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Emotion recognition in smart eyewear devices is valuable but challenging. One key limitation of previous works is that the
expression-related information like facial or eye images is considered as the only evidence of emotion. However, emotional
status is not isolated; it is tightly associated with people’s visual perceptions, especially those with emotional implications.
However, little work has examined such associations to better illustrate the causes of emotions. In this paper, we study
the emotionship analysis problem in eyewear systems, an ambitious task that requires classifying the user’s emotions and
semantically understanding their potential causes. To this end, we describe EMOShip, a deep-learning-based eyewear system
that can automatically detect the wearer’s emotional status and simultaneously analyze its associations with semantic-level
visual perception. Experimental studies with 20 participants demonstrate that, thanks to its awareness of emotionship, EMOShip
achieves superior emotion recognition accuracy compared to existing methods (80.2% vs. 69.4%) and provides a valuable
understanding of the causes of emotions. Further pilot studies with 20 additional participants further motivate the potential
use of EMOShip to empower emotion-aware applications, such as emotionship self-reflection and emotionship life-logging.

CCS Concepts: « Human-centered computing — Mobile devices.
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1 INTRODUCTION

Research in social science and psychology indicates that our emotional state can considerably affect several aspects
of daily life, including thoughts and behaviors [13], decision making [49], cognitive focuses [18], performance on
assessments [46], physical health [17], and mental well-beings [57]. Given the significant impacts of emotions,
emotion recognition is one of the most crucial research topics in affective computing [45], and it can be applied
to a wide range of human-computer interaction (HCI) scenarios to improve user experience. Intelligent eyewear
systems are especially well suited to carry out and benefit from emotion recognition.

A common goal of smart eyewear devices is to deliver intelligent services with personalized experiences. This
requires understanding the users, especially their affective status. As indicated by previous studies [4, 13-15, 67],
the ability to recognize emotion can greatly enhance user experience in various HCI scenarios. More importantly,
an emotion-sensitive wearable front-end would enable a variety of personalized back-end applications, such as
emotional self-reflection [18, 23], emotional life-logging [6], emotional retrieving and classification [64], and
mood tracking [56].

Recognizing emotions using smart eyewear devices is challenging. The majority of state-of-the-art emotion
recognition techniques [19, 30, 32, 34, 35] use deep learning models to classify expressions from full facial images.
However, it is typically difficult to capture the entire face using sensors that can economically be integrated
into current eyewear devices. This mismatch between economical sensors and analysis techniques hinders the
practical application of existing emotion recognition methods in eyewear.

To address this challenging problem, previous works [21, 41, 51] adopted engineering-based approaches to
extract hand-crafted features from eye regions instead of the whole facial images to compute the affective
status. With the embedding of eye-tracking cameras in commercial eyewear devices, recent eyewear systems
developed convolutional neural networks (CNN) to extract deep affective features from eye-camera-captured
images (typically eye regions) for head-mounted virtual reality (VR) glasses [27] and smart glasses [61]. These
prior works have limited recognition accuracy; they predict human emotions based entirely on the portions of
facial expressions visible near the eyes, ignoring the subtle yet crucial associations between emotional status
and visual perception. In fact, information about the emotional state can be found in both expressions and
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visual experiences. The additional sentimental clues provided by visual experience improve emotion recognition
compared to considering facial expressions alone.

As shown in studies of behaviors and neuroscience [12, 43, 44], sentimental content in scenes is generally
prioritized by people’s visual attention compared to emotionally neutral content. Emotion-arousing content is
known as emotional stimuli. For example, viewing a child playing with parents can lead to joyfulness, while a
crying woman who just lost her husband can lead to sadness. In other words, emotion is not an isolated property;
instead, it is tightly connected with visual emotional stimuli. Emotions can be closely associated with varying
sentimental visual perception, especially for eyewear devices with rapidly altering scenes.

Based on the above observations, we study the emotionship analysis problem in eyewear devices. The term
emotionship denotes the association of emotional status with the relevant hints in expression and visual attention.
Through emotionship analysis, we aim to recognize emotions with better accuracy and understand the semantic
causes . Quantitative measurement of visual attention will be used to better estimate emotional state. In this
paper, we adopt the widely accepted emotion categorization system that classifies emotions into six basic
categories [20] plus neutrality (following [61]) to define the status of emotions. It is important to note that a
semantic-level understanding of visual experiences is necessary, since a certain attention region may consist of
multiple objects, leaving the associations among emotions and objects ambiguous. In other words, we need to
capture the semantic attributes of visual perceptions. Compared with traditional emotion recognition techniques,
the proposed emotionship analysis is arguably more ambitious and more difficult, as additional challenges arise
from the semantic analysis of the human visual perception, its association with the emotional status, etc. However,
a successful emotionship analysis framework will clearly lead to a truly personalized eyewear system that is
capable of performing unseen and valuable emotion-aware downstream tasks.

In this work, we present such an emotionship-aware eyewear system for the first time. As shown in Fig. 1, our
eyewear system, called EMOShip, is a deep learning system capable of recognizing the semantic attributes of
the visual attentive regions, the expression-related information in eye images, and the emotional states based
on both sources of information. At the heart of EMOShip is EMOShip-Net, a deep neural network designed to
address the new challenges in emotionship analysis. To extract the semantic attributes of visual perceptions, we
combine gaze points from eye-tracking [29] with the visual features model VinVL [66] plus a vision-language
(VL) fusion model OSCAR+ [66]. The sentimental clues in visual perceptions are synthesized with the expression-
related information in eye images to predict emotional status more accurately and robustly. The contributions of
visual perception to emotional states, which are subtle and challenging to measure, are quantitatively evaluated
by a Squeeze-and-Excitation (SE) network [28] that fuses the scene and eye features. To evaluate the in-lab
performance of EMOShip, we collect and construct a new dataset named EMO-Film. With the availability of
visual perceptions’ semantic attributes, the emotional states, and the emotional impacts of visual attentions, our
smart glasses system EMOShip outperforms baseline methods on the EMO-Film dataset in terms of emotion
recognition accuracy, and more importantly, EMOShip provides a semantic understanding of the potential cause
of such emotions. In-field pilot studies have been conducted to illustrate the capabilities of this emotionship-aware
eyewear system and demonstrate its potential applications to a number of emotionship-relevant tasks such as
emotionship self-reflection and emotionship life-logging.

In summary, this paper makes the following contributions.

(1) This work describes the design of smart eyewear, called EMOShip, that measures the relationship between
the semantic attributes of visual attention and the emotional state of the wearer. Using this learned
relationship increases the accuracy of emotional state recognition.

n this paper, the phrase “understanding the cause” refers to the understanding of the momentary associations between emotional states and
the scene images in eyewear devices. It should be distinguished with the understanding of the emotions’ causality [11] which is a different
task.
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Fig. 1. The proposed EMOShip smart eyewear system.

(2) The EMOShip eyewear is equipped with a deep neural network EMOShip-Net that extracts expression-related
affective features and sentimental clues in visual attention, fusing them to more accurately recognition
emotion and quantify emotionship associations.

(3) On the self-collected EMO-Film dataset, EMOShip achieves approximately 10.8% higher emotion recognition
accuracy than the baseline methods, and demonstrates the potential to provide valuable sentimental clues
for emotionship understanding.

(4) We perform in-field pilot studies on two inspiring down-stream applications — emotionship self-reflection
and emotionship life-logging, to illustrate potential uses of EMOShip. This three-week study of 20 partici-
pants, shows that EMOShip captures emotional moments with a precision of 82.8%. A survey-based study
shows that 16 out of 20 users found emotionship self-reflection beneficial, while 15 out of 20 users found
emotion life-logging beneficial.

The rest of the paper is organized as follows. Section 2 surveys related work. Section 3 describes the algorithms

and system implementation of EMOShip. Section 4 presents the experimental results. Section 5 describes in-field
pilot studies. Section 6 concludes.

2 RELATED WORK

This section surveys related work in the field of (1) emotion recognition, (2) image sentiment analysis, (3) vision-
language models, and (4) gating mechanisms. We also highlight the key contributions of EMOShip compared to
prior work.

