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ABSTRACT

The problem of air quality forecasting is important but also
challenging because air quality is affected by a diverse set of
complex factors. This paper describes the first image-based
air quality forecasting model. It fuses a history of PM2.5 mea-
surements with colocated images. We construct a multi-level
attention-based recurrent network that uses images and PM2.5
data to represent variation over space and time. Experiments
on Shanghai data show that our model improves PM2.5 RMSE
prediction accuracy by 15.8% and MAE by 10.9% compared
to previous forecasting methods. In addition, we evaluate the
impact of each model component via ablation studies.

Index Terms— PM2.5 forecasting, image analysis, data
fusion, attention

1. INTRODUCTION

PM2.5 is a pollutant consisting of particles smaller than 2.5
micrometers. PM2.5 is especially dangerous to human health;
the particles are small enough to bypass the immune system
and travel in the respiratory and cardiovascular systems [1].
Because PM2.5 is harmful and also difficult to forecast, many
studies focus on PM2.5 forecasting [2]. Time series methods
such as ARIMA have been used, as has deep learning [3, 4].

Past work developed data-driven models for time-series
forecasting of air quality [3]. For example, researchers de-
signed a dual-stage attention model for time series predic-
tion [5]. Also, deep neural networks have been used to com-
bine multiple sources of data such as weather and geo-context
data for PM2.5 forecasting [3, 4]. However, PM2.5 forecasting
remains a challenging problem despite existing work because
PM2.5 levels are affected by many complex factors.

PM2.5 levels at one location are affected by surrounding
PM2.5 levels, and PM2.5 varies at small spatial scales [6]. Uti-
lizing digital cameras and webcams is beneficial in estimat-
ing PM2.5 concentrations at different areas of an image [7,
8]. Also, images can capture external factors correlated with
PM2.5 levels; for example, images can track meteorological
conditions such as humidity and cloud cover on its own.

Images can be valuable for air pollution forecasting since
cameras capture a large amount of data over large spatial re-
gions, whereas air pollution data are commonly collected by

sparsely distributed single-point monitoring stations. Differ-
ent regions in a city exhibit spatial correlation of PM2.5 levels
over time, and images can help track that spatial correlation
for many spatial regions. By augmenting PM2.5 particle sens-
ing data with images, we can better estimate the air quality at
a particular location and improve forecast accuracy.

Researchers have yet to consider image-based air quality
forecasting. Cameras (e.g., webcams) are less expensive and
easier to maintain than most commonly used air quality sen-
sors. Using images for PM2.5 estimation typically increases
field estimation MAE accuracy by 14.3% compared to only
using particle sensors [8]. Moreover, existing research in vis-
ibility physics demonstrates significant correlation between
visibility and PM2.5 levels [9, 10]. Finally, Zhang et al. im-
proves the accuracy of image-based air quality prediction by
22% compared to existing image-based techniques [7]. On
the other hand, applying images in forecasting future PM2.5
levels has not yet been attempted.

Past research includes numerous image-based haze detec-
tion techniques [11, 12], but they do not capture the complex
spatio-temporal correlations of haze in images over time. Our
objective is to forecast PM2.5 concentrations by fusing PM2.5
concentrations with colocated images, which requires spatio-
temporal analysis of air quality in the images. In this paper,
we jointly use a convolutional neural network (CNN) and a
long short-term memory (LSTM) to model the level of haze
in the images over time.

Accurate image-based forecasting requires a quantitative
knowledge of intricate relationships between the haze in each
image region and the PM2.5 data. Inspired by the success of
attention networks in low-level computer vision [13, 14], our
method incorporates spatial attention, which learns the image
regions to focus on, and feature attention, which learns the im-
portance of each feature extracted from the image. Spatial at-
tention selects the regions based on their similarity with PM2.5
latent features. We hypothesize that spatial attention can im-
prove predictions by identifying image regions with PM2.5
concentrations that are better correlated with the ground-truth
sensor location.

The main contributions of this paper are (1) addressing
the image-based air pollution forecasting problem for the first
time, (2) developing a forecasting model capturing the level
of haze in images over time with a combined CNN and RNN,
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Fig. 1. Image-based air quality forecasting model overview.

which is novel in this context, and (3) incorporating multi-
level attention to learn intricate relationships between images
and the PM2.5 data. We evaluate our model on Shanghai
data containing hourly PM2.5 measurements. Using images
for PM2.5 concentration forecasting improves accuracy by
15.8% compared to previous forecasting methods.

