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ABSTRACT

Within-die variation in leakage power consumption is sub-
stantial and increasing for chip-level multiprocessors (CMPs)
and multiprocessor systems-on-chip. Dealing with this prob-
lem via conservative assumptions is sub-optimal. Instead, op-
erating systems may adapt task assignment and power man-
agement decisions to the variable characteristics of cores, im-
proving system-wide power consumption and performance.
Researchers have proposed such adaptation techniques. How-
ever, they rely on knowledge of CMP process variation (PV)
maps. These maps are not provided by processor vendors,
providing them would impose additional cost during the test-
ing process, and static maps would not permit adaptation to
aging effects. Further progress on developing and validating
PV aware control techniques for CMPs requires access to PV
maps for real processors. We present an online technique to
extract the PV maps of CMPs. Potentially automatic tem-
perature measurements with built-in on-die sensors during the
execution of characterization workloads are used to determine
variation in leakage power consumption. The proposed tech-
nique is applied to real CMPs, and the resulting PV maps
are used within a PV aware task assignment and scheduling
algorithm.

Categories and Subject Descriptors: B.8 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms: Design, Verification, Performance
Keywords: Process variation, characterization, software

1. Introduction and Motivation

Process variation (PV), the deviation of process parame-
ters from their nominal values, can be divided into three cat-
egories: die-to-die variation, within-die variation, and wafer-
to-wafer variation. Ongoing technology scaling has a tendency
to increase PV [1]. In this paper, we will focus on spatially-
correlated within-die variation and die-to-die variation. More
specifically, we focus on the within-die variation among CMP
and multiprocessor system-on-chip cores.

PV has received substantial attention from researchers [2,
3], who have developed techniques that adapt to the charac-
teristics of individual cores to achieve better power consump-
tion and performance [2, 3]. Such techniques require a PV
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Figure 1: Generating a PV map and applying it in on-line
power consumption and performance optimizations.

map as input. However, these maps are not provided by pro-
cessor vendors, providing them would impose additional cost
during the testing process, and in-factory characterization
results might be invalidated by aging effects. Furthermore,
there are not published post-testing methods for researchers
or end users to derive PV maps. Borkar et al. discuss power,
voltage, and temperature variations and their impact on cir-
cuits and microarchitecture [1]. They also present measure-
ments of the leakage power consumptions and maximum fre-
quencies of numerous microprocessors. However, these data
are not provided with individual processors and their work
suggests no way for end users or OSs to derive them.

We present an automatic on-line software-based technique
to characterize the threshold voltages and leakage power con-
sumptions of CMP cores, i.e., derive PV maps. These param-
eters are used to optimize CMP power consumption and per-
formance. Our work makes the following main contributions:
(1) it is the first on-line software-based technique for charac-
terizing the variation in leakage and threshold voltage among
CMP cores using built-in sensors; (2) we present a technique
that predicts the power and thermal profiles of a given work-
load when run on a CMP with a particular PV map; and
(3) we formulate and solve the time-constrained CMP task
assignment and power management mode selection problem.

The proposed PV characterization technique derives a PV
map based on temperature differences among cores. Due to
PV, core leakage power coefficients (and also leakage power)
may differ, resulting in temperature variation given identi-
cal workloads. We extract the PV map by performing multi-
variable regression analysis based on measured results, a ther-
mal model, and a leakage model. The temperature readings
come from on-die sensors present in commercially available
processors. Figure 1 outlines our approach for producing a
PV map, and explains how this map can be used to perform
run-time optimization for task assignment and power mode se-
lection. The characterization technique can be implemented
within the OS, firmware, or hardware. It imposes low com-
putational overhead, eliminates the need to measure the PV
map during testing, and can be used to adapt to aging effects.
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Figure 2: CMP chip-package thermal model.

2. Thermal and Leakage Models

Our approach to generating PV maps is based on two phys-
ical models: a compact CMP thermal model and a leakage
power model, which are described in this section. These mod-
els will be used to derive and validate the PV map as explained
in Section 3.