2.1 Emotion Recognition

Ekman proposed a well-known and widely adopted emotion categorization system that divided emotions into
six basic categories: happiness, sadness, fear, anger, disgust, and surprise [20]. Neutrality denotes an additional,
seventh, state: the absence of emotion [61]. The seven basic emotions are widely accepted [1, 61]: we adopt this
emotion categorization system.
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Most recent works involve deep models to classify the seven basic emotions from whole-face images [19, 30,
32, 34, 35], as facial expressions are one of the most common channels for humans to express emotions [22]. It
is difficult for smart eyewear devices to capture whole-face images but eye-region images have been shown to
contain sufficient expression-related information [61] for emotion estimation, and these images can be easily
captured using commodity eye cameras. Therefore, eye image analysis techniques are promising for emotion
recognition in eyewear systems. Tarnowski et al. proposed to use eye-tracking information, mainly regarding eye
movements and pupil diameters, for emotion recognition [55]. Aracena et al. presented an emotion recognition
method based only on pupil size and gaze position [3]. Later, Wu et al. proposed a deep-learning-based network
that extracts emotional features from single-eye images and uses them to classify emotional state [61].

In this work, we take one further step and study emotionship analysis, which considers users’ facial expressions
and their visual perceptions.

2.2 Image Sentiment Analysis

Visual sentiment analysis aims to predict the emotional states produced by images. This work mainly investigates
visual sentiment analysis based on categorical approaches that divide the intended emotions from images into six
categories [53], which is usually consistent with the emotion categorization system [20].

Early sentiment prediction used hand-crafted features to recognize intended emotions. Those features included
color variance, composition, and image semantics [40]. Recently, numerous deep convolutional neural network
(CNN) learning based sentiment prediction approaches have been proposed to extract deep features for sentiment
prediction [53, 63]. Campos et al. conducted extensive experiments and compared the performance of several fine-
tuned CNNs for visual sentiment prediction [7]. Zhu et al. proposed a unified CNN-RNN model to predict image
emotions based on both low-level and high-level features by considering the dependencies of the features [70].
Rao et al. classified image emotions based on a proposed multi-level deep neural network that combined the
local emotional information from emotional regions with global information from the whole image [48]. Yang
et al. proposed a weakly supervised coupled convolutional network to provide effective emotion recognition
by utilizing local information in images [63]. Later, they extended the proposed weakly supervised detection
framework through a more detailed analysis for visual sentiment prediction [53].

The above works provide idea of image-based emotion estimation; we extract the sentimental features in scene
images through a Vision-Language (VL) model.

2.3 Vision-Language Models

Vision-Language (VL) models are a relatively new field in computer vision [9, 33, 37, 54, 69]. VL models usually
consist of two stages: 1. An object detection model is used to predict the Regions of Interest (Rols) of each object
and also to extract the feature embedding for each Rol, 2. A cross-modal fusion model is used to generate short
descriptions of each Rol’s semantic attributes. Therefore, a successful VL model will generate all Rols in a scene
image, the feature embedding for each Rol, and also the semantic attributes of each Rol. VinVL model [66]
improves the performance of the vision module to extract visual presentations at higher qualities, and employs
OSCAR [36], which is based on a transformer [58], to perform the cross-modal semantic attributes predictions. It is
shown [66] that using VinVL features and training on multiple datasets can significantly improve the performance
of the original OSCAR on a variety of downstream Natural Language Processing (NLP) tasks, and therefore the
learned Vision-language fusion model is named as OSCAR+. The VinVL model [66] has achieved state-of-the-art
performance in VL tasks, and the performance of its proposed OSCAR+ has also surpassed that of others on
downstream NLP tasks.

Inspired by recent progress in VL models and the requirements of semantic understanding in emotionship
analysis, we have adopted VinVL [66] and its proposed OSCAR+ [66] in EMOShip. The benefits of using VinVL
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and OSCAR+ are threefold. First, the semantic attributes of Rols can be predicted, which can enable emotionship-
awareness. Another advantage is that the semantic features of Rols are also provided in VinVL. These features
encode sufficient sentimental clues for fusion with eye-expression-related information to achieve more accurate
emotion prediction. Last but not least, we are able to perform language analysis tasks like Question Answering
(QA) through using OSCAR+, which allows our eyewear system to capture the summary tag of a visual region.
To the best of our knowledge, we are the first to integrate a VL and NLP model into an eyewear system, making
it aware of semantic attributes.

2.4  Gating Mechanisms

Gating mechanisms 2 [5, 38, 58, 59] spend more resources on more informative parts of the input data. Typically, for
an input signal, the importance of each of its datum is weighted through a gating model, producing appropriately
weighted output signals. There are a variety of gating models like the transformer [58] and non-local network [59],
which are widely utilized in different fields like lip-reading [39] and image captioning [62]. Among those gating
models, Squeeze-and-Excitation (SE) network [28] is most closely related to our smart glasses EMOShip. For a
deep feature, SE network can learn the pattern of importance degree in a channel-wise manner, generating a
scaling vector that adjusts each feature channel. In EMOShip, SE is employed when fusing the semantic features
from VL models and eye features to predict the emotional state, and more importantly, to learn the emotional
impacts from scene images.

3 SYSTEM DESIGN

This section presents EMOShip system design. It first defines the emotionship analysis problem, highlights the
corresponding challenges, and then presents EMOShip-Net, the proposed deep emotionship analysis network, and
describes the design and operation of the EMOShip software-hardware system.

3.1 Problem Definition

Emotion recognition methods for eyewear devices aim to identify the emotional state from expressions, typically
using eye images. There can be various criteria regarding the emotional state, and we adopt a widely accepted
standard [20, 61]. Specifically, the emotion is discretely classified into six basic categories [20] — happiness, surprise,
anger, fear, disgust, and sadness. In addition, we employ neutrality to represent the absence of emotions [61]. Let
e! €{0,1,2,3,4,5,6} represent the emotional state at time step ¢ and let E? € RHXWix3 he the eye images with
height H; and width W;. Recent smart eyewear devices [27, 61] utilized a deep network N, to obtain emotional
predictions from eye images, i.e., e’ = Neye (E).

In this work, we aim to solve the emotionship analysis problem for eyewear devices, a task that is related to
expression-based emotion recognition but is more ambitious. In particular, emotional state is inferred using both
eye images and visual perceptions, and the impacts of visual perceptions on this emotional state, i.e., emotionship,
are quantitatively evaluated. Since the visual attentive region usually covers multiple semantic objects, the
semantic attributes of the visual perceptions should be distinguished to avoid confusion of those objects.

Let It € RHE2XW2X3 represent the scene image with height H, and width W;. The goal is to determine the user’s
visual attentive region, or Region of Interest (Rol). We denote this Rol as 1’ € R%, and r! can be described as
a rectangular area (x!, y’, w!, hl), where (x’, y’) is the central point of the rectangle, and (wZ, h!) denote the
width and height of the rectangle, respectively, i.e., r' € R*. The visual perceptions, denoted as I,,,, are obtained
by cropping the region r’ out of I'. In contrast to existing emotion recognition methods, we aim to determine

Note that gating mechanisms are more commonly known as attention mechanisms. However, to avoid confusion with the visual attention
concept, we use the term gating mechanism in this work.
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the emotional state e’ from both the visual perceptions I/,, and eye images E’ through a deep model M, i.e.,
et = NI(I;”’ Et)

In addition to e, we also want to determine the impacts of visual perceptions I;” on this emotional state, i.e.,
the degree to which this emotion be attributed to visual experience. We define this impact as an influence score
IS* € [0, 1) which can be computed by inferring from I, E, and e‘. Assuming a deep model N; is utilized, this
can be written as IS* = N,(I.,,, E', e’). Intuitively, a larger IS’ score indicates that e’ is more associated with
what the user observes, and vice versa for a smaller value.

The awareness of emotional state e’ and the influence score IS’ is not sufficient to fully reveal the emotionship,
as we still need to understand the semantic attributes of visual attentions to unambiguously describe the potential
cause for e’. The semantic attribute is defined as a summary tag of the attentive region Ifm, e.g., “white, warm
beaches” if I, depicts a white beach in summer. We denote this summary tag as s’ and it clarifies the semantic
cause for e’ at an abstract level, which is typically overlooked in previous works.

Let ES’ represent the emotionship and it can be formulated as
ES' = (¢!, 1,,,,s', IS"). (1)

In contrast with traditional emotion recognition, which isolates a user’s emotional state from their surroundings
and predict only e’, our emotionship ES' additionally encodes the potential causes for e’, i.e., visual perceptions I ,,
with semantic attributes s, while the degrees of their emotional influences are also indicated by IS’. Awareness
of emotionship can enable eyewear devices to understand the semantic causes of emotions and also learn how
visual experiences affect emotions in a personalized manner. However, there are a number of challenges.

3.2 Challenges

Emotionship analysis faces three primary challenges.

