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ABSTRACT

The escalating concern over environmental challenges has spurred a growing interest in

harnessing machine learning and computer vision techniques to represent scenes in envi-

ronmental applications. Accurate and efficient scene representations play a pivotal role in

addressing environmental issues, including air pollution, fire detection, and remote sensing

analysis. This dissertation delves into the field of scene representations in machine learning

and computer vision, with a specific focus on image-based approaches for environmental

applications.

For vision-based air pollution applications, air quality can be estimated by observing

haze effects in images; hence, digital cameras can be used to quantify pollutants across

large areas. We propose to use vision-based air pollution algorithms to predict the level

of air pollution within the environment. The prevalence of images suggests that images

can be used to estimate high spatial resolution air pollutant concentrations. However, there

are many challenges to develop a portable, inexpensive, and accurate method for pollutant

analysis, such as image quality variability, sufficient data for training, and hardware and

software optimizations to meet constraints.

I address those challenges by designing image-based air pollution prediction methods

for sensing and forecasting, developing benchmark datasets to test and validate vision-

based pollution estimation algorithms, and determining how sensing accuracy depends on

point sensor density and use of cameras. My efforts can be divided into three categories: (1)

We design an image-based multi-pollutant estimation algorithm that is capable of modeling

atmospheric absorption in addition to scattering, spatial variation, and color dependence of

pollution; (2) We use different spatial densities of sensors and vision-based algorithms to

estimate air pollution concentrations and analyze hazy images; (3) We construct an image-

based air quality forecasting model that fuses a history of PM2.5 measurements with colo-

cated images (at the same spot); and (4) We develop an image-based air quality prediction

model specifically tailored to the nighttime case.

All the techniques are evaluated and validated using real-world data. Experimental

results show that our techniques can reduce sensing error significantly. For example, our

multi-pollutant estimation technique reduces single-pollutant estimation RMSE (root mean

square error) by 22% compared to previous existing vision-based techniques; for the im-

xi



ages in our benchmarking dataset, using images decreases MAE (mean absolute error) by

8.4% on average; therefore, adding a camera to collect images helps more than adding more

sensors. Finally, experiments on Shanghai data show that our forecasting model improves

PM2.5 prediction accuracy by 15.8% in RMSE and 10.9% in MAE compared to previous

forecasting methods.

Furthermore, two innovative deep learning models were introduced to address segmen-

tation tasks in different environmental domains. The first model focused on fire segmenta-

tion in images, incorporating a multi-scale aggregation module and a context-oriented mod-

ule to achieve accurate and rapid fire detection by extracting discriminative features from

various receptive fields and capturing both local and global context information. The pro-

posed fire segmentation network outperformed previous methods with a significant 2.7%

improvement in Intersection over Union (IoU). The second model targeted remote sensing

segmentation in aerial images, enhancing feature representation in the spatial and frequency

domains through a Frequency Weighted Module and a Spatial Weighting Module, respec-

tively. Additionally, a Multi-Domain Fusion Module was employed to combine features

from different domains, leading to state-of-the-art performance on remote sensing datasets

with a mean F1-score accuracy improvement of 1.9%.
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CHAPTER 1

Introduction

The increasing concern over environmental issues has led to a growing interest in lever-

aging machine learning and computer vision techniques for scene representations in the

context of environmental applications. Accurate and efficient scene representations play

a crucial role in understanding and addressing environmental challenges, such as air pol-

lution, fire detection, and remote sensing analysis. This dissertation aims to explore and

advance the field of scene representations in machine learning and computer vision, focus-

ing on image-based approaches for environmental applications.

A large part of this dissertation focuses on image-based air pollution applications. In

particular, image-based air pollution prediction estimates air quality from images through

visibility and haze level analysis. Existing research in visibility physics demonstrates sig-

nificant correlation between visibility and PM2.5 levels [4–6]. Scene visibility is affected

by atmospheric particles due to the scattering and absorption of light and by extension, the

level of air pollution at the time [7]. When light travels through the atmosphere, it encoun-

ters atmospheric particles and gases that affect its path. Light attenuation is caused by both

scattering and absorption. Scattering occurs when particles cause the light to change its

direction of travel. Absorption occurs when part of the light disappears due to the transfer

of energy to the particles.

In addition to air quality sensors, image sensors can be used to estimate PM concen-

trations, potentially at higher spatial resolutions [7, 8]. In cities, using images for PM2.5

estimation will typically increase field estimation accuracy by 14.3% compared to only us-

ing point sensors such as particle sensors [9]. The increasing popularization of smartphones

and webcams makes such applications possible. Particle counters are more expensive than

webcams and generally require more maintenance. In contrast, consumer-grade cameras

can gather pollution data over wide fields of view. Moreover, image-based methods are

drift-resistant, which reduces maintenance costs. While some work I did relied on a fixed,

known camera location, some related ideas would also work with smartphone images.

1



Figure 1.1: Varying air quality in images in Shanghai: clear (left), medium haze (middle),

and heavy haze (right) [1].

Adding image sensors with high spatial resolution can increase field estimation accu-

racy and spatial resolution. Visibility, in the context of air quality and the environment,

refers to the degree to which objects and landmarks can be seen and identified at a given

location and time [10]. It is a crucial parameter used to assess atmospheric clarity and

the presence of air pollutants or particles that may obscure vision. Visibility is high on

low air pollution days, but visibility is low during high pollution because light is scattered

away from the camera by PM. This is exhibited in Figure 1.1. Images have the ability to

capture complex relationships between air quality and the factors influencing it. Addition-

ally, images can be useful in various applications in air pollution, such as monitoring and

forecasting of visible pollutants including PM and NOx.

Past research has devised an atmospheric model describing an image influenced by haze

as follows [11]:

I(x) = J(x)t(x) +A(1− t(x)), (1.1)

where x is the pixel location, I is the observed image, J is the scene radiance (image

without any haze), A is the atmospheric light (also known as the airlight), and t is the

transmission function. Additionally, transmission can be expressed as follows:

t(x) = e−βd(x), (1.2)

where t is the transmission, ´ is the scattering coefficient of the atmosphere, and d is the

depth from the camera to the pixel object.

The model relies on several assumptions about atmospheric haze: 1) light attenuation is

influenced by only scattering; 2) the properties of light attenuation are color-independent;

and 3) the density of haze is uniform in the atmosphere [11]. Past research has used the

transmission from the haze model as a feature to estimate air quality from images, which

have been shown to be effective [12]. Transmission can be used to describe the attenuation

of scene radiance [11]. To calculate the transmission, the dark channel prior was proposed
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and widely used, which relies on some pixels in an image having zero or very low intensity

for at least one color channel [13].

Before image-based air pollution sensing can be used in real-world applications, there

are still many challenges to overcome. It requires complex signal processing and machine

learning algorithms. However, it holds the promise of a portable, inexpensive, and accurate

method for pollutant analysis in urban and industrial areas. This dissertation will demon-

strate that commodity cameras and smartphones can be widely used as an accurate tool for

real-time monitoring of air pollution levels.

This dissertation will describe frameworks for image-based air pollution prediction and

explore features that will potentially affect the performance of models. I will validate the

concept of image-based air pollution prediction through real-world experiments. We have

demonstrated that using atmospheric modeling, data fusion techniques, and image process-

ing algorithms can enhance image-based estimation and forecasting algorithms, making

them more practical in real-world applications.

Moreover, we build upon vision-based air quality estimation to develop effective fire

detection systems using deep learning principles. By adaptively incorporating information

from multiple levels of the CNN and enhancing the receptive field network, we can utilize

consumer cameras for real-time fire detection and monitoring. This advancement aids in

early fire detection, prompt response measures, and minimizing the impact of wildfires

on the environment and human lives. Additionally, we apply expertise from vision-based

air quality algorithms to remote sensing segmentation tasks, enabling the processing of

satellite or aerial images for environmental monitoring, land management, urban planning,

and disaster response efforts. This segmentation analysis empowers decision-makers with

critical information for informed actions.

1.1 Single-Point Image-Based Estimation

I developed an image-based pollution estimation technique that uses wavelength-dependent

scattering and absorption properties to enable analysis of multi-pollutant systems and im-

prove estimation accuracy. In addition, I use the position-dependent properties of light

attenuation within images to improve prediction accuracy by accounting for nonuniform

pollution distribution. Given training and testing images and training ground-truth pollu-

tion concentrations, the objective is to minimize mean squared error of pollution concen-

tration estimates over time.

It is important to estimate pollutant concentrations from images using accurate mod-

els of pollutants in images. Previous atmospheric imaging models consider the scattering
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properties of haze, but not the space-and color-dependent properties of scattering and ab-

sorption. The model from 1.1 approximately represents haze in realistic conditions, but

relaxing the model’s assumptions results in a 34.6% improvement in PM2.5 level predic-

tion.

I am the first to use images to estimate pollutant concentrations in systems with multiple

pollutants. I achieve this by considering the differences in scattering and absorption spectra

between different pollutants. My system improves the accuracy of PM2.5, PM10, and NO2

estimation by 29.9% for single-scene images in Shanghai compared to existing image-

based techniques.

1.2 Novel Dataset for Image-Based Estimation

Ground truth pollution data are typically obtained from the nearest of several sparsely de-

ployed monitoring stations. Lack of high-resolution ground truth pollution measurements

makes it difficult to evaluate vision-based pollution estimation techniques, as pollution can

vary rapidly with position [14]. Moreover, vision-based pollution estimation techniques

generally assume homogeneous distributions of particles and gases within images, imply-

ing constant light attenuation [14]. In reality, pollution concentration changes rapidly in

space. Therefore, accurate evaluation of vision-based estimation algorithms requires high-

resolution datasets [15].

We (including collaborators in Hangzhou) develop a novel dataset with the goal of

validating vision-based pollution estimation algorithms. The dataset contains images and

corresponding “ground truth” pollution concentration values in images. In particular, pol-

lution concentration varies over time and in the images. The novel contribution is a densely

distributed, low-cost PM2.5 and PM10 dataset with high temporal and spatial resolution en-

abling scientific discovery and the evaluation of air pollutant estimation algorithms. The

dataset also includes images that capture the distributed area of the sensors. This dataset,

the first of its kind, is significant because air quality estimation substantially improves using

both data from existing sensors and image-based analysis of air pollution.

My main contribution to this dataset work was performing extensive analysis on how

the estimation of PM2.5 depends on point sensor density and absence/presence of cameras.

My main findings show that using the images in our benchmarking dataset decreases MAE

by 8.4% on average; hence adding a camera to collect images helps more than adding more

sensors. Additionally, I find that pollutant concentrations are spatially correlated; spatial

variation of PM2.5 is high; and temperature and humidity had limited correlation with PM

concentration in our dataset.
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1.3 Nighttime Pollutant Estimation

Collaborators in Hangzhou and I introduce a novel vision-based technique for nighttime

PM2.5 concentration estimation. Specifically, we first derive a glow map using the image

brightness and transmission. Then, we design a deep convolutional neural network algo-

rithm to estimate the PM2.5 concentration quantitatively. Finally, we evaluate our methods

using real-world data and images. Experimental results demonstrate that our proposed

method can achieve an improvement in accuracy by 29.3% compared to that of the daytime

method. To the best of our knowledge, this is the first work to measure nighttime PM2.5

concentration using a vision-based method.

1.4 Image-Based Air Quality Forecasting

The problem of air quality forecasting is important but also challenging because air quality

is affected by a diverse set of complex factors. I construct the first image-based air quality

forecasting model. It fuses a history of PM2.5 measurements with colocated images. Past

research showed that images have the ability to inform on air quality in a region over time.

I construct a multi-level attention-based recurrent network that uses images and PM2.5 data

to represent variation over space and time. Experiments on Shanghai data show that the

forecasting model improves PM2.5 prediction accuracy by 15.8% in RMSE and 10.9% in

MAE compared to previous forecasting methods. In addition, I evaluate the impact of each

model component via ablation studies.

1.5 Fire Segmentation

Accurate and rapid detection of fire is useful for environmental protection and public safety.

The problem of fire segmentation in images is difficult because images contain fire with

different kinds of shapes, sizes, illumination, and backgrounds. I construct a novel fire

segmentation model, which utilizes multi-scale aggregation as well as global scene in-

formation through a context-oriented module. For example, the multi-scale aggregation

module reconstructs the segmentation using features from multiple receptive fields. Also,

the context-oriented module obtains local and global context information to expand the re-

ceptive field and extract more discriminative features. Using our fire segmentation network

improves accuracy by 2.7% in IoU compared to previous methods.
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1.6 Remote Sensing Segmentation

For the problem of remote sensing segmentation, we introduced a new deep learning model

for segmenting aerial images. Our model improves feature representation in both the spatial

and frequency domains, preserving important details and textures to enhance feature learn-

ing across different frequency scales. We incorporated a Frequency Weighted Module and

a Spatial Weighting Module to capture contextual information in the frequency and spa-

tial domains, respectively. Additionally, we developed a Multi-Domain Fusion Module to

combine features from different domains, providing valuable complementary information.

Our proposed model outperformed previous methods on various remote sensing datasets,

achieving state-of-the-art performance. It improved the mean F1-score accuracy by 1.9%

compared to existing techniques. We conducted ablation studies to validate the effective-

ness of each component of our model. Our approach shows promise for enhancing a range

of remote sensing applications, such as vegetation classification, urban structure detection,

and crop monitoring.

1.7 Dissertation Organization

This dissertation is organized as follows.

1. Chapter II describes our image-based method that estimates multiple pollution con-

centrations from images using scattering and absorption properties. Our wavelength-

sensitive, absorption and spatial variation aware multi-pollutant vison-based estima-

tion technique improves accuracy by 29.9% in Shanghai.

2. Chapter III discusses a publicly released novel dataset appropriate for evaluating

vision-based pollution estimation algorithms. We determined how accuracy depends

on point sensor density and absence/presence of cameras. For the images in our

benchmarking dataset, using images decreases MAE by 8.4% on average; hence

adding a camera to collect images helps more than adding more sensors.

3. Chapter IV introduces a novel vision-based approach for estimating nighttime PM2.5

concentration. Our method involves deriving a glow map based on image brightness

and transmission, followed by the design of a deep convolutional neural network

algorithm for quantitative estimation.

4. Chapter V explains an image-based forecasting model of future PM2.5 concentrations

by using a multi-level attention-based recurrent network. Experiments on Shanghai
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data show that our forecasting model improves PM2.5 prediction accuracy by 15.8%

in RMSE and 10.9% in MAE compared to previous forecasting methods.

5. Chapter VI details an image-based fire segmentation model, which utilizes multi-

scale aggregation as well as global scene information through a context-oriented

module. Using the proposed fire segmentation network improves accuracy by 2.7%

in IoU compared to previous methods.

6. Chapter VII introduces a novel deep learning model for aerial image segmentation,

enhancing feature representation in both spatial and frequency domains. The pro-

posed model achieved state-of-the-art performance on remote sensing datasets, im-

proving accuracy by 1.9% in the mean F1-score compared to previous methods.

7. Chapter VIII concludes the dissertation.
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CHAPTER 2

Estimation of Multiple Atmospheric Pollutants

through Image Analysis

2.1 Introduction

Major air pollutants such as PM2.5, PM10, and NO2 degrade the air quality in many areas

of the world. The degradation of air quality in visual scenes is caused by two phenomena

of light, which are scattering and absorption. The level of scattering and absorption in the

atmosphere varies with respect to individual pollutants and their concentrations such as

PM2.5, PM10, and NO2. This holds for some important but not all pollutant types. In pol-

luted air, the intensity and color of light is affected by its interactions with the atmosphere.

Prior research used scattering principles of haze to estimate air quality from images [14,

16]. However, representing atmospheric haze in realistic scenarios is complex and has

always been a difficult problem. Nonetheless, it is very important for rendering realistic

outdoor scenes and predicting air quality.

Haze is a kind of aerosol which consists of small particles suspended in the atmo-

sphere [11]. Haze has various sources, including combustion material and volcanic ashes.

Air molecules are smaller than haze particles, but fog and cloud droplets are bigger than

haze particles [11]. In particular, haze affects the visibility of objects when present and its

color is usually either gray or bluish.

Computer vision systems typically assume that image scenes are not occluded due to

weather conditions such as haze and fog. In clear scenes, objects are immersed in a trans-

parent medium and light rays are reflected by objects and travel without attenuation. How-

ever, computer vision systems need to also deal with haze scenarios. Moreover, it is impor-

tant to model haze more accurately, and this has implications on multi-pollutant air quality

estimation.

This chapter presents a method that estimates air quality from images using proper-

ties derived from the principles of visibility physics. Our work makes the following main
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Figure 2.1: I consider the differences in scattering and absorption spectra between different

pollutants in RGB color space. As an example, for components of PM2.5 and PM10 that are

smaller than the wavelength of light, relative scattering is inversely proportional to wave-

length. This enables the estimation of concentrations of multiple simultaneous pollutants.

contributions.

1. This work is the first to develop a system that estimates the concentrations of multiple

pollutants from images, namely PM2.5, PM10, and NO2.

2. We formulate and solve the multi-pollutant estimation problem by using the position-

and color-dependent properties of pollutant-specific scattering and absorption. I

achieve multi-pollutant estimation from images by considering the differences in

scattering and absorption spectra across different pollutants.

3. Our system improves the accuracy of PM2.5, PM10, and NO2 estimation by 29.9%

for a Shanghai dataset compared to previous techniques for estimating air quality via

images.

The rest of this chapter is organized as follows. Section 2.2 discusses background ma-

terial regarding visibility physics principles. Section 4.4 describes the multi-pollutant esti-

9



mation system using novel haze modeling techniques. Section 2.5 describes the evaluation

results, and Section 4.7 concludes the chapter.

2.2 Background

Previous research on estimating air quality from images and on dehazing images uses an

atmospheric model to describe an image influenced by haze [17, 18], as described in the

introduction. We summarize the effect of both light attenuation and airlight on atmospheric

scattering, as follows:

I(x) = J(x)t(x) + A(1− t(x)) and (2.1)

t(x) = e−βd(x). (2.2)

In clear weather, images appear vivid because objects reflect the energy from the illumina-

tion source, and little illumination is lost in the photo. For days affected by air pollution,

there are two mechanisms that influence images: the direct attenuation and the airlight.

First, the direct attenuation causes the intensity of the pixels in the image to decrease in a

multiplicative manner. This is because the J(x)t(x) part of the equation reflects the direct

attenuation.

Additionally, the atmospheric light (also known as the airlight) is caused by light scat-

tering from particles and gases in the atmosphere. The term A(1− t(x)) in the haze model

equation represents the effect of the airlight, and the effect of the airlight on the light inten-

sities is additive. It shifts the color of the scene radiance towards the aggregate color of the

particles and gases in the atmosphere. The effect of the airlight increases as more particles

and gases in the atmosphere increase.

The haze model makes multiple assumptions about atmospheric pollution. Existing

work used the haze model for single image dehazing using a dark channel defined as the

darkest pixels within the localized patches [19]. A color attenuation prior was used to

model a hazy scene in HSV (hue, saturation, and value) color space [20]. Finally, another

dehazing method based on the CNN (convolutional neural network) jointly estimates the

transmission map and the atmospheric light from the haze model [21].

Furthermore, prior research used the haze model to estimating air quality from im-

ages [14, 16]. Liu et al. used support vector regression (SVR) to estimate PM2.5 concen-

tration based on image features from the haze model [14], and a deep network extract the

level of haze in images through the haze model [16]. However, the existing haze model

makes assumptions that do not hold, and I provide a more accurate atmospheric model.
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2.2.1 Visibility Physics

Light attenuation is influenced by both scattering and absorption, but past work ignores

absorption [22,23]. For instance, elemental carbon is a major contributor of absorption and

accounts for 20-30% of total light absorption [24]. Hence, there should be two coefficients

for ´, ´s for scattering and ´a for absorption. Light attenuation also varies by location;

the two coefficients should be ´x
s for scattering and ´x

a for absorption where x represents

the location. Air pollution demonstrates spatial variation, as pollutant concentrations are

expected to vary within field of view. We use the most updated coefficients in the model

which is more accurate, and I model spatial variation of pollution to improve accuracy.

Furthermore, past work on image-based estimation assumes pollution is gray. However,

the properties of light attenuation are wavelength-dependent. For example, the absorption

coefficient of aerosols, especially black carbon (BC), vary depending on wavelength [25].

This assumption makes the simultaneous estimation of multiple pollutant concentrations

impossible when they are mixed together. A full wavelength spectrum would be ideal;

RGB suffices. We can estimate concentrations of multiple pollutants simultaneously by

considering wavelength-dependent optical properties of pollutants. In particular, ´x
s , ´x

a ,

and A (airlight) are RGB vectors.

The processes that contribute to visibility in the atmosphere are wavelength-dependent.

Two kinds of light scattering take place: Mie and Rayleigh scattering. Mie scattering

occurs when the size of atmospheric particles is at least the wavelength of light; its effect

on visibility is wavelength-independent. Rayleigh scattering occurs when the particles are

much smaller than the wavelength of light (i.e., nitrogen and oxygen) and is wavelength-

dependent.

Visibility is also decreased by absorption [22, 23]; elemental carbon (black carbon)

and organic carbon (brown carbon) are two main causes of absorption in PM2.5 and PM10.

Specifically, elemental carbon accounts for 20-30% of total light absorption [24] [26], and

organic carbon is also a major contributor [27]. Their relative absorptions are inversely

proportional to wavelength [28] [29] [30] [31]. Also, NO2 absorbs blue light heavily.

The atmosphere model used in prior work also assumes that the attenuation coefficient,

which is related to pollution concentration, is constant for an entire image. In realistic

conditions, the density of particles and gases changes as a function of position and altitude,

leading to a non-uniform light attenuation coefficient [32] [33]. We explicitly consider

this effect. In summary, the properties of light attenuation are color-dependent, the light

attenuation coefficient is influenced by scattering and absorption, and the atmosphere is

non-homogeneous.

Past research assumed that the only cause of reduced visibility in images is scattering.

11



Figure 2.2: The absorption coefficient of aerosols, especially black carbon (BC), vary de-

pending on wavelength [2].

Even though light extinction is mainly caused by scattering, absorption also reduces visi-

bility. We extend the haze model from Eq. (1) and (2) to account for both scattering and

absorption, as follows:

Ic(x) = Jc(x)t1c(x) + Ac(1− t2c(x)), (2.3)

t1c(x) = e−(βsc+βac )d(x), and (2.4)

t2c(x) = e−βscd(x). (2.5)

In Eq. (3), we incorporate t1, the transmission, as a function of both scattering and ab-

sorption, and t2, the transmission, as a function of only scattering. In Eq. (4) and Eq. (5),

´s corresponds to the scattering coefficient of the atmosphere and ´a corresponds to the

absorption coefficient. Additionally, every variable in Eq. (3) to (5) has a subscript c to

demonstrate color-dependent light interactions. For this model, two mechanisms influence

images: the direct attenuation and the airlight. The direct attenuation is caused by both
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scattering and absorption and corresponds to the first term Jc(x)t1c(x). The second term,

airlight, is estimated from the image. Although Ac(1 − t2c(x)) explicitly considers only

scattering, the measured airlight color implicitly considers absorption.

2.3 Related Work

In this section, we review related work on image dehazing and hazy image datasets.

2.3.1 Image Dehazing Algorithms

Image dehazing has attracted a lot of attention, and many image dehazing algorithms have

been developed in the last decade. Some haze removal techniques use the formulation in

Eq. 1 and 2 to estimate the transmission map and airlight. Some early dehazing meth-

ods require the depth information either as an input or from 3D models [34, 35]. Other

approaches estimate the haze using multiple images of the same scene with different polar-

ization properties [36, 37].

Afterward, the accuracy of image dehazing techniques increased by using assumptions

or priors to estimate the haze level. He et al. use a dark channel, defined as the darkest

pixels within the localized patches, to estimate the transmission and airlight from the haze

imaging model [19]. They assume that the values of the dark channel in clear images are

close to zero, but the prior does not work when objects in the original scene have colors

similar to the airlight.

