
Select Font Size: A A A Sponsored By

RAM for Free
By Lei Yang, Robert P. Dick, Haris Lekatsas, and Srimat Chakradhar

IMAGE: EMILY COOPER

Give us a reading on the 1202 program alarm,” radioed Neil Armstrong to
Mission Control in July 1969, seemingly about to lose his famously cool
demeanor. He was busy trying to steer his spacecraft to the first-ever
manned landing on the moon and was worried that this error message from
his guidance computer meant serious trouble.
Fortunately, a young computer engineer at Mission Control had the insight to
realize that this error was not as ominous as it seemed, and on his signal the
Apollo 11 landing went forward. Within hours of the astronauts' safe
touchdown, it became clear what had happened: the lunar module's
rendezvous radar had remained switched on during descent, when only the
landing radar was needed, and the craft's navigation computer had become
overtaxed trying to process radar data from the two sources. The system's
programmers had, however, built in a fail-safe mechanism that would shed
the less critical tasks so that the computer could do its main job.

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

1 of 7 08/11/2008 02:23 PM

The Apollo Guidance Computer was arguably the first example of an
embedded system, one that incorporates a special-purpose computer
dedicated to a single function. Embedded systems have become the
predominant form of computing, exemplified by the microcomputer-operated
brains inside your microwave oven, your MP3 player, your cellphone, even
your refrigerator, to name just a few. Although many such devices now have
10 000 times as much random-access memory (RAM) as the mere 4
kilobytes of their Apollo-era great-granddaddy, memory constraints continue
to dog their designers.
Cost is one reason: although the prices of RAM have plummeted fast, the
need for memory has expanded faster still. Another concern is all the energy
that RAM requires. Manufacturers of mass-market products, especially
portable devices like music players and mobile phones, must therefore take
care to add no more memory than the software needs to operate. Hewing to
that line is no easy trick. To speed a new product to market, hardware and
software engineers have to work along parallel tracks, which means that
neither side can know quite what the other has in store.
If software designers yield to temptation and ask for more memory than they
could possibly need, they risk wasting a lot of money—even pennies matter
when you're producing millions of units. Or the product could end up being too
power hungry. Yet if they skimp on RAM, they may prevent the unit from
running some new killer app that would allow the gadget to beat the
competition. Such mistakes sometimes force companies to redesign their
hardware, a process that is enormously costly and time-consuming.
We have spent the better part of three years trying to give designers of
embedded systems a third option: to increase effective memory by
compressing the data stored in RAM using just software.
Data compression is standard fare in other parts of the computer business,
of course. DiskDoubler was a top-selling software utility during the early days
of the Apple Macintosh, for example. By encoding regular patterns in the data
in more compact form, it gave users the feeling they'd doubled the space
on their disks—something well appreciated at a time when hard drives held
only a few tens of megabytes.

Unlike the “lossy” compression employed, say, for encoding JPEG images,
the compression used to store programs and associated data has to be
“lossless”: it can't drop a single bit. Conventional wisdom held that additional
special-purpose chips were required for this (or the functions of those chips
had to be designed into the processor, at great expense). Otherwise, the
thinking went, operations would be too slow for memory compression, and in