The first is how to appropriately discover the semantic attributes of visual attention. With the embedding of the
forward-facing world camera, smart eyewear devices can already estimate the gaze points [8] using eye-tracking
techniques. Gaze points can be used to track human attention. However, knowing merely the gaze point is
insufficient, as there can be multiple semantic objects near this point that may influence the user’s emotional
state. To avoid ambiguity, we must clearly identify the semantic meanings in the vicinity of the gaze point. In
other words, the semantic summary tag s' of the visual perceptions I,, is necessary, yet s’ can be challenging to
obtain, especially for eyewear devices. We take inspiration from recent progress in visual features models [66] to
extract the tag s’, as described in Section 3.3.

After the visual attentive regions have been located with semantic understandings, another challenge remains.
How can the associations between human visual attention and emotional state be determined? The reason for
emotional changes can be subtle and difficult to determine. They may be associated with sentimental visual
perceptions, e.g., when a user observes that a child is playing with parents and then cheers up, we can reasonably
assume that the happiness is caused by this scene. However, sentimentally neutral visions can also proceed, but
not cause sudden emotional changes. Therefore, it is crucial to correctly identify the emotional contribution
of visual attention, i.e., to compute its influence score IS’. In our workflow, IS is automatically and implicitly
learned using deep models, as described in Section 3.3.

There is one more challenge facing the prediction of emotional state e’. Sentimental information in visual
perceptions indeed provides insights on the potential causes of emotions, but is not reliable enough (alone) to
recognize emotion. Therefore, the utilization of expression-related information, e.g., eye-images [61], remains
valuable. In other words, we infer the emotional state e’ from both the sentimental clues in visual perceptions
and the expression-related information in eye images, leading to more robust emotion recognition performance.
We have incorporated the Squeeze-and-Excitation network [28] to fuse them together, as described in Section 3.3.
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Fig. 2. The workflow of EMOShip-Net (Best Seen in Color).

To address the aforementioned challenges of emotionship analysis, we have devised a deep network named
EMOShip-Net, the workflow of which is described in Section 3.3.

3.3 EMOShip-Net Workflow

3.3.1 Overall Pipeline. Fig. 2 illustrates the workflow of EMOShip-Net. At time step t, the input of the network
contains two video streams: the eye images E’ taken by an inward-facing eye camera, and the scene images I'
recorded by another forward-facing world camera. The eye camera keeps tracking eye images E’ and monitors
the rough emotional state, i.e., neutral or non-neutral. When a non-neutral emotion is spotted, the scene camera
will be triggered to record scene I'. A vision-language (VL) model [66] is applied to extract all potential regions
of interest (Rols) with semantic tags in I'. The visual attentive region is determined from those Rols based on the
gaze point, and the summary tag for the selected area is obtained by a Question Answering (QA) process using
the OSCAR+ [36] vision-language fusion model. The features of the attentive regions, which are also provided by
the VL model, are fused with the eye features using a Squeeze-and-Excitation (SE) network [28] to generate the
final prediction on the emotional state. The scaling vector obtained after the SE network’s excitation operation
reveals a very important relationship, i.e., the emotional impact from visual attentions, or the influence score IS’
as defined in Section 3.1.

3.3.2 Extracting Eye Features. Eye images E’ contain information about facial expressions. This work follows
the EMO method [61] to extract expression-related features but makes necessary improvements to enhance
the emotion recognition accuracy and better suit our application scenarios. Specifically, EMO [61] consists of a
feature extractor for eye images and a customized emotional classifier. Since emotion recognition in eye images
is not the major pursuit of this work, we only adopt the former (feature extractor based on ResNet-18 backbone
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[26], which is denoted as N .) to extract fl e R1%8 e, f! = Neye (E?) but replace the latter one (the customized
classifier) with a binary classifier for neutral/non-neutral predictions. More importantly, we have appended pupil
information to f! before feeding it into the binary classifier. This is inspired by [3], a work showing that statistical
eye information such as pupil size can help to improve the emotion recognition accuracy. Denoting the pupil size
information as ps’ € R?, we treat ps’ as expert information, and following prior work [60, 68], we concatenate

this expert information ps’ with f;, which can be written as f;,, = [f;, ps’], where the square bracket indicates
channel-wise concatenations. Eye features fetye € R encode the expression-related information within eye

regions and can be seen as an effective emotional indicator. Note that N, will only be applied to eye images
when a particular eye attention pattern [8] is identified to save energy, as described in Section 3.4.2. The trigger
of the world camera, on the other hand, depends on eye feature f! yer
3.3.3 Triggering the World Camera. The high-resolution world camera consumes more energy than the low-
resolution eye camera: it would be too energy-intensive to continually capture scene frames. Considering the
energy limitations of wearable devices, we have designed a “trigger” mechanism for the world camera. The idea
is to skip those emotional-neutral frames (there is no need to analyze the emotionship for neutral emotions) and
focus on frames with non-neutral emotions. In particular, we design a binary classifier C,. to separate fe’ye into
neutral and non-neutral expressions. If f; . classified as emotionally neutral, the world camera is disabled to save
energy. Otherwise, it is triggered to enable the following operations.

3.3.4 Selecting Rol Candidates. The triggered forward-facing world camera records scene images I’. Using an
existing eye-tracking technique [29], we first estimate from E* the gaze point g' = (xg, yg), where x; and yy refer
to the 2D coordinates of this gaze point with respect to scene image I’. Since g’ is a 2D point, we still need to find
the region of visual perceptions r’ = (x!, y%, w!, h!). In this work, we use the VinVL model [66] to generate all
potential regions in I, and then perform ﬁltermg to select certain Rol candidates for r* from all those regions.

In particular, denote the VinVL model [66] as Ny . Given the scene image I/, Ny is able to generate a total
of K potential regions {R{, R}, ..., R, }, where R} € R* represents the i-th candidate. Note that for a RoI R, it
corresponding visual representatlon (or feature) f ! € R?# and the semantic representation qR (e.g.,a tag) is
already given by Ny . We have designed a filter process to select the ten most suitable regions out of all K regions
based on the gaze point g’. That is, for each candidate R!, we compute the Euclidean distance from its central
point to the gaze point g’. Then we empirically select the top ten regions with the smallest distances, i.e., the ten
regions that are closest to the gaze point. These are the most relevant Rols within the visual attentive region,
and are denoted as R. = {Rcl, fos o 010} After this filtering process, there are still ten Rol candidates, and we
need to determine a final visual attentlon region and also to generate its summary tag. We use two Question
Answering (QA) sessions for this purpose.

3.3.5 Determining Visual Attentive Region and Summary Tag. Recall that we have already selected ten candidate
regions R, = {R!,R.,,..., R, } and the visual feature f!, € R?***® and its semantic representation q’; of the
i-th region R; are provided by Nyy. To select the actual visual attentive region and generate it summary
tags, we perform Visual Question Answering (VQA) [25] and an Image Captioning [2], based on the OSCAR+
vision- language fusion model [66]. Specifically, we denote the visual features of the ten selected regions as
fl = {f',f!,,....f} }, the semantic attributes as q. = {q’,.q’,....,q};,}, and the OSCAR+ model [66] as Nos.
The VQA session aims to determine the appropriate visual attentive region r’. First we invoke Npg to answer the
question Q; “What object makes people feel happy/surprised/sad/angry/feared/disgusted?” by also inferring to
f! and q’ and obtain an answer a‘ from Npg, which written as

a' = Nos(Qu. £, q). (2)
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Then among the ten attributes q., we find the one ¢’ ; whose word2vec embedding [47] is closest to that of
answer a‘ than all other attributes, and ¢’ ;s corresponding region R. ; 1s seen as the visual attentive region rl,
P Y
ie,r" =R =

The goal of the Image Captioning (IC) session is to generate an appropriate tag that summarize the semantic
attributes of visual perception region. In this session, there is no question to answer, and Nps only looks at the
visual features f! to generate the tags, which can be expressed as

s' = Nos(f), ®3)
where s’ is the summary tag for visual attentive region.