Various prior-based methods work very well when the underlying assumption is satis-

fied, but may fail otherwise [38, 39]. Zhu et al. use a color attenuation prior to model the

scene depth through saturation and value [20]. However, Zhu et al. assume that the level of

scattering is constant across the entire image. Berman et al. assume that clear images con-

tain only a finite number of color clusters, and each color cluster corresponds to a haze-line

in RGB space as a function of distance [40]. The method may not work where the airlight

is significantly brighter than the original scene radiance.

In the last few years, dehazing techniques utilize deep learning to estimate the amount

of haze. Cai et al. [41] and Ren et al. [42] use a convolution neural network (CNN) to

estimate the transmission map and airlight separately. However, estimating transmission

and airlight separately will introduce errors for each independent estimation. Moreover,

combining transmission and airlight to construct the dehazed image amplify those errors

further.

While some deep learning methods estimate the transmission and airlight separately,
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other methods use an end-to-end model to directly estimate the clear image without having

to estimate other parameters. Li et al. constructed a CNN that jointly estimates transmission

and airlight to form the clear image [21]. Finally, dehazing methods incorporate an end-to-

end Generative Adversarial Network (GAN) framework to achieve increased accuracy [43–

45].

2.3.2 Existing Image Datasets and Benchmarking

Hazy image datasets are used to evaluate the effectiveness of dehazing and other computer

vision algorithms. FRIDA (Foggy Road Image Database) is used to evaluate automatic

driving systems in hazy environments [46]. Sakaridis et al. [47] applied their fog synthesis

method on the Cityscapes dataset [48] to construct the Foggy Cityscapes dataset.

Past research has also constructed datasets with synthetic hazy images using Eq. 1 and

2. They used the indoor NYU2 Depth Database [49] and the Middlebury stereo database

[50], which contain clear images and the corresponding depth meta-data. Hazy images

are also synthesized from outdoor images obtained from websites, where the depth map is

estimated from past work in monocular depth estimation. However, Eq. 1 and 2 neglects

various haze properties such as absorption, color-dependent haze, and region-dependent

haze.

Recently, a realistic haze dataset O-HAZE was introduced, which contains 45 pairs

of realistic hazy and haze-free ground-truth images for the same scene [51]. The haze

originated from a haze machine. O-HAZE, however, does not contain enough pairs for

training and validating machine learning approaches. For example, AOD-Net [21] uses

over 27,000 images for training and almost 4,000 images for evaluation. Additionally, it is

very likely that the spatial distribution of haze in O-HAZE is not realistic since the haze was

distributed manually. The ground truth haze concentration distribution was not given. On

the contrary, our method considers absorption, color-dependent haze, and region-dependent

haze.

Prior work uses hazy datasets to benchmark image dehazing methods. Li et al. [52]

and Ancuti et al. [53] evaluate dehazing algorithms using a synthetic hazy image dataset

from Eq. 1 and 2. On the other hand, Ancuti et al. [53] evaluate dehazing algorithms using

O-HAZE [51]. The haze in the O-HAZE dataset may not reflect the spatial variation of

haze in natural scenes influenced by weather or pollution because all hazy images were

produced using the same haze machine and chemical process.
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2.4 Methodology

Our technique consists of two main steps: obtaining the transmissivities of scattering and

absorption for all three color channels based on Eq. (3) to (5), and obtaining predicted

concentrations for PM2.5, PM10, and NO2 based on the transmissivities from the prior step.

2.4.1 Obtaining Transmissivities

We used the atmospheric model described in Eq. (3) to (5) to obtain ´sc and ´ac for all c.

I(x) is the input image. Using the webcam image dataset and ground truth pollutants, we

obtain J(x) by collecting the images with the lowest PM10 concentrations and taking the

mean of their color intensities so J(x) contains as little air pollution as possible (typically

about 5% of the maximum). The depth map is obtained by running a convolutional neural

network by Li et al. [54] on J(x). The airlight is estimated using the technique in Berman

et al. [55]. Afterward, the only unknown variables in Eq. (3) are ´sc and ´ac .

Algorithm 1 Gradient Descent

Input: I(x), J(x), d(x), A, height, width

Output: ´s, ´a

while | ´a − ´′
a |> µ or | ´s − ´′

s |> Ã do
´′
a = ´a, ´′

s = ´s

Î(x) = J(x)e−(βs+βa)d(x) + A(1− e−βsd(x))
ϵ(x) = (Î(x)− I(x))/ (height × width)

C(x) = 1
2
× (Î(x)− I(x))2

dC(x)
dβs

= ϵ(x)d(x)e−βsd(x)(A− J(x)e−βad(x))
dC(x)
dβa

= −ϵ(x)d(x)J(x)e−(βs+βa)d(x)

´s = ´s − ³×�

x
dC(x)
dβs

´a = ´a − ³×
�

x
dC(x)
dβa

end

We use gradient descent to find ´s and ´a by minimizing the cost function C(x) =
1
2
(Î(x) − I(x))2, where Î(x) is the predicted image calculated in Eq. (3) and I(x) is the

actual image. The gradient descent algorithm is shown in Algorithm 1. Gradient descent

is computationally efficient and produces a stable error gradient and a stable convergence.

To improve convergence, the algorithm keeps track of the last ten calculated ´sc and ´ac .

If the past beta values are stable, the step size (i.e., learning rate or ³) decreases in the last

two expression in Algorithm 1.

In realistic conditions, the distributions of particles and gases are not uniform and

change as a function of position and altitude. Light attenuation in a single image varies
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Figure 2.3: The methodology involves two main steps. We first obtain all the light at-

tenuation coefficients ´sc and ´ac of scattering and absorption. We then determine their

relationships with pollutant concentrations using support vector regression. PM2.5, PM10,

and NO2 have different color-dependent properties for scattering and absorption. Hence,

we can predict all those pollutants from a single image.
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Table 2.1: Variance of Light Attenuation within the Grid

´sb ´sg ´sr

2×2 0.17 0.16 0.15

4×4 0.24 0.28 0.30

6×6 0.29 0.31 0.33

8×8 0.33 0.35 0.36

10×10 0.34 0.36 0.37

significantly at different places; light attenuation often varies with altitude. This observa-

tion implies that multiple pollution concentrations may occur in the same image. Hence,

we split an image up into an n × n grid and obtain ´sc and ´ac for each n2 grid element

using gradient descent to improve prediction accuracy. This step may help compensate for

errors in the depth map and scene radiance and noise in the input image. In Table 1, we

calculate the variance of the light attenuation of all grid elements in the image, which in-

creases as n increases. It would be useful to track light attenuation at multiple parts of an

image since the variance across grid elements shows that multiple visibility levels exist in

a single image.

2.4.2 Estimation of Pollutant Concentrations

After all coefficients ´sc and ´ac are extracted from each image, we determine their rela-

tionships with pollutant concentrations using support vector regression (SVR). We use an

SVR with a radial basis kernel function because it has the ability to map the coefficients ´sc

and ´ac to pollutant concentration through high-dimensional space. In particular, the fea-

ture space of the RBF kernel has an infinite number of dimensions. Since PM2.5, PM10, and

NO2 have different color-dependent properties for scattering and absorption, it is possible

to predict all those pollutants from a single image. Given a dataset {(x1, y1), ..., (x, y)},
we find a regression function f(x) = wϕ(x) + b that solves the following optimization

problem:

minimize
1

2
||w||22 + C

�

�

�

�

m
�

n=1

(À+i )
2 + C

�

�

�

�

m
�

n=1

(À−i
2)

subject to yi − f(xi) ≤ ϵ+ À+i ,

yi − f(xi) ≥ −(ϵ+ À−i ), and

À+i ≥ 0, À−i ≥ 0, i = 1, . . . ,m.
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This formulation uses l2 regularization in the case of non-linearly separable datasets and

outliers, where C value is the penalty parameter.

2.5 Results and Discussion

This section describes data collection, experimental evaluation, and findings.

2.5.1 Data Collection and Experimental Evaluation

The data consist of single-scene images taken in Shanghai and their ground truth pollutant

concentrations. The Shanghai dataset consists of 1,890 images taken from May to Decem-

ber in 2014 at various times and were captured at the Oriental Pearl Tower [1]. We use the

PM2.5, PM10, and NO2 data provided by sensor stations within the cities as ground truth,

provided by the Ministry of Environmental Protection of China. The units for PM2.5 and

PM10 are µg/m3 and for NO2 is parts per billion (ppb).

The SVR model uses 6n2 features from ´ values evaluated with two-fold cross valida-

tion. The C value for Shanghai is 200. The two evaluation metrics used are the R2 coeffi-

cient of determination and the root mean squared error (RMSE) between the estimated and

ground truth pollutant concentration.

2.5.2 Effect of Absorption and Color Properties

We evaluate the impact of absorption and color-dependent light extinction. We use the 8×8

grid size for Shanghai. When absorption is neglected, ´sc is still determined using gradient

descent for all c in Eq. 2.1 and 2.2. We also consider neglecting color-dependent properties

and find ´s and ´a using gradient descent on a grayscale version of the problem. As shown

in Fig. 2.4, considering each property generally improves results.

2.5.3 Effect of Grid Resolution

We evaluate the effect of using n2 grid elements since light attenuation varies across an

image. For the Shanghai dataset, shown in Fig. 4, the RMSE keeps decreasing as the grid

size increases to 10 × 10. Obtaining ´ values for an increasing number of grid elements

initially rapidly increases accuracy and then levels off. A simple approach to selecting grid

resolution would be to use 10×10 for all pollutants, which always enabled accuracy near

that of the optimal resolution and is computationally tractable.
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Figure 2.4: RMSE for absorption and color (Shanghai). Wavelength-dependent scattering

and absorption properties can enable analysis of multi-pollutant systems and improve esti-

mation accuracy. Considering each property generally improves results.

Figure 2.5: RMSE for various grid resolutions (Shanghai). We evaluate the effect of using

n2 grid elements since light attenuation varies across an image. For the Shanghai dataset,

shown in Fig. 4, the RMSE keeps decreasing as the grid size increases to 10 × 10.
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Table 2.2: Comparison of Results with Other Research

Shanghai PM2.5 (µg/m3) PM10 (µg/m3) NO2 (ppb)

Proposed w.o. Weather
RMSE 8.68 28.00 11.67

r2 0.917 0.779 0.750

Proposed w. Weather
RMSE 8.32 27.18 11.52

r2 0.924 0.794 0.757

Liu et al.
RMSE 13.65 35.46 15.83

r2 0.76 0.640 0.548

Li et al.
RMSE 25.66 52.94 19.41

r2 0.260 0.208 0.302

Improvement % 39.05 23.35 27.23

2.5.4 Discussion

We compare the performance of the proposed approach with the best known existing tech-

niques for estimating air quality via images in Table 2.2 use feature selection (FS) of coef-

ficients to increase accuracy, eliminating those features that increase the root mean square

error. We also evaluate our technique with additional weather features, incorporating hu-

midity, temperature, pressure, and wind speed. For the proposed approach, the largest grid

size 10× 10 is used. It is possible to obtain an even higher accuracy using a more optimal

grid size as shown in Figure 1. The current approach outperforms Liu et al. [56] and Li et

al. [57] for all three pollutants.

Various factors influenced the prediction accuracy. The distance between the air quality

sensors and image sensors is greater than 25 kilometers. All three pollutants may have high

spatial and temporal variation so the large distance might introduce error in the ground

truth data (i.e., it is possible that the reported error is higher than the actual error). In

addition, the distribution of pollutant concentrations were skewed towards lower values.

This could result in underscoring insignificant features and missing significant features.

Also, the current state-of-the-art depth map estimation may contain errors in certain areas

in the image. Any errors in depth estimates may introduce errors in ´sc and ´ac estimation

because in Eq. (3) the depth is an exponent of e.

2.6 Conclusion

Vision-based air pollution estimation is an emerging research area with the advantages

of low cost, wide coverage, and high spatial resolution. Estimating air pollution from
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images is valuable since high spatial resolution data are needed for exposure estimation

and pollutants such as PM and ozone have concentrations that can vary at small spatial

scales. We have shown that using position- and color-dependent features of both scattering

and absorption are useful for estimating multiple pollutants in images, namely PM2.5, PM10,

and NO2. Our future work consists of developing a technique to accurately predict pollutant

concentrations using images from web crawling and crowdsensing and estimating position-

dependent concentration variation within images.
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CHAPTER 3

HVAQ: A High-Resolution Vision-Based Air

Quality Dataset

3.1 Introduction

This chapter describes a dataset containing high spatial (one sensor every 2.5 km2) and

temporal (one second interval) resolution particle counter based pollution measurements

with corresponding images, in addition to auxiliary information including GPS locations,

humidity, and temperature. These properties are significant: this is the first publicly avail-

able dataset capable of being used to train and evaluate vision-based pollution estimation

and forecasting techniques at high spatial resolutions. To the best of our knowledge, there

have been no publicly available datasets enabling evaluation in this context.

The PM concentrations are correlated with source distributions. For example, PM has

heterogeneous sources [58], for example, automobiles, manufacturing, and building con-

struction. In addition, numerous factors, including wind, humidity, and geography [59,60],

are related to PM distributions. Increasing sensor density or adding image sensors support-

ing high spatial resolution captures can increase the field estimation accuracy and resolution

of pollutant concentrations.

Ground truth pollution data are typically obtained from the nearest of several sparsely

deployed monitoring stations. Lack of high-resolution ground truth pollution measure-

ments makes it difficult to evaluate vision-based pollution estimation techniques, as pol-

lution can vary rapidly with position [12]. Moreover, vision-based pollution estimation

techniques generally assume homogeneous distributions of particles and gases within im-

ages, implying constant light attenuation [12]. In reality, pollution concentration changes

rapidly in space. Therefore, accurate evaluation of vision-based estimation algorithms re-

quires high-resolution datasets [15].

There exist datasets containing high-resolution [15, 61] and wide coverage [62, 63] air

pollution data. However, none of them contain corresponding synchronized images. I made
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Figure 3.1: The distribution of sensors and pollution sources. Sensor locations are num-

bered in ascending order according to the distance from the camera.

several observations from the dataset, e.g., the rate of spatial variation in pollution concen-

tration and the evaluation of several existing vision-based PM concentration prediction al-

gorithms. To evaluate the improvement brought by increasing sensor spatial resolution and

using images, I use heterogeneous information for concentration estimation, i.e., images

and particle counter-based PM concentrations, which were not considered in the previous

vision-based algorithms. For the images in HVAQ, using images decreases MAE by 8.4%

on average; hence adding a camera to collect images helps more than adding more particle

counting sensors.
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3.2 Contributions

I participated in a collaborative effort to develop a novel air quality dataset with the goal of

validating vision-based pollution estimation algorithms. I will describe some contributions

of other team members to provide context for my contributions. Other contributors led

work on collecting data for the air quality dataset, with my help and advice. The dataset

contains images and corresponding “ground truth” pollution concentration values in im-

ages. In particular, there is varying pollution concentration over time and in the images.

The novel contribution is a densely distributed, low-cost PM2.5 and PM10 database with

high temporal and spatial resolution enabling scientific discovery and the evaluation of

air pollutant estimation algorithms. The dataset also includes images that capture the dis-

tributed area of the sensors. This dataset, the first of its kind, is significant because we have

shown that air quality estimation accuracy substantially improves by using both data from

existing sensors and image-based analysis of air pollution.

I led the work on the analysis of the data with respect to vision-based pollution es-

timation algorithms. My main contribution is performing extensive analysis on how the

estimation of PM2.5 depends on point sensor density and absence/presence of cameras. I

made several observations from the dataset, e.g., the rate of spatial variation in pollution

concentration increases with distance. To evaluate the improvement brought by increasing

sensor spatial resolution and using images, I used heterogeneous information for concen-

tration estimation, i.e., images and particle counter-based PM concentrations, which were

not considered in the previous vision-based algorithms. For HVAQ, I found that using im-

ages decreases MAE by 8.4% on average; hence adding a camera to collect images helps

more than adding more particle counting sensors. Additionally, I find that the pollutant

distribution is spatially correlated; spatial variation of PM2.5 is high; and temperature and

humidity had limited correlation with PM concentration in our dataset.

3.3 Related Work

Most existing air quality monitoring systems [64] have low temporal and spatial resolu-

tions. For example, Janssens-Maenhout et al. [65] provide a harmonized gridded air pol-

lution emission dataset. This dataset includes multiple pollutants on a global scale with

0.1◦ × 0.1◦ spatial resolution (latitude and longitude). De et al. [66] collect an air quality

dataset containing 9,358 instances of hourly averaged responses from metal oxide chemical

sensors. Devices are deployed in a highly polluted area in Italy at high spatial resolution. Li

et al. [67] provide a dataset of mobile air quality measurements in Zurich. They use sensor
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Location P1 P2 P3

Longitude 120.153173◦ 120.15488◦ 120.153894◦

Latitude 30.269884◦ 30.268726◦ 30.27096◦

P4 P5 P6 P7

120.156252◦ 120.153905◦ 120.15936◦ 120.155162◦

30.270242◦ 30.27358◦ 30.273139◦ 30.278369◦

P8 P9 P10 Photo location

120.161912◦ 120.164792◦ 120.156541◦ 120.153955◦

30.276465◦ 30.279437◦ 30.283932◦ 30.267191◦

Table 3.1: GPS Locations of the Sensors and Images in HVAQ

boxes installed on mobile trams. Static installations are also deployed close to high-quality

reference stations for calibration. Their sensors move around the city, recording every 5 s.

Apte et al. [15] use two Google street view vehicles equipped with data acquisition plat-

forms to collect the air pollution data of a 30 km2 city area. Their data contains nitrogen

oxides and black carbon. Unlike our dataset, it does not contain PM concentrations, im-

ages, and weather conditions. Wei et al. [62] describe the ChinaHighPM10 dataset, which

integrates multiple data sources and contains hourly PM10 data in China with 1 km res-

olution. Generally, these datasets typically do not include images for the evaluation of

vision-based pollution estimation. On the other hand, HVAQ is unique in providing high

spatial and temporal resolution pollution measurements with corresponding images. In ad-

dition, our dataset makes it possible to evaluate vision-based air pollution algorithms in a

high-resolution scenario since ground-truth data previously were of low spatial resolution.

Prior work uses hazy datasets to benchmark image dehazing methods. Li et al. [52]

and Ancuti et al. [53] evaluate dehazing algorithms using a synthetic hazy image dataset.

Recently, a realistic haze dataset O-HAZE was introduced, which contains 45 pairs of real-

istic hazy and haze-free ground-truth images for the same scene [51]. The haze originated

from a haze machine. O-HAZE, however, does not contain enough pairs for training and

validating machine learning approaches. In addition, the haze in the O-HAZE dataset may

not reflect the spatial variation of haze in natural scenes influenced by weather or pollu-

tion because all hazy images were produced using the same haze machine and chemical

process. Moreover, there is a lack of ground-truth distribution for O-HAZE.

Past research also constructed synthetic datasets for other image restoration applica-

tions. Li et al. presents a benchmark dataset of both synthetic and real-world rainy im-

ages to evaluate existing image deraining algorithms [68]. Lai et al. presents a benchmark

dataset of both synthetic and real-world blurred images to evaluate existing image deblur-

ring algorithms [69]. Finally, multiple underwater image datasets have been proposed for

the evaluation of underwater image enhancement algorithms [70, 71].
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3.4 Sensor Deployment

This section describes the deployment of our sensors and cameras in order to collect both

high-resolution ground-truth data and corresponding images.

3.4.1 Sensor Calibration

Our sensing platform is equipped with humidity and temperature sensors. The precision

is 3% relative humidity (RH) and ±0.3 ◦C, respectively. The PM sensor can detect parti-

cles with 0.3 µm to 10 µm diameters according to the scattered light intensity in a specific

direction [72].

We calibrated our particle counting sensors based on the measurements from the air

quality monitoring site of Hangzhou Meteorological Bureau in Hemu Primary School using

co-location [73]. Our device is co-located with an air monitoring station, which is equipped

with a high-precision sensor. The device collects data for 58 hours continuously. The

station data are considered ground truth. We use the least-squares method to fit a quadratic

function to the ground truth data. According to the measured concentration, we fit the data

into a two-stage piecewise linear function. The fitted function is as follows.

y =







1.61x+ 16.01 for 0 ⩽ x ⩽ 30 and

0.13x+ 29.48 for x > 30,
(3.1)

where x is the original value and y is the calibrated one. The calibration data are gathered

during a 2 day period and the result is shown in Figure 3.2. Calibration reduces root mean

squared error from 32.74 µgm−3 to 3.88 µgm−3, while the variance for all the data over all

locations is 9.33 µgm−3.

3.4.2 Deployment Details

Our dataset1 contains both high-resolution ground truth data and wide-view images. We

deploy our sensors in the urban area of Hangzhou, a city frequently affected by high

PM2.5 concentrations [74]. Existing research [75] shows that in the main urban area of

Hangzhou, the sources of PM2.5 are biomass burning/construction dust (41.6%), vehicle

exhaust/metallurgical (metals’ production and purification) dust (29.3%), unknown source

(11.2%), oil combustion (9.8%), and soil (8.0%). As shown in Figure 3.1, the main pollu-

tion sources are marked on the map and the sensors are located on two straight lines from

1Available on https://github.com/implicitDeclaration/HVAQ-dataset/tree/master.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 113 168 281 464 697 1012 1150 1730 1625

P2 0 211 190 509 603 1040 1089 1537 1660

P3 0 245 296 575 844 1000 1450 1457

P4 0 388 413 871 899 1347 1510

P5 0 464 548 819 1250 1161

P6 0 625 486 934 1170

P7 0 656 918 613

P8 0 448 953

P9 0 877

P10 0

Table 3.2: Pairwise Sensors Distance (meters)

Camera Quadcopter Sensors Battery Platform

Price ($) 200-460 1500 3-15 12 37

Model

Quadcopter

default

camera,

iPad,

Onplus 7

phone

camera

Dji

Phantom

4 Pro

PM2.5,

PM10,

humidity,

tempera-

ture

4000 mAh Raspi 3B+

Table 3.3: Used equipments.

the observation point. The GPS locations and distances between each pair of sensors are

listed in Table 3.3 and Table 3.4.2. The sensors are sampled every second and an image

is captured every 20minutes. Since the temporal variation of PM concentration is slower

than the acquisition rate of the sensors, and the image acquisition rate is also limited by the

flight time of quadcopter, images are captured less frequently.

To derive a wide-view image covering all sensor locations, we mount a camera on a

quadcopter. We use two approaches to take photos. First, we use a quadcopter equipped

with a 4864×3648 camera at 90m altitude. Moreover, since the quadcopter has limited

carrying and battery capacities, we take pictures from a fixed location on the mountain top

with a resolution of 2592×1936 using an iPad at a resolution of 4000×3000 using a phone.

The parameters of our cameras are listed in Table 3.4.2. The quadcopter camera uses the

Sony Exmor R CMOS sensor. The other two cameras types are the Apple iSight and Sony

IMX586. 106 images and over 300 thousand PM samples were gathered in three days.

The cost of vision-based approach (about $30) is much less than the total cost of the

sensors (about $670). Figure 3.4.2 lists our equipment. Thus, predicting air pollution

concentrations using images is more convenient and less expensive than particle counters,

but requires sophisticated image processing algorithms.

27



10 20 30 40 50 60 70 80 90

Sensor Reading (¿g/m

3

)

35

40

45

50

55

60

G
r
o
u
n
d
 
T
r
u
t
h
 
(
¿

g
/
m

3

)

Before calibration

After calibration

Diagonal

Figure 3.2: Pollution concentration calibration.