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

2 of 7 08/11/2008 02:23 PM

portable systems the energy usage would become prohibitive.
Speed and power are indeed often critical for embedded computers, as is
consistency of response time. So it's no wonder that their designers have
shied away from data compression and just added RAM as needed. But it
occurred to us that if you could use data-compression software to control the
way embedded systems store information in RAM, and do it in a way that
didn't sap performance appreciably, the payoff would be enormous.
We began our investigations by taking a long, hard look at existing
compression techniques. The most promising appeared to be something
called Lempel-Ziv-Oberhumer, or LZO, one of the family of widely used
Lempel-Ziv algorithms invented in the late 1970s by the Israeli computer
scientists Abraham Lempel and Jacob Ziv. In the mid-1990s, an Austrian
programmer named Markus Oberhumer wrote the LZO variant in ANSI C,
designing it expressly for speed.
Once we had selected the compression algorithm, we needed to devise ways
to determine which of the data in memory should be compressed and when.
We also had to come up with the means to expand the compressed data
when they were needed. While this might seem nightmarishly difficult, in fact,
getting LZO compression to work reliably in our test-bed system—a
PDA—proved straightforward. We were able to make use of the virtual
memory feature of the PDA's Linux operating system, which swaps
infrequently used data between RAM and disk storage. We modified this
mechanism to compress such data when memory requirements exceed
physical RAM capacity. But instead of writing the compressed data to disk,
the system stores it on a virtual device—a portion of the available RAM.
When an application requires the previously compressed information, our
software locates and decompresses it, then moves it back to the
uncompressed part of the PDA's memory so that the application can continue
to work normally. What's more, our scheme allots space for the compressed
data as needed, so that applications that work fine without extra RAM aren't
slowed down at all.
Programmed in this way, our PDA could use far less memory to run various
applications—games, office tools, even media apps, whose compressed
sound and image data are normally expanded when they are in RAM.
Attempts to operate these same applications using reduced physical RAM but
without data compression generally crashed the system—or made it grind
along at an intolerably slow pace. To ensure that the comparison was valid,
we wrote special software to monitor and then replay user input with identical
timing properties, with and without data compression. And to fully quantify
how much the compression degraded performance, we ran some benchmark
tests that didn't require any user interaction at all. Execution time went up by
almost 10 percent on average and by nearly 30 percent in the worst case.
Recognizing that some situations might not tolerate such lethargy, we sought

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

3 of 7 08/11/2008 02:23 PM

to do better.
The challenge, then, was to come up with an algorithm that would rival
LZO's degree of compression but be much quicker. We managed to satisfy
both requirements by exploiting regularities in the kinds of data that are
typically stored in RAM, a scheme we dubbed pattern-based partial match. It
resembles many other compression techniques in that it replaces frequently
used patterns with short codes and rarely used patterns with longer codes.
The basic strategy is not unlike what Samuel Morse adopted when he
translated the alphabet into a series of dots and dashes—which explains why
the Morse code for the commonly used letter E is just a single dot, while the
rarer J requires a dot and three dashes.
Pattern-based partial match takes advantage of the fact that much of the
RAM in embedded systems is wasted. For example, in a system with 32-bit
(4-byte) data “words,” numerical values often demand just 4, 8, or perhaps
16 of these bits. The rest of the bits are zeros. An integer variable, for
example, is normally just 16 bits wide. And when a particular integer is a
small number—say, the hour or minute value you set on your cellphone
alarm—most of those 16 bits, too, will be zeros. And even when all 32 bits are
really required (to index an arbitrary spot in memory, for instance), nearby
words often hold similar values, because they point to adjacent memory
locations. So such a word can be encoded compactly merely by keeping
track of how much it differs from a neighbor.
The extent to which you can compress data depends on the patterns in the
input. For example, a 32‑bit word whose 3 most significant bytes are zeros is
packed into just 12 bits in our scheme. What's more, our system maintains a
dictionary of frequently used data words. If a word of the input exactly
matches something currently stored in the dictionary, those 32 bits get
squeezed down into just 6 bits.
The dictionary is constructed on the fly, so it can adjust if the statistical
properties of the data change—say, when a pattern that was rare becomes
common. You might think this would make decompression impossible, but in
fact, this neat trick really works. The key is that the dictionary is not saved for
later lookups. Rather, when it comes time to decompress things, the
compressed data themselves are used to re-create the dictionary—and to
update it in a manner that keeps it matched with what was used to compress
the data in the first place.
Jon Louis Bentley of Bell Labs, along with three colleagues, invented this
technique for data compression in the mid-1980s, an approach that has since
become known as move-to-front coding, because newly encountered
patterns are placed at the front of the dictionary. Our version allows for 16
possible matches (or partial matches) to the contents of eight separate
two-entry dictionaries, a somewhat odd arrangement that allows the lookups
to be made at blazing speed.