3.3.6 Determining the Emotional State. The emotional state e’ is obtained through synthesis of eye the features
fi,e and visual features f! = {f!,f!,,..., £}, } of the candidate regions. Since f; € R'*?** and f;,, € R™,
we first employ a Fully Connected (FC) layer to summarize the visual attributes and reduce its dimensionality,
ie, f! = FC,(f!), where FC, denotes the FC layer and f! € R!*’. We concatenate the channels of visual
perceptions’ feature f; and eye feature f;,, to formulate f;, = [f}, f;,.]. This concatenated feature f;, € R**
contains emotional information from both the eye and scene images, and is fed into a Squeeze-and-Excitation
(SE) network [28] Nsg to obtain a scaling vector u’ € R*? i, u’ = Ngg(f?,). This scaling vector u’ is multiplied
(channel-wise) with the the concatenated features f!, to obtain feature f’,, € R?°, i, f!,, = u’ = f! , where *
represents channel-wise multiplication. Note that the scaling vector u’ is learned from the SE gating mechanisms
and it reflects the importance degree of each channel in f’,. The obtained feature f?,, is then input into a soft-max

classifier Cgpo to generate the final emotion prediction €', i.e., e’ = Cgpo(fl,,)-

3.3.7 Computing the Influence Score. The Influence Score indicates the degree of emotional impact from visual
perceptions, and it can be computed from the scaling vector u’ learned from the SE gating mechanism. Recall
that u’ represents the importance of each channel in f7,, while f;, consists of eye features f;,, concatenated with
visual perception’s feature f. We are therefore able to evaluate the importance of the visual perception feature f
in predicting emotional state, or the Influence Score IS using u’, which can be written as

130 ¢

1Y

Is' = —/——, ©

2i u;
where u! denotes the i-th scalar of u’ and the first 130 scalars of u’ corresponds to channels of f}. Using the
influence scores in Equation 4, we can determine to which degree an emotional state was affected by the
sentimental visions. For instance, if a really small IS is computed, we would conclude that the current emotional
status is not related to the observed visual perceptions. In contrast, a large IS’ value implies that the current
emotion is highly related to the attentive scene regions.

3.3.8 Emotional State in Video Sequence. In the interest of simplicity, we only illustrate how to predict emotion
for a certain time step ¢ in the descriptions so far. However, emotions are temporally consistent processes instead
of static ones, and therefore we also need to consider how to aggregate emotion predictions in different time
steps. For a video clip of T frames, assuming that we have already computed emotion prediction for each frame,
ie. {e!, €% ...eT}, we use the most common emotion class e, as the emotion prediction of this sequence. Formally,
the most common emotion class ey, can be computed as

T
em = argmaxz 1(e/ =),
i o
where i € {0,1,2,3,4,5,6}, 1 represents the indicator function, T(e =i)=1ife/ =iand 1(e/ = i) =0ife/ #i.
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3.4  EMOShip System

3.4.1 Hardware Design. The EMOShip prototype is a smart eyewear system equipped with two cameras, including
one outward-facing world camera and one customized inward-facing eye camera. The outward-facing world
camera collects the visual content aligned with the wearer’s field of view. We adopt Logitech B525 1080p HD
Webcam (1280x960@30fps). The inward-facing eye camera supports continuous eye tracking and eye-related
expression feature capture. We use a camera module with a GalaxyCore GC0308 sensor (320x240@30fps) and an
IR LED light to illuminate the iris. This hardware module is inspired by the Pupil *, but we have re-implemented
it to suit our needs. The EMOShip prototype is equipped with Qualcomm’s wearable system-on-module solution,
combining Qualcomm Snapdragon XR1 chipset with an eMCP(4GB LPDDR/64GB eMMC). Its typical power
consumption is 1 W, which is suitable for battery-powered wearable design.

3.4.2  Software Operation. In EMOShip, EMOShip-Net performs emotion recognition and emotionship analysis.
Targeting energy-constrained wearable scenarios, EMOShip-Net uses the following energy-efficient workflow.

o First, EMOShip-Net continuously senses the eye camera to perform eye tracking. To minimize the energy
cost of eye tracking, EMOShip-Net uses a computationally efficient pupil detection and tracking method [29]
to detect potential attention events. Following the work by Chang et al. [8], a potential attention event
must satisfy two conditions simultaneously: (1) there is a temporal transition from saccade to smooth
pursuit, which suggests a potential visual attention shift and (2) the gaze follows a moving target or
fixates on a stationary target. We modify the open-source Pupil software * to achieve more accurate eye
movement pattern detection that can better satisfy the requirement of our system. Pupil software predicts
two eye movements—fixation and non-fixation, based on the degree of visual angles [29]. However, when
we deployed it in our system, we needed more eye movements such as saccade and smooth pursuit to
detect a potential visual attention event. To address this issue, we follow prior work [8] and leverage the
historical gaze trajectory profile to enable a more accurate eye movement detection. This is motivated
by the occurrence of smooth pursuit or fixation eye movements when the recent gaze points are located
in a constrained spatial region; otherwise, a saccade eye movement occurs. Our goal is the detection of
eye movements, so we focus on our method’s recall, which is 99.3%. This shows that our eye movement
detection method is robust and reliable. The inference time of the eye-tracking method used in EMOShip-Net
is 115.1 fps, or 8.7 ms/frame.

o Once a potential attention event is detected by the computationally efficient eye-tracking method, EMOShip-
Net takes the eye images as the input of the light-weight network N, to extract eye-related expression-
related information and performs neutral vs. non-neutral emotional state classification. Ny, is computa-
tionally efficient, which only requires 20.3 ms to perform emotional state classification for each eye image
frame.

e Only when a non-neutral emotional state is detected, EMOShip-Net activates the high-resolution world
camera to sense scene content for semantic analysis. In other words, the high-resolution, energy-intensive
scene content capture and processing the pipeline remains off most of the time, avoiding unnecessary data
sensing and processing, thereby improving energy efficiency.

e Finally, EMOShip-Net leverages a cloud infrastructure to perform computation-intensive semantic attribute
feature extraction and eye-scene feature aggregation to support final emotion recognition and emotionship
analysis, thus offloading energy consumption from the eyewear device.

The energy consumption of the EMOShip eyewear device is estimated as follows:
EEMOShip = Talwaysfon X (Peye camera T Peye tracking) + TNeyz X PNeye + Tcaptured X Pworld cameras (5)

3https://pupil-labs.com
*https://github.com/pupil-labs/pupil/releases
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where Tgpyays—on is the overall operation time of the EMOShip eyewear device, Peye camera ad Pyorld camera are the
power consumption of the eye camera and the world camera, respectively, Ty, is the operation time of the
light-weight eye analysis network Ny, and Teaprured is the operation time of the high-resolution video recording
when non-neutral emotional states are detected.

Time
) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' >
Eyetracking ~ Active,withpower Py, poe
Eye camera Active, with power Peye camera
Active, with power
Noge Py,
World camera = Active, with
power
world camera
(a) EMOShip
} } } } } } } } } } } } } } } } } t t i >
World camera Active, with power Py,.14 camera

Eye camera Active, with power Peye camera

(b) The record-everything case

Fig. 3. The run-time operation of EMOShip (a), as well as that of the recording-everything case (b).

Fig. 3(a) illustrates the run-time operation of EMOShip on the eyewear. Physical measurement of the Qualcomm
Snapdragon wearable platform shows that Peye camera = 0.07W, Peye tracking = 0.1W, Piorid camera = 1.3W, and
Pn,, = 1.1W. Physical measurement during the real-world pilot studies described in Section 5 shows that Ny,
and the world camera remain off during 86.8% and 94.6% of the system operation time, respectively. We estimate
that a 2.1 Wh battery (similarly to Google Glass Explorer Edition), would allow EMOShip to support 5.5 hours of
continuous operation without charging.

Had the system continuously recorded (see in Figure 3(b)) with both eye camera and world camera, the overall
system energy consumption would have been Egpays—on = Taiways—on X (Peye camera + Puworld camera), Tesulting in a
battery lifespan of approximately 1.5 hours. Compared with the record-everything case, EMOShip improves the
system battery lifetime by 3.6X.

4 EVALUATION

This section presents the in-lab experiments to evaluate the performance of EMOShip.

4.1 Dataset

To evaluate EMOShip, we need the scene images observed by the wearer, the wearer’s eye images, and also the
emotional states during this observation process. In other words, an eligible dataset should cover both the scene
and eye timelines and also contain emotion annotations of the same duration. However, most publicly-available
emotion datasets do not satisfy those requirements, since they either lack the scene images, e.g., the MUG
dataset [1], or do not provide the facial or eye regions, e.g., the FilmStim dataset [50]. Therefore, we collect and
build a new dataset named EMO-Film to suit our needs, which is available online at ®> and detailed below.

Shttps://github.com/MemX-Research/EMOShip
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4.1.1 Data Collection. The data of EMO-Film dataset is collected in a controlled laboratory environment. As
shown in Fig. 4 (left), participants equipped with EMOShip were instructed to watch several emotion-eliciting
video clips displayed on a desktop monitor. A total of 20 volunteers attended the data collection of EMO-Film,
including 8 females and 12 males.