Camera Pixel Sensor Aperture

quadcopter 20,000,000
Sony Ex-

mor R
f/2.8-f/11

pad 8,000,000 iSight f/2.4

phone 48,000,000
Sony

IMX586
f/1.6

Table 3.4: Camera Parameter.

Figure 3.3: The quadcopter (Dji Phantom 4 Pro) used in our deployment.
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3.5 Dataset Analysis

We investigate four questions pertaining to our dataset. First, it is important to investigate

the relationship between environmental conditions and measurement accuracy. We also

need to study the benefits of increasing the spatial resolution of a pollution sensor network.

We then examine the relationship between PM2.5 concentration and distance Finally, it is

important to understand how the sensor density and the use of images relates to the PM2.5

estimation accuracy.

Q1) What is the impact of environmental conditions on measurement accuracy? (An-

swer is A1 in the later section.)

Q2) What are the spatial variation characteristics of PM2.5 concentration? (Answer is

A2 in the later section.)

Q3) How does the correlation of pollution concentrations at two different locations

depend on their separation? (Answer is A3 in the later section.)

Q4) How much do additional point sensors and vision-based methods improve estima-

tion accuracy? (Answer is A4 in the later section.)

3.5.1 Temperature and Humidity Correlations with Pollution Concen-

trations

Environmental factors such as weather conditions can affect sensor readings. For the de-

ployments on Oct. 19 and Nov. 10, we calculate the R2 correlation coefficients for PM2.5

and several environmental factors.

A1: Environmental conditions have limited impact. The results in Table 3.5 shows

that the correlations between PM2.5 and weather factors are insignificant. Wu et al. [76] re-

port that temperature is not significantly correlated to PM concentrations in Hangzhou and

PM2.5 concentration is only significantly elevated when RH is higher than 60%. More-

over, the correlation between environmental factors and PM concentration also depends

on the region and season, e.g., Zhu et al. [77] report that PM concentration and RH show

seasonal correlation. However, since temperature and humidity do not directly affect the

measurement process of particle counters, we do not include temperature and humidity in

our calibration functions.

3.5.2 Correlations of PM Readings

Our measurements demonstrate that it typically takes more than 10 minutes for concentra-

tion to change by 10 µgm−3. Our data sampling period is one second and is considered
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

L1
L2

L3
L4

L5
L6

L7
L8

L9
L1
0

1 0.71 0.76 0.59 0.59 0.55 0.62 0.62 0.77 0.44

0.71 1 0.69 0.57 0.61 0.52 0.62 0.55 0.82 0.35

0.76 0.69 1 0.6 0.68 0.7 0.72 0.72 0.89 0.49

0.59 0.57 0.6 1 0.56 0.66 0.56 0.57 0.73 0.4

0.59 0.61 0.68 0.56 1 0.6 0.72 0.69 0.76 0.45

0.55 0.52 0.7 0.66 0.6 1 0.67 0.64 0.81 0.43

0.62 0.62 0.72 0.56 0.72 0.67 1 0.78 0.94 0.58

0.62 0.55 0.72 0.57 0.69 0.64 0.78 1 0.88 0.6

0.77 0.82 0.89 0.73 0.76 0.81 0.94 0.88 1 0.69

0.44 0.35 0.49 0.4 0.45 0.43 0.58 0.6 0.69 1 0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.4: The confusion matrix for PM2.5 correlation. The number on the axis represents

the number of the corresponding location.

Table 3.5: PM2.5 Correlation with PM10 and Environmental Factors on Oct. 19 and Nov.

10
PM2.5 Temperature Humidity

PM2.5 1.0 0.298 0.306

Temperature 0.298 1.0 0.808

Humidity 0.306 0.808 1.0

Data in Different

Days

Standard

Deviation

Data

Range

Average

Value

Date

PM2.5 (µgm−3) 2.03 4.56 13.93 Jul. 24

PM2.5 (µgm−3) 2.22 5.11 25.03 Jul. 06

PM2.5 (µgm−3) 6.68 22.21 56.90

Oct. 19Temperature (◦C) 5.64 16.02 26.40

RH (%) 12.36 37.63 45.13

PM2.5 (µgm−3) 4.77 16.51 48.76

Nov. 10Temperature (◦C) 4.53 14.21 24.79

RH (%) 10.20 34.71 40.16

Table 3.6: Statistics for PM and Environmental Data
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Figure 3.5: Pairwise correlation between sensors for Oct. 19 and Nov. 10 as functions of

their distances.

adequate given the relatively slow concentration change. We quantify the spatial variation

of pollution by calculating the standard deviations over all sensors.

A2: Spatial variation of PM2.5 is high. As shown in Section 3.5.2 and Figure 3.5,

the 2 locations have different concentration and variation trends. Moreover, the large dif-

ferences indicate that multiple pollution levels coexist in a single image.

A3: Pollution concentrations are spatially correlated. We quantify the correlations

for further analysis. Figure 3.5 shows sensor correlations as a function of pairwise distance.

The correlation is measured by the Spearman correlation coefficient:

Ä = 1− 6
�

d2i
N(N2 − 1)

, (3.2)

where di represents the position difference of the paired variables after the two variables

are sorted separately and N is the total number of samples. The slope of the fitting line

is 0.155 km−1 and the coefficient of determination (R2) is 0.421, which implies that closer

sensors enable more accurate estimates. Figure 3.4 shows the sensor correlations during the

Nov. 10 and Oct. 19 deployments. We expect the correlations to decrease with increasing

inter-sensor distances. The deployment results confirm our hypothesis.
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Figure 3.6: The sensing platform consisting of battery, Raspberry Pi, and sensors.

3.6 Experimental Results

In this section, we evaluate the impacts of changing sensor density and using vision-based

techniques on estimation accuracy. Specifically, we estimate PM2.5 concentration based on

vision-based analysis using transmission information and standard deviation of gray-scale

pixel values and compare the performance of several state-of-art estimation algorithms.

3.6.1 Experimental Setup

We design a portable sensing platform to collect, process, and transmit data, as shown in

Figure 3.6. The system battery life is 3.5 hours. The following algorithms are used to

estimate pollutant concentration from the measured data.

1. Gradient boosting regression (GBR): This method combines a group of weak

learners with low complexity and low training cost. It reduces the problem of over-

fitting and modifies the weights at each training round to produce a strong learner.

Gradient boosting modifies its models based on the gradient descent direction of the

loss functions of the previously established models.

The algorithms are implemented using the Python package sklearn. The RFR parameter

n estimators is set to 100 and criterion is set to mean squared error. We set the GBR

parameter learning rate to 0.1 and n estimators to 100, using least squares regression. We

set the SVR parameter c to 1.0 and epsilon to 0.1, using a radial basis function kernel.

The parameters are chosen to maximize the training performance. We use the following
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equation to combine sensor readings and image properties:

S(x, t) = G(s1(t), s2(t), ..., s10(t), tdcp(t), ´sd(t)), (3.3)

where x is the location index, S(x, t) is the concentration estimation at time t, s1, s2, ..., s10

are the available 10 sensors, tdcp(t) is the transmission information at time t, ´sd(t) is the

standard deviation of gray-scale image, and G is the estimation algorithm, which refers

to RFR, GBR, or SVR. We use tdcp(t) for low-altitude data and ´sd(t) for high-altitude

data. We later describe how tdcp(t) and ´sd(t) are obtained for each image in the dataset in

section 5.B.

We use data from Jul. 24, Oct. 19, and Nov. 10 for all time stamps and use the mean

absolute error (MAE) as the evaluation criteria.

MAE =
1

N

N
�

i=1

|yi − ŷi|, (3.4)

where yi is the actual PM2.5 concentration, and ŷi is the predicted PM2.5 concentration.

There are two classes of images in our dataset. Those in the first class were captured

from the ground, on top of a mountain (78m). The second class contains images from a

quadcopter flying above the same mountain (78m + 90m). We tried to take the images

from the quadcopter and mountain at the same angle and keep the images as similar to each

other as possible, but there is some (unavoidable) variation in camera orientation.

We divide our data into “low-altitude” and “high-altitude” subsets according to the im-

age class and evaluate our algorithms separately on the two classes. We analyze 19 images

from the high-altitude dataset and 26 images from the low-altitude dataset. Furthermore,

each dataset is divided as follows: 75% of the data and images are randomly selected as

a training set and the rest are the testing set. We run the prediction model 50 times per

random split of the training and testing datasets.

3.6.2 Image Enhanced Concentration Estimation

Images can be used to estimate PM concentrations in large areas because images can extract

the haziness information. We predict PM2.5 concentrations at locations without sensors.

Since PM2.5 attenuates light, we estimate PM2.5 concentration in part through the light

attenuation coefficient ´ from the haze model. We use the following image features to

estimate PM2.5: the dark channel tdcp(x) and the standard deviation ´sd. tdcp(x) is deter-

mined using Equation 3.13 and ´sd is determined using Equation 3.21. Note that certain
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kinds of weather conditions like rain and snow might be misinterpreted as pollution. Our

PM2.5 estimation algorithm mainly works in daytime sunny and cloudy conditions, which

are common in Hangzhou.

The atmospheric model describing an image influenced by haze follows [11]:

I(x) = J(x)t(x) +A(1− t(x)), (3.5)

where x is the pixel location, I is the observed image, J is the scene radiance (image

without any haze), A is the atmospheric light, t is the transmission function.

Images with higher air pollution tend to look hazier due to lower transmission and con-

trast. Hence, image features that correlate with haze level enable pollutant concentration

estimation.

3.6.2.1 Dark Channel Prior

The dark channel prior, which has been widely used for haze removal, can be used to

estimate the transmission of each image pixel. The dark channel prior method is based on

the observation that in most haze-free patches, at least one color channel has some pixels

with very low intensities. The dark channel is defined as the minimum of all pixel colors

in a local patch and can be calculated using the following equation [78]:

Jdark(x) = min
c∈r,g,b

�

min
y∈Ωr(x)

J c(y)

!

, (3.6)

where J c is an RGB channel of J and Ωr(x) is a local patch centered at x with the size of

15 × 15. Assume the atmospheric light A is given and the transmission in a local patch

Ωr(x) is constant, taking the minimum operation in the local patch on Equation 3.5, we

have

min
y∈Ωr(x)

(Ic(y)) = t̃(x) min
y∈Ωr(x)

(J c(y)) + (1− t̃(x))Ac, (3.7)

where t̃(x) is the patch’s transmission. The minimum operation is performed on three color

channels independently, it is equivalent to

min
y∈Ωr(x)

�

Ic(y)

Ac

!

= t̃(x) min
y∈Ωr(x)

�

J c(y)

Ac

!

+ (1− t̃(x)). (3.8)
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By taking the minimum of three color channels, we have

min
c

�

min
y∈Ωr(x)

�

Ic(y)

Ac

!!

=t̃(x)min
c

�

min
y∈Ωr(x)

�

J c(y)

Ac

!!

+ (1− t̃(x)).

(3.9)

According to the definition of dark channel prior, the dark channel Jdark of the haze-free

radiance J tends to be zero

Jdark(x) = min
c

�

min
y∈Ωr(x)

J c(y)

!

= 0. (3.10)

Because Ac is always positive, this lead to

min
c

�

min
y∈Ωr(x)

J c(y)

Ac

!

= 0. (3.11)

Substituting Equation 3.11 into Equation 3.9, we can estimate the transmission as fol-

lows.

t̃(x) = 1−min
c

�

min
y∈Ωr(x)

Ic(y)

Ac

!

. (3.12)

In practice, the atmosphere always contains some haze, which provides depth informa-

tion. We can optionally keep a small amount of haze by introducing a constant parameter

É (0 < É < 1) into Equation 3.12

t̃(x) = 1− Émin
c

�

min
y∈Ωr(x)

Ic(y)

Ac

!

. (3.13)

We fix the value of É to 0.95 because this approximates the sparse haze present even

on relatively clear days. The atmospheric light A is estimated through this procedure: we

pick the top 0.1% brightest pixels in the dark channel and the input image I to calculate the

atmospheric light. For each hazy image in our dataset, we take the average of the pixel-level

transmissions estimated using Equation 3.13. The resulting average is used for low-altitude

data.

3.6.2.2 Standard Deviation

In order to calculate the intensity standard deviation for each image, we convert the RGB

image to a gray-scale image, then calculate the standard deviation of all the pixel intensities.

The standard deviation is closely related to haze density [79]. The scattering coefficient is a

measure of haze density. The higher the scattering coefficient, the higher the haze density.
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The transmission function is

t(x) = eβd(x), (3.14)

where ´ is the scattering coefficient and d is the depth. Substituting Equation 3.14 into

Equation 3.5, we have

Ig(x) = J(x)eβd(x) +A(1− eβd(x)). (3.15)

The variance of a gray-scale image is

Ã2
Ig
=

1

N

N
�

i=1

(Ig(i)−
1

N

N
�

j=1

Ig(j))
2

= e2βd(x)
1

N

N
�

i=1

(J(i)− 1

N

N
�

j=1

J(j))2,

(3.16)

where Ig is the gray-scale image and N is the number of pixels in the image. When ´ = 0,

we have

Ã2
0 =

1

N

N
�

i=1

(J(i)− 1

N

N
�

j=1

J(j))2. (3.17)

Combining Equation 3.17 and Equation 3.16 yields

ÃIg = e−2βÃ2
0. (3.18)

After taking the logarithm of both sides, the scattering coefficient can be expressed as

´ = ln Ã0 − ln ÃIg . (3.19)

Since Ã is changed at each image, Equation 3.19 can be expressed using the first-order

Taylor Series approximation

´ = 1 + ln Ã0 − ÃIg . (3.20)

When ´ = 0, the variance of the scene radiance approximates 1. Thus we have

´ = 1− ln ÃIg . (3.21)

Therefore we can estimate the concentration using the standard deviation of the gray-

scale image. The standard deviation is used for high-altitude data.
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Figure 3.7: The relationship between mean average error and sensor density for Gradient

Boosting Regression on high-altitude data.

Figure 3.8: The relationship between mean average error and sensor density for Gradient

Boosting Regression on low-altitude data.

3.6.3 Concentration Estimation Results

For each available sensor deployment location, we speculatively remove one or more sen-

sor’s data and use estimation techniques with access to the remaining sensors to infer con-

centration(s), thereby allowing comparison with ground truth measurements. We investi-

gate the impact of the number of sensors on the estimation accuracy by using all possible

combinations of speculatively removed sensors and averaging the results. We also consider
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Figure 3.9: The relationship between mean average error and using images for Gradient

Boosting Regression on high-altitude data.

Figure 3.10: The relationship between mean average error and using images for Gradient

Boosting Regression on low-altitude data.

the impact of using image data on estimation accuracy.

We plotted the results from the best-performing algorithm: GBR. The density improve-

ments in Figures 3.7 and 3.8 are compared with the n = 0 (no images) case. If image

features are used, the improvements are compared with the n = 1 case. Note that the lower

MAE is, the better the estimation accuracy. Thus a negative change indicates improvement.

The bars in Figures 3.7–3.10 represent the MAE resulting from using different numbers of
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sensors. The lower bars indicate higher accuracies. The lines in Figures 3.7–3.10 indicate

percentage change to MAE in different cases (e.g., using images or more sensors). The

lower the percentage change, the larger the improvement, and positive percentage changes

imply (undesirable) increases in MAE.

As sensor density increases, the estimation MAE decreases. This implies that accuracy

improves with sensor density, even at densities much higher than those of modern stationary

sensor deployments. Moreover, as shown in Figure 3.5, sensor correlations decrease with

increasing distance. This is the reason estimation accuracy improves with increasing sensor

density. Using the four nearest sensors instead of one sensor improves estimation accuracy

by 23.3% on average without using images, and 20.75% when using images. The fact that

increasing sensor density improves accuracy less when images are available does not imply

that images are unhelpful. In contrast, it implies that using images allows higher accuracy

when few sensors are available, leaving less potential for improvement if sensor density is

later increased.

A4 Vision-based techniques significantly improve estimation accuracy. As shown

in Figures 3.9 and 3.10, PM2.5 concentration prediction accuracy improves when images

are used. In the case of n = 0, we average all the available concentrations. The MAE

is 20.821 µgm−3 for high-altitude data and 6.929 µgm−3 for low-altitude data. The high-

altitude images enable higher accuracy because some sensor locations are occluded in the

low-altitude images. When images are used, MAE drops to 1.45 µgm−3 and 5.35 µgm−3

respectively. For the case where n = 1, when we use the PM2.5 concentrations of the

nearest available sensor for estimation image data improves prediction accuracy by 16.9%

on average. The benefits of using images are greatest when the fewest particle counters are

used.

To determine whether the improvement is systemic and statistically significant, we use

the Kolmogorov-Smirnov test. We compare the data for the MAE without using images

that using images for each number of sensors (n = 1, ..., 4) to determine whether the two

data sets have the same distribution. The test is non-parametric and requires no knowledge

about the distribution of data.

We determine that there is a statistically significant difference between the distribution

of the MAE when using images and the distribution without using images, i.e., the differ-

ence between the two distributions is not due only to chance or noise but due to a genuine

improvement in accuracy when using the image data. If the p-value is below 0.10, we can

reject the null hypothesis and conclude that using images does improve our results. As

shown in Table 3.7 and Table 3.8, on low-altitude data, the p-values of GBR in all cases are

less than 0.10, and on high-altitude data, GBR’s p-values are less than 0.10. As a result, we
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Table 3.7: P-Values of GBR on High-Altitude Data
GBR

n=1 n=2 n=3 n=4

< 0.001 < 0.001 < 0.001 0.064

Table 3.8: P-Values of GBR on Low-Altitude Data
GBR

n=1 n=2 n=3 n=4

0.068 < 0.001 < 0.001 < 0.001

are confident that using images improves the estimates.

Certain fixed-location images show slightly negative results for the GBR method. Since

the fixed-location images are taken from a low altitude, some of the sensor locations are

blocked by buildings. For the quadcopter images taken at a higher altitude, all estimation

techniques improve accuracy. In general, images decrease MAE by 8.44% on average,

when n ⩽ 1, adding a camera to collect images helps more than adding more sensors.

Increasing sensor density and using images change the relative accuracy of the estima-

tion algorithms. When we use only one sensor and no images, RFR has lower MAE than

GBR on low-altitude data. When the sensor density is increased (n = 4) and images are

used, GBR outperforms RFR. This result demonstrates that it is important to evaluate esti-

mation algorithms using appropriate sensor densities and access to image data. A sparsely

deployed and less accurate sensor network can lead to false conclusions about pollution

concentrations, and about which pollution concentration estimation algorithms are most

accurate.

To summarize, higher sensor densities and image data both improve estimation accu-

racy, and adding image data has a similar effect to increasing particle counter density by

0.61 sensors km−2. Of the three estimation techniques evaluated, GBR had the highest

accuracy with MAE=1.45 µgm−3. In particular, our developed method is unlikely to work

as well on night-time images and images with adverse weather conditions such as rain and

snow. The main limitation of our dataset is that it does not contain nighttime images.

3.7 Conclusion

This project has presented a PM dataset with high spatial and temporal resolution. In con-

trast with existing datasets, it contains images covering the locations of stationary point

sensors, making it suitable for evaluating and validating vision-based pollution estimation

algorithms. Through our analysis, we find that (1) the estimation accuracy can be im-

proved significantly using vision-based techniques; (2) the spatial pollutant distribution is
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spatially correlated; (3) spatial variation of PM2.5 is high; and (4) temperature and hu-

midity had limited impact on PM concentration in our dataset. We also evaluate our data

using state-of-the-art prediction methods. Accuracy correlates with density with a coeffi-

cient of 0.2875 µgm−3 MAE per sensor and vision-based estimation improves accuracy by

0.1813 µgm−3 MAE, on average.

41



CHAPTER 4

Nighttime Vision-based PM2.5 Estimation

4.1 Introduction

Air quality (AQ) has attracted widespread concern in recent years. PM2.5, or ambient fine

particulate matter, is a major pollutant consisted of various particles with diameter less

than 2.5 µm. It is a class I carcinogen certified by the world health organization (WHO)

and hence, a great threat to human health [80]. Long-term exposure to high concentrations

of PM2.5 can damage the cardiovascular and respiratory systems, leading to respiratory

disease, heart disease, stroke, and many other health problems. In that case, high PM2.5

concentration can significantly increase mortality rates and reduce life expectancy [81–83].

Therefore, large-scale PM2.5 monitoring system is important [84, 85].

Traditionally, people rely upon the ground-based observation laboratories to measure

PM2.5 concentration. Although this method is accurate, it also suffers from the problems of

limited coverage and long analysis time. Ground-based AQ sensor networks have similar

limitations [84, 86]. On the other hand, as the widespread use of surveillance devices and

smartphones, the number of cameras increases rapidly. The scattering and absorption of

light caused by atmospheric pollutant particles can have a negative impact on the quality

of captured images. In other words, images taken in heavily polluted environments dif-

fer significantly from normal images in many attributes, such as brightness, contrast, and

saturation. There are several accurate vision-based research works on daytime AQ estima-

tion by leveraging image features such as spatial contrast, dark channel, and variations in

sky-earth colors [87, 88].

However, estimating PM2.5 concentration during nighttime is still challenging where

existing daytime vision-based techniques are not applicable. In low-light conditions, vis-

ibility is significantly reduced, causing difficulty in capturing scene details and increased

noise levels. Moreover, differences in brightness, saturation, hue, sharpness, and other

factors between daytime and nighttime images make it hard to use the daytime algorithm
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directly [12, 89, 90]. Meanwhile, rapidly increasing nighttime human activities imply se-

vere PM2.5 exposure, which can not be accurately and efficiently monitored using current

vision-based techniques. Therefore, a nighttime large-scale PM2.5 monitoring technique is

useful and urgently needed.

To address the nighttime vision-based PM2.5 monitoring problem, we propose to utilize

halation [91], which represents the glow around lights, to estimate the PM2.5 concentration

at night. Glow widely exists in night images, e.g., light can be scattered multiple times

before reaching the observer, resulting in a glow around the source. Thus, the glow is

typically visible and noise-resistant at night, even if the illumination is low. The floating

particle concentrations are correlated to the scattering effect, making it possible to esti-

mate PM2.5 concentrations through the glow effect. Other features, such as dark channel

and contrast, depend on scene visualization and are susceptible to noise, atmospheric light

(moonlight, cloud), and varying artificial light sources. Compared to dark channel based

techniques, our glow map based method outperform by 29.3% in our experimental evalua-

tion.

Specifically, we first extract features related to luminance and its attenuation from the

source image. These features are combined to create a glow feature map. Then we employ

a convolutional neural network (CNN) to match the glow map with ground-truth PM2.5

concentration. Finally, we create a real-world dataset to validate our approach.

We summarize our contributions as follows.

1. We propose a nighttime PM2.5 concentration estimation method, which first extracts

light source brightness, glow intensity attenuation, and glow features from a single

image, then predicts the concentration by a CNN. To the best of our knowledge, this

is the first vision-based method targeted at night scenarios.

2. We collected a dataset containing 11,753 multi-location images in night scenes with

corresponding environment parameters, including PM2.5, PM10, temperature, and hu-

midity. This dataset is of high temporal resolution and can contribute to the studies

about air quality measurement.

Experimental results show that our method achieves accurate PM2.5 estimation, with an

error of 2.58 µg/m3.

The rest of this chapter is organized as follows. Section 4.3 presents related work.

Section 4.4 describes details the proposed method. Section 4.5 describes the data collection

and analysis process. Section 7.5 presents the experimental results. Section 4.7 discusses

the potential limitations and concludes this chapter.
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4.2 Contributions

I participated in a collaborative effort to develop a novel air quality dataset with the goal

of developing a novel vision-based pollution estimation algorithm at night. I will describe

some of the contributions of the other team members to provide context for my contribu-

tions. Other contributors led work on collecting data for the nighttime image-based air

quality dataset, with my help and advice. The dataset contains nighttime images and cor-

responding ground truth pollution concentration values in the images. In particular, an air

quality sensing platform is placed in the center of the region to record ground truth pollu-

tant readings for PM2.5 concentrations. I provided significant advice on the construction of

the vision-based pollution estimation algorithm for night-time applications.