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

4 of 7 08/11/2008 02:23 PM

Our investigations of the data held in RAM showed plenty of opportunities to
squeeze things down. The algorithm we devised for this can't match LZO or
some other well-known techniques for general-purpose data
compression—say, for compacting the contents of an image file—because
most files don't have the same tendencies as the data typically found in an
embedded system's RAM. A 32-bit word used to encode the color of a
particular pixel, for example, is not likely to be chock-full of zeros. But for
compressing RAM, our system excels. It reduces the space needed by
about 60 percent, and it's startlingly fast. Indeed, our testing revealed that
ripping out this much memory results in a performance penalty of just 0.2
percent on average and 9.2 percent in the worst case. That is, this software
effectively gives an embedded system more than twice the memory it had
originally—essentially for free.
Translating these gains from the lab bench to the marketplace has not been a
trivial undertaking, however. In January 2007 we filed for patents on the
process, which we dubbed CRAMES, for Compressed RAM for Embedded
Systems. We were keen to use it to address a real-world problem: industry's
seemingly continual need to redesign embedded systems like mobile phones
so that they can run ever more complex applications. (Who would have
thought that high- school students would be using their phones to study for
the SAT?)
NEC, which together with the U.S. National Science Foundation sponsored
our project, wanted to reuse existing hardware for its next-generation
cellphone applications, and our compression scheme allowed it to do just that:
the company's Foma N904i smart phone, released in September 2007, uses
CRAMES. But plenty of practical hurdles sprang up along the way.
For example, in real life an application sometimes terminates when its data
are still in the compressed part of memory. Because we initially designed our
software not to know the “owner” of any particular piece of compressed data,
it was not possible to find out which parts of memory belonged to defunct
software processes. So over time, useless data would pile up.
We licked this problem by keeping track of the compressed data and the
applications that created them so that the system could free up orphaned
chunks of memory. This change required slight modifications to the operating
system, however. The production version of CRAMES remains highly
modular, but it is not quite as elegant as the stand-alone operating-system
add-on we first envisioned it to be.
Initially, we tested CRAMES on a cellphone prototyping board that ran
applications that didn't require access to the airwaves. We measured
performance with and without CRAMES switched on, while either cutting back
on the amount of memory available or starting more applications than is
normally possible.

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

5 of 7 08/11/2008 02:23 PM

Later, NEC engineers in Japan gave CRAMES the acid test by running it on
hardware connected to a telecom network. Because there was very little time
before the first product was to ship, they couldn't test our system of
pattern-based partial match completely. So they chose to install a version of
CRAMES that uses older, slower, but more thoroughly proven Lempel-Ziv
compression code.
We were thinking only of embedded systems when we first engineered
CRAMES. But since then we've also been working on some exciting
possibilities involving general-purpose computers (which might allow us to
compress our acronym for this data compression, fittingly enough, to CRAM).
Consider the recent trend of putting more than one processor core on a chip.
Doing so boosts computing power, sure, but it sacrifices the space on the
chip that's available for cache memory, which can hamstring an application
whenever it requires frequent access to main memory. We're now designing
pattern-matching hardware to compress the data in cache memory to speed
up applications.
Another exciting prospect on the horizon involves computers at the other end
of the spectrum: tiny ones found in the least-expensive, lowest-cost systems,
like those in kitchen appliances. Some of these systems have only 4 KB of
RAM—matching what Armstrong and Aldrin had at their disposal in 1969.
We've developed software that manages the memory of such tiny computer
systems and compresses data when space gets tight.
Although we don't envision our memory-compression technique being used
for anything as dramatic as a lunar landing, it's ready for use in equipment
that's every bit as critical to safety: sensor networks that monitor the
structural integrity of buildings or bridges. These applications will require a
great deal of testing, of course, because the software must be able to handle
unexpected situations without failing catastrophically. People accept that their
desktop computers will crash every once in a while, but such embedded
systems must be robust enough not to cause real crashes—as the
designers of the very first one, the Apollo Guidance Computer, knew well.
About the Author
LEI YANG and her colleagues explain how some clever software can replace
costly hardware in “RAM for Free”. Yang is a research assistant at
Northwestern University, where she studied with ROBERT P. DICK, an
assistant professor of electrical engineering and computer science. For two
summers, Yang interned at NEC Laboratories America, where she worked
with SRIMAT CHAKRADHAR, head of the labs' systems architecture division,
and with HARIS LEKATSAS, who is a consultant to designers of embedded
systems.
To Probe Further

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

6 of 7 08/11/2008 02:23 PM

For a listing of the authors’ related articles, see http://robertdick.org
/tools.html.

IEEE Spectrum: RAM for Free http://www.spectrum.ieee.org/print/6479

7 of 7 08/11/2008 02:23 PM

