. Furthermore,
when designing the model, we use Gaussian relaxation to make it focus on the gaze point to intuitively represent
areas of potential interest to dogs, and decay to the periphery of dogs’ eye view in the form of a circle. The speed
and form of this decay deserve a deep investigation. For example, literature [24, 56] states that dogs’ visual acuity
to the center and periphery region of gaze points is breed-dependent. These should also be further studied in the
future.

The result shows that CANINE eyewear can be easily placed on dogs and used in various scenarios. As expected,
the dogs can successfully perform the predesigned tasks in laboratory experiments. The five recruited dogs make
counterproductive choices during the food quantity preference test in more than half of the trials. They are also
adept at the signal “hand pointing”, which prior research demonstrates that dogs are good at understanding and
following. We also find significant individual variation when testing whether the dogs follow misleading signals
from humans. For example, dog D3 consistently ignores the deceptive “throw” signal from human experimenters,
while D2 and D4 obey the misleading signal most of the time (3 out of 5 trials). Although individual variation is
the nature of animals, ubiquitous confounders in the real world, such as the cued objects and spatial location, may
bias the study of dog behavioral responses. Our future work includes removing confounders and summarizing
general measurements for studying dog cognition.
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In field studies, the scenario where dogs play safeguarding roles demonstrates how dogs allocate their visual
cognitive resources differently to passing humans. It is potentially valuable for studying dog territory defense,
territorial aggression, etc. The quantitative index, RS, provides an additional perspective for these studies. We
also use CANINE to explore how dogs and humans are attracted by different targets in similar environments,
as well as investigate the scenarios where dogs interact with videos. Under these scenarios, CANINE shows its
potential value. There are certainly more interesting and important scenarios to study dog cognition, e.g., how
dogs interact with inanimate elements in non-social settings and how different dog characteristics, such as ages,
homes, breeds, and experiences correlate to their visual cognition. It is important to generalize the model to
these new/unseen scenarios. It is also important to engage the HDI research community to participate and use
CANINE to expand and deepen the research landscape.

7.2 Limitations and Future Directions

A key limitation of this work is that it explores dog cognition mainly through the lens of visual stimuli. However,
dogs use multiple senses to perceive the world [39]. The contributions of other senses, such as olfactory and
auditory cues, to dog cognition are also important yet challenging for cognition investigation in dogs. Our future
work aims to expand the CANINE algorithm and system to support the multimodal scenario to better support
the exploration of dog cognition with more comprehensive capabilities.

Eye-tracking is a primary step toward exploring causal attention in dogs. Existing eye-tracking methods [42, 61]
typically use an infrared camera to record the subject’s eyes and use an IR LED light to illuminate the iris to
detect eye-related features, such as the pupil center. The light conditions of outdoor environments can reduce the
performance of such eye-tracking methods when compared to indoor environments. Our future work includes
exploring methods of ameliorating the negative impacts of outdoor lighting.

8 RELATED WORK

This section reviews prior work in the three areas most closely related to our work: (1) dog cognition, (2) eye
tracking on dogs, and (3) deep learning in smart glasses.

8.1 Dog Cognition

Animal cognition researchers have long studied dog cognition. In 2013, Bensky et al. comprehensively summarized
the previous research on dog cognition [5]. They divided the relevant research into dog social cognition and
non-social cognition. They pointed out that more than half of the studies they reviewed focused on social
cognition. A recent work [3] in 2021 also pointed out that there is a growing trend in dog cognition and behavior
study. In the dog social cognition research realm, Topal et al. studied dog responses to human signals in social
environments [80]. Savalli suggested that dogs respond to human eye contact [10]. D’Aniello et al. indicated
that dogs respond to different human visual communicative signals. Also, dogs adjust their behavior in various
contexts and tasks after interpreting human communicative signals [14]. Soproni et al. studied dog responsiveness
to human hand gestures [76]. Furthermore, they suggested that dogs are capable of generalizing known cues
(e.g., hand pointing) to relatively new cues, such as cross-pointing and leg-pointing [76]. Lonardo et al. examined
dog social cognition from another aspect. They investigated whether dogs can distinguish between true and false
communicative signals and whether dogs follow misleading suggestions [49]. Similarly, Elgier et al. found that
dogs responded less to deceptive cues as test trials increased. Eventually, dogs stop responding to misleading
cues [9, 19, 62]. These methods typically rely on manual analysis by researchers, introducing the potential for
subjective bias. This motivates the proposed automatic causal attentional inference method.
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8.2 Eye Tracking on Dogs