2.1 Thermal Model for Multi-Core Processors
To analyze heat flow, we use a discretized Fourier thermal

model [4], in which heat flow is analogous to electrical current
and temperature is analogous to voltage. As shown in Fig-
ure 2, multicore processors can be divided into several blocks,
each representing a core. Ta is the ambient temperature of
the processor. T0 and T1 are the temperatures for Core 0
and Core 1. Gy is the thermal conductance from the core
to the ambient and Gx is the thermal conductance between
cores. We assume a symmetric cooling solution for which all
core-to-ambient thermal conductances are identical. P0 and
P1 represent the power dissipations of the cores and hence
correspond to the heat generated in the core active layers.

Heat flow can be modeled as follows:

CdT (t)/dt + GT (t) = Pu(t), (1)

where N is the number of thermal elements (with at least one
element per core), C is a diagonal N × N matrix containing
the core heat capacities as the diagonal elements, T (t) is an
N -element vector, each element of which represents the tem-
perature of a core as a function of time, and G is an N × N
thermal conductance matrix where Gij represents the thermal
conductance between core i and core j. u(t) is the t = 0 unit
step function. Section 3.2 explains one use of heat capacity
and dynamic thermal effects to assist characterization.

2.2 Leakage Power Consumption Model
Leakage power consumption is a first-order concern in CMP

management, and is sensitive to the effects of inter-core PV.
Subthreshold leakage power consumption is presently the ma-
jor component of leakage power, and the introduction of high-
κ gate dielectrics means this is likely to remain true in the near
future. According to the BSIM model [5], transistor-level sub-
threshold leakage power can be approximated as follows:

P leak = η · T 2e
−q(Vth(T )+Voff−VGS)

nkT , (2)

where n (=1.5) is the subthreshold swing coefficient for the
transistor [6], Voff = 0.08V is offset voltage, T is the temper-
ature, and η is a technology-dependent parameter.

3. Process Variation Map Characterization

In this section, we formulate the PV map characterization
problem based on the thermal and leakage power models de-
scribed in Section 2. Our objective is to determine the thresh-
old voltages and leakage power consumptions of individual
cores from the temperature readings of all cores. For this pur-
pose, we produce a number of different thermal profiles by us-
ing workloads with carefully controlled levels of processor uti-
lization. For each thermal profile, the dynamic power profile
is held uniform among cores. Leakage power is then estimated
by doing regression analysis with the dynamic power profiles
as independent variables and the thermal profile as depen-
dent variables. The thermal model (Equation 4) and leakage
power model (Equation 2) are used as regression equations.

This regression process requires several parameters including
the nominal leakage power coefficient, the dynamic power of
each workload, and thermal conductance characteristics of the
processor. We explain our characterization technique by first
developing regression model with the assumption that these
parameters are known, then describe how the parameters may
be obtained.

3.1 Regression Analysis
Assuming knowledge of dynamic power, the nominal leak-

age power coefficient η, and the thermal conductance matrix,
the primary input of our regression model is a series of ther-
mal profiles. These thermal profiles are readings from tem-
perature sensors when all the cores are stressed with different
workloads with known CPU usage. Tij is the temperature
of the ith processor with workload j. Given knowledge of
the thermal conductance matrix G, power and steady-state
temperature are related as follows:

G × Tj = Pj + Ta × Gy, (3)

where Tj is the jth column of the T matrix, Pj is the power
profile of all the cores with the jth workload, and Ta is the
ambient temperature as shown in Figure 2. The power con-
sumption is composed of dynamic power and leakage power,
the equation for which follows:

P leak
j = G × Tj − P dyn

j − Ta × Gy. (4)

Similarly, P leak
j and P dyn

j are the leakage power profile and
dynamic power profile of the CMP with the jth workload. ξ
is an N × W matrix, in which P leak

j is the jth column. W
is the set of workloads available for use. Therefore, ξij is the
leakage power of the ith core at temperature Tij , which is
approximated based on Fourier thermal model.

Given the nominal leakage power coefficient η, we can also
estimate the leakage power profile using the model shown in
Equation 2. This leakage profile is subject to the threshold
voltage (V th

0 , V th
1 , ..., V th

N ). Γij is the leakage power for the
ith core with Tij using the leakage model. For a set of data

(Tj ,P
dyn
j ), the threshold voltages can be estimated by mini-

mizing the sum of squared errors:
P

j∈W
|ξj − Γj |

2.