2. PROBLEM FORMULATION

This section describes the mathematical notation used through-
out the paper and the problem formulation for air pollu-
tion forecasting. We forecast PM2.5 concentrations mea-
sured by a monitoring station every hour. Images are cap-
tured hourly near the monitoring station. Assuming a time
window of length T , we are given as input PM2.5 data
Pi = {pt}Tt=1 ∈ RT . The corresponding images are specified
as I = {it}Tt=1 ∈ RT×C×H×W , where it ∈ RC×H×W , C
is the number of channels, H is the height, and W is the
width of the image. In this paper, C = 3, H = 32, and
W = 32. We aim to predict the PM2.5 concentrations over
the next τ hours where the ground-truth is represented by
Pf = {pT+t}τt=1 ∈ Rτ .

We formulate the problem as P̂ f = M(Pi, I), where
M is the forecasting model, and the predictions are P̂ f =
{p̂T+t}τt=1 ∈ Rτ .

3. IMAGE-BASED FORECASTING MODEL

We describe a novel multi-level attention LSTM network de-
signed for air pollution forecasting. Unlike previous haze de-
tectors [11, 15], our model can represent changes in haze over
both space and time. Our proposed model integrates a CNN
and an LSTM. The CNN extracts the haze from each image
and the LSTM predicts PM2.5 concentrations over time. We
also incorporate multi-attention to learn intricate relationships
between images and PM2.5 data.

Figure 1 shows the architecture of the proposed model,
resembling the encoder-decoder framework for time-series
forecasting [16]. We develop three LSTM sequences, one en-
coding the previous PM2.5 time-series data, another encoding
the sequence of images, and another forecasting future PM2.5
concentrations. We feed the past PM2.5 data into an LSTM

Layer # of Filters Filter size Activation
Conv 16 3 x 3 -
RDB 1-3 16 3 x 3 -
Conv 32 3 x 3 ReLU
Pool 32 H/2 x W/2 -
Conv 64 3 x 3 ReLU
Pool 64 H/4 x W/4 -
Conv 128 3 x 3 ReLU
Pool 128 H/8 x W/8 -

Table 1. The architecture of the image processing module.
Padding keeps image sizes consistent. For the pooling layers,
the filter output size is given.

Layer Input size Output size Activation
FC 128× H

8 × W
8 128 ReLU

FC 128 128 ReLU
FC 128 output size ReLU

Table 2. The fully connected (FC) layers of the image em-
bedding layers.

encoder to obtain its latent representation, and the image
processing module learns to identify hazy regions from the
images. Next, the image attention module weights each im-
age region using the PM2.5 hidden representation. The feature
attention module then embeds each image and weights each
image feature, and the image features are fed into another
LSTM encoder. Finally, the LSTM decoder forecasts future
PM2.5 concentrations from the outputs of the two encoders.

3.1. Data Representation

3.1.1. PM2.5 Data Representation

The encoder of the PM2.5 data is comprised of a sequence
of LSTMs of length T . The PM2.5 concentration pt at time
t is fed as an input to the encoder as ht = fe(ht−1, pt),
where fe represents an LSTM unit and ht represents the t-
th hidden state. We obtain hidden states for each time step
H = {h1, ..., hT }, where ht ∈ Rn is the t-th hidden state and
n is the size of each hidden state. The output of the encoder
is the hidden representation hT of the entire PM2.5 sequence.

3.1.2. Image Representation

Since images can capture the level of air quality, we learn to
identify hazy regions from the images. For this purpose, we
adapt the Residual Dense Block (RDB) [17], which has been
used for single-image dehazing [15]. We develop the image
sequence processing module outlined in Table 1. From the
input it, the module begins with a Conv. layer and proceeds
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with three RDB blocks1, and finally three Conv-Pool layers.
The output i′t consists of feature maps representing the level
of haze for each region. Its output dimensions are 128× H

8 ×
W
8 , or 128× 4× 4.