Eye-tracking technology is able to reveal subjects’ focal attention by detecting eye gaze movements [88]. Back
in 2011, Williams et al. demonstrated the feasibility of applying eye-tracking to dogs [87]. They proposed a
head-mounted eye-tracking camera to study visual attention in dogs during free-viewing tasks [87]. Later, Sanni et
al. used an eye tracker to determine which objects attract dogs’ visual attention in fixed-number object categories
of pictures, which broadened the exploration of dogs’ cognitive abilities [70]. They also pointed out that dogs’
cognitive capacities have not yet been fully explored using eye tracking [70]. Kis et al. explored eye gaze patterns
in dogs to determine when they view faces [44]. Ogura et al. investigated dog gazing behavior to reveal social
visual attention using eye tracking [58]. Motivated by this trend, this work proposes to integrate eye-tracking
technology into smart glasses that dogs can conveniently wear for free viewing in the open world. Coupled with
the proposed deep-learning-based network, the CANINE system can automatically infer causal attention in dogs
in the open world.

8.3 Deep Learning in Smart Glasses

Deep learning methods have produced transformative results and have been successfully employed in many
applications [12, 38, 77, 89]. Recent work has explored the use of deep learning techniques in smart glasses to
capture human cognition. For example, in 2021, Chang et al. use smart glasses MemX to detect human attention
and capture human personalized interests [12]. MemX is equipped with a deep learning-based network that
incorporates eye tracking and video analytics to achieve this. In emotion recognition, Zhao et al. proposed smart
glasses integrating a deep-learning-based network to improve emotion recognition accuracy and understand
the reasons for emotion [89]. However, deep learning techniques to access visual cognition in dogs, such as
behavioral causality, are understudied. This problem requires understanding the visual scene from the dog’s
eye view, and further achieving reasoning. Recent advances in deep learning techniques in computer vision
applications, such as Scene Graph Generation (SGG) [77] and Human Action Recognition (HAR) [38] provide
a good foundation for realizing scene understanding and reasoning. SGG is a relatively new task in computer
vision, which describes the objects in the scene and their relationships in the form of triples, thus supporting
a large number of video-based reasoning tasks. The HAR task can identify human behavior in videos, which
can potentially be used to infer dog cognition in human-dog interaction scenarios. Inspired by the latest deep
learning techniques and their applications in computer vision and smart glasses, this work proposes to design a
deep learning-based network to infer causal attention in dogs using smart glasses.

9 CONCLUSIONS

This work focuses on the design of algorithms and systems that can discover causal attention in canine vision. To
overcome the obstacles faced by decades of dog cognition research, namely subjective bias and in-lab limitations,
this work introduces CANINE, a deep-learning-based causal attention network and wearable system. Worn by
dogs, CANINE captures dog visual attentive perceptions and extracts the rationale graph of visual attention,
thereby providing data relevant to causal explanations of canine behavioral responses. The usability of the
proposed wearable causal attention system has been validated through in-lab evaluations. Its generality to
unconstrained real-world environments has also been illustrated through in-field trials. Using CANINE, we have
collected a large-scale dataset, named DogsView, containing of automatically generated causal attention estimates
under a wide range of representative open-world scenarios. The DogsView dataset is publicly released to support
research communities that study dog cognition, human-dog interaction, dog-computer interaction, etc., and gain
insights into “the world through the eyes of dogs”.
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