4.3 Related Work

The related work can be generalized into four categories, including PM2.5 monitoring,

vision-based air quality estimation, remote sensing based PM2.5 estimation, and image de-

hazing.

4.3.1 PM2.5 Monitoring

Air quality sensors can accurately measure PM2.5 concentration. However, their deploy-

ment can be time-consuming, which limit the coverage [92]. Moreover, PM2.5 concentra-

tion varies dramatically over time and space [93]. It is reported that the concentration can

vary up to 10 µg/m3 within a 10-minute interval [9]. Therefore, long-term, large-scale,

and real-time monitoring is impractical for this type of sensors.

Existing researches estimate PM2.5 concentrations using current readings and historical

data. For example, Krishan et al. consider the spatial diffusion and long-term dependence

of pollutant concentration and develop an air quality prediction model based on long short-

term memory (LSTM) [94]. Ma et al. propose a bidirectional LSTM (BLSTM) model for

air quality prediction [95]. Guo et al. propose an unsupervised PM2.5 estimation method us-

ing a time distributed convolutional gated recurrent unit (TCGRU) and k-nearest neighbor

inverse distance weighted (KIDW) interpolation to monitor areas without air monitoring

stations [96]. Zhang et al. propose a CNN-LSTM hybrid network to model the spatio-

temporal correlations between haze images and PM2.5 concentrations [97]. It uses multi-

level attention to forecast PM2.5 concentration. Those methods suffers from the spatial and

temporal scarsity problems.
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4.3.2 Vision-based air quality estimation

Vision-based estimation methods have much higher spatial and temporal resolution. There

are various sources of images available which can be utilized for air quality measurement,

including quadcopters, social media, and Google Street View [98] etc.

Zhang et al. propose a method which utilizes scattering and absorption features for

the concurrent estimation of multiple pollutants [7]. Su et al. propose an end-to-end CNN

to estimate multiple atmospheric environmental parameters [99]. Wang et al. develop

a dual-channel air quality measurement method based on videos [88]. Yang et al. design

ImgSensingNet, a vision-guided aerial-ground sensing system which consists of unmanned

aerial vehicles (UAVs) and a ground sensor network. It combines vision-based air quality

monitoring and the ground sensing network to improve accuracy [87]. However, none of

those methods can be used directly for nighttime monitoring.

4.3.3 Remote sensing based PM2.5 estimation

Recent works on nighttime PM2.5 concentration estimation are based on remote sensing

techniques. However, due to the absence of sunlight, it is impractical to estimate aerosols

from visible bands. Weng et al. propose to use thermal channel data and aerosol absorbing

properties to estimate PM2.5 [100]. Wang et al. analyze the relationship between nighttime

light radiance, meteorological elements, and topographic elements. Then they use multiple

linear regression and support random forest methods to develop seasonal and annual PM2.5

concentration estimation models [101]. However, satellite remote sensing techniques are

limited by cost, accuracy, and speed etc.

4.3.4 Image dehazing

Image dehazing and vision-based AQ estimation techniques are closely related since they

both process the haze effect in images. Image dehazing aims to remove the haze effect and

enhance image quality, while AQ estimation quantifies the degree of the haze effect.

He et al. proposes to use the dark channel prior (DCP) to estimate the transmission

and atmospheric light in the haze images [78]. However, although the dark channel is

widely used for daytime air quality estimation [87, 102], it may not be as effective for

nighttime images due to low color intensities. Li et al. propose to separate the glow layer

from nighttime images based on a smoothness prior [103]. However, this method is prone

to noise and color shift problems in the resulting glow maps. Therefore, we develop our

nighttime PM2.5 estimation technique based on glow map.

45



Transmission map Original nighttime image           Bright map

Glow map

*

32@190x106

Conv-Pool block × 3, with 32, 64, 128 channels separately

Leaky ReLU

Activation

Function

2×2 kernel

Max-pooling

3×3 kernel

Convolution

32@95x53
Fully

ConnectedFlatten

Figure 4.1: The architecture of the proposed method.

4.4 Methodology

In this section, we first present our nighttime haze imaging model. Then we describe how to

extract haze-related features and the corresponding model to estimate PM2.5 concentration.

The flow of our system is shown in Figure 4.1.

4.4.1 Nighttime Haze Imaging Model

The nighttime haze imaging model is an extension of the optical daytime model [104],

where the observed intensity at pixel x is modeled as a linear combination of the direct

attenuation D(x) and the global atmospheric light or air light A(x) as following equation.

I(x) = D(x) +A(x)
= J (x)t(x) + A[1− t(x)],

(4.1)

where I(x) is the observed intensity at pixel x, J (x) is the scene radiance assuming no

scattering particles, and A is the global atmospheric light constant. t(x) is the transmission

that indicates the portion of scenes reaching the camera. It is defined as in the following

equation.

t(x) = e−βd(x), (4.2)

where ´ is the atmosphere scattering coefficient and d is the scene depth. J (x)t(x) rep-

resents the direct transmission. A(x) is the air light indicating the particle veil induced by
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the scattering, which varies with location.

In the nighttime haze scenario, besides the global source, i.e., moonlight, the air light

is also intensified by other active light sources, which is very common in night scenes.

Thus, it generates the glow region, which is defined as the regions close to light sources.

The observed glow effect G can be modeled as the convolution of light source with an

atmospheric point spread function (APSF) expressed by Legendre polynomial [91].

I(x) = D(x) +A(x) +G and (4.3)

G = AL(x) ∗ APSF, (4.4)

where AL is the active light source and its intensity is convolved with APSF to derive the

G. There are three factors involved with the glow generation, including active light sources

(illumination and shape of light sources), properties of the scattering medium, and the scene

depth or scattering distance. We discuss features related to these factors in the following

sections.

4.4.2 Feature maps

In this subsection, we first introduce two different feature maps: the bright map and the

transmission map. Then we describe how to combine them to generate the glow map.

4.4.2.1 Bright map

Various artificial light sources causes uneven distribution of nighttime atmospheric light.

In that case, the color and intensity of glow regions can vary significantly depending on the

distance from adjacent light sources. Thus, assumption of globally constant atmospheric

light for the daytime scenarios is not applicable at night.

In an RGB image, pixels with high values across all three channels indicate the prox-

imity to light sources. For the colored light sources, one or two channels may have signif-

icantly higher pixel values. The channel difference, which is defined as the gap between

the maximum and minimum values of each color channel at every pixel position, is used to

generate the bright map. By merging the maximum value and channel difference, we can

derive the bright map as shown in the following equation.

B(x) = min

�

(2 ∗ max
c∈{r,g,b}

Ic(x)− min
c∈{r,g,b}

Ic(x))γ , 1
!

, (4.5)

where x is the pixel index, Ic(x) is the pixel value at x position on channel c, and µ is a

rectified factor to modify the distribution of bright maps.
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4.4.2.2 Transmission map

Transmission is defined as the proportion of reflected light that is not scattered and is ca-

pable of reaching the camera. The level of scattering in reflected light is affected by the

distance between the camera and the scene as well as the density of haze. The correlation

between the transmission t̃(x) and scene depth d(x) can be calculated using the following

equation [78].

t̃(x) = 1− É min
x′∈Ω(x)

�

min
c

Ic(x′)

Ac

!

and (4.6)

´ =
1

d(x)
ln

1

t̃(x)
, (4.7)

where Ω is a local patch centered at x, É is haze-retention constant (fixed at 0.95), Ac is

global atmospheric light, and x′ is the location index inside the patch. When d(x) is fixed,

the scattering coefficient ´, i.e., haze level, is inversely correlated with the t̃(x). We use

guided image filtering [105] to reduce the halos and block artifacts introduced by the patch

Ω; thus the transmission map can capture the edges of objects.

At night, the glow effect is negligible in regions distant from the light source, as ex-

pressed in Equation 4.1. However, in regions close to the light source, non-uniform illu-

mination significantly enhances atmospheric light A, glow G, and restrains transmission

t(x), making scene radiance irrelevant, i.e.,
t(x)
A
→ 0. By combining Equation 4.1 and

Equation 4.3, we have

I(x)
A

=
t(x)

A
J (x) + 1− t(x) +

G

A
. (4.8)

It can be further approximated as

I(x) ≈ G+ A(1− t(x))

≈ G+ a,
(4.9)

where a is an air light related constant. Note that for an image patch, the scene depth

and atmospheric light are assumed to be stable, which means A and t(x) can both be

approximated to constants.

4.4.2.3 Glow map

The glow effect originates from nighttime artificial light sources. In dense haze condi-

tions, the brightness of the glow diminishes gradually as the distance from the light source

increases, while the sharp edges of backgrounds become more discernible. Since the arti-
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(a) before dilate operation (b) after dilate operation

Figure 4.2: Visualization of dilate function.

ficial light sources influence both the glow map and bright map, their attenuation patterns

remain consistent. To extract the glow map, we utilize the bright map to identify regions of

light sources, effectively reducing the impact of global air light and scene radiance.

It is also observed that the background visibility increases with distance from light

sources in the transmission map since the transmission is essentially related to the propor-

tion of scene radiance being perceived. They can be combined to reflect the glow intensity,

i.e. the degree of radial scattering, and produce the glow map as follows.

Gc = dilate(x) · t(x) · B(x) and (4.10)

dilate(x) = max
x′∈Ω(x)

Ic(x′), (4.11)

where c ∈ {r, g, b} is the color channel, ’·’ is pixel-wise multiplication, and Ω(x) is a

circular structuring element centered on x with diameter of 15 pixels. We use the dilate

function to enhance the glow effect since most glow regions contain foregrounds and back-

grounds, such as tree branches. Figure 4.2 shows that the dilate function can successfully

eliminate the foreground tree branch (yellow rectangle) and the background urban area (red

rectangle).

As shown in Figure 4.3, the raw image contains the atmospheric light, light sources, and

glow simultaneously. The bright map eliminates the air light in the sky and reserves the arti-

ficial light sources and their adjacent region. The transmission map locates the light source

and restrains the air light effect of artificial light sources. The glow map demonstrates that

only the regions with sufficient light intensity and smooth variation are identified as glow

features. Figure 4.4 shows the pixel values at the red arrow locations in Figure 4.3. The red

line in Figure 4.4 (a) is the glow intensity, which is in accordance with the visual change

of glow. Figure 4.4 (b) shows that the variation of glow is consistent with the raw image.
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(a) raw image (b) bright map

(c) transmission map (d) glow map

(a) raw image (b) bright map

(c) transmission map (d) glow map

Figure 4.3: Visualization of feature maps.
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Figure 4.4: Visualization of pixel values along red arrow line in four images. The x-axis is

the number of pixels away from the arrowhead along the vertical direction and the y-axis

is the corresponding pixel value.

The difference between the raw image and the glow map is the constant a introduced in

Equation 4.9.
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Figure 4.5: Architecture of CNN.

4.4.3 Mapping algorithm

CNNs have been widely used for image processing and classification. In this work, we

employ the CNN technique to map the relationship between PM2.5 and the glow map. As

shown in Figure 4.5, the extracted glow map is resized to 108× 192× 3 to reduce the input

dimension and also computation cost. For the CNN, we set convolutional kernel size to be

3 × 3. In the subsequent pooling layer, 2 × 2 max pooling is used. We also use the leaky

ReLU function as the activation function to avoid the dying ReLU problem [106]. This

Conv-Pool block is repeated three times consecutively. Finally, the flattened vector is input

to a fully connected layer to generate the concentration of PM2.5.

4.5 Data processing

To validate our algorithm, we first build the corresponding dataset. Therefore, in this sec-

tion, we detail the setting of our dataset, the deployment of our sensor network, and the

data analysis methods.

4.5.1 Overview

The dataset consists of 11753 nighttime images and the corresponding ground truth sensor

data collected from Nov. 2022 to Mar. 2023 in the west Hangzhou city. The longitude and

latitude are 120◦02′49.631′′E, 30◦13′56.022′′N, respectively. Particulate matter is the main
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Figure 4.6: The time distribution of our dataset.

local atmospheric pollutant at night [107]. Missing data on certain dates are mainly due to

weather conditions. The dataset is used to validate our algorithms. It is also made public

for other researches in the field.

The image dataset contains frames captured every 5 minutes, with a 1080 × 1920 res-

olution. Due to the uneven temporal occurrence distribution of high PM2.5 pollution in

Hangzhou, we increase the sampling rate to one per minute for certain period of time. For

example, the rate is increased from 06:20 pm to 08:00 pm on Feb. 19, during which the

PM2.5 concentration is between 58 µg/m3 and 119 µg/m3.

The overall distribution of image capture time is shown in Figure 4.6. The images

are taken between approximately 06:20 P.M. and 05:00 A.M. when the sun is set and the

illumination is low. The experiment lasts for 5 months (from November to March next

year). Figure 4.7 shows the PM2.5 concentration distribution during the same period.

The majority of images were captured in February, with the remaining collected in

November, December, and March. it exhibits a short-tailed pattern, indicating that only a

few readings exceed 80 µg/m3. To address this imbalance, we use resampling technique as

described in Section 4.6.1.

4.5.2 Data collection

To collect the ground truth PM2.5 readings and the corresponding images, we deploy sen-

sor and camera networks in downtown Hangzhou, with many residential communities and
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Figure 4.7: The PM2.5 distribution of our dataset.

schools. The cameras are placed along a main city road, as demonstrated in Figure 4.8.

Meanwhile, an air quality sensing platform is placed in the center of the region to record

ground truth pollutant readings.

We develop a portable sensing platform to collect and store data, including a Nova PM

sensor module, temperature and humidity sensors, and an Arduino UNO controller (see

Figure 4.9). This platform is powered using lithium batteries and records data once per

second. Details regarding the parameters of our sensors is in Table 4.1 and Table 4.2.

We employ five XiaoMi intelligent cameras to capture videos of the monitored area (see

Figure 4.9). Further details regarding the camera parameters can be found in Table 4.2. The

key camera parameters are len and aperture sizes. Increasing those sizes allows effective

monitoring of large areas in low-light conditions. Each camera covers an approximate

area of 2 km2, while a network of air quality sensors can only cover about 500m2 [86,

108]. It is important to note that we utilize off-the-shelf standard camera modules, making

our technique highly suitable for real-world applications. These cameras are strategically

positioned within buildings situated amidst schools and residential communities, spanning

a distance of approximately 4.8 kilometers along the main road. Detailed information

about the specific camera locations can be found in Table 4.1 and Figure 4.8. We adjust the

camera depression angles to capture comprehensive scenes including both the ground and

the sky.
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Figure 4.8: Sensor and cameras locations. The cameras directions are marked by red

arrows.

Table 4.1: Deployment specifications for environmental sensors and cameras

Device
GPS

Location

Height

(m)

Depression

Angle(◦)

Acquisition

interval

Camera1
120◦03′16.488′′E
30◦14′15.946′′N

18 20 5 minutes

Camera2
120◦03′12.236′′E
30◦14′12.787′′N

18 10 5 minutes

Camera3
120◦03′21.372′′E
30◦14′8.083′′N

33 5 5 minutes

Camera4
120◦02′38.086′′E
30◦13′47.709′′N

18 20 5 minutes

Camera5
120◦02′34.189′′E
30◦13′45.393′′N

15 5 5 minutes

Sensors
120◦02′53.592′′E
30◦13′54.323′′N

18 - 1 second
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Table 4.2: Parameters of PM Device and Cameras

Nova PM sensor :

Sensor range [PM2.5] 0.0 - 999.9 µg/m3

[PM10] 0.0 - 1999.9 µg/m3

Operating temperature -10-50°C

Maximum operating humidity 70%

The response time 1 second

Serial port data output frequency 1 Hz

Minimum resolution particle size 0.3 µm

The relative error Max. ±15% and ±10µg/m3

(Note: 25 ◦C,50%RH)

Standard certification CE/FCC/RoHS

Camera :

Lens FOV: 110°

Aperture: f/1.4

Shooting Range: 0.6 m to∞
Video Resolution 1080× 1920, MP4 (H.265/HEVC)

Operating temperature −10 - 45 ◦C
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Figure 4.9: Sensing platform and cameras used in our deployment.

Table 4.3: Correlation with environmental factors
PM2.5 PM10 Temperature Humidity

PM2.5 1.0 0.758 0.325 0.349

PM10 0.758 1.0 0.253 0.302

Temperature 0.325 0.253 1.0 0.787

Humidity 0.349 0.302 0.787 1.0

4.5.3 Nighttime observations

In theory, the formation, propagation, and dissipation of PM2.5 are affected by climates and

weather conditions. For instance, low temperatures during the night can cause pollutants

to stay closer to the ground. However, the influence of those environmental factors on PM

concentration is limited. We calculate the R2 correlation coefficients for the two environ-

mental factors and discover that the correlations are weak, as demonstrated in Table 4.3.

Air pollution also shows significant temporal variation throughout the day [109]. Es-

pecially, the decreased human activities during the night can lead to reduced pollution

level. The drop in temperature during the night can also cause atmospheric pollutants to be

trapped and accumulated.

To assess the differences in the rate of change of PM2.5 between day and night, we use

both absolute and relative rates of variation. Since a portion of our PM2.5 data does not

cover a full 24-hour period due to various reasons, we select 13 days which contains 24-

hour data and calculate their average. Assume the PM2.5 data for day t is pt. The absolute
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Figure 4.10: Diurnal difference in PM2.5 variation rate.

rate of variation va and the relative rate of variation vr are calculated as follows.

va =
1

N − 1

N−1
�

t=1

|pt+1 − pt| and (4.12)

vr =
1

N − 1

N−1
�

t=1

|pt+1 − pt|/pt, (4.13)

where N = A
s

represents the length of the sequence, A is the number of data points covering

24 hours, s is the sampling interval, and pt denotes the PM2.5 concentration at the t-th

sampling point.

The results are presented in Figure 4.10, which clearly demonstrates that the level of

PM2.5 exhibits significantly reduced variation during nighttime compared to daytime. This

finding suggests that the PM2.5 models developed for daytime estimation may not be suit-

able for accurate estimation during nighttime.

4.5.4 Glow effect

We first design an algorithm, as shown in Algorithm 2, to determine the attenuation rate

of light intensity near the light source, which is closely related to the PM2.5 concentration.

Specifically, we put a 101 × 101 image patch P (x) in a Cartesian coordinate system and

x = (x1, x2) is the pixel coordinate. The algorithm identifies the light source in P (x)

and returns a binary mask M(x) that highlights the pixels identified as light source and its
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Algorithm 2 Calculation of Light Source

Data: 101× 101 image patch P (x)
Result: light source binary map M(x) and central coordinate c

Init 1: c← the mean coordinate of the pixels with [255,255,255] value in the P (x) Init 2:

M = O101×101, M(c) = 1 Step 1: Use Euclidean distance to pixel c to resort pixels in

P (x) as Presort(x) for p in Presort(x) do
Step 2.1:

if p == [255,255,255] and the Hamiltonian distance between its coordinate and the

nearest light source pixel in M is 1 then
M [coordinate(p)] = 1; // identified as light source

end

Step 2.2:

if Less than 20 of the last 200 pixels processed are identified as light sources then
break

end

end

Step 3: c ← the mean coordinate of the pixels identified as the light source in M return

M, c

Figure 4.11: Light source of location 3 (see Figure 4.8). The red arrow represents the

transmission direction for attenuation analysis.
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Figure 4.12: Attenuation of the glow region: (a) The x-axis is the number of pixels away

from the light source along the horizontal direction and the y-axis is the corresponding

pixel value; (b) The x-axis is PM2.5oncentration value of each line and the y-axis is pixel

value at 100-pixels away from light source area.

central coordinate c.

We use the light source located in Figure 4.11 to evaluate the correlation between the

glow effect and PM2.5 concentration. 1000 images are selected randomly and divided into

four sets based on their concentration range. The region with a gray-scale pixel value of

255 is considered the light source. Then we designate the region 200 pixels away from

the edge of the light source as the glow region. We plot the pixel values as a function of

distance away from the edge of the light source along the red arrow. As shown in Fig-

ure 4.12 (a). Each line represents an image, and its color indicates the corresponding PM2.5

range. There is an obvious layering by color, indicating that the pixel values decreased

more rapidly with a decrease in PM2.5 concentration, thus confirming the correlation be-

tween the glow effect and PM2.5 concentration. Specifically, take pixels at 100 pixels away

from the light source (along the horizontal direction) as an example, Figure 4.12 (b) shows

that the average pixel value increasing rate is 0.45 pixel units every µgm−3 when the con-

centration is lower than 50 µg/m3. Note that the red part does not meet this trend, possibly

due to the exposure adjustment of intelligent cameras given the increased brightness due to

increased PM. Moreover, the most significant attenuation in pixel values occurred within a

distance of 100 pixels. This guides our selection of hyperparameters in later experiments.
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Figure 4.13: The data distribution of our dataset. There are 534 samples from highly

polluted environments (PM2.5 >80 µg/m3).

4.6 Experimental results

In this section, we introduce the experimental setup and the corresponding experimental

design and results.

4.6.1 Experimental setup

We randomly select 5334 images from our dataset and divide them by a ratio of 4:1 for

training and testing sets. Since high concentration samples are scarce (PM2.5 >80 µg/m3),

we replicate high-concentration samples in the training set. Figure 4.13 shows the sample

distribution of the training set and testing set. The algorithm is developed using PyTorch

(version 1.11.0, CUDA 10.2), Adam optimizer with a batch size of 128 [110], and mean

squared error loss function. We employ multi-step learning rate decay strategy, where the

learning rate is initialized to 5 e−3 and stepped down to 1 e−5 in 400 epochs.

The model is trained on a server equipped with a Tesla V100 GPU and Intel(R) Xeon(R)

Gold 5218 CPU @ 2.30GHz. The mean absolute error (MAE) and mean relative error

(MRE) are used as the evaluation metrics. Their calculations are shown in the following
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Figure 4.14: A example of images at different times from the evening of March 4 to the

early morning of March 5.

equations.

MAE =
1

N

N
�

i=1

|yi − ŷi| and (4.14)

MRE =
1

N

N
�

i=1

|yi − ŷi|
yi

, (4.15)

where N is the total number of samples, ŷi is the predicted value of i-th sample, and yi is

the ground truth value.

4.6.2 Relationship between glow and traffic

As depicted in Figure 4.14, we observe that the overall color of certain images gradually

transitions from yellow to white over time. This phenomenon can be attributed to the

properties of aerosol light absorption. Aerosols, particularly black carbon (BC), which

comprises elemental carbon (EC) and organic carbon (OC), play a dominant role in ab-

sorbing light in the atmosphere [111]. EC is present in both traffic emissions and PM2.5 in

urban areas and can significantly influence the visual perception, especially during night-

time. Therefore, a decrease in the number of vehicles on the road during specific hours

(07:00 P.M. - 05:00 A.M.) can reduce EC concentraion [112] and the corresponding level

of light absorption.

Figure 4.15 shows the brightness of the light source area in different months. The x-axis
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Figure 4.15: The variation of brightness in the light source area.

is night timeline and the y-axis is the average pixel values in the light source area. Each

line represents the brightness variation of one night. We define the light source area as the

101× 101 block centered on the light source and the brightness as the average pixel values

in the area. We observe that brightness increases over time as expected.

4.6.3 Evaluation of glow map based model

We compare our technique with state-of-art techniques with the same CNN architecture

and different input types. The comparing methods include glow map [103], dark channel,

and transmission [78]. As shown in Table 4.4, the MAE and MRE of our method are better

than other methods that take in other inputs, indicating the glow map can accurately reflect

the density of haze. Compared with the second-best method, our technique is improved by

21.3% on MRE.