3.2. Image Attention Module

While the RDB has the ability to capture haze in an image
effectively [17], it treats every pixel equally although images
may contain uneven haze. Different regions in a city exhibit
spatial correlation of PM2.5 levels, and images can help track
that spatial correlation via image attention for each pixel. It is
important to weight image regions according to their relation-
ship with the PM2.5 data because image attention computes
the correlation of PM2.5 of each pixel relative to the PM2.5
latent features.

For each time t, we calculate the attention weight for
each 4 × 4 region using the the latent representation of the
PM2.5 data hT ∈ Rn. We compute the dot product between
Wii

′
t(x, y) and WhhT , where (x, y) is the location of the

region, and i′t(x, y) ∈ R128 is the 128-dimensional repre-
sentation of the region at (x, y). The learned parameters are
Wi ∈ R128×128 and Wh ∈ R128×n. The attention weight
st(x, y) denotes the importance of the (x, y) region at time t
and represents the similarity between the region and hT .

st(x, y) = [Wii
′
t(x, y)]

TWhhT . (1)

The attention weights are then normalized over all regions us-
ing softmax . Finally, we multiply the attention weight matrix
by i′t to obtain the output i′′t .

αt(x, y) =
exp[st(x, y)]∑4

x=1

∑4
y=1 exp[st(x, y)]

and (2)

i′′t = αti
′
t. (3)

3.3. Feature Attention Module

The image feature attention module represents the relation-
ship between each image feature and the latent features hT of
PM2.5. It adaptively selects the image features most relevant
to hT when predicting the future time series. We flatten the
output i′′t to one dimension where i′′ ∈ Rm×T and feed it to
the image embedding layers for each time t as described in
Table 2. The size of the output layer m is a hyper-parameter
selected during training.

For time t, we calculate the attention weight of each im-
age feature j via hT . We compute the dot product between
W ′

i i
′′(j) and W ′

hhT , where i′′(j) ∈ RT , and hT ∈ Rn. The
parameters to learn are W ′

i ∈ Rn×T and W ′
h ∈ Rn×n. The

1For RDB, the depth rate (number of input features) is 16, the number of
dense layers is 4, and the growth rate is 16. More details about RDB are in
Zhang et al. 2018.

attention weight s(j) represents the importance of j-th fea-
ture.

s(j) = [W ′
i i

′′(j)]TW ′
hhT . (4)

The weights are normalized by the softmax over all m fea-
tures.

α(j) =
exp[s(j)]∑m
k=1 exp[s(k)]

. (5)

The attention weights denote the importance of the individual
features. Then, the input vector for time t follows:

x̃img
t = [a(1)i′′t (1), a(2)i

′′
t (2), ..., a(m)i′′t (m)]T . (6)

We hypothesize that feature attention can improve predictions
by identifying image features (e.g., resembling weather con-
ditions) that are better correlated with the ground-truth sen-
sor location. PM2.5 is correlated with external factors such as
meteorology, time of day, and land use. Feature attention cal-
culates the correlation of each image feature with the PM2.5
latent features via a dot product.

3.4. Model Architecture

The image features x̃img are fed into an LSTM encoder for
images, comprised of a sequence of LSTMs of length T . The
image features x̃img

t at time t are fed as an input to the en-
coder as himg

t = f img
e (himg

t−1 , x̃
img
t ), where f img

e represents
an LSTM unit for the image and himg

t ∈ Rn represents the
t-th hidden state of size n for the image. The output is the
hidden representation himg

T of the entire image sequence.
In the decoder with length τ , we concatenate the hidden

representation of the image sequence himg
T and the PM2.5 data

hT . hd
0 = [himg

T ;hT ] ∈ R2n is then initialized as the first
hidden state of the decoder. The previous output of the LSTM
becomes the input of the next LSTM p′t to update the decoder
hidden state.

hd
t = fd(h

d
t−1, p

′
t), (7)

where fd is an decoder LSTM unit. Afterward, we can esti-
mate yt:

yt = WT
y hd

t + by. (8)

The learned parameters are Wy ∈ R2n, by ∈ R, which deter-
mine the prediction yt.