3.2 Parameter Derivation
The proposed regression approach constructs a leakage vari-

ation map for a CMP based on knowledge of the temperature,
CMP total power consumption, and the thermal conductances
of the system. In practice, these quantities are not readily
available. In this subsection, we describe methods for de-
termining the vertical thermal conductance GY , the lateral
thermal conductance GX , nominal leakage, and core dynamic
power consumption P dyn

j . The nominal leakage power is the
average leakage power of all chips that the manufacturer mea-
sures during testing process [1]. The dynamic power of each
workload is determined by subtracting the nominal leakage
power from the total power. As these values may be associ-
ated with a particular processor model, they can potentially
be stored in non-volatile memory or fuses by the chip man-
ufacturer. However, this is not now common, so we have
developed a characterization technique.

Existing and upcoming processor technologies for power
management support on-die power measurement. Some, such
as Intel’s Foxton technology, support independent power sen-
sors on each processor core [7]. The required power measure-
ments could instead be provided by motherboards. Even if
the total power consumption of each workload on an individ-
ual core is known, separating leakage and dynamic power is
challenging. To do this, we use workloads designed to control
the utilization, and therefore power consumptions, of cores.
We also take advantage of the dynamic thermal effect result-
ing from heat capacities (C) in Equation 1 to set dynamic
power and temperature independently.
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Figure 3: Power measurement of processor.

Figure 3 shows power measurements when all cores transi-
tion between idle and active workloads. Note that due to the
heat capacity, the temperatures and therefore leakage power
consumptions of all cores increase gradually. By stressing the
processor to alternate CPU utilization between 0% and 100%,
we isolate the impact of the workload on dynamic (Pdyn)
and change in leakage power consumption (Pleak ). With the
knowledge of the temperature-dependent component (change
in leakage power), we use regression on Equation 2 to deter-
mine the values of η and the temperature-independent com-
ponent of the power consumption associated with the mea-
sured temperature-dependent component of the power con-
sumption, temperature, and the process-dependent parame-
ters.

In addition to the nominal leakage power and dynamic
power, the vertical and lateral thermal conductances are also
required. Starting from the processor power consumptions,
we get the relationship between total power consumption,
thermal profile, and the vertical thermal conductance from
Equation 3. To give an example, we apply Equation 3 to the
four-core processor shown in Figure 2 to derive the follow-
ing equations. The same technique can be applied to general
multi-core processors. By adding the four equations in the
extension of Equation 3, we have

Gy ×
4

X

i=1

(Tij) − 4 × Ta × Gy =
4

X

i=1

(Pij) = P total
j , (5)

where Ptotal
j is the total power, measured using power sen-

sors. Hence, by taking advantage of the linear relationship
between

P

4

i=1
(Tij) and P tota

j , we set parameters to minimize
the sum of squared errors. The vertical thermal conductance
and ambient temperature can thus be derived. Similarly, we
get the lateral thermal conductance by doing linear regres-
sion on thermal and power profiles. To get the relationship
between the lateral thermal conductance, thermal profile, and
power profile, we subtract the i + 1th equation from the ith
in the extension of Equation 3. For example, subtracting the
2nd equation from the 1st yields the following equation:

(3Gx +Gy)T0j − (3Gx +Gy)T1j +GxT2j −GxT3j = P0j −P1j .

Hence, Gx is set to minimize the sum of squared errors in
this relationship between thermal profile and its correspond-
ing power profile. This regression is easy if per-core power
sensors are available. However, if only a single sensor or sin-
gle power supply network is available for the entire CMP, it
still remains a challenge to isolate the power consumptions of
individual cores. To achieve this, we use the nominal power
coefficient and thermal profile to estimate the leakage power
of each core. By adding the dynamic power profile and the
leakage power profile, we approximate the total power profile
yielding an initial Gx. This dynamic power profile is obtained
by measuring the difference between the power consumption
immediately after the power transition in Figure 3. As a re-
sult the heat capacity C in Equation 1, the temperature, and
therefore leakage power consumption, change only gradually
after the power consumption change, allowing the isolation
of dynamic and leakage power consumption. This is not yet

accurate because we assume the leakage power coefficients are
the same for each core. To solve this, we use the initial Gx

as input in the multi-variable regression and get the initial
leakage power map. The initial leakage power map is then
used in the estimation of Gx, iterating until Gx convergence.