The effectiveness of the transmission map-based method is diminished during night-

time [113], as it tends to mistakenly identify artificial light sources as light sources at

infinity. This issue arises due to the uneven distribution of brightness caused by low illu-

mination and artificial light sources. Consequently, many regions in the transmission map

exhibit pixel values that are either close to 0 (black regions) or 255 (white regions). This

disrupts the overall relationship between transmission and scene depth, resulting in poor

transmission map performance.
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Table 4.4: Comparison of different features using our model
Method MAE (µg/m3) MRE

Our Glow Map 2.58 8.18%

Raw Image 3.69 10.92%

Dark Channel [78] 3.65 10.82%

Li’s Glow Map [103] 4.18 14.86%

Bright Equation 4.5 3.28 9.92%

Transmission [103] 5.23 14.91%

Bright+Transmission+Glow 4.11 12.29%

On the other hand, the dark channel-based method seeks the minimal value of RGB

channels within a patch to generate a coarse output. However, this approach neglects a

significant amount of valuable image information. Li’s glow map approach addresses the

color shift problem by imposing a global-based RGB channel constraint and extracting a

smooth layer using a spectrum-based algorithm. However, when dealing with large-sized

images containing multi-color lights, unexpected color shifts can occur, and object edges

may appear in the glow map.

Compared with Li’s glow map method, which relies on statistical prior knowledge of

images, our glow map estimates the proportion of radially scattered light in a raw im-

age based on physical imaging model. Experimental results demonstrates its performance

inPM2.5 estimation.

We also compare our CNN based technique with traditional machine learning models,

using the same glow map input. We split the glow map into a 9 × 16 grid and calcu-

late the average for each region. The resultant feature vector is used as input. As shown

in Table 4.6.3, our technique is compared with six baselines. Both MAE and MRE of

our technique have the best performance, indicating our model can better fit the relation-

ship between the glow map and corresponding PM2.5 concentration. Compared with other

methods, our model achieves at least 8% improvement for MRE and MAE.

4.6.4 Receptive field

For classic deep learning models such as VGG16 [114], the receptive field of a neuron

increases with its depth. However, in our case, attenuation of the light intensity is within

100 pixels. Therefore, we envision that the receptive field of the neuron in the final layer

may contain an area of approximately 100× 100 pixels in the input image.

To test this hypothesis, we train models with varying input sizes and evaluate each
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Table 4.5: Comparison of different models using our glow map
Model MAE (µg/m3) MRE

Ours 2.58 8.18%

Bayesian Ridge 6.03 20.95%

Linear Regression 6.12 21.60%

Elastic Net 8.72 29.64%

Support Vector Regression 14.49 62.71%

Gradient Boosting Regression 5.55 18.14%

Random Forest 2.83 8.87%

Table 4.6: Comparison with different input size

Input size Receptive field MAE MRE Flops Parameters

(252,448) (37, 35) 3.88 12.16% 1.09G 293,697

(216,384) (43, 41) 3.58 12.08% 789.13M 240,449

(180,320) (54, 50) 3.51 10.98% 539.76M 190,529

(144,256) (67, 64) 2.95 8.97% 337.61M 154,689

(108,192) (98, 87) 2.58 8.18% 182.7M 124,225

(81,144) (135, 120) 3.40 10.37% 96.28M 109,633

(54,96) (216, 192) 3.22 9.87% 39.64M 99,649

(27,48) (1080, 480) 4.80 15.00% 6.79M 93,761

case, as shown in Table 4.6. The results indicate that the best receptive field is with an

input size of (108, 192) and a corresponding receptive field of (98, 87), which is close to

our hypothesis. Increasing the input resolution beyond that point leads to a decrease in the

receptive field and an increase in MAE and MRE. Moreover, decreasing the input resolution

causes a loss of image details and also a deterioration in network accuracy.

4.6.5 Sky region impact

The sky is crucial in estimating daytime PM2.5 concentration in outdoor environments [88].

Typically, the daytime airlight is assumed to be the intensity of the sky region at an infinite

distance. However, the nighttime sky region is not applicable due to low illumination and

cloud.

To investigate the impact of the sky region, we partition the image into two regions:

the sky region and the non-sky region, respectively. As shown in Table 4.6.5, training the

model using only the sky region results in a significantly larger MRE compared with the

non-sky one. Removing the nighttime sky region have little impact on the overall model
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(a) glow map (b) Grad-CAM of the glow map

(c) raw image (d) Grad-CAM of the raw image

Figure 4.16: Grad-CAM of the first convolution layer.

Table 4.7: Evaluation of different region

sky region non-sky region sky + non-sky

MAE(µg/m3) 13.21 3.04 2.58

MRE 54.55% 9.46% 8.18%

accuracy.

We then use gradient-weighted class activation mapping (Grad-CAM) [115] to visual-

ize the network attention on input images. Grad-CAM generates a heatmap of each pixel’s

contribution to the final prediction by utilizing back propagation gradients. Since the res-

olution of the Grad-CAM heatmap is consistent with the target hidden layer, we select the

first convolution layer to highlight the fine-grained details of the image. As shown in Fig-

ure 4.16, the network focuses its attention on the glow of light sources. In comparison to

the raw image, the glow map pays less attention to the non-light source region, airlight, and

background while focuses more on the glow itself.
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4.7 Conclusion and discussions

In this work, we propose a nighttime PM2.5 concentration estimation technique based on

light source glow map extraction method. We also build a corresponding dataset including

various related parameters such as PM2.5 concentration, humidity, and temperature etc.

The experimental results demonstrate that our glow map-based approach produces a 38.3%

improvement in the accuracy for MAE (i.e., from 4.18 to 2.58) compared to the state of art.

During the deployment, due to the relatively low pollution level in Hangzhou (compared

to the rest of China), most PM2.5 values are under 80 µg/m3. Moreover, rainy weather also

prevented the deployment. Our method mainly works at night and requires artificial light

sources dominating the scene. Therefore, it may not work at dawn or dusk when sunlight

dominates the ambient light.

Future work includes incorporating other environmental parameters, such as wind and

rain, to improve the accuracy of PM2.5 concentration estimation. Moreover, collecting a

more diverse and larger-scale nighttime image dataset can further improve the accuracy of

our method.
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CHAPTER 5

Image-Based Air Quality Forecasting through

Multi-Level Attention

5.1 Introduction

Past work developed data-driven models for time-series forecasting of air quality. For

example, researchers designed a dual-stage attention model for time series prediction [116].

Also, deep neural networks are used to combine multiple sources of data such as weather

and geo-context data for PM2.5 forecasting [117, 118]. However, researchers have yet to

consider image-based air quality forecasting.

Images have the ability to capture the level of atmospheric scattering and absorption

due to airborne particles [119, 120]. In particular, images can be valuable for air pollution

forecasting since cameras and webcams are less expensive and easier to maintain than most

commonly used air quality sensors. Also, cameras capture a large amount of data over

large spatial regions, whereas air pollution data are now commonly collected by sparsely

distributed single-point monitoring stations. By augmenting PM2.5 data with images, we

can better estimate the air quality at a particular location and use contextual information to

achieve better forecasts.

Past research includes numerous image-based haze detection techniques [13, 121], but

they do not capture the complex spatio-temporal correlations of haze in images over time.

Our objective is to forecast PM2.5 concentrations by fusing PM2.5 concentrations with colo-

cated images, which requires spatio-temporal analysis of air quality in the images. In this

chapter, we jointly use a convolutional neural network (CNN) and a long short-term mem-

ory (LSTM) to model the level of haze in the images over time.

It is necessary to learn intricate relationships between the images and the PM2.5 data. In-

spired by the success of attention networks in low-level computer vision [122], our method

incorporates spatial attention, which learns the image regions to focus on, and feature at-

tention, which learns the importance of each feature extracted from the image. Spatial
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Figure 5.1: Image-based air quality forecasting uses a sequence of images and past PM2.5

concentrations (left, green box) to forecast future PM2.5 concentrations (right, red box).

attention selects the regions based on their similarity with PM2.5 latent features. We hy-

pothesize that spatial attention can improve predictions by identifying image regions with

PM2.5 concentrations that are better correlated with the ground-truth sensor location.

We evaluate our model on Shanghai data containing hourly PM2.5 measurements and

webcam images, and experimentally compare our forecasting model’s accuracy with that

of previous forecasting models. The main contributions are:

1. defining and solving the image-based air pollution forecasting problem,

2. developing a forecasting model capturing the level of haze in images over time with

a combined CNN and RNN, which is novel in this context, and

3. incorporating multi-level attention to learn intricate relationships between images

and the PM2.5 data.

5.2 Background

Air pollution exhibits complex spatio-temporal correlations, stemming from the intricate

interplay between various factors, including emission sources, atmospheric conditions, and

meteorological dynamics. Understanding and capturing these correlations are useful for

accurate air pollution forecasting and effective mitigation strategies. Let us delve into the

nature of these correlations in more detail.
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Figure 5.2: Image-based air quality forecasting model overview.

Spatio-temporal correlations refer to the relationships between air pollution levels across

different locations and over varying time scales. In the spatial domain, pollutants disperse

and interact with the surrounding environment, leading to spatial patterns and gradients

in pollution concentrations. Localized emission sources, such as industrial complexes or

urban traffic, contribute to localized pollution hotspots, characterized by elevated pollutant

levels in close proximity to the sources. Furthermore, the terrain, land use patterns, and me-

teorological conditions influence the spatial distribution of pollutants, causing variations in

pollution concentrations across different regions. Understanding and modeling these spa-

tial relationships are important for identifying pollution sources, assessing exposure risks,

and implementing targeted pollution control measures.

In the temporal domain, air pollution exhibits intricate dynamics due to diurnal, sea-

sonal, and long-term variations. Diurnal patterns arise from human activities and natural

processes that follow daily cycles. For example, traffic congestion during morning and

evening rush hours can lead to peak pollution levels in urban areas, while nighttime cooling

and reduced emissions often result in lower pollution levels. Seasonal variations are driven

by changes in weather patterns, vegetation growth, and human activities. For instance, in

many regions, air pollution is more pronounced during winter due to increased energy con-

sumption and unfavorable meteorological conditions for pollutant dispersion. Long-term

trends capture gradual changes in air pollution levels over extended periods, reflecting the

effects of evolving emission regulations, urban development, and environmental policies.

The spatio-temporal relationships of air pollution also stem from the transport and dis-

persion of pollutants through the atmosphere. Pollutants emitted in one location can be

transported by wind over long distances, affecting air quality in remote areas. Atmospheric
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conditions such as temperature inversions, wind speed, and stability influence the vertical

mixing and horizontal transport of pollutants, leading to the formation of pollution plumes

and the spread of pollutants across different regions. These transport processes introduce

temporal lags and dependencies, as pollutant concentrations at a particular location can be

influenced by emissions occurring hours or even days earlier in other locations.

Moreover, the spatio-temporal correlations of air pollution interact with meteorological

dynamics. Weather conditions, including temperature, humidity, precipitation, and wind

patterns, play a significant role in pollutant dispersion, chemical reactions, and pollutant

transformation. For example, high temperatures and sunlight can enhance the photochem-

ical reactions that lead to the formation of secondary pollutants, such as ozone. Wind

patterns determine the direction and speed of pollutant transport, affecting the spatial dis-

tribution of pollution. Additionally, atmospheric stability and mixing height influence the

vertical mixing of pollutants, impacting their concentration profiles across different alti-

tudes.

Capturing these complex spatio-temporal correlations requires sophisticated modeling

approaches that consider the interplay of emission sources, atmospheric conditions, mete-

orological dynamics, and pollutant transport. Machine learning techniques, such as con-

volutional neural networks (CNNs) and recurrent neural networks (RNNs), have shown

promise in leveraging the spatial and temporal information encoded in air pollution data

and environmental variables to capture and predict these correlations. By understanding

and modeling the spatio-temporal dynamics of air pollution, we can gain valuable insights

into pollution sources, assess exposure risks, develop effective pollution control strategies,

and ultimately work towards improving air quality and safeguarding public health.

5.2.1 Challenges

Modeling spatio-temporal correlations in air pollution presents several challenges:

Data Availability and Quality: Acquiring high-quality and comprehensive data on air

pollution levels across different locations and time intervals can be challenging. Spatial

coverage of monitoring stations may be limited, leading to gaps in data representation.

Moreover, temporal resolution might not capture the fine-scale variations of pollution lev-

els, hindering the accurate modeling of spatio-temporal correlations.

Complex Interactions: Air pollution is influenced by a wide range of factors, includ-

ing meteorological conditions, emission sources, topography, and human activities. The

interactions between these factors are complex and non-linear, making it challenging to

capture their combined effect accurately. Modeling spatio-temporal correlations requires
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sophisticated techniques that can handle the multi-dimensional and dynamic nature of the

data.

Scale Discrepancies: Air pollution patterns can exhibit significant variations at different

spatial and temporal scales. Modeling spatio-temporal correlations necessitates addressing

scale discrepancies and finding an appropriate balance between capturing fine-grained local

variations and understanding broader regional or global patterns. Failure to account for

scale dependencies can lead to biased predictions and inaccurate assessments of pollution

levels.

Uncertainty and Noise: Air pollution data are inherently noisy and subject to various

sources of uncertainty. Measurement errors, sensor biases, and missing data can introduce

uncertainties in the collected data. Additionally, the complex and dynamic nature of air

pollution makes it challenging to separate the signal (correlated pollution patterns) from

the noise (random variations). Modeling techniques must be robust enough to handle un-

certainties and noise to obtain reliable spatio-temporal correlations.

These challenges can be addressed by advanced modeling techniques, such as machine

learning algorithms, deep learning architectures, and spatial statistical models. These ap-

proaches can effectively capture the spatio-temporal correlations in air pollution by incor-

porating multiple data sources, accounting for scale dependencies, and handling the com-

plexities of the underlying processes. By accurately modeling spatio-temporal correlations,

researchers and policymakers can make informed decisions and take proactive measures to

mitigate air pollution and safeguard public health.

5.3 Problem Formulation

This section describes the mathematical notation used throughout the chapter and the prob-

lem formulation for air pollution forecasting. We forecast PM2.5 concentrations mea-

sured by a monitoring station every hour. Images are captured hourly near the moni-

toring station. Assuming a time window of length T , we are given as input PM2.5 data

Pi = {pt}Tt=1 ∈ RT . The corresponding images are specified as I = {it}Tt=1 ∈ RT×C×H×W ,

where it ∈ RC×H×W , C is the number of channels, H is the height, and W is the width

of the image. In this chapter, C = 3, H = 32, and W = 32. We aim to predict

the PM2.5 concentrations over the next Ä hours where the ground-truth is represented by

Pf = {pT+t}τt=1 ∈ Rτ .

The goal is to predict PM2.5 concentrations over the next Ä hours. We formulate the

problem as P̂ f = M(Pi, I), where M denotes the forecasting model, and the predictions

are denoted as P̂ f = {p̂T+t}τt=1 ∈ Rτ .
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5.4 Benefits of Using Images

The fusion of images and PM2.5 data in air quality forecasting offers several notable ben-

efits, advancing our understanding of air pollution dynamics and enabling more accurate

and comprehensive predictions. This fusion leverages the complementary nature of vi-

sual information captured in images and the quantitative measurements provided by PM2.5

sensors, providing a holistic perspective on air quality that surpasses the capabilities of

traditional approaches.

Firstly, integrating images into air quality forecasting models allows for enhanced spa-

tial analysis. By incorporating visual data, we gain access to a wealth of spatial information

that can help identify localized patterns and variations in air pollution. Images captured by

cameras and webcams provide a fine-grained view of the environment, enabling the detec-

tion of specific sources of pollution, such as industrial emissions or vehicular exhaust. This

spatial awareness empowers decision-makers to implement targeted pollution control mea-

sures and optimize resource allocation based on the specific areas and sources contributing

to poor air quality.

Secondly, the fusion of images and PM2.5 data enables a more comprehensive under-

standing of air pollution by incorporating contextual information. Images not only capture

the presence of particulate matter but also provide valuable insights into meteorological

conditions, such as cloud cover, humidity, and wind patterns. These contextual factors play

a crucial role in air pollution formation and dispersion, influencing the spatial and temporal

distribution of PM2.5 concentrations. By considering these contextual cues alongside the

PM2.5 measurements, forecasting models gain a more holistic view of the complex interplay

between meteorology and air pollution, leading to more accurate and nuanced predictions.

Moreover, fusing images and PM2.5 data allows for improved estimation and interpo-

lation of air quality at unmonitored locations. Traditional monitoring stations are sparsely

distributed, limiting their ability to capture the heterogeneity of air pollution within a city

or region. However, images provide a vast amount of visual data collected from vari-

ous locations, offering a more extensive coverage of the environment. By integrating this

image-based information with PM2.5 data, forecasting models can better estimate air qual-

ity at unmonitored locations by leveraging spatial correlations and patterns observed in

the images. This capability is particularly valuable in densely populated urban areas with

limited monitoring resources.

In summary, the fusion of images and PM2.5 data in air quality forecasting has signif-

icant benefits. It enhances spatial analysis, enabling targeted pollution control measures

and resource allocation. It provides a more comprehensive understanding of air pollution
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dynamics by incorporating contextual information captured in images. Additionally, it im-

proves estimation and interpolation of air quality at unmonitored locations, addressing the

limitations of traditional monitoring networks. By harnessing the synergistic power of vi-

sual data and quantitative measurements, this fusion approach pushes the boundaries of air

quality forecasting, empowering decision-makers with more accurate and actionable infor-

mation to combat the adverse effects of air pollution on human health and the environment.

5.5 Image-Based Forecasting Model

We describe a novel multi-level attention LSTM network designed for air pollution fore-

casting. Unlike previous haze detectors [13,123], our model can represent changes in haze

over both space and time. Our proposed model integrates a CNN and an LSTM; the CNN

extracts the haze from each image and the LSTM predicts PM2.5 concentrations over time.

We also incorporate multi-attention to learn intricate relationships between images and the

PM2.5 data.

Figure 7.1 shows the architecture of the proposed model, resembling the encoder-

decoder framework for time-series forecasting [124]. We develop three LSTM sequences:

one encoding the previous PM2.5 time-series data, another encoding the sequence of im-

ages, and another forecasting future PM2.5 concentrations. We feed the past PM2.5 data

into an LSTM encoder to obtain its latent representation, and the image processing module

learns to identify hazy regions from the images. Next, the image attention module weights

each image region using the PM2.5 hidden representation. The feature attention module

then embeds each image and weights each image feature, and the image features are fed

into another LSTM encoder. Finally, the LSTM decoder forecasts future PM2.5 concentra-

tions from the outputs of the two encoders.

5.5.1 Data Representation

This part will discuss the representation of the set of PM2.5 data and images.

5.5.1.1 PM2.5 Data Representation

The encoder of the PM2.5 data is comprised of a sequence of LSTMs of length T . The PM2.5

concentration pt at time t is fed as an input to the encoder as ht = fe(ht−1, pt), where fe

represents an LSTM unit and ht represents the t-th hidden state. We obtain hidden states

for each time step H = {h1, ..., hT}, where ht ∈ Rn is the t-th hidden state and n is the
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Layer # of Fil-

ters

Filter size Activation

Conv 16 3 x 3 -

RDB 1-

3

16 3 x 3 -

Conv 32 3 x 3 ReLU

Pool 32 H/2 x W/2 -

Conv 64 3 x 3 ReLU

Pool 64 H/4 x W/4 -

Conv 128 3 x 3 ReLU

Pool 128 H/8 x W/8 -

Table 5.1: The architecture of the image processing module. Padding makes image sizes

consistent. For the pooling layers, the output of the filter size is denoted.

Layer Input size Output size Activation

FC 128 × H
8
×

W
8

128 ReLU

FC 128 128 ReLU

FC 128 output size ReLU

Table 5.2: The fully connected (FC) layers of the image embedding layers.
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size of each hidden state. The output of the encoder is the hidden representation hT of the

entire PM2.5 sequence.

5.5.1.2 Image Representation

Since images can represent the level of air quality, we learn to identify hazy regions from

the images. For this purpose, we adapt the Residual Dense Block (RDB) [125], which has

been used for single-image dehazing [123]. We develop the image sequence processing

module outlined in Table 5.1. From the input it, the module begins with a conv layer and

proceeds with three RDB blocks1, and finally three Conv-Pool layers. The output i′t consists

of feature maps representing the level of haze for each region. Its output dimensions are

128× H
8
× W

8
, or 128× 4× 4.

5.5.2 Image Attention Module

While the RDB has the ability to capture haze in an image via dense connections [125],

it treats every pixel equally although images may contain uneven haze. It is important to

weight image regions according to their relationship with the PM2.5 data from the parti-

cle counters to accommodate different data modalities. We need signals from the PM2.5

data when encoding each image. Hence, the image attention module preserves spatial in-

formation by selecting image regions enabling the most accurate PM2.5 prediction. The

experimental results show extracting salient features from images via attention improves

accuracy.

For each time t, we calculate the attention weight for each 4 × 4 region using the the

latent representation of the PM2.5 data hT . We compute the dot product between Wii
′
t(x, y)

and WhhT , where (x, y) is the location of the region, i′t(x, y) ∈ R128 is the 128-dimensional

representation of the region at (x, y), and hT ∈ Rn. The parameters to learn are Wi ∈
R128×128 and Wh ∈ R128×n. The attention weight st(x, y) denotes the importance of the

(x, y) region at time t and represents the similarity between the region and hT :

st(x, y) = [Wii
′
t(x, y)]

TWhhT . (5.1)

The attention weights are then normalized by the softmax over all regions. Finally, we

1For RDB, the depth rate (number of input features) is 16, the number of dense layers is 4, and the growth

rate is 16. More details about RDB are in Zhang et al. 2018 [122].
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multiply the attention weight matrix by i′t to obtain the output i′′t .

³t(x, y) =
exp[st(x, y)]�4

x=1

�4
y=1 exp[st(x, y)]

, and (5.2)

i′′t = ³ti
′
t. (5.3)

Air pollution modeling using images introduces unique challenges due to the spatial na-

ture of air quality patterns. Images capture detailed spatial information, but not all regions

within an image may contribute equally to the prediction of pollutant concentrations. Some

regions may contain more relevant features or exhibit stronger correlations with pollutant

levels. By incorporating an image attention mechanism, the model can selectively focus on

informative regions, effectively filtering out irrelevant or noisy information. This attention

mechanism enables the model to assign different weights to image regions based on their

importance, enhancing the model’s predictive accuracy by emphasizing the most relevant

regions while suppressing the influence of less informative areas.

Also, image attention plays a crucial role in integrating image data with PM2.5 data,

which is obtained from particle counters. The model needs to leverage information from

both data sources to capture a more complete picture of air pollution. Image attention al-

lows the model to selectively attend to image regions based on their similarity to the latent

representation of PM2.5 data. This integration enables the fusion of multiple data modal-

ities, leveraging the complementary information provided by images (spatial patterns) and

PM2.5 measurements (concentration levels). By incorporating PM2.5 data through im-

age attention, the model can effectively capture the complex spatio-temporal correlations

between air pollution patterns and the corresponding pollutant concentrations.

5.5.3 Feature Attention Module

We flatten the output i′′t to one dimension and feed it to the image embedding layers for

each time t as described in Table 5.2, where the dimensions become i′′ ∈ Rm×T . The size

of the output layer m is a hyper-parameter selected during training. Afterward, the image

feature attention module represents the relationship between each image feature and the

latent features hT of PM2.5. It adaptively selects the image features most relevant to hT

when predicting the future time series.

For time t, we calculate the attention weight of each image feature j via hT . We com-

pute the dot product between W ′
i i

′′(j) and W ′
hhT , where i′′(j) ∈ RT , and hT ∈ Rn. The
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parameters to learn are W ′
i ∈ Rn×T and W ′

h ∈ Rn×n.

s(j) = [W ′
i i

′′(j)]TW ′
hhT . (5.4)

The attention weight s(j) represents the importance of j-th feature. The weights are nor-

malized by the softmax over all m features.