4. EXPERIMENTAL RESULTS

We evaluate our proposed model on air quality data and im-
ages from Shanghai. We first introduce the dataset and the
experimental protocol. Next, we evaluate our proposed fore-
casting method and compare it with other methods. After-
ward, we investigate the effect of each individual component
of our proposed forecasting model.
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Method RMSE MAE
HA 54.84 44.43
SVR 43.97 29.52
GBR 38.75 24.57
RNN 28.12 18.43
LSTM 27.81 18.69
GRU 28.25 18.27
Seq2seq 27.99 17.78
Only image processing module 25.59 16.90
Proposed approach with only
image attention

24.78 16.32

Proposed approach 23.57 15.84

Table 3. Comparisons with previous forecasting methods in
Shanghai (in µg/m3) for six-hour forecasts.

4.1. Dataset and Implementation Details

We use air quality data from July 1st, 2014 to December 31,
2014 from the U.S. Consulates in Shanghai. The data con-
tain hourly PM2.5 measurements in µg/m3. We also use web-
cam images taken by the Shanghai Environmental Monitoring
Center near the air quality measurement station [18, 19]. The
images were taken at the Oriental Pearl Tower. Our dataset
includes images in the same date range approximately every
hour from 8:00 am to 10:00 pm. We resized the images to
3 × 32 × 32 (C × H × W). There are 2,296 chronologically
ordered images.

The sequence length of the encoder T is 6 (the window
size) and the decoder time-step τ is 6. During the training
phase, we conduct grid search to determine hyperparameter
values. We set the learning rate to 0.005 and the batch size
to 4, and apply early stopping for model training. The hidden
size of each LSTM unit is 32, and the output size of the FC
unit for the image processing module is 16 units.

We divide the dataset using an 8:1:1 ratio for training,
validation, and testing data, which do not overlap. We use
Adam to optimize parameters during training and use mean
squared error (MSE) as the loss function. We evaluate our
model’s root mean squared error (RMSE) and mean absolute
error (MAE). We also use gradient clipping with a parameter
of 0.1. All experiments are run on a machine with an NVIDIA
GeForce 940MX GPU.

4.2. Model Comparison

We compare our method with existing pollutant forecasting
methods. We present the best performance of each method
under different parameter settings. The methods we include
are Historical Average (HA), where we predict PM2.5 con-
centrations using the mean of previous PM2.5 concentrations,
Support Vector Regression (SVR), Gradient Boosting Regres-
sion (GBR), Recurrent Neural Network (RNN), Long Short-

Fig. 2. The left figure is the original image with a 4× 4 grid.
The image attention module emphasizes certain regions of the
image shown in the right figure.

Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Seq2seq. These time-series methods use only the PM2.5 mea-
surements as input.

Table 3 compares several air quality forecasting methods.
We average the results of three runs. Experiments on Shang-
hai data show that our forecasting model improves accuracy
by 15.8% in RMSE and 10.9% in MAE.

We also evaluate the impact of each model component via
ablation studies (see Table 3). These methods use both the
PM2.5 measurements and images as input. Notably, using im-
ages improves accuracy by 8.6% relative to Seq2seq when
we add an encoder that extracts image features through the
image processing module. Furthermore, adding the image at-
tention module improves accuracy because it selects image
regions by computing a dot product with the PM2.5 latent fea-
tures. This module further improves accuracy by 11.5% rela-
tive to Seq2seq. Finally, adding the feature attention module
improves accuracy by 15.8% since the module weights the ex-
tracted image features through a dot product with the PM2.5
latent features.

We hypothesize the image attention module improves ac-
curacy because it can identify image regions with PM2.5 lev-
els that are better correlated with the ground-truth sensor lo-
cation. As shown in Figure 2, the image attention module
emphasizes certain regions of the image. Since those regions
tend to be clustered around the same area, we believe that the
attention module can evaluate the correlations in PM2.5 con-
centrations of different regions with sensor location.

5. CONCLUSION

This paper has described an image- and attention-based
LSTM architecture to forecast PM2.5 concentration. It uses
multi-level attention to represent the spatio-temporal rela-
tionship of visual haze with measured PM2.5 concentration
over time. Experiments performed in Shanghai show that
the proposed model achieves improved performance relative
to previous air pollution forecasting methods. Fusing PM2.5
data with images enables more accurate PM2.5 forecasts.
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