(1) Video Data Preparation. The video clips were selected from the FilmStim dataset ® [50] which is a widely
used emotion-eliciting video dataset [61]. We first divide all videos of the FilmStim dataset (64 video clips in total)
into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class
(neutral plus six basic emotions). Then we randomly sample at least one video clip from each category summing
up to 6-7 for a participant to watch, which may take approximately 20 minutes to complete. Note that the film
clips in FilmStim dataset evoke a broad range of emotional reactions, so this design covers the six basic emotions.
We also ensure that each film clip was watched by at least two subjects.

(2) Data Collection Process. During the watching process, we recorded the eye regions of participants using the
eye camera. To ensure the video scenes can be captured properly, we pre-adjusted the field of view of the world
camera to be aligned with the monitor and recorded the displayed video simultaneously. In this way, we are able
to gather the eye/scene data and the emotion ground-truths with aligned timelines, as shown in Fig. 4 (right).
This recording session takes approximately 20 minutes per person.

(3) Labeling Process. After all the scheduled movie clips displayed, the participant takes a short break (around
20 minutes) and then is instructed to label their emotional states. This labeling process can take up to 70 minutes
(compared with 20 minutes of watching the films) and the generated emotional annotations are arguably accurate
since the videos were shown only 20 minutes prior. We develop a labeling tool with a GUI window to facilitate
this process. Use of the tool is orally explained to each participant. For each eye/scene image pair, the participant
indicates emotional state by clicking on the corresponding button or using a keyboard shortcut. There are a total
of seven emotional states to choose from: neutral plus the six basic emotions. We consider only one emotional
state per time instant for simplicity. This process is repeated until all eye/scene image pairs have been assigned
labels.

The whole data collection process takes approximately four days, and the gathered data and labeling last for
approximately 1.5 hours per participant.

Anger Dlsgust Hay inevss Sadness - Surprise Neutrality
) ; 3 3

- s

(a) Lateral view that a (b) Examples of eye/scene images and the emotion
participant is watching video ground-truths with aligned timelines

Fig. 4. Data collection of EMO-Film: The laboratory setting (left), and the eye and scene images of seven emotional states
from the same participant (right).

Shttps://nemo.psp.ucl.ac.be/FilmStim/
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4.1.2  Dataset Statistics. EMO-Film dataset is further divided into two sets for the purpose of training/testing,
respectively. We split the video data of each subject into 80%/20% for training/testing based on the timestamps. The
80% clips with smaller timestamps (i.e., recorded at an earlier time) are assigned as the training set, and the rest 20%
clips as the testing set. The overall percentages of video sequences belong to “anger”/“disgust”/“fear”/“happiness”/
“sadness”/“surprise” are 2.9%/18.2%/20.8%/20.0%/20.8%/17.3%, respectively.

As shown in Table 1, there are a total of 144,145/45,338 eye-scene image pairs in the training/testing set,
respectively. Each eye-scene frame pair is properly aligned in timelines, and the frame-level emotion ground-
truths are also provided. The resolution for scene images is 1280960, while that of eye images is 320x240.
The distribution of the seven emotion classes is also shown in Table 1. As we can see, “fear” accounts for the
most non-neutral emotion events, while “anger” accounts for the fewest. The number of “neutrality” clips is
similar to that of “fear”. We also apply the data augmentation techniques, including the rotations, flips, and
affine transforms, to balance the distribution of different emotional states during the training stage, which can be
important to the training of EMOShip-Net.

Table 1. Training/testing set distribution.

Emotional States Anger | Disgust | Fear | Happiness | Sadness | Surprise | Neutrality
Number of eye-scene image pairs
in training set
Number of eye-scene image pairs
in testing set

3,519 | 21,844 | 25,000 23,807 24,080 20,895 25,000

990 2,843 8,693 4,214 7,068 3,801 17,729

When viewing identical sentimental contents, different participants may demonstrate different emotional
reactions. To examine inter-participant variability, we first divide the videos into six sentimental categories
excluding neutral, each category corresponding to one emotional class. For each category, we calculate the
percentage of video frames for which all subjects demonstrate exactly the same emotional reactions. As shown in
Fig. 5, “surprise” can be most easily aroused and shared among people watching the same videos, while there are
also a comparatively high proportion of subjects who share the same emotional feelings from viewing content
related with “disgust”, “fear”, and “sadness”. “Happiness” and “anger”, however, have the lowest probability of
commonality accross users, suggesting more personal variation in the perception of such videos.

100.0

80.0 1

60.0 1

40.01

Percentage (%)

20.0

0.0

Anger Disgust Fear  Happiness Sadness Surprise
Emotions

Fig. 5. The percentage of video frames where all subjects demonstrate exactly the same emotional reactions for different
emotional classes.
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4.2 Experimental Setup

4.2.1  Evaluation Metrics. Emotionship, as defined in Equation 1, captures the emotional states of the users and
also describes their potential causes. Since frame-level ground-truth emotion values are provided in our EMO-Film
dataset, the evaluation of the former (emotional state prediction) is comparatively straight-forward. Following
prior work [65], we adopt the multilabel-based macro-averaging metric to evaluate the performance of emotional
state predictions, as defined in Equation (6).

C
1
Buacro(h) = 5 > B(TP;, FP}, TN EN)), (6)
=1

where B(TP;, FP;, TN j, EN ;) represents binary classification performance on label j (B € { Accuracy, Precision, Recall}).
C is the number of emotion classes, in this study, C = 6. That is, we only recognize the six non-neutral emotions.
TP;, FP;, TN;, and FN; denote the number of true positive, false positive, true negative, and false negative test
samples with respect to the j class label, respectively.

However, as emotionship itself is a new concept, there is no existing metric that can be used to evaluate its
quality, i.e., its accuracy in identifying the causes of emotions. It is also difficult to objectively annotate such
potential causes, as they are highly personalized, subjective, and subtle. In this work, several representative
samples are visualized to compare the qualities of semantic attributes generated by EMOShip and a baseline based
on VinVL model [66]. We also plot the variation of Influence Score by scenario to demonstrate whether EMOShip
has correctly captured the emotional impacts from scene images.

4.2.2 Baselines. To evaluate the performance of emotion recognition, we have selected four works as baselines:
1). the emotion-aware smart glasses EMO [61], 2). EMO+, which is an improved version of EMO, 3). VinVL
model [61] that extracts semantic scene features for emotion recognition, and 4). VinVL+ that is modified to
focus on the attentive regions of users.

(1) EMO [61] utilizes a deep CNN to recognize emotions from eye images and is closely related with our
work. It is used as a primary baseline. Note that we have discarded the classifier in EMO as it requires the
construction of an auxiliary face recognition database, which is resource-intensive and brings very limited
improvement.

(2) Inspired by prior work [3], we integrate pupil size information with EMO to improve its recognition
accuracy. In particular, pupil size is used as a kind of expert information, which is concatenated to the
second last Fully Connected (FC) layer of the CNN [60]. This baseline method is denoted as EMO+.

(3) Both EMO and EMO+ predict emotions from the eye images. However, hints on emotional states can also
be fetched from scene images, especially from those sentimental visions that are more likely to evoke
emotions. To validate this, we devise a third baseline method that predicts emotional states using only the
sentimental clues in scene images. In details, we utilize the VinVL model [61] to extract visual features
from scene images containing sentimental information. Then, those visual features are fed to a classifier
consisting of two layers to obtain the emotion predictions. Regarding the summary tag generation, all the
visual features are input into the OSCAR+ model [66] to obtain summary tags. This approach is called
VinVL for simplicity.

(4) The visual features of VinVL contain information from all potential Regions of Interest (Rols). There can be
various sentiment clues in those Rols. However, it is the sentimental information from the user’s attentive
region that really matters. Therefore, we have set VinVL to consider only those features within the user’s
attentive region. This method is named VinVL+.

To better understand the causes of emotions, we compare summary tags generated by our EMOShip with
VinVL+ to provide an intuitive illustration of the qualities.
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4.2.3 Training EMOShip-Net. The structure of EMOShip-Net is complicated, as it involves several backbone
networks with significantly different architectures and design purposes. Instead of end-to-end training, we use
an iterative method to train EMOShip-Net: each component network is trained individually while freezing the
weights of other parts.

The eye network N, is used frame-wise and serves as the trigger for the scene camera. It is therefore the
first component trained. We generally follow the training procedures in prior work [61] and pre-train N, with
cross-entropy loss on FER2013 dataset [24] and MUG dataset [1]. Note that on the MUG dataset, the eye regions
are cropped out of the facial image, as shown in Fig. 6. The pre-trained N is further fine-tuned the training set
of our collected EMO-Film dataset.