³(j) =
exp[s(j)]�m

k=1 exp[s(k)]
. (5.5)

The attention weights denote the importance of the individual features. Once the attention

weights are computed, the input vector for time t is as follows:

x̃img
t = [a(1)i′′t (1), a(2)i

′′
t (2), ..., a(m)i′′t (m)]T . (5.6)

Feature attention is a crucial component chosen to address the complex spatio-temporal

correlations between air pollution and various features or variables that influence it. Air

pollution is influenced by a multitude of factors, such as meteorological conditions, traffic

patterns, land use characteristics, and emissions from specific sources. These factors ex-

hibit varying degrees of relevance and impact on pollutant concentrations at different times.

By incorporating feature attention, the model can dynamically assign importance weights

to different features, allowing it to focus on the most influential factors and adaptively

adjust the attention weights as the conditions change.

5.5.4 Model Architecture

The image features x̃img are fed into an LSTM encoder for images, comprised of a se-

quence of LSTMs of length T . The image features x̃img
t at time t are fed as an input to the

encoder as himg
t = f img

e (himg
t−1 , x̃

img
t ), where f img

e represents an LSTM unit for the image

and himg
t ∈ Rn represents the t-th hidden state of size n for the image. The output is the

hidden representation himg
T of the entire image sequence.

In the decoder with length Ä , we concatenate the hidden representation of the image

sequence himg
T and the PM2.5 data hT . hd

0 = [himg
T ;hT ] ∈ R2n is then initialized as the first

hidden state of the decoder. The previous output of the LSTM becomes the input of the

next LSTM p′t to update the decoder hidden state.

hd
t = fd(h

d
t−1, p

′
t), (5.7)
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where fd is an decoder LSTM unit. Afterward, we can estimate yt:

yt = W T
y h

d
t + by. (5.8)

The learned parameters are Wy ∈ R2n, by ∈ R, which determines the prediction yt.

5.6 Experimental Results

We evaluate our proposed model on air quality data and images from Shanghai. We first

introduce the dataset and the experimental protocol. Next, we evaluate our proposed fore-

casting method and compare it with other methods. Afterward, we investigate the effect of

each individual component of our proposed forecasting model.

5.6.1 Dataset and Implementation Details

We use air quality data from Shanghai from July 1st, 2014 to December 31, 2014 from the

U.S. Consulates in Shanghai. The data contain hourly PM2.5 measurements in µg/m3. We

also use webcam images taken by the Shanghai Environmental Monitoring Center near the

air quality measurement station [126, 127]. The images were taken at the Oriental Pearl

Tower. Our dataset includes images in the same data range approximately every hour from

8:00 am to 10:00 pm. We resized the images to 3× 32× 32 (C × H ×W). There are 2,296

chronologically ordered images.

The sequence length of the encoder is T = 6 (the window size) and the decoder time-

step is Ä = 6. During the training phase, we conduct grid search to determine hyperpa-

rameter values. We set the learning rate to 0.005 and the batch size to 4, and apply early

stopping for model training. The hidden size of each LSTM unit is 32, and the output size

of the FC unit for the image processing module is 16 units.

We divide the dataset using an 8:1:1 ratio for training, validation, and testing data,

which do not overlap. We use Adam to optimize parameters during training and use mean

squared error (MSE) as the loss function. We evaluate our model’s root mean squared error

(RMSE) and mean absolute error (MAE). We also use gradient clipping with a parameter

of 0.1. All experiments are run on a machine with an NVIDIA GeForce 940MX GPU.

5.6.2 Model Comparison

We compare our model with the existing pollutant forecasting methods listed below. We

present the best performance of each method under different parameter settings.
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Method RMSE MAE

HA 54.84 44.43

SVR 43.97 29.52

GBR 38.75 24.57

LSTM 27.81 18.69

Seq2seq 27.99 17.78

Only image processing

module

25.59 16.90

Proposed approach with

only image attention

24.78 16.32

Proposed approach 23.57 15.84

Table 5.3: Comparisons with previous forecasting methods in Shanghai (in µg/m3) for six-

hour forecasts.

• Historical Average (HA): predict PM2.5 concentrations using the mean of previous

PM2.5 concentrations.

• Support Vector Regression (SVR): a supervised regression model that can map

lower dimension data into a higher dimension space.

• Gradient Boosting Regression (GBR): a supervised regression model using an en-

semble of decision trees.

• Long Short-Term Memory (LSTM): a recurrent network that models long-term

temporal relationships.

• Seq2seq: an architecture that incorporates an LSTM to encode the input sequences

and another LSTM to forecast time-series values.

Table 7.1 compares several air quality forecasting methods. We average the results of three

runs. Experiments on Shanghai data show that our forecasting model improves accuracy

by 15.8% in RMSE and 10.9% in MAE.

We also evaluate the impact of each model component via ablation studies (see Ta-

ble 7.1). Notably, using images improves accuracy by 8.6% relative to Seq2seq when we

add an encoder that extracts image features through the image processing module. Fur-

thermore, adding the image attention module improves accuracy because it selects image

regions by computing a dot product with the PM2.5 latent features. This module further im-

proves accuracy by 11.5% relative to Seq2seq. Finally, adding the feature attention module

improves accuracy by 15.8% by weighting the extracted image features through a dot prod-

uct with the PM2.5 latent features.
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Figure 5.3: The left figure is the original image with a 4 × 4 grid. The image attention

module emphasizes certain regions of the image. In the right figure, the regions showing

the original scene have attention, and the white regions do not have attention.

We hypothesize that the image attention module improves accuracy because it can iden-

tify image regions with PM2.5 concentrations that are best correlated with the ground-truth

sensor location. As shown in Figure 5.3, the image attention module emphasizes certain

regions of the image. Since those regions tend to be clustered around the same area, we

believe that the attention module can evaluate the correlations in PM2.5 concentrations of

different regions with sensor location.

5.7 Conclusion

The problem of air quality forecasting is important but also challenging because air quality

is affected by a diverse set of complex factors. This chapter describes the first image-based

air quality forecasting model. It fuses a history of PM2.5 measurements with colocated

images. We construct an image- and attention-based LSTM architecture to forecast PM2.5

concentration, which uses multi-level attention to represent the spatio-temporal relationship

of visual haze with measured PM2.5 concentration over time. Experiments on Shanghai data

show that our model improves PM2.5 RMSE prediction accuracy by 15.8% and MAE by

10.9% compared to previous forecasting methods.

5.8 Future Work

Integration of Additional Data Sources: Expand the scope of data integration by incor-

porating other relevant data sources, such as meteorological data, traffic data, or satellite
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imagery. By combining a wider range of data modalities, it is possible to capture more

comprehensive and diverse factors that influence air quality. Investigate how the inclusion

of these additional data sources improves the accuracy and robustness of the forecasting

model.

Transfer Learning and Generalization: Explore the applicability and generalization of

the developed model to different geographical regions or cities. Investigate transfer learn-

ing techniques that leverage pre-trained models on one region’s data and fine-tune them for

another region with limited data. Assess the model’s ability to adapt to varying environ-

mental conditions and evaluate its performance in different urban settings.

Real-time Implementation and Deployment: Develop strategies for real-time imple-

mentation and deployment of the image-based air quality forecasting model. Consider the

computational requirements and scalability of the model for processing large volumes of

image and air quality data in real-time. Explore techniques for efficient deployment on

edge devices or cloud-based platforms, enabling widespread access to accurate air quality

forecasts.

User Interface and Visualization: Design user-friendly interfaces and visualization tools

that present the air quality forecasts in an easily understandable manner. Develop interac-

tive visualizations that allow users to explore the spatial and temporal variations in air

pollution, aiding decision-making processes for individuals, policymakers, and city plan-

ners.

By exploring these future research directions, we can advance the field of image-based

air quality forecasting, enhance the accuracy and applicability of the models, and contribute

to effective air pollution management and public health initiatives.

5.9 Broader Applications

The broader applications of image-based air quality forecasting through multi-level atten-

tion follow:

1. Air Quality Management: Accurate air quality forecasting can assist environmental

agencies and policymakers in making informed decisions regarding pollution control

measures, urban planning, and public health interventions. By providing timely and

accurate predictions, it enables proactive actions to mitigate the adverse effects of air

pollution on human health and the environment.

2. Healthcare Systems: Poor air quality has a significant impact on public health, con-

tributing to respiratory diseases, cardiovascular problems, and other health issues.
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By forecasting air quality at a local level, healthcare systems can prepare for poten-

tial increases in patient visits and allocate resources accordingly. The information

can also be used to issue health advisories, enabling individuals to take necessary

precautions and reduce exposure to harmful pollutants.

3. Smart Cities and IoT: Image-based air quality forecasting can be integrated into smart

city initiatives and Internet of Things (IoT) frameworks. By leveraging existing cam-

era networks or deploying new cameras in strategic locations, cities can collect real-

time visual data and combine it with air quality measurements. This integrated ap-

proach enhances situational awareness, supports traffic management systems, and

facilitates the development of intelligent urban environments.

4. Environmental Monitoring: Traditional air quality monitoring stations are limited

in their coverage and spatial resolution. Image-based forecasting extends the mon-

itoring capabilities by utilizing cameras and webcams that capture a larger spatial

region. This approach enables the estimation of air quality in areas where sensor

networks are sparse or nonexistent, providing a more comprehensive understanding

of pollution patterns and aiding in the identification of pollution sources.

5. Data-Driven Decision Making: The proposed model combines multiple data sources,

including images and PM2.5 concentrations, to improve air quality forecasting accu-

racy. This data-driven approach can be extended to incorporate other relevant data,

such as meteorological data, traffic data, and land-use information. By integrating

diverse datasets, decision-makers can gain insights into the complex interactions be-

tween various factors and make informed decisions to improve air quality and urban

sustainability.

6. Research and Development: The research on image-based air quality forecasting

contributes to the broader field of environmental science and data analytics. It opens

up avenues for further exploration and innovation in the fusion of different data

modalities, the development of advanced deep learning models, and the applica-

tion of attention mechanisms in environmental forecasting. This work can inspire

researchers to explore similar approaches for other environmental variables and im-

prove the understanding and prediction of complex environmental phenomena.

Overall, the broader applications of image-based air quality forecasting extend beyond

the field of air pollution management and have implications for public health, urban plan-

ning, smart city initiatives, environmental monitoring, and data-driven decision making.
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CHAPTER 6

A Context-Oriented Multi-Scale Neural Network

for Fire Segmentation

6.1 Introduction

Accurate and rapid detection of fire is useful for environmental protection and public safety.

It is also essential for perception systems in robotics and autonomous vehicle systems,

especially those used in fire fighting. They must quickly react to unexpected situations and

potentially catastrophic events.

Past research has focused on extracting information about wildfires using unmanned

aerial vehicles (UAVs) [128]. Early and accurate fire detection is possible through the com-

bination of computer vision and UAVs. UAVs are small, inexpensive, have the ability to

navigate many areas, and often have hardware capable of automated data analysis. There-

fore, UAVs can reliably monitor large areas such as woodlands and forests and determine

the location and severity of fires [128, 129].

Since wildfires spread quickly and can be difficult to control, detection and suppression

speeds are crucial. Wildfires cause millions of dollars of damage and kill thousands of

people per year. While traditional fire detection technologies such as smoke sensors are

inexpensive, they only detect nearby fire sources. Hence, there is an increasing interest in

long-range, image-based fire detection.

The earliest image-based fire detection techniques use hand-crafted features from color,

shape, and texture to detect fire regions [130,131]. With deep learning algorithms achieving

remarkable progress in many fields [132, 133], they were also applied to fire detection

recently [134, 135].

In image segmentation, deep learning methods have better performance than earlier

methods using predetermined features, such as U-Net [136] and PSP-Net [137]. Hossain et

al. detect forest fires with a neural network using color space local binary patterns of both
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Figure 6.1: Images contain fire with different kinds of shapes, sizes, and illumination. The

left column contains the original image and the right column contains the ground truth

segmentation map. It is important to recognize flames that are present and also minimize

false alarms.

flame and smoke signatures [135]. Choi et al. assign pixel-level labels of fire in images

via a CNN residual network [138]. A recent study performed fire segmentation using a

squeezed fire binary segmentation network with depthwise separable convolutions [139].

Despite the progress of fire detection methods, the accuracy of existing models de-

creases for many difficult scenarios. For example, small or occluded flames are difficult

to identify. Also, complex backgrounds make it difficult to distinguish the fire from its

surroundings and objects with similar color. Finally, the highly variable sizes, shapes, and

colors of flames exacerbate the problem of fire segmentation.

Determining scene context, which refers to relationships among distant pixels, reduces

false positives and false negatives. To handle small flame sizes (e.g., less than 5% of the im-

age) as well as differentiate between the flame and background, it is necessary to enlarge the

receptive field in order to effectively determine relationships among distant pixels. Also,

to handle multiple scales of flames, multi-scale aggregation selectively combines useful

information from different network layers. However, existing fire detection methods do not

take into account these two important factors.

In this chapter, we propose a Context-Oriented Multi-Scale CNN. It does multi-scale

aggregation, which outputs the segmentation map from multi-scale features and adaptively

refines the features from different receptive fields. We also introduce a novel Context-
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Oriented Module (COM) for our fire detection network. It extracts discriminant feature

representations by building associations among features with global context, which uses

relationships of all pixels in the feature map. In the COM, the input is fed into multiple

branches with convolutions, average pooling, and global pooling. Then, the COM inte-

grates the features from all branches.

High-resolution CNNs model relationships among nearby locations in the image, but

their inductive biases make modeling long-range relationships difficult. Low-resolution,

downsampled CNNs model long-distance relationships effectively, but disallow consider-

ation of short-distance relationships due to downsampling. Our approach considers rela-

tionships at multiple length scales, and the additional cost of doing this is low because the

downsampled analysis paths need only consider a small fraction of the data in the high-

resolution path.

The main contributions are (1) a novel fire segmentation model, which utilizes global

scene information and multi-scale aggregation, (2) a context-oriented module, which ob-

tains local and global context information to expand the receptive field and extract more

discriminative features, and (3) a multi-scale aggregation module, which reconstructs the

segmentation using features from multiple receptive fields. Using our fire segmentation

network improves accuracy by 2.7% in IoU compared with previous methods.

The remainder of this chapter is organized as follows. Section 2 details prior work in

related fields. Section 3 describes our proposed model for fire segmentation. Section 4

demonstrates the performance of the proposed model compared to prior models and addi-

tional experimental analysis. Finally, Section 5 concludes the chapter.

6.2 Problem Importance

Wildfires, or unplanned wildland fires, cause tens of billions of dollars of damage and kill

thousands of people per year in the U.S. [140]. They are becoming increasingly harmful

over time, with a 90% increase in yearly damage from 2009 to 2018 [141–143]. Wildfires

are commonly started in remote areas [144] by human accident or lightning strikes. In

minutes, fires can develop from small, easily controllable blazes to out-of-control infernos.

Even after detection, there are commonly substantial delays in delivering fire suppression

equipment.

If wildfires could be identified and suppressed early enough, control would be inexpen-

sive, with low risk to human life and property [145]. While natural fires are required to burn

in many cases to keep the level of combustible material on the forest floor to a minimum,

controlling when and where these burns occur can reduce the damage that they cause. Fur-
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Figure 6.2: Scripps Ranch, California wildfire under 30 miles to the NIWC Pacific facil-

ity [3]. Rapid detection and response to fires worldwide has become an increasing concern

for defense services to protecting coastal forests, harbors, ships, assets, and waterways.

thermore, the latency of information available to forestry wildfire services needs reduce

from hours to minutes if to support early responses that keep wildfires under control.

My goal is to research and develop aerial fire observation and suppression technolo-

gies that monitor high-risk regions prone to fire with sophisticated imaging systems and

machine learning algorithms. Over the past decade, there have been enabling advances to

optical imaging and stabilization, machine learning computer vision algorithms for smoke

plume and pollutant detection, and to multi-rotor drones capable of carrying payloads over

long distances. With a small investment in research, they can be translated into life- and

property-saving technologies.

6.3 Related Work

This section discusses related work in semantic segmentation and fire detection.

6.3.1 Semantic Segmentation

CNNs have achieved state-of-the-art performance in many computer vision fields. For in-

stance, fully convolutional networks are used in image semantic segmentation and perform

end-to-end classification of all pixels [146]. However, the receptive field is not large enough

for feature representation of all the pixels in the image.
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In order to differentiate between objects of different scales and illumination, it is nec-

essary to enhance the discriminative ability of feature representations. One way to improve

the performance of FCNs is multi-scale feature aggregation. PSPNet [137] uses spatial

pyramid pooling to combine multi-scale information. The Deeplab model uses atrous spa-

tial pyramid pooling (ASPP) with different dilation rates to capture contextual informa-

tion [147].

In addition, attention mechanisms are applied for pixel-level recognition in order to

enhance discriminative features. Zhao et al. introduce a pointwise spatial attention net-

work that encodes relative position information in pixel space [148]. EncNet proposes an

encoding layer on top of the network to capture global context [149]. Fu et al. include a

self-attention module to model long-range dependencies [150].

Some methods incorporated attention mechanisms to learn feature weights and empha-

size important features. OCNet learns feature weights according to object context [151].

Also, CCNet obtains contextual information based on all pixels in the criss-cross path [152].

Furthermore, the Dual Relation-Aware Attention Network [153] uses a self-attention mech-

anism that utilizes different pooling kernels to emphasize certain spatial areas. It also rep-

resents associations between channel dimensions to generate channel weights.

AttaNet [154] highlights certain pixels through a strip operation as well as a cross-

level aggregation strategy. BiSeNetV2 [155] incorporates a detail path to preserve the

spatial information and a semantic path to process feature maps with a large receptive field.

Finally, ConvNeXt [156] constructs a revolutionary convolutional architecture containing

inverted bottlenecks, larger kernel sizes, and other significant architectural differences.

6.3.2 Fire Detection

Prior image-based fire detection algorithms use the color and features of the fire [157,158].

The most straight-forward fire detection methods are color-based [159]. They analyze im-

ages in the RGB, HSI, or YCbCr color spaces to obtain possible fire regions based on color

thresholds [130, 131]. Other past work improves the accuracy of detection by considering

additional features as shapes and optical flow [160, 161].

Deep learning algorithms perform automatic extraction of features and can greatly out-

perform conventional fire detection methods in detection accuracy. For example, Muham-

mad et al. [134] compared their CNN-based method with other hand-crafted fire detec-

tion methods and outperforms them in terms of accuracy by 0.88% and false positives by

11.6%. Yin et al. constructed a deep normalization and convolutional neural network at-

taining smoke detection rates at least 96.4% [162]. Another CNN-based method called
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Figure 6.3: We propose a Context-Oriented Multi-Scale Network for fire segmentation with

both a Multi-Scale Aggregation (MSA) layer and Context-Oriented Module (COM). MSA

considers relationships at multiple layers in the network and performs adaptive feature

refinement. COM is explained in the next figure.

the DCNN incorporates a deep dual-channel neural network for smoke detection and has a

detection rate of 99.5% on average [163].

Hossain et al. detect forest fires with a neural network using color and multi-color

space local binary patterns of both flame and smoke signatures [135]. Saponara et al.

implemented a fully real-time CNN for fire detection using the YOLOv2 framework on

a NVIDIA Jetson Nano [164]. Muhammad et al. described a framework based on the

AlexNet architecture for fire detection and obtain an accuracy of 94.39% and a false posi-

tive rate of 9.07% [134, 165].

6.4 Methodology

This section provides an overview of the proposed model and describes each of its key

components in detail.
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6.4.1 Overview

Figure 7.1 shows the architecture of the proposed model. Initially, we use a five-layer

ResNet-50 backbone to extract its features, denoted as fi(i = 1, 2, ..., 5). The backbone

maps the input scene to feature representations, but it cannot capture both the local and

global information of the scene well.

In order to exploit the multi-scale structure of the flames and deal with different flame

sizes, we incorporate a multi-scale aggregation module. We perform adaptive feature re-

finement at multiple network levels in order to consider relationships at multiple length

scales. The implications of this involve enhancing the intra-class and inter-class recogni-

tion.

Since contextual information can be used to improve the performance of CNNs, we ex-

pand the size of the receptive field by incorporating global contextual information via our

Context-Oriented Module (COM). In scenes with diverse backgrounds and varied shapes,

the COM can adaptively aggregate global contextual information, which refers to the rela-

tionships of all pixels in the feature map, improving feature representation for fire segmen-

tation.

6.4.2 Multi-Scale Aggregation

We incorporate multi-scale aggregation (MSA) to capture different scales of flames more

accurately. We incorporate a gating mechanism to adjust the level of information from

different layers. It adaptively passes important semantic information at multiple layers in

order to improve accuracy. Hence, the network focuses on more informative contextual

features.

The structure of this module is shown in Figure 7.1. From the backbone layer, each of

f1, f3, and f5 form separate branches, go through a conv layer, and are each upsampled

to the dimension of f1. The outputs are f ′
1, f

′
3, and f ′

5, respectively, containing features at

different scales.

We select multiple layers where each layer is downsampled by a different amount.

Earlier layers have more spatial information and later layers have more semantic infor-

mation about the image. Next, we combine all outputs using an element-wise sum as

F = f ′
1 + f ′

3 + f ′
5. Afterward, we apply global average pooling (GAP) across the spatial

dimension of F ∈ RW×H×C to compute channel-wise statistics s ∈ R1×1×C .

Later, we feed s into three independent fully connected layers, FC1, FC3, and FC5,

and apply softmax to the outputs to obtain w3, w4, and w5. We then perform channel-wise

multiplication for f ′
1·w1, f

′
3·w3, and f ′

5·w5 and then fuse them via element-wise summation.
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Figure 6.4: We propose a Context-Oriented Module (COM) that extracts discriminant fea-

ture representations by building associations among features with average and global pool-

ing.

This is described as follows:

s = GlobalPooling(F ),

w1, w3, w5 = softmax([FC1(s), FC3(s), FC5(s)]), and

V = C(F1 · w1 + F3 · w3 + F5 · w5).

(6.1)

6.4.3 Context-Oriented Module

We adopt the Context-Oriented Module (COM) to expand the receptive field to capture

richer features. The network initially obtains feature representations by stacking conv lay-

ers, but it cannot capture both local and global information simultaneously. Incorporating

more contextual information via local and global pooling can improve fire segmentation

accuracy.

Past work has shown that global context information improves various computer vision

tasks [137, 166]. We obtain more discriminative feature representations for better scene

understanding by building associations with features through global context. Feature ag-

gregation allows the network to focus on more informative contextual features.

The detailed structure of the Context-Oriented Module is shown in Figure 6.4. The

output of the MSA layer V is fed into an input conv layer to output V ′. Next, V ′ is fed to

three branches: one branch contains a conv layer, another branch contains an average pool-

ing layer, followed by a conv layer and upsampling block, and the other branch contains a
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global pooling layer, followed by a conv layer and upsampling block.

The outputs are Fc, Fl, and Fg, representing local and global features, respectively. All

three branches contain features with different receptive fields. Then, we combine both local

and global features using an element-wise sum as: F = Fc + Fl + Fg. This is described as

follows:

V ′ = C(V ),

Fc = C(V ′),

Fl = U(C(P (V ′))),

Fg = U(C(G(V ′))), and

F = Fc + Fl + Fg,

(6.2)

where C, P , G, and U represent convolution, average pooling, global pooling, and up-

sampling, respectively. We then apply global average pooling (GAP) across the spatial

dimension of F ∈ RW×H×C to compute channel-wise statistics s ∈ R1×1×C .

Later, we feed s into three independent fully connected layers, FCc, FCl, and FCg,

and apply softmax to the outputs to obtain wc, wl, and wg. We then perform channel-wise

multiplication for Fc · wc, Fl · wl, and Fg · wg and fuse them via element-wise summation.