4. Process Variation Aware Task Assignment and
Power Management Mode Selection

In this section, the time-constrained CMP task assignment
and power management mode selection problem is used to
demonstrate the importance of knowing a PV map when at-
tempting to optimize system characteristics such as power
consumption and performance.

Problem statement: Given a deadline for a set of tasks,
determine the assignment of tasks to cores and power man-
agement configurations to tasks. The objective is to complete
all tasks within a time constraint and with minimal energy
consumption. Tasks are independent. The core configura-
tion parameters, such as supply voltage, frequency, and active
cache size, are controlled independently for each core. Many
of these features are supported on existing multi-core proces-
sors, e.g., the AMD’s Quad-Core Opteron.

Let T be the set of tasks, C be the set of cores, P be the
set of power management configurations, and B be the time
constraint. Let Eijk be the energy consumption of running
task i on core j with configuration k. Let δijk be the execution
time of task i on core j with configuration k. Let binary
variable Aijk indicate whether task i is assigned to core j with
configuration k. The task assignment and core configuration
problem is formulated as an integer linear program (ILP).

minimize
X

i∈T,j∈C,k∈P

Eijk × Aijk

subject to max
j∈C

X

i∈T,k∈P

δijk × Aijk ≤ B

∀i ∈ T
X

j∈C,k∈P

Aijk = 1

To evaluate the impact of considering PV when solving this
problem, we compare optimal solutions for formulations that
consider, and neglect, PV. From the perspective of problem
input, the PV-unaware approach bases its decisions on the
mean energy–performance relationships, while the PV-aware
approach considers the different energy-performance tradeoffs
of different cores. Note that we are not proposing to use the
optimal ILP solver within the OS.

5. Experimental Results and Validation

This section explains our experimental setup and results,
the approach used for preliminary validation of the proposed
technique, and indicates the impact of considering PV during
task assignment and power state control.

5.1 Experimental Setup
To validate our idea, we use Intel Core 2 Duo E6420 proces-

sors and a Shuttle SD32G2B motherboard as our experimen-
tal platform. This processor is equipped with one thermal
diode per core, which were calibrated by the manufacturer
to within 1℃ error [8]. To reduce the impact of asymmetric
cooling, we replace the original fan and heat sink with a sym-
metric cooling solution. Intel E6420 processors lack on-die
power sensors. We therefore use a current clamp to measure
CPU power consumption. Note that this is unnecessary for
processors or motherboards with built-in power sensors (see
Section 3.2). The voltage regulator power offset does not in-
fluence the result because it affects both ambient temperature
and dynamic power estimates. The workloads used to stress
the processor are controlled CPU utilization programs. By
adjusting the duty cycle of the workload, we indirectly con-
trol processor temperature.



Table 1: Fitted Parameters of Processor
Processor 0 Processor 1

Vth
Core 0 Core 1 Core 0 Core 1

0.2176 V 0.2233 V 0.2672 V 0.2404 V
Thermal
cond.

Vert. Gy Lat. Gx Vert. Gy Lat. Gx

0.54 W/K 0.28 W/K 0.37 W/K 0.18 W/K

Leakage
0.0478 V · (eV/K)2 0.0272 V · (eV/K)2const. η
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Figure 4: Leakage power of four cores.

5.2 Results and Analysis
Figure 4 illustrates the leakage power map characterized

through regression. Consider processor 0. The largest differ-
ence between leakage power for two cores is 0.6W, 20.28% of
the leakage power of core 1. The total leakage power is 6.93W
at 72.9℃, 12.57% of the total power. When the processor is
idle, the leakage power is responsible for up to 16.71% of the
total power. All the parameters including the threshold volt-
age and thermal conductances are shown in Table 1. The
estimated variation in threshold voltage is 2.62%.