Considering the high complexity in visual features model Ny and the vision-Language model Nps, we directly
utilize the pre-trained weights provided by authors of those two models. The Squeeze-and-Excitation model Nsg
is trained together with the FC layer ¥ C, on EMO-Film dataset. We use the Adam [31] optimizer with an initial
learning rate of 0.001 and the batch size is set to 512. The whole training process lasts for a total of 500 epochs.

Anger Disgust Fear Happiness Sadness Surprise Neutrality
Fig. 6. Seven emotional expressions of the original MUG facial expression examples (top row), our fine-tuning single-eye-area
data cropped from MUG (bottom row).

4.3 Results

4.3.1 Emotion Recognition. We present the performance of emotion recognition from the following two aspects.

(1) Binary Emotion Classification. In our system, the neutral/non-neutral classification results from Ty, , serve
as a trigger to capture emotional moments, and the accuracy of this binary classification can directly affect the
performance of the whole system. Therefore, we first examine the quality of binary classification model EMO+ to
determine whether the triggering system is reliable. As shown in Table 2, EMO+ significantly outperforms the
baseline EMO model and achieves 80.7% precision, 79.0% recall, and 80.4% accuracy on this binary classification
task. This demonstrates the value of adding pupil information in EMO models. The high accuracy achieved by
EMO+ also indicates that EMOShip-Net is sensitive to emotional moments.

Table 2. Performance comparison of binary emotion classification.

Method Precision Recall Accuracy

EMO+ 80.7% 79.0% 80.4%
EMO 78.1% 74.6% 76.9%
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(2) Multiple Emotion Classification. Table 3 demonstrates the emotion recognition performance of the four
baseline methods and EMOShip-Net on EMO-Film dataset.

EMO [61] significantly outperforms VinVL [66] in terms of precision, recall, and accuracy. This is expected, as
the emotional clues within eye images are more generally straightforward compared with the indirect and subtle
sentimental clues in scene images. EMO+, the improvement version of EMO, has superior performance to EMO,
indicating the value of integrating pupil size information. The performance of VinVL+ also surpasses that of
VinVL, which illustrates the importance of involving user attention. However, VinVL+ still cannot outperform
EMO and EMO+, indicating the importance of expression-related features.

Different from those baselines, EMOShip-Net fuses emotional evidence of both scene and eye images to achieve
more comprehensive and accurate emotion predictions. Notably, EMOShip-Net significantly outperforms the
best baseline EMO+ by 5.3% precision, 5.8% recall, and 6.0% accuracy. This reveals the importance of inferring
from both facial expressions and visual perceptions, and indicates the superiority of EMOShip-Net in determining
emotional states.

Table 3. Performance comparison of multiple emotion classification for the proposed method and the baseline methods.

Method Precision Recall Accuracy
EMOShip-Net (Ours) 76.3% 73.6% 80.2%
EMO+ 71.0% 67.8% 74.2%
EMO [61] 65.9%  67.0%  69.4%
VinVL+ 48.8% 46.8% 57.3%
VinVL [66] 42.6%  443%  55.5%

We have plotted the confusion matrices of different methods. Figs. 7a, 7b, and 7c demonstrate that EMOShip-Net
achieves a better recognition rate for most emotions, demonstrating its superior generalization ability. We also
observe that EMOShip performs slightly worse on “disgust” than EMO+. That is because EMO+ determines
emotional states exclusively based on eye images, while EMOShip takes both the visual region and eye images
into consideration. This may undermine accuracy when EMOShip receives strong misleading signals from visual
attentive regions. For example, when scene images containing emotionally negative material are captured, it can
be challenging for EMOShip to determine which kind of negative emotions (such as “disgust” or “fear”) should be
related to this visual information since they may all occur in response to negative scenes. As shown in Figs. 7a
and 7b, the VinVL+ method, which only utilizes visual information, generally delivers lower classification rates
on negative emotions such as “disgust” and “anger” than EMO+, while its recognition accuracy on other classes,
such as “happiness” and “sadness”, are relatively similar. In conclusion, associations between negative sentimental
visions and negative emotions can be challenging to establish.

Fig. 8 shows an exemplary case to provide further intuition. It presents successive scene/eye image sequence
and corresponding emotion predictions within an approximate six-second clip generating “fear” emotions. Both
VinVL+ and EMO+ baseline have produced inconsistent emotion predictions during this clip, while our method
has successfully predicted fear as the result of viewing all those frames. This demonstrates that our method
produces more temporal-consistent emotional predictions, thanks to the fusion of emotional evidence from both
visual scenes and eye regions.

4.3.2  Understanding of Potential Cause of Emotions. Understanding the cause of emotions can be too subtle
and subjective to be quantitatively evaluated, especially when we are aiming to compute the Influence Score
IS, i.e., the intensity of emotional response to visual perceptions. Despite those challenges, EMOShip is the first
eyewear system to reveal the semantic attributes of visual attention and to associate those attributes with varying
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Fig. 7. Confusion matrix of individual emotional moments when using the two baseline methods and the proposed method.
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@® Fear ® Disgust ® Surprise @ Sadness

Fig. 8. An example of emotion recognition comparison between the proposed EMOShip-Net and the two baseline methods.
Colored rectangles highlight the true emotions and the emotions predicted by these methods.

emotional states. We analyze such behaviors using several examples. In particular, we adopt cases of different
emotions to present the qualities of the summary tags of visual attentive regions, and then we plot the Influence
Score from real video clips to examine their temporal patterns.

In Fig. 9, we provide examples of the semantic summary tags generated by our method and the VinVL baseline.
A general trend can be discovered that the summary tag of our EMOShip has better captured the sentimental clues
in those scenarios than has the VinVL baseline. For example, in the “fear” case, the summary tag of EMOShip
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contains emotion-indicating keywords such as “screaming”, which is highly relevant with negative emotions
like “fear” and is clear evidence of awareness of the sentimental visions. In contrast, VinVL displays neutral
descriptions and uses words like “talking” to depict this scene, which are less sentimentally accurate. Similar
observations can be made on other emotions where EMOShip uses more emotional indicators such as “dirty
room”, “screaming face”, “dark room”, etc. These differences are not difficult to understand. The visual features
used in the VinVL baseline method are not filtered and consist of visual information from non-attentive regions.
Such irrelevant information can confuse the language model and can lead to less appropriate summary tags
like the sentimentally neutral words. In contrast, EMOShip uses the selected visual features (see Section 3.3.4
for details) that are highly relevant to the visual attentive region, thus generating summary tags that are more
relevant to the visual attentive region and more likely to contain sentimentally non-neutral meanings.

The tags of our eyewear device are generally more semantically accurate than VinVL. Using “fear” as an
example, EMOShip correctly depicts the scenario, i.e., “A young girl is screaming while sitting on a bench”, while
VinVL'’s description is less appropriate, i.e., “A young girl is talking on a cellphone”. This semantic accurateness
is also an advantage of EMOShip.

Happiness Surprise Sadness Disgust

(a) Ours

A man with curly hair
standing in front of a building.

A child in a dirty room with a|
broken wall.

A man with a hat on his head. A Pg::‘i‘n\,:?;:'ls:::::mg

head. while sitting on a bench.

‘ A man with his hands on his

A young girl is screaming ‘

(b) VinVL

/A man holding a toothbrush in| | A man with a hat on his head A man wnh a mustache is A young child is talking on a A person is in a dirty A person is laughing while
his hand. and a beard. looking down at his hands. cell phone. bathroom with a toilet. laying in bed.

Fig. 9. Examples of the semantic summary tags generated by our method (a) and the VinVL baseline (b). The summary tag is
shown at the bottom of each frame. The red circle indicates the gaze point. The emotional words are highlighted in bold.

Next, we investigate how different emotional states can be associated with scene features through the use of
Influence Score IS. Fig. 10 shows the normalized average IS of six non-neutral emotional categories. We can
observe that the emotion “sadness” exhibits the highest the IS value. This indicates that emotion “sadness” is
generally more tightly associated with our visual perceptions than others. Also, emotion “surprise” presents the
lowest IS score and is therefore considered to be less related with scene features than all other emotions.

4.3.3 Generalization Ability. We also examine the generalization ability of EMOShip-Net on unseen users.
Specifically, 5 new participants out of the EMO-Film dataset were recruited, and we follow identical data
collection procedures as in Section 4.1.1 to produce an evaluation data set that is strictly subject-independent
with the EMO-Film dataset used to train our models. This new evaluation set is approximate 105 minutes in
length. We evaluate the in-lab emotion recognition performance of EMOShip-Net on this newly-collected unseen
dataset. In particular, we compare the performance of EMOShip-Net on this new test set with that of the EMO
and EMO+ baseline methods (the two most out-standing baseline methods). The results are shown in Table 4. We
can see that EMOShip-Net has superior performance than EMO and EMO+. This indicates that EMOShip-Net can
generalize well to unseen subjects.
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Fig. 10. Degree of emotional impacts from visual perceptions.