The output F ′ selectively incorporates local and global attention based on their content and

characteristics. These operations are described as follows, which is similar to those of the

MSA:

s = GlobalPooling(F ),

wc, wl, wg = softmax([FCc(s), FCl(s), FCg(s)]),

F ′ = C(Fc · wc + Fl · wl + Fg · wg), and

F ′ = C(F ′ + V ).

(6.3)

6.4.4 Difference Between the Two Modules

The two modules serve different purposes. The multi-scale aggregation (MSA) module

uses features from low-level and high-level features to capture spatial details better. Low-

level and high-level features are complementary, where low-level features are rich in spatial

details but lack semantic information, and vice-versa for high-level features. To bridge the

gap between high-level and low-level features, MSA adaptively combines both features

with a novel design. MSA improves accuracy by better capturing spatial details from low-

level features. Low-level features contain information from a lower receptive field, so

MSA does not expand the receptive field but improves the spatial reasoning of the network
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through local details.

In contrast, the context-oriented module (COM) further expands the receptive field from

the output of the backbone network to additional length scales by average pooling and

global pooling. In particular, the COM further improves the network’s ability to extract

semantic information.

6.4.5 Loss Function

The binary cross-entropy loss (LBCE) is used to calculate the loss of each pixel in the

predicted segmentation map compared to the ground-truth map. This is formulated as

LBCE =
M�

i=1

N�

j=1

−[yij log(pij) + (1− yij) log(1− pij)], (6.4)

where M is the number of images in the dataset, N is the number of pixels in the image in

a flattened array, and pij and yij are the values of the jth pixel in the predicted segmentation

map and the ground truth map of the ith image, respectively.

6.5 Experimental Results

We first introduce the dataset and the experimental protocol. Next, we evaluate our pro-

posed method on images containing wildfires and compare it with other methods. We then

investigate the effect of each individual component of our model.

6.5.1 Dataset and Implementation Details

We use a benchmark dataset of wildfires, consisting of 595 images of varying size [167].

The dataset includes annotation of all fire pixels and each is resized from a larger size down

to 512×512. We then augment the dataset by applying random cropping five times for each

image to size 224× 224 to end up with 2,975 images in total.

The training dataset contains 2,000 images, while the testing dataset contains 975 im-

ages. During the training phase, we set the learning rate to 2e-4, the batch size to 2, and

the number of epochs to 40 for model training. Also, we set the momentum parameter to

0.9 and use Adam to optimize the parameters during training. All experiments are run on a

machine with an NVIDIA GeForce 940MX GPU.
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Figure 6.5: Visual results of our method and four previous segmentation methods. Our

model is effective at segmenting flames of various sizes and distinguishing flames from

complex backgrounds. a) Input image, b) Ground-truth image, c) DeepLabv3, d) DRAN,

e) AttaNet, f) BiSeNetV2, g) Proposed method. Our model is capable of accurately seg-

menting wildfires in complex scenes.

6.5.2 Model Comparison

We compare our model with past fire segmentation methods, shown in Table 7.1. For

a fair comparison, we calculate each method’s accuracy with the same parameters. The

list of previous methods are U-Net [136], PSP-Net [137], DeepLabv3 [168], CPD [169],

RAS [170], DRAN [153], AttaNet [154], BiSeNetV2 [155], and ConvNeXt [156]. Al-

though more recent work is on fire detection instead of fire segmentation1, we include

more recent methods for generic segmentation to compensate for the lack of recent fire

segmentation methods.

Experiments on the benchmark dataset show that our model improves accuracy by 2.7%

compared to RefineNet. We report all segmentation results in terms of mean Intersection

over Union (mIoU) and Dice error, which are widely used to evaluate the overall perfor-

mance of semantic segmentation algorithms. The mIoU metric reflects the degree of the

overlap between the predicted segmentation and the corresponding ground truth versus

their union.

1Fire segmentation determines which pixels in the image contain fire, whereas fire detection decides

whether or not any pixels in the image contain fire.
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Table 6.1: Results of fire segmentation with other methods. The results of the best existing

fire segmentation method and the proposed method are bolded.

Methods IoU Dice

U-Net (2015) 0.705 0.792

PSP-Net (2017) 0.653 0.757

DeepLabv3 (2017) 0.755 0.834

CPD (2019) 0.681 0.779

RAS (2020) 0.686 0.780

DRAN (2020) 0.751 0.829

AttaNet (2021) 0.747 0.827

BiSeNetV2 (2021) 0.781 0.852

ConvNeXt (2022) 0.632 0.741

Ours w/o MSA 0.675 0.771

Ours w/o COM 0.789 0.858

Ours 0.808 0.873

6.5.2.1 Ablation Analysis

We also conducted an ablation analysis to evaluate the effectiveness of each module. First,

we remove the Context-Oriented Module (COM) and only keep the Multi-Scale Aggrega-

tion (MSA) module in order to examine the effectiveness of the COM. From Table 7.1, we

observe that our model with the COM outperforms our model by 1.9% without the COM.

Hence, the COM improves accuracy by expanding the receptive field in order to consider

relationships of longer length scales in the feature map.

We then remove the MSA module and retain the COM. From Table 7.1, we observe

that our model with the MSA module outperforms our model by 13.3% without it.

6.5.2.2 Visualization of Results

Figure 6.5 shows the qualitative comparison of our proposed method and past fire seg-

mentation methods. We select some representative examples from the dataset. It can be

seen that our method is capable of accurately segmenting flames in challenging scenes and

performs significantly better than other models.

In the first row, previous methods were not able to discern the small flame in the image.

Some methods in the second row confused the background with the fire. Furthermore, some

existing models confused the flames with the background which has similar appearance

with the fire. In contrast, our method can accurately infer the flame region in each case.

This is mainly because Multi-Scale Aggregation (MSA) can handle flames with differ-
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ent scales via adaptive feature refinement at multiple levels of the CNN. Also, the Context-

Oriented Module can help discriminate the flames from the background in complex scenes.

6.6 Conclusion

This chapter describes a Context-Oriented Multi-Scale CNN for fire detection in images.

The proposed approach leverages global scene information, multi-scale aggregation, and

a context-oriented module to improve fire segmentation accuracy. Our method is able to

handle challenging scenarios such as small or occluded flames, complex backgrounds, and

highly variable sizes, shapes, and colors of flames. Compared to existing methods, our

approach improves accuracy by 2.7% in IoU.

The Context-Oriented Module extracts discriminant feature representations by building

associations among features with global context, and the Multi-Scale Aggregation module

outputs the segmentation map from multi-scale features and adaptively refines the features

from different receptive fields. The combination of these modules effectively determines

relationships among distant pixels, reduces false positives and false negatives, and enhances

the discriminative ability of feature representations. Our approach considers relationships

at multiple length scales, which allows for modeling both short-distance and long-distance

relationships. The proposed method has important practical applications in environmental

protection, public safety maintenance, and robotics, particularly in autonomous systems

designed for fire fighting.

6.7 Future Work

For future work, one may extend the output segmentation map for flames to additional

parts. For instance, I can construct a 2D probability-of-fire map that can assess regions to

scan with greater resolution and occurrence. It can provide the likelihood of fire occurring

based on the land use patterns, information from weather services, images from satellites,

and historical data.

Moreover, I can construct a 2D risk-of-damage map to aid in assessing whether to de-

ploy suppression measurements or not. It can use simulation information based on weather

data and imagery to predict the direction and speed of a fire if it occurred at each location

on the map. It can correlate these data with dwelling and property data to estimate the

range, likelihood, and cost of damages.

Another area for future research is the integration of multiple data sources for fire seg-

mentation. Other data sources such as aerial imagery, LiDAR, and ground-based sensors
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could be used in combination with satellite data to improve the accuracy and resolution of

fire segmentation models.

One important consideration for future research is the need to balance accuracy with

computational efficiency. While deep learning techniques have shown promise in improv-

ing accuracy, they can also be computationally expensive, which can be a limiting factor

for real-time applications. Developing more efficient algorithms that can run in real-time

on resource-constrained devices could greatly expand the potential applications for fire

segmentation technology.

Another important area for future research is the development of automated systems for

fire segmentation and suppression. While current fire segmentation algorithms are capable

of detecting fires, they typically require human intervention to initiate suppression efforts.

Developing automated systems that can detect and suppress fires in real-time could greatly

improve the speed and effectiveness of fire suppression efforts.

Finally, there is a need for further research on the impact of climate change on wildfire

behavior and the efficacy of fire segmentation and suppression technologies. As wild-

fires become more frequent and intense due to climate change, it is critical to understand

how these changes will affect the effectiveness of fire segmentation and suppression tech-

nologies. This research could inform the development of more effective and adaptive fire

segmentation algorithms that can adapt to changing wildfire behavior.
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CHAPTER 7

Spatial-Frequency Network for the

Segmentation of Remote Sensing Images

7.1 Introduction

Remote sensing technologies have enabled the collection of a large number of optical satel-

lite images, and the spatial resolution of remote sensing images has increased up to the

degree of centimeters. Satellite-based remote sensing images are used for various applica-

tions, including classification of vegetation, urban structures, or crop type. As a result, it

is important to have the ability to accurately detect land usage in pre-processing of optical

satellite images.

Identifying land use patterns from satellite imagery is an important problem, where

each pixel is precisely classified in the output. Earlier techniques adopted hand-crafted fea-

tures using support vector machines and other models, but convolutional neural networks

(CNNs) have recently made major breakthroughs in many subfields of computer vision with

their vastly improved accuracy; hence, past work used CNNs for land use segmenation as

well due to their ability to generalize.

Ding et al. incorporate patch attention to enhance the feature extraction of contextual in-

formation and leveraging multi-layer fusion [171]. Also, Yu et al. use multiscale feature ex-

traction via the pyramid pooling module for semantic segmentation on aerial images [172].

Another model developed boundary losses in order to improve the edge extraction in satel-

lie images [173]. Furthermore, Marmanis et al. propose using a class-boundary detection

network to improve accuracy [174].

Satellite image-based land use detection is a challenging problem for the following rea-

sons: remote sensing images are high-resolution with many diverse objects. Additionally,

images contain many different kinds of terrain and different lighting which varies over

time. In particular, understanding scene context is important to process high-resolution

satellite images by extracting the relationships of each pixel with surrounding pixels. This
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is essential for discerning fine-grained spatial areas and modeling the relationship between

different semantic classes.

Past computer vision research, e.g., on object detection, has found that texture informa-

tion encoded by CNNs is very useful for accurate localization. Other research found that

frequency-domain information can denote texture, noise, and low-level information in im-

ages [175, 176]. Edges correspond to higher frequencies and the inner surfaces correspond

to lower frequencies. Past work learns identical parameters for all frequency components,

whereas learning different parameters for different frequency levels can enhance feature

representation.

This kind of segmentation problem requires learning more expressive feature repre-

sentations for intricate scene understanding at the pixel and frequency domains. Learning

features at various frequencies, especially high-frequency features, can help with reducing

confusion between different semantic classes. This chapter describes a spatial-frequency

CNN for aerial segmentation, which extracts the relationships of each pixel with surround-

ing pixels in the spatial and frequency domains.

We introduce a Frequency Weighted Module to regularize the network based on the

frequency-based features to refine the segmentation details. Also, we develop a Spatial

Weighting Module that encodes which spatial areas of the input the network should focus

on. Finally, we develop a Multi-Domain Fusion Module to aggregate features from dif-

ferent domains, which can provide important complementary information from different

domains. Using our spatial-frequency segmentation network improves accuracy by 1.9%

in IoU compared to previous methods. In addition, we evaluate the impact of each model

component via ablation studies.

The main contributions follow.

• We describe a novel deep learning model for aerial image segmentation that enhances

feature representation in both the spatial and frequency domains. This technique

preserves essential details and textures in order to improve the learning of features at

multiple frequency scales.

• We design a Frequency Weighted Module to encode contextual information based on

the frequency domain via a Fourier transform.

• In order to enhance contextual information in the spatial domain, we employ a Spatial

Weighting Module to effectively determine which relationships among distant pixels

are important through a multi-scale pooling layer.

The remainder of this chapter is organized as follows. Section 2 reviews previous

research in related fields. Section 3 describes our spatial-frequency-based segmentation
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Figure 7.1: We propose a novel model designed for segmentation of satellite images that

enhances feature representation in both the spatial and frequency domains. This model

preserves essential details and textures in order to improve the learning of features at multi-

ple frequencies. Finally, we develop a Multi-Domain Fusion Module to aggregate features

from different domains, which can provide important complementary information.

model for remote sensing images. Section 4 demonstrates the performance of the proposed

model compared to previous forecasting models and additional experimental analysis. Fi-

nally, Section 5 concludes the chapter.

7.2 Problem Importance

High-resolution satellite image segmentation has a wide range of applications in various

fields, including agriculture, forestry, urban planning, and environmental monitoring. Here

are some specific examples of how high-resolution satellite image segmentation can be

used in each of these fields.

In agriculture, high-resolution satellite image segmentation can be used to monitor crop

health and yield estimation. By segmenting satellite images into different crop types, farm-

ers can better understand which crops are thriving and which ones need more attention.

This can help farmers make more informed decisions about how to allocate resources such

as water and fertilizers, which ultimately leads to higher crop yields and lower costs.

In forestry, high-resolution satellite image segmentation can be used to identify differ-

ent types of trees and vegetation cover. This information is crucial for forest management

and conservation efforts, such as identifying areas that require reforestation, monitoring

deforestation and illegal logging, and identifying forest fires and their spread. Accurate
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segmentation can also help with predicting forest growth patterns and estimating carbon

sequestration potential.

In urban planning, high-resolution satellite image segmentation can be used to iden-

tify different types of buildings, roads, and other infrastructure. This information is useful

for analyzing urban sprawl, monitoring urban expansion, and identifying areas that require

urban renewal. By understanding the distribution of different land use types, urban plan-

ners can make more informed decisions about zoning and development policies, as well as

optimize transportation networks and public services.

In environmental monitoring, high-resolution satellite image segmentation can be used

to track changes in land use and natural resources such as water bodies, wetlands, and

wildlife habitats. By comparing satellite images over time, researchers can identify changes

in land use patterns, detect environmental degradation such as soil erosion and desertifica-

tion, and assess the impact of climate change on ecosystems. This information is crucial for

developing sustainable development policies and mitigating the negative impact of human

activities on the environment.

Overall, high-resolution satellite image segmentation is a powerful tool for understand-

ing the earth’s surface and how it is changing over time. By accurately segmenting satel-

lite images into different land use types and other features, we can better understand the

distribution of resources, monitor changes in the environment, and make more informed

decisions about how to manage our planet’s natural resources.

7.3 Related Work

This section discusses related work in semantic segmentation of natural images and seman-

tic segmentation of remote sensing images.

7.3.1 Semantic Segmentation

Convolutional neural networks (CNNs) have achieved state-of-the-art performance on many

computer vision problems, such as object detection and image generation. CNNs perform

extraction of features through convolutional and pooling layers. For instance, fully convo-

lutional networks (FCNs) are used in image semantic segmentation and perform end-to-end

classification of all pixels [146]. However, the receptive field is not large enough for feature

representation of all the pixels in the image.

To differentiate between objects of different scales and illumination, it is necessary to

enhance the discriminative ability of feature representations. One way to improve the per-
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formance of FCNs is multi-scale feature aggregation. PSPNet [137] uses spatial pyramid

pooling to combine multi-scale information. The Deeplab model uses atrous spatial pyra-

mid pooling (ASPP) with different dilation rates to capture contextual information [147].

In addition, attention mechanisms are applied for pixel-level recognition in order to

enhance discriminative features. Existing work in computer vision use convolutional net-

works to model context in images in order to improve accuracy in various vision tasks

such as object recognition. Zhao et al. introduce a pointwise spatial attention network that

encodes relative position information in pixel space [148]. EncNet proposes an encoding

layer on top of the network to capture global context [149]. Fu et al. include a self-attention

module to model long-range dependencies [150].

In addition, FCNs embed semantic information into high-level feature maps by down-

sampling the input image. While the features capture fine details in the image, they lose

information about the precise location of each pixel. The U-Net model adds skip connec-

tions between the feature maps of the encoder and decoder to fuse low-level and high-level

features [136]. Zhang et al. incorporate semantic information into low-level features and

spatial inforamtion into high-level features [177]. Moreover, Yu et al. create the BiSeNet

model with a spatial path to preserve the spatial information and a context path to process

feature maps with a large receptive field [178].

Some methods incorporated attention mechanisms to learn feature weights and empha-

size important features. For example, the DRANet adaptively weights important features

for both the spatial and channel dimensions [179]. OCNet learns weights for features ac-

cording to their object context [151]. Also, CCNet obtains contextual information based

on all pixels in the criss-cross path [152].

7.3.2 Semantic Segmentation of Remote Sensing Images

The earliest algorithms for segmentation of remote sensing images use pre-determined fea-

tures [180, 181]. Later, models adopted commonly used machine learning algorithms in-

cluding random forests and support vector machines [182, 183]. Past work used automatic

fuzzy clustering for remote sensing image classification [184].

With deep learning algorithms achieving remarkable progress in many fields [132,133],

they were also applied to satellite image segmentation recently [172, 173]. Past work used

CNNs for land use segmenation for their improved accuracy as well due to their ability

to generalize. For example, a CNN model includes boundary losses in order to improve

the edge extraction in satellite images [173]. Marmanis et al. propose a class-boundary

detection network to improve accuracy [174].
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Some models applied multi-scale feature extraction to learn contextual information at

different scales. Yu et al. used the pyramid pooling module for semantic segmentation

on aerial images [172]. Furthermore, a model employs two stages for effective multi-scale

processing of remote sensing images [171]. DDCM-Net combines both low-level and high-

level features and obtains features using dense dilated layers [185].

Furthermore, attention mechanisms are applied in order to increase the discriminative

power of feature representations. Ding et al. incorporate patch attention to enhance feature

extraction of contextual information and leverage multi-layer fusion [171]. MANet uses

multiple attention layers through the kernel and channel [186].

While CNN-based segmentation algorithms for satellite images achieved improved per-

formance, segmentation can be difficult because images capture different kinds of terrain

with different scales, occlusion, and illumination levels. A filter in a convolutional network

only covers a finite region of the image and represents a local receptive field. It is essential

that each pixel in the output has access to a large receptive field from the input image so

that contextual information is taken into account.

7.4 Methodology

This section first provides an overview of our segmentation model for remote sensing im-

ages and then describe each of its key components in detail.

7.4.1 Overview

We describe a novel model designed for remote sensing image segmentation (see Fig-

ure 7.1). Specifically, we adopt a ResNet-50 as our backbone network to extract multi-level

features from the input image, i.e., fi (i = 1, 2, ..., 5). We next extract more discriminative

features from both the spatial and frequency domain. We define features obtained from

spatial information compared to features obtained from frequency information as different

domains.

In order to enhance contextual information in the spatial domain, we employ a Spa-

tial Weighting Module to effectively determine relationships among distant pixels. This

is useful to discern fine-grained spatial areas, especially confusing areas and boundaries.

Following that, we apply a Frequency Weighted Module to encode contextual informa-

tion based on the frequency domain via a Fourier transform. Since remote sensing images

contain significant information on the texture and outline as well as noise, we selectively

combine useful information from different frequency bands.
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Figure 7.2: Frequency Weighting Module.

Finally, we develop a Multi-Domain Fusion Module to aggregate features from different

domains, which can provide important complementary information. This module has the

capability to learn shared representations for two different feature representations through

a cross-fusion technique. Overall, the proposed model has the ability to retain both local

and global features through the expansion of the receptive field.

7.4.2 Frequency Weighting Module

Semantic segmentation of satellite images involves handling the problem of intra-class and

inter-class variations. It is difficult to discriminate between many objects in the scene area

in remote sensing images and it is affected by both the image’s texture and the context.

To alleviate this problem, we propose a Frequency Weighting Module (FWM) to enhance

important information in the extracted features based on frequency level.

Remote sensing images have large spatial size and contain significant fine-grained in-

formation. While remote sensing images contain plentiful contextual information, it is

important to evaluate semantic information at different frequencies to distinguish among

object classes. Features of higher frequencies tend to provide important texture informa-

tion, and features of lower frequencies tend to provide important shape information.

As a result, we adjust the extracted features in the frequency domain in order to perform

dynamic frequency modulation, whereas past work treated each feature in any frequency

level equally. This module can help facilitate the information flow and learning comple-

mentary representations of features. Moreover, this mechanism can help suppress any noisy

feature representations.

We use the Fourier transform F to convert the features from the spatial domain to the

frequency domain, and the inverse Fourier transform F−1 to convert the features from the
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frequency domain to the spatial domain. Both transforms are implemented through the

FFT algorithm. The Fourier transform applies an image x ∈ RC×H×W , and the equation is

described below:

F(x)(u, v) = 1√
HW

N−1
"

i=0

W−1
"

j=0

x(h, w)e−j2π( h
H
u+ w

W
v). (7.1)

The Fourier transform outputs both amplitude and phase components, and the Fourier trans-

form and inverse are computed independently on each channel of feature maps. The equa-

tions of both the amplitude component and phase component are denoted below:

A(x)(u, v) =
�

R2(x)(u, v) + I2(x)(u, v), and

P(x)(u, v) = arctan
I(x)(u, v)

R(x)(u, v)
.

(7.2)

where R(x)(u, v) is the real component ofF(x) and I(x)(u, v) is the imaginary component

of F(x). In particular, the amplitude component tends to contain low-level statistics of the

original image [175, 176].

We now describe the architecture of the Frequency Weighting Module (FWM) shown

in Figure 7.2. We apply the Fourier transform to the output of the backbone network,

and we feed the amplitude component F ∈ RC×H×W into the FWM. We reshape F to two

dimensions RC×(H×W ) and obtain the weights W ∈ RC×C by doing a matrix multiplication

of F with F ′, and then applying the softmax operation:

wji =
exp(Fi · Fj)

�C

i=1 exp(Fi · Fj)
. (7.3)

Afterward, the transpose of the weighting map W is multiplied by the amplitude feature

map F . Then we reshape their result to RCHW to obtain the amplitude-based weighted

features. Then we multiply the result by a parameter ´ and perform an element-wise sum

operation with F to obtain the amplitude-based weighted features:

Fj = ´
C
"

i=1

(wjiFi) + Fj . (7.4)

Finally, we take the modified amplitude component and the phrase component through an

inverse Fourier transform to obtain the spatial feature maps.

Our module has many capabilities. It aggregates contextual information from many

frequency levels to model channel relationships. It focuses on more discriminative and in-
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formative features by exploiting the inter-dependencies among frequency-based features.

Finally, the correlations between object classes can be modeled by the Frequency Weight-

ing Module through non-local context.

7.4.3 Spatial Weighting Module

Past work in segmentation used convolutional layers that only operate with a local receptive

field, which is unable to capture contextual information outside of the local region. It is

important to utilize relationships of all pixels in the feature map in order to obtain features

that is able to discern fine-grained regions in the image.

Images typically exhibit different attributes at different length scales. To enhance spatial

details, we introduce a multi-scale pooling layer that uses average pooling operations with

different bin sizes in order to capture contextual information. In our pooling layer, we use

bin sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6, and then upsample the pooled feature maps to

the original size. After that, we concatenate the feature maps.

In the Spatial Weighting Module, we feed the output of the backbone network into a

3 × 3 convolutional layer to obtain F . We then feed F into a multi-scale pooling layer

described earlier to obtain F ′. We reshape F to two dimensions R(H×W )×C and also F ′ to

RC×(H×W ). We obtain the weights W ∈ R(H×W )×(H×W ) by doing a matrix multiplication

of F with its transpose, and then applying the softmax operation:

wji =
exp(Fi · F ′

j)
�C

i=1 exp(Fi · F ′
j)

. (7.5)

Afterward, the transpose of the weighting map W is multiplied by F ′. Then we reshape

their result to RCHW , and we multiply the result by a parameter ¼ and perform an element-

wise sum operation with F to obtain the position-based weighted features:

Fj = ¼

H×W
"

i=1

(wjiF
′
i ) + Fj . (7.6)

7.4.4 Multi-Domain Fusion Module

As shown in Figure 7.3, we propose a Multi-Domain Fusion Module to fuse cross-domain

features. This block improves accuracy because it learns the complex correlations from

features of different domains. While other methods have directly concatenated different

feature vectors from different domains into one long vector, this does not fully extract the

complementary information from spatial and frequency features.
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Figure 7.3: Multi-Domain Fusion Module.