5.3 Validation of Characterization Technique
In the interest of validation, we use another set of workloads

with different dynamic power consumptions and predict tem-
peratures based on the extracted PV map (see Section 3).
We start from dynamic power consumption and iterate until
Equation 4 converges. The predicted temperatures are com-
pared with the measured values for four cores. The average
difference between the predicted and measured temperatures
is 1.1 ℃ and the maximum is 2.14 ℃. These results are a step
toward validating the proposed technique. This prediction
technique is also a potential use of the extracted PV maps.

5.4 Task Assignment and Power Management
We used the M5 instruction set architecture simulator run-

ning a number of SPEC CPU2000 benchmarks to generate
input energy–delay relationships for different tasks. We con-
sider the following configuration parameters: instruction cache
(one-way or two-way), L1 data cache (one-way or two-way),
L2 data cache (one-way to eight-way), frequency (1.0, 0.95,
0.9, 0.85× maximum frequency). The M5 simulation results
were used as the input for different tasks on cores with mean
PV parameters, i.e., without any PV.

After obtaining the energy–delay relationships with mean
variation parameters, we applied the variation to each curve
to emulate cores with PV. Based on the switching and leakage
power scaling trends reported by Keshavarzi [9], the leakage
power is approximately half of the total power for a 45 nm pro-
cess. We use this leakage power proportion. We obtained the
PV map (Figure 4) by using the characterization technique de-
scribed in Section 3 on two Intel Core 2 Duo processors. The
frequency variation is derived from the leakage power varia-
tion according to a function fitted to the frequency–leakage
variation plot (see Borkar et al.’s Figure 1 [1]). In addition to
solving the instance based on our characterized PV maps, we
also solved the problem for a number of synthetic PV maps us-
ing frequency and leakage power variation distributions based
on large-scale measurements [1]. The problem instances were
solved with the CPLEX ILP solver [10]. Each problem in-
stance is an assignment of 12 tasks to four cores with 128
power management modes.

The solutions yielded by the PV-unaware formulation have
two disadvantages compared with those from the PV-aware

Table 2: Penalty of PV-Unaware Formulation
Time constraint (ms) 4 5 6 7 8

Energy overhead (%) 2.2 5.3 7.2 8.8 10.7

Deadline violation (%) 34.0 21.5 20.5 8.5 15.5

formulation: (1) they have higher energy consumption and
(2) they sometimes violate their deadlines. The second row
of Table 2 shows the energy consumption overhead of the
PV-unaware formulation relative to the PV-aware formula-
tion with various time constraints for the synthetic PV maps
based on the distributions of Intel measurements [1]. They
are computed by averaging the energy overheads of the 20
simulated chips, neglecting infeasible solutions. As the time
constraint is relaxed, the PV-aware technique is increasingly
able to adapt to CMP characteristics. On average, the PV-
unaware formulation imposes a 6.8% energy penalty. For the
measured PV map, the PV-unaware formulation imposes a
26.0% energy overhead. The third row of Table 2 shows
the probability of PV-unaware solutions violating time con-
straints. Averaging over all task sets and constraints, the
PV-unaware technique violates the deadline for 20% of the
problems while the PV-aware technique meets all deadlines;
the use of the PV-unaware formulation would require tighten-
ing timing constraints, thereby increasing energy consumption
or making the problem unsolvable.

In summary, considering PV during optimization of task as-
signment and power mode selection can substantially improve
system quality. However, for such an approach to be used, the
PV maps of individual processors are required, motivating the
characterization technique described in Section 3.

6. Conclusions

This paper presented a technique that uses built-in sen-
sors to derive the leakage power PV maps for processor cores
in a CMP or multiprocessor system-on-chip. This technique
makes use of the interdependence between temperature and
leakage power to isolate dynamic and leakage power consump-
tion for different regions of the CMP, and uses dynamic ther-
mal effects to independently control the temperature and dy-
namic power consumption of the CMP being characterized.
Our characterization results are validated by comparing mea-
sured and predicted temperatures for CMP workloads. We
also present a novel PV aware technique for controlling CMP
task assignment and power management state in order to op-
timize energy consumption under hard deadlines.
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