Table 4. Performance comparison of multiple emotion classification for new/unseen users.

Method Precision Recall Accuracy
EMOShip-Net (Ours) 65.9% 76.6% 78.5%
EMO+ 62.8% 65.4% 70.0%
EMO 61.2% 60.3% 61.4%

We further examine the performance regarding F1 scores of different methods on two test sets. The performance
of one method differs depending on test set, because one may be more challenging than the other. We compute
F1 scores of different methods on the original/new test set along with the drop rates. As shown in Table 5, all
methods perform worse on the new test set: we may reasonably assume that it is more challenging than the first.
Nonetheless, the performance of EMOShip-Net degrades the least on this new set, suggesting the importance of
exploiting emotionship.

Table 5. Performance comparisons regarding F1 score on subject dependent/independent test sets, respectively.

F1 Score
Method Original Test Set New Test Set Drop Rate
(subject-dependent) | (subject-independent)
EMOShip-Net (Ours) 74.9% 70.8% 5.4%
EMO+ 69.4% 64.1% 7.6%
EMO 66.4% 60.7% 8.6%

5 PILOT STUDY

In additional to in-lab experiments, we also performed a approximate three-week in-field pilot study to evaluate
the performance of EMOShip under realistic scenarios. In this section, we present two real-life applications of
EMOShip, demonstrate its usability outside the laboratory, and describe its limitations and promising directions
for future work.

5.1 Applications

The most significant advantage of EMOShip is that it captures emotionship instead of emotions. Compared with
other emotional-aware glasses like EMO [61], our EMOShip not only predicts emotions at higher accuracy but also
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provides intuitive explanations on the potential causes of those emotional states. This awareness of emotionship
opens the door to new applications. Multiple rounds of user interviews lead to two applications: Emotionship
Self-Reflection and Emotionship Life-Logging.

In psychology, the term “self-reflection” refers to the process of analyzing past behaviors to achieve better
efficiency in the future [16, 23]. Self-reflection is indispensable, especially for people affected by negative emotions.
As indicated in relevant studies [17], negative emotions can lead to mental well-being issues. To maintain mental
health, we need to self-reflect on negative emotional moments, and we also need to find what evokes those
emotions so exposure to those causes can be minimized. This scenario is appropriate for EMOShip, which has the
ability to record emotional moments, retrieve negative emotional moments, and discover their causes. We name
this application Emotionship Self-Reflection.

Life-logging is usually considered to be digital self-tracking or recording of everyday life [52]; it is already
a popular application. Current life-logging applications commonly record scenes with commercial glasses like
GoPro and Google Clip. It is also difficult to categorize such recordings into different emotional categories,
since those eyewear devices lack emotion awareness. Manually classifying emotional moments is extremely
time-consuming and tedious, and the user may not be able to recall the extracted emotional activities. Therefore,
we integrated EMOShip and life-logging to produce a new application called Emotionship Life-Logging, which
can automatically detect emotional moments, record them, and document their causes. Emotionship Life-Logging
also enables various interesting and promising down-stream tasks such as retrieving and classifying emotional
moments [64].

5.2 Procedure of Pilot Study

In-field pilot studies are performed for the two applications described above. A total of 20 volunteers, including
14/6 males/females aged between 23 to 40, were recruited to participate in pilot studies. The research goal
of understanding the potential causes of emotions was indicated to all participants before the pilot studies.
Volunteers were also informed that their daily activities would be recorded for research purposes.

During this in-field pilot study, participants were introduced to wear EMOShip whenever practical to maximize
coverage of their day-to-day lives. EMOShip automatically recorded emotional moments along with their potential
(attention-related) visual causes. The complete scene videos taken by the world camera were also saved for
reference and are referred to as the baseline video.

The pilot studies lasted for approximately three weeks. At the end of the study, volunteers were asked to assist
in evaluating the value of EMOShip for understanding daily emotions and their causes. In particular, we required
participants to 1) watch the emotional moments captured by EMOShip and mark those clips they believed to
have correctly reflected their emotional states and 2) retrieve from the baseline video emotional moments that
EMOShip failed to capture. In addition, the participants were asked to complete a questionnaire survey of their
opinions on the usability and value of the two emotionship applications.

5.3 Performance of EMOShip in Pilot Study

5.3.1 Quantitative Evaluations. Table 6 summarizes the system performance of EMOShip. The participants
generated a total of 530.7 minutes of baseline video and 33.8 minutes of 212 emotional video clips. Compared with
the overall operation time, Tyiways—on = 530.7min, the operation time reduction for the eye features extraction

), respectively. That is

. . . . Ta 'wa xfan_T eye Ta 'wa s—on_Tca ure
and high-resolution video capturing are 84.2% (M) and 93.6% (ly—‘”

Talways— Talways— on

consistent with the short-term property of non-neutral emotions. As indicated in relevant research [56], non-
neutral emotions are typically aroused by sudden emotional stimuli, and are short-term mental processes that
can vanish in a few seconds. In other words, non-neutral emotions are much rarer than neutral ones in daily life.
We inspect P6 for a detailed understanding. One of the scenarios of P6 is watching a basketball game lasting for

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 38. Publication date: March 2022.



38:22 « Zhao and Chang, et al.

Table 6. Overall performance of the in-field pilot study. Tyjyeys—on is the overall operation time of EMOShip. TN,y and

Teapture are the operation time of eye tracking and the high-resolution video recording, respectively. EM means the emotional
moments.

Tatways—on TNy Teapture  # of Distinct  # of True  # of False  # of Missed

Participant  : ute) (minute) (minute) EM EM EM EM Precision  Recall
P1 243 47 2.0 3 17 3 2 85.0%  89.5%
P2 28.5 5.4 3.6 2 10 2 1 83.3%  90.9%
P3 425 2.7 2.0 1 11 1 2 91.7%  84.6%
P4 55.6 7.0 2.1 3 19 6 4 76.0%  82.6%
P5 32.7 3.7 2.7 2 13 4 3 76.5%  81.3%
P6 73.2 8.9 2.2 3 23 7 4 76.7%  85.2%
P7 447 2.4 1.2 1 8 1 0 88.9%  100.0%
P8 17.9 1.9 1.1 1 8 2 3 80.0%  72.7%
P9 26.9 6.9 1.2 2 9 3 3 75.0%  75.0%
P10 16.0 42 15 1 7 1 0 87.5%  100.0%
P11 17.3 46 14 4 13 2 3 86.7%  81.3%
P12 10.9 2.7 0.6 3 3 0 2 100.0%  60.0%
P13 32.7 48 2.0 4 13 1 5 92.9%  72.2%
P14 145 2.4 13 2 9 1 0 90.0%  100.0%
P15 123 2.9 15 3 8 1 2 88.9%  80.0%
P16 14.2 3.2 14 2 8 3 1 72.7%  88.9%
P17 11.8 3.1 1.2 1 8 0 1 100.0%  88.9%
P18 24.2 4.0 2.2 2 13 2 4 86.7%  76.5%
P19 14.3 3.2 0.8 2 4 0 2 1000%  66.7%
P20 15.7 5.1 1.8 3 8 4 1 66.7%  88.9%

Mean 82.8% 83.1%

around 12 minutes, within which our system has detected 0.4 minutes of non-neutral Emotional Moments (EM).
Those EMs occurred exactly when the wearer sees two scoring shots, each one lasting for around 0.2 minute.
Given a 30 fps sampling rate, the 2 EMs contain approximate 720 image frames (2Xx30x0.2X60). Apart from those
moments, P6 remains emotionally neutral. EMOShip correctly captures those non-neutral emotional moments.
Based on emotional moments marked by users at the end of the pilot study, we are able to evaluate the
performance of EMOShip in practice. Generally, users pay attention to how many emotional moments are correctly

recorded by EMOShip, and how many emotional moments are missed or incorrectly recorded. We use precision
Number of True EM Number of True EM

Number of True EM+Number of False EM Number of True EM+Number of Missed EM

indicate the latter. Results show that, EMOShip delivers 82.8% precision and 83.1% recall on average, which means

that EMOShip can accurately capture personal emotional moments, and most of the emotional moments can be
captured by EMOShip.