We initially perform enhancement of features in both the spatial domain xs and in the

frequency domain xf by boosting features in one domain through a normalized weighted

map in the other domain. Initially, we feed the two kinds of features into a 3 × 3 convo-

lutional layer in order to embed both features into the same feature space. Next, we feed

both features into a 3 × 3 convolutional layer and then a sigmoid activation layer. Hence,

we have normalized feature maps for both the spatial and frequency domains, ws and wf ,

respectively.

At this point, we weight the feature map of the spatial domain xs by using the normal-

ized feature map from the frequency domain wf , and vice-versa. This is used to represent

the correlations between the two feature domains. We also add a residual connection in or-

der to retain the original information of each domain. The output x′
f is the cross-enhanced

feature representation from ws, and the output x′
s is the cross-enhanced feature representa-

tion from wf .

x′
f = xf + xf × ws

x′
s = xs + xs × wf

(7.7)

Afterward, the module integrates the features by concatenating and then feeding them

into a 3× 3 convolutional layer. Finally, we obtain the output which combines information

from multiple domains.

The information in xs and xf are complimentary, so the multi-domain fusion module

exploits the relationship between the different features. The normalized feature maps can

be regarded as feature-level attention maps to adaptively weight the feature representations

of another domain. This leads to more discriminative features and improves segmentation
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Methods Impervious

surface F1

Building

F1

Low vege-

tation F1

Tree

F1

Car F1 Overall

F1

SegNet [187] 0.551 0.537 0.368 0.308 0.684 0.490

U-Net [136] 0.488 0.518 0.438 0.500 0.702 0.529

RefineNet [188] 0.578 0.587 0.469 0.502 0.746 0.576

LANet [171] 0.641 0.665 0.450 0.511 0.736 0.600

BiSeNetV2 [155] 0.627 0.673 0.458 0.435 0.790 0.597

MACUNet [189] 0.565 0.555 0.445 0.517 0.755 0.567

MA-Net [186] 0.626 0.678 0.479 0.531 0.720 0.607

Proposed 0.599 0.699 0.526 0.548 0.761 0.626

Table 7.1: Results of aerial image segmentation with other segmentation methods.

accuracy for remote sensing images.

7.5 Experimental Results

This section describes the data, experimental evaluation, and discussion.

7.5.1 Dataset and Implementation Details

We evaluate our segmentation model for remote sensing images using the Potsdam dataset [190],

which is publicly available. It comprises of 38 true orthophotos (TOPs) of size 6000×6000,

consisting of satellite views of a historic city. The ground-truth contains six semantic cate-

gories: buildings, trees, cars, low-vegetation, impervious surfaces, and background/clutter.

We select 24 RGB images for training and the remaining 14 images for testing. For both

the training and testing datasets, we augment the dataset by applying random cropping 30

times for each image to size 224× 224 to end up with 1,180 images in total.

During the training phase, we set the learning rate to 5× 10−4, the batch size to 8, and

the number of epochs to 100 for model training. Also, we set the momentum parameter to

0.9 and use Adam to optimize the parameters during training.

7.5.2 Evaluation Metrics

In order to compare our method with past work, we use the F1 score to evaluate semantic

segmentation models of satellite images. The F1 score for a certain class is defined as the

weighted average of precision and recall, and is useful when semantic classes are more

imbalanced.
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Precision =
TP

TP + FP
, (7.8)

Recall =
TP

TP + FN
, and (7.9)

F1 score =
2× Precision×Recall

Precision+Recall
. (7.10)

where

• TP stands for true-positive,

• TN stands for true-negative,

• FP stands for false-positive, and

• FN represents false-negative.

7.5.3 Model Comparison

We compare our model with past segmentation methods for aerial images in the Potsdam

dataset, shown in Table 7.1. For a fair comparison, we calculate each method’s accuracy

with the same parameters and the cross-entropy loss function. Also, we use ResNet-50

pretrained on ImageNet as the backbone network for all previous methods.

Using our spatial-frequency segmentation network improves mean F1 score by 1.9%

compared to previous methods. We assess a variety of methods including those contain-

ing multi-scale fusion and attention mechanisms. We include SegNet and U-Net as an

early method baseline. More recent aerial image-based segmentation methods comprise of

LANet [171], MACUNet [189], and MA-Net [186].

MA-Net is the most recent aerial image-based segmentation method and uses attention

mechanisms based on the kernel operation and channel dimension. It generally performs

well compared to previous baseline segmentation models. However, our spatial-frequency

segmentation network further improves accuracy by 1.9% in mean F1-score over MA-Net

because our model has the ability to discern fine-grained spatial regions and discriminate

between object classes.

7.5.4 Ablation Study

In order to assess the capabilities of the proposed modules, we conduct ablation experi-

ments using different settings. Table 7.1 shows the results of the ablation experiments on
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Methods mean F1

Ours w/o FWM + Fusion 0.581

Ours w/o SWM + Fusion 0.611

Ours w/o Fusion 0.618

Ours 0.626

Table 7.2: Evaluation of the accuracy of each component of our proposed segmentation

method.

the Potsdam data set.

First, we remove the Multi-Domain Fusion Module from the network in order to exam-

ine its effectiveness. Instead of the fusion module, we sum the outputs of the SWM and

FWM and feed the output through a 3× 3 convolutional layer. We observe that our model

with the fusion module outperforms our model without it. Next, to verify that the SWM

module can further improve the accuracy, we conduct analysis without the SWM module

and only kept the FWM. From Table 7.1, we observe that our model with the SWM module

outperforms our model without it.

Moreover, we remove the FWM from the network and only keep the SWM module in

order to examine the effectiveness of the FWM. We observe that our model with the FWM

outperforms our model without it. This reflects that the Frequency Weighting Module is

necessary for improving the accuracy by using frequency levels capture richer features and

discriminate between object classes.

7.5.5 Visualization of Results

Figure 7.4 shows the qualitative comparison of our proposed method versus past aerial

image segmentation methods. The aerial images shown are representative examples from

the Potsdam dataset. It can be seen that our method is capable of accurately segmenting

challenging areas of the satellite image (i.e., discrimination of fragmented segments, dis-

tinguishing between different semantic classes) and performs significantly better than other

models in F1-score.

Earlier methods contain multiple fragmented segments, while the proposed method

concatenate the segments into one for the most part. Additionally, the our method demon-

strates more accurate segmentation of each semantic class. This is due to our spatial weight-

ing module which is capable of combining local contextual information.

Furthermore, our model is adept in discerning between semantic classes, while other

methods confused different object classes with one another. While the segmentation output

of MANet is more accurate than past methods, it still lacks the ability to discern between
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Figure 7.4: Visualization of segmentation results between our method and other segmenta-

tion methods on the Potsdam test set. (a) Input image. (b) Ground-truth segmentation map.

c) U-Net with F1-score of 0.556. d) MACUNet with F1-score of 0.477. e) BiSeNetv2 with

F1-score of 0.533. f) LANet with F1-score of 0.694. g) MANet with F1-score of 0.708.

h) Proposed method with F1-score of 0.752. (white: impervious surfaces, blue: buildings,

cyan: low vegetation, green: trees, yellow: cars, red: clutter).

semantic classes. In particular, the frequency weighting module has the ability to improve

the discrimination of each semantic class.

Hence, our method improves both the discrimination of semantic categories and the

preservation of spatial details.

7.6 Conclusion

In this chapter, we proposed a novel deep learning model for aerial image segmentation that

enhances feature representation in both the spatial and frequency domains. Our approach

preserves essential details and textures in order to improve the learning of features at mul-

tiple frequency scales. Specifically, we introduced a Frequency Weighted Module and a

Spatial Weighting Module to encode contextual information based on the frequency and

spatial domains, respectively. Moreover, we developed a Multi-Domain Fusion Module to

aggregate features from different domains, which can provide important complementary

information.
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Our proposed model achieved state-of-the-art performance on several remote sensing

datasets, improving accuracy by 1.9% in the mean F1-score compared to previous meth-

ods. We also performed ablation studies to demonstrate the effectiveness of each model

component. Our approach has the potential to improve many remote sensing applications,

including vegetation classification, urban structure detection, and crop monitoring.

Overall, our work contributes to the field of remote sensing and computer vision by

addressing the challenges of high-resolution satellite image segmentation and improving

the accuracy of land use detection. Future work can explore extensions of our model to

other types of remote sensing data, such as LiDAR and SAR, and investigate additional

techniques for improving feature extraction and fusion in both the spatial and frequency

domains.

7.7 Future Work

While the proposed spatial-frequency segmentation network shows significant improve-

ments over previous methods, there are still many avenues for future research in this area.

In particular, future work could focus on the following areas.

Firstly, while our proposed network is effective in segmenting land use in high-resolution

satellite images, there may be potential to extend this approach to other types of remote

sensing data. For example, this approach could be applied to multispectral or hyperspec-

tral data, which contain information about the reflectance of different wavelengths of light.

This would require modifications to the network architecture to handle the additional di-

mensions of the input data.

Secondly, our current approach focuses on pixel-wise classification of land use cat-

egories. However, there may be potential to incorporate additional information into the

segmentation process, such as elevation data or spatial context. This could be achieved

through the use of additional input channels or through modifications to the network archi-

tecture.

Thirdly, the proposed network relies on a Fourier transform to extract features in the

frequency domain. However, there may be alternative methods for extracting frequency-

based features that could be explored. For example, recent work has shown promising

results using wavelet transforms for feature extraction in image segmentation tasks.

Lastly, the proposed network has been evaluated on several benchmark datasets, but

there may be potential to apply this approach to real-world applications. For example, this

approach could be applied to monitor land use changes over time or to detect and track

specific features of interest, such as buildings or vegetation. This would require additional
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evaluation on real-world datasets and potentially modifications to the network architecture

to handle the additional complexity of real-world data.
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CHAPTER 8

Conclusion

The increasing concern regarding environmental challenges has ignited a heightened in-

terest in utilizing machine learning and computer vision techniques to portray scenes in

environmental applications. The accurate and effective representation of scenes holds

paramount significance in tackling environmental problems such as air pollution, fire de-

tection, and remote sensing analysis. This dissertation delves deep into the realm of scene

representations in machine learning and computer vision, concentrating particularly on

image-based methods tailored for environmental applications.

Initially, this dissertation is dedicated to the development and evaluation of vision-based

air quality estimation and prediction algorithms. The goal is to accurately estimate high

spatial resolution air pollutant concentrations. It is possible to estimate pollution concen-

trations by observing the impact on light attenuation using commodity consumer cameras.

The field is closer to developing a portable, inexpensive, and accurate image-based pollu-

tant sensing method in urban and industrial areas.

Overall, I envision a world in which it is possible to accurately estimate human expo-

sure to pollution. My research is currently on that path with the immediate goal of high

resolution estimation of air quality. This will enable public officials to help track and iden-

tify potential problems in air pollution. Officials can act on situations much quicker and

treat the public with the necessary care.

After achieving high-resolution estimation of air quality using vision-based algorithms,

my research has expanded into other related areas in the environmental domain such as

fire detection and remote sensing segmentation, leveraging the knowledge and techniques

developed in the field of vision-based air quality estimation.

Building upon the progress made in vision-based air quality estimation, we developed

effective fire detection systems using principles in deep learning. By adaptively incorporat-

ing information from multiple levels of the CNN and enhancing the receptive field network,

we can utilize commodity consumer cameras to detect and monitor fires in real-time. This
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advancement would contribute to early fire detection, enabling prompt response measures,

and assisting firefighters in tackling wildfires and minimizing their impact on the environ-

ment and human lives.

Additionally, the expertise gained in vision-based air quality algorithms can be applied

to remote sensing segmentation tasks. Remote sensing imagery, such as satellite or aerial

images, can be processed using computer vision techniques to segment and classify various

land cover types, vegetation, water bodies, and human-made structures. This segmentation

analysis facilitates environmental monitoring, land management, urban planning, and dis-

aster response efforts, empowering decision-makers with critical information for informed

actions.

8.1 Contributions

My contributions can be summarized as follows.

1. Designing a wavelength-sensitive, absorption and spatial variation aware multi-pollutant

vision-based estimation technique. It improves accuracy by 22% compared to previ-

ous image-based pollution estimation methods.

2. Contributing to the first publicly released dataset appropriate for evaluating vision-

based pollution estimation algorithms. The dataset is a densely distributed, low-

cost PM2.5 and PM10 database with high temporal and spatial resolution along with

images taken at the location of the sensors.

3. Determining how accuracy depends on point sensor density and the presence or ab-

sence of cameras. I show that the prediction of air pollution concentrations at various

locations is enhanced when images are used at various sensor densities.

4. Contributing to novel vision-based approach for estimating nighttime PM2.5 concen-

tration. The method involves deriving a glow map based on image brightness and

transmission, followed by the design of a deep convolutional neural network algo-

rithm for quantitative estimation.

5. Developing an image-based PM2.5 forecasting model that capture the level of haze in

images over time. The model incorporates a multi-level attention to learn intricate

relationships between images and the PM2.5 data. This direction accomplishes multi-

sensor air pollution prediction.
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6. Designing a Context-Oriented Multi-Scale Network for fire segmentation. This net-

work adaptively integrates local and global context and uses multi-scale aggregation

in order to give more precise segmentation results. Our method improves IoU accu-

racy by 2.7% compared to past work.

7. Producing a remote sensing segmentation model that enhances feature representation

in both the spatial and frequency domains. As remote sensing images have high

spatial resolution, this technique preserves essential details and textures in order to

improve the learning of features at various frequencies, especially high-frequency

features.

8.2 Future Work

My research on vision-based air quality estimation can be expanded into several related

topics, which are described in the following sections: 3D air pollution estimation, quan-

tifying human exposure to air pollution and health effects through high-resolution static

sensors, and vision-based air quality estimation by learning from synthetic hazy images.

8.2.1 3D Air Pollution Estimation

The first direction is low-cost, visual, high-resolution 3D pollution field estimation. This in-

volves combining overlapping images taken at different locations to reconstruct an accurate

prediction of air pollution in 3D space. Such an algorithm would allow us to estimate pol-

lutant concentrations with high spatial resolution, enabling analysis of air pollution flows

within a city.

Since there are few, sparsely distributed monitoring stations, it is essential to estimate

fine-grained air quality at arbitrary locations. In particular, monitoring stations are expen-

sive and require maintenance; on the other hand, fixed webcams are less expensive and

can cover large spatial areas. Moreover, there are many image-based haze detection algo-

rithms [19, 20, 123, 191], but they do not have the ability to measure fine-grained pollutant

concentrations. I aim to use techniques from haze estimation as well as 3D reconstruction

(i.e., Colmap) to produce a 3D haze estimation algorithm.

The plan for the algorithm design is as follows: given multiple camera views with a

common scene, i.e., a region of a city, we define a 3-dimensional Cartesian space filled

with unit voxels. Each unit voxel represents a cubic volume of constant size in the real

scene. For each camera view, we will utilize the depth of the scene and generate a projec-

tion of camera view in our voxel space. As shown in Figure 8.1, each camera view contains
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Figure 8.1: This figure represents the camera view of multiple prisms with different depths,

each ending when the prism hits a building. The camera view relies on the physical struc-

ture of scene.

multiple prisms with different depths, each ending when the prism hits a building. Fol-

lowing existing single image air quality estimation models, we define air pollution as the

transmittance per unit length of a true object color as light rays travel through a distance

before hitting the camera sensor.

We will develop and validate an algorithm that translates from 2D views without knowl-

edge of heterogeneity in pixel-associated prisms. For each camera view, we calculate the

projection of the pollution and have voxels seen by multiple cameras. We define a con-

straint satisfaction problem in which all the incident voxels from a camera to an object in

finite distance must have transmittance that sums up to the total transmittance implied by

the color shift on a particular pixel. The color shift is explain from the equation (described

in the first chapter) I(x) = J(x)t(x)+A(1− t(x)). I(x) is the observed hazy image, J(x)

is the haze-free scene radiance to be recovered. Additionally, there are two critical param-

eters: A denotes the global atmospheric light, and t(x) is the transmission. Inspired by

cone-beam reconstruction in medical applications, we develop a pollutant reconstruction

technique from 2D camera views into a 3D volume based on the concepts of transmittance

and image reconstruction.

To validate our approach, we will generate a synthetic hazy image of a scene containing

several buildings via extruded rectangles and two different colors of haze, each with sub-

stantially varying concentrations and hot spots at different locations in the image, as shown

in Figure 8.2. We will generate randomly distributed haze densities in 3D space, where
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Figure 8.2: This figure represents the concentrations of multiple pollutants in three-

dimensional space by using different colors.

the haze densities are inversely correlated with each other with respect to distance. Finally,

we will construct the synthetic haze images to correspond to real world haze, where haze

concentrations are inversely correlated with distance.

8.2.2 Quantifying Human Exposure to Air Pollution and Health Ef-

fects through High-Resolution Static Sensors

For air pollution exposure analysis, I will perform human exposure analysis utilizing an

air quality dataset with fine-grained spatial resolution. I will perform personal exposure

analysis to PM2.5 indirectly by utilizing a high spatial resolution air quality dataset in

Hangzhou (from HVAQ [9]), and I will represent human motion through Hangzhou taxi

traces. The main question I will examine is how does the density of sensors used in a city

affects personal exposure analysis? I will show that relying on low spatial resolution pollu-

tion concentration data results in an increase in the error of per-person exposure estimates

compared to high spatial resolution data.

It is necessary to accurately quantify individual human exposure in order to understand

human exposure to PM2.5 in the future. Existing research in human exposure modeling

evaluates the impact of air quality (e.g., PM2.5 levels) on human health. Initially, personal

exposure to pollutants was estimated over large and coarse scales (e.g., on the order of tens

of km) [192]. Coarse-grained personal exposure estimates may lead to large errors in epi-

demiological studies [193]. For instance, Paolella et al. concluded that model-estimated

PM2.5 exposure is lower with coarser grids than with finer grids: the estimated mean expo-
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sure increases by 27% in the United States when the grid cell edge length is decreased from

69 km to 5.9 km [194]. High resolution data are essential for human exposure assessments

because pollutant levels can vary at small spatial and temporal scales in a difficult-to-predict

way [9].

As high resolution pollutant data may not always be available, air quality modeling

is critical for accurate individual exposure estimates [195–197]. Existing air pollution re-

search found that PM2.5 concentrations varied on the scale of hundreds of meters [9],

where two different particle counters less than 1 km apart have differing pollutant concen-

trations. Even though recent personal exposure studies used finer resolution air quality data

as fine as 1 km2 for assessments, those methods still have certain limitations. In the human

exposure analysis from Tan et al., the relative errors at 9 km2 (3 km resolution) ranged

from 26% to 245%, while the relative errors at 1 km2 (1 km resolution) ranged from –25%

to 59%. However, Tan et al. claimed that a grid resolution of 1 km2 cannot consistently

capture the low-level variations in highly industralized areas because the relative errors at

1 km2 can still be improved [198].

Existing human exposure studies are still not adequate enough without being conducted

at a more granular level and should be conducted at scales less than 1 km2. For accurate

human exposure assessment, we need to determine the pollutant concentrations for each

point in space and time a person occupies. Newly developed high-resolution air quality

datasets can enable us to monitor personal exposure to air pollutants more directly. For

example, Chen et al. released an air quality dataset with a density of 10 sensors in an

area less than 1 km2 and a sampling period of one second called HVAQ [9]. However,

fewer studies have been conducted investigating the relationships between the density of

air pollution measurements and human exposure calculations.

Furthermore, measurements that are acceptably accurate for estimating average human

exposure can be very inaccurate when estimating a non-linear response for health effects

via pollutant concentration. There is an association between exposure to PM2.5 and an

increased risk of rheumatoid arthritis, connective tissue diseases, and inflammatory bowel

diseases [199]. Specifically, an additional 7% risk of having autoimmune disease was

linked to an increase of 10 µg/m3 in PM10 concentration [199]. Also, exposure to PM10

above 30 µg/m3 and PM2.5 above 20 µg/m3 was associated with a 12% and 13% higher

risk of autoimmune disease, respectively [199].

In this work, we will examine the effect of the spatial resolution of air pollution data

on human exposure estimates in Hangzhou. We will leverage fine-grained air quality data

from multiple stationary sensors in Hangzhou via HVAQ [9], and we will use taxi traces

to represent the motion patterns of people. Existing human exposure models are based on
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pollutant data with resolution as low as 1 km2, but HVAQ has a density of 10 sensors in

an area less than 1 km2; we will calculate individual human exposure and perform analysis

from the highest resolution data yet.

8.2.3 Vision-based air quality estimation by learning from synthetic

hazy images

Another plan is to develop a vision-based air quality estimation method to predict the

PM2.5 concentration in various locations and utilize synthetic hazy images generated using

realistic models to improve the accuracy of PM2.5 estimation. The main problem that we

are trying to solve is the lack of large quantities of training images labeled with PM2.5

concentrations. Through model-based regularization, we assume that the PM2.5 concen-

tration of synthetic haze images are strongly correlated with their scattering coefficient

corresponding to realistic situations.

PM2.5 contributes to degraded air quality in many areas of the world and is associated

with millions of premature deaths annually. Air quality sensing generally has the goal of

helping scientists understand the complex process of air pollution formation and propaga-

tion. However, most existing approaches for air pollution monitoring and human exposure

estimation are spatially sparse. Hence, we will construct a vision-based air quality estima-

tion method that can predict the PM2.5 concentration in various locations within a city.

Deep neural networks have achieved extremely high accuracy for a multitude of com-

puter vision applications, such as image classification, object detection, and semantic seg-

mentation. Their performance and accuracy is attributable through supervised learning,

which requires a labeled dataset, and that training deep networks on larger datasets pro-

duces better performance. Nonetheless, it can be difficult to obtain a dataset with a suffi-

ciently large number of labeled images. For instance, labeling data often requires human

labor; images taken throughout the day need to be associated with air pollution concen-

trations. In some cases, there is no way to measure the air pollution concentration at the

moment the image was taken.

A powerful approach for training deep models is through synthetic images. This miti-

gates the requirement for labeled data by providing a means of utilizing synthetic images.

Since synthetic data can often be obtained with minimal human labor, any performance

boost often comes with low cost. For hazy images, the atmospheric scattering model has

been used to model the level of image in an image. The classical description for the genera-

tion of haze in images is (also described in the first chapter): I(x) = J(x)t(x)+A(1−t(x)).
I(x) is the observed hazy image, J(x) is the haze-free scene radiance to be recovered. Ad-
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ditionally, there are two critical parameters: A denotes the global atmospheric light, and

t(x) is the transmission.

We will develop a method of estimating air quality from images and use synthetic hazy

images to improve the accuracy of air pollution estimation from realistic hazy images. For

the synthetic hazy images, we will incorporate regularization by assuming that two im-

ages with the same scattering coefficient, ´, have the same PM2.5 concentration. We also

will assume that an image with a greater scattering coefficient, ´, than that for another

image will have a greater PM2.5 concentration. As a result, we expect our vision-based

PM2.5 prediction system will produce accurate estimates of PM2.5 concentrations. Our

experimental results so far provide a strong case for the benefits of applying vision-based

methods for convenient and accurate estimation of air quality. Furthermore, our method

could help increase public awareness of the relationship between their behavior and expo-

sure to polluted air and provide valuable information to scientific researchers, government

officials, and health professionals.
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