We also plot a confusion matrix for the pilot studies to provide a more intuitive understanding. As shown in
Fig. 11, EMOShip has high emotional category classification accuracy. Positive emotions [10] (171 of “happiness”
and “surprise”) are much more frequent than negative ones (53 of “sadness”, “anger”, “disgust” and “fear”),
indicating that positive emotions are the dominate emotional states in the daily lives of our pilot study participants.

to

to indicate the former, and recall

5.3.2  Emotionship Analysis. We first summarize the emotional states of all participants and then give a concrete
example to provide further insights.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 38. Publication date: March 2022.



Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices « 38:23

150
Angeri 11 0 2 0 0
125
Disgust 0 12 1 0 0
100
= Fear 0 0 18 0 1
2 75
Happiness 0 0 1 1 2
50
Sadness{ O 0 0 4 0
25
Surprise 0 0 0 0 29
—0

X X \S
PX\QG 0‘\5 Q\ﬁ- ?63

Predicted

S
w0 «»“6

Fig. 11. Confusion matrix of individual emotional moments when using EMOShip in pilot studies.

(1) Emotional States Summary. To give participants an overall understanding of their past emotional states,
we briefly summarize the past emotional states for each user by roughly categorizing the six basic non-neutral
emotional states as positive and negative. Intuitively, we categorize “happiness” and “surprise” as positive emotional
states, while the remaining four are categorized as negative. For each user, we use Pr and Nr to denote the
proportion of positive emotions and negative emotions, respectively. For a certain time window, we can suggest
two rough emotional patterns as follows:

o Type I: Pr > Nr, indicating that the overall emotional state of a user lean towards positive.
o Type II: Pr < Nr, suggesting that a user is more frequently occupied by negative emotions.

As shown in Fig. 12, we can observe that 17 out of 20 users belong to Type I, while 3 users fall into Type II (P8,
P9, and P11), indicating that positive emotions are the dominating emotional states during the pilot studies.

Proportion

© o = =
u ~ o N
o w o (6]

o
IN)
u

0.00

Positive emotions

L b

I Negative emotions

P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Participants

Fig. 12. Profile of emotional states for all 20 participants.

(2) An Exemplary Case. The following example provides further intuition on how EMOShip works. Fig. 13
shows the temporally consistent emotional states for a participant (P6). P6 was selected due to being the most
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Fig. 13. Time series emotional states for a participant (P6). Emojis are taken from [42].

active user during the pilot study, leading to 23 emotional clips with a duration of 8.9 minutes covering most of
the emotional categories, which provides us with good opportunities to explore the insight of EMOShip.

As can be seen from Fig. 13, during the whole timeline, the major emotional state is “happiness”. This is not
surprising, as we can examine the corresponding scenario, i.e., “Scenarios #1” in the figure, and we can see from
the summary tag that “A couple of people are playing basketball in a gym”. This tag, along with the scenario
image, indicates that this user is actually enjoying watching a basketball game and is quite likely to be happy.
When it comes to the “surprise” case of “Scenarios #2”, we can derive from the tag and also the attentive region
that P6 is surprised to see a close-up of a loaf of bread. As for the “anger” of “Scenarios #3”, we can immediately
learn from the summary tag and attentive region that P6 is driving a car and feels angry due to the traffic. In a
similar way, this participant can easily access all the emotional moments that are valuable and personalized. If this
user would like to perform emotionship self-reflection, those anger moments can be retrieved to discover what
led to the emotion, e.g., traffic, making it easier to avoid such situations in the future. In summary, emotionship
has application in the valuable application of self-reflection.

5.3.3  Feedback from Participants. We also used a questionnaire to ask study participants about their opinions of
the two applications, their wearing experience, and request ideas for improvements. In summary, 16 out of 20
participants provided positive feedback on Emotionship Self-reflection, while 15 out of 20 people saw value in
Emotionship Life-logging.

We selected several illustrative comments from participants and quoted them as follows.
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One participant remarked: “From my experience, EMOShip has allowed me to recognize and understand my
emotions in a major meeting, which was quite profound to me. When I rewatched the video clips and emotions
recorded by EMOShip, I realized that I appeared to be very negative during the meeting, and the meeting was also
quite heavy. If I had noticed these issues then, I believe I would have been able to readjust myself to encourage the
participation of the team and have a more productive meeting. So I think I will use EMOShip in more meetings and
social events. In the long run, it would be significantly beneficial for me to understand and manage my emotions by
utilizing EMOShip to analyze my emotions and record my emotional moments. "—P1

Similarly, another participant appreciated the application of EMOShip to long-term mood perception and
management, as figured out by this volunteer: “EMOShip shows that I have two significantly different states of
mind when driving or walking to work. When I commute on foot, the emotions appear to be more positive and I tend
to feel happy more frequently. My driving emotions, on the other hand, often seem to be negative, such as fear and
anger. ...... I may feel negative or get road rage encountering rule-breaking behaviours such as slow left-lane driving
or unsafe lane changes. In addition, with the help of EMOShip I also noticed that I seem to be overly cheerful during
business meetings, which may leave an unintended impression of me being unprofessional or unreliable. EMOShip
unveils the importance of facial expression management to me. I need to be more aware of my social environment
whether I should be more happy or serious. —P2

The third user stated that EMOShip can significantly ease the logging of emotional moments, which can be of
importance: “EMOShip can assist me to record some interesting or important moments and my emotions at that
time, both of which are crucial for me to get these moments rapidly reviewed. ...... . Reviewing the meeting materials
that are important to me by watching the videos EMOShip recorded can save me a great amount of time. Plus, my
emotions may also shift during interesting moments in life. For example, EMOShip records intense game sessions and
sensational videos when I feel happy or sad. It would have been very inconvenient for me to record them manually
clip by clip while playing games or watching videos, whereas EMOShip can easily record them for me to review or
share quickly afterwards. "—P6

On the other hand, there is also a volunteer who disregarded the importance of recording emotional moments,
and we quote his feedback below: T used EMOShip while playing cards. Since this is a highly enjoyable entertainment,
there was little change in my recorded emotion types. Moreover, I probably didn’t pay much attention to the changes
in my emotions. >—P7

5.4 Limitations and Future Works

We have demonstrated the technical capabilities of EMOShip to recognize emotion states and understand their
causes. However, we also observe several limitations from its applications to real-world scenarios and from users’
feedback. In this section, we briefly discuss some potential future works that will further improve EMOShip
system.

5.4.1 Personalized Emotional Management. Although most users have provided positive feedback on EMOShip,
a consensus is that they would like to also receive suggestions on how to reduce the occurrences of negative
emotional moments. Since different people have different situations and hence require personalized service, we
are planning to integrate a long-term emotion tracking, emotional management, and regulation system into
EMOShip, which can be personalized to suggest how to avoid causes of negative emotions.

5.4.2  Privacy Concern and Privacy Protection. Although participants are interested in perceiving their emotional
states, some participants are uncomfortable with exposing their personal affective information to third parties.
Future system design should carefully consider how to address privacy concerns. Another common feedback
from users is that they are worried about the disclosing of their emotional information, especially to malicious
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third parties. Therefore, we set plans on enhancing the privacy protection of using EMOShip and also on ensuring
the safety of recorded personal data, from both software and hardware sides.

5.4.3 Multi-Modality in Emotional Causes. EMOShip focuses on visual stimuli as stimulus for emotions. However,
the other senses are also important. For example, the auditory perception, like a sharp, annoying sound, can also
affect emotional states. Fusing emotionally relevant features from multi-modal data remains a challenging topic
to address in the future.

6 CONCLUSIONS

This paper has proposed and defined the emotionship analysis problem for eyewear devices. It has described a
deep neural network, called EMOShip-Net, that predicts semantic attributes from scene images and can synthesize
emotional clues from both eye and scene images and is aware of each feature’s importance. Based on EMOShip-Net,
we present EMOShip, the first-ever intelligent eyewear system capable of emotionship analysis. Experimental
results on the FilmStim dataset of 20 participants demonstrate that EMOShip captures emotional moments with
80.2% accuracy, significantly outperforming baseline methods. We also demonstrate that EMOShip can provide a
valuable understanding of the causes of emotions. We developed two applications using EMOShip: emotionship
self-reflection and emotionship life-logging. A 20-user in-field pilot study demonstrated that most participants
think EMOShip helps them reflect on and understand their emotions they usually ignore. Most participants
indicated that EMOShip was of value to them. EMOShip is the first embodiment of an emotionship-aware eyewear
system. It is relevant to the coming age of intelligent wearable systems and brings us closer to answering the
question, “Will smart glasses dream of sentiment visions?”
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