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ABSTRACT

Air quality and personal pollutant exposure measurement are important for the health and

productivity of individuals. Accurate measurement of personal exposure is challenging

because of the spatially and temporally heterogeneous distribution of pollutant concen-

trations. We propose to use low-cost and miniature mobile sensor networks to provide

real-time measurement of the environment directly surrounding the user. However, there

are many challenges, including sensor drift, cross sensitivity, and noises, to be addressed

before mobile sensor network can be deployed in large scale and real-world applications.

My thesis aims to address those challenges by designing prototype sensor nodes of fu-

ture generation mobile sensor networks, developing optimization techniques and systems,

and evaluating the mobile sensor network in real-world deployments. My efforts can be

divided into four categories: (1) we design the mobile sensor nodes and the mobile sen-

sor network architecture that are capable of automatically collecting environment data and

transferring them to a database; (2) we model the sensor drift based on measurement and

develop techniques such as collaborative calibration and optimal human mobility-aware

sensor placement to minimize the drift error of individual sensors; (3) we model the pollu-

tant concentration in indoor environment considering inaccurate sensors and based on the

model, we develop a hybrid sensor network synthesis technique to design accurate sensor

networks under a cost constraint; and (4) we propose a Bayesian network based sensor

noise reduction system that can correct abnormal sensor readings, re-calibrate the sensor



functions, and identify the gas composition is the environment simultaneously. All the

techniques are evaluated and validated using the data collected from real-world deploy-

ment. Experimental and simulation results show that our technique can reduce drift error

significantly. For example, compared with the closest technique, our collaborative cali-

bration technique can reduce sensor network error by 23.2%; our hybrid sensor network

synthesis technique can improve the result by 35.8%; and our noise reduction technique

can outperform the existing technique by 34.1%.1

1This work was supported in part by NSF under award CCF-1217674.



CHAPTER I

Introduction

Air quality is important. Personal exposure to air pollutants is strongly related to the

health and productivity of individuals. For example, long-term exposure to ozone (O3),

volatile organic compound (VOC), and particulate matter (PM) can cause chronic diseases,

various cancers, and thus increased human mortality [27, 55]. Moreover, even some typi-

cally harmless and naturally existing gases, such as CO2, can cause sick building syndrome

and significantly reduce productivity if in high concentration. Thus, the demand for bet-

ter air quality and tighter environmental regulation is increasing significantly worldwide.

Sometimes, they can even cause social tension and unrest [2].

In response to a growing need for better air quality monitoring, mobile sensing appli-

cations are increasingly popular. The fast development of smartphones and sensor tech-

nology makes many such applications possible, e.g., mobile noise pollution sensing net-

works [46] and mobile personalized air quality sensor networks [35]. Compact, light, and

energy-efficient sensors are now becoming available at prices that permit widespread use

by non-scientists (and scientists). In the future, individuals will carry multiple unobtrusive

sensors with them, within or networked with their smartphones, forming dense and inter-

connected sensor networks. Mobile sensing applications will soon become mainstream.

Mobile sensing systems have many advantages over conventional systems composed

1
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of a few accurate, low-drift, stationary, and expensive sensing stations. For example, in

the personal air quality sensing applications, many pollutants have nonuniform spatial

distributions [66]. As a result, personal exposure is poorly estimated by using sparsely

distributed stationary sensors. If each participant in a sensing system were to carry a

sensor, we would be able to better understand human exposure and provide more relevant

information to users.

However, before mobile air quality sensor networks can be used in real-world appli-

cations, there are still many challenges to overcome. Those challenges include, but not

limited to, sensor drift, cross sensitivity, and sensor noise.

• Sensor drift. Drift is the gradual deviation of a sensor’s readings from the ground

truth value. It is affected by many factors that change the sensing surface and thus

change the sensor function that translates the analog sensor inputs into pollutant con-

centrations. Mobile sensors are generally more susceptible to drift than stationary

sensors due to trade-offs made for compactness and economy. Our deployment data

has shown that even within a short period of time, such as several months, the drift

can be significant enough to make the sensor useless. This problem is amplified

because it is difficult to frequently calibrate mobile sensors, especially when they

are carried by non-specialists. Thus, for sensor drift, the main challenge is, “how to

model the drift and compensate for its error in real-world applications?”

• Cross sensitivity. Cross sensitivity refers to the sensor responding to gases in the air

other than the targeting pollutant. The low-cost sensors typically have poor selec-

tivity, i.e., their readings can be influenced by multiple pollutants, or even humidity.

In real-world applications, the types of pollutant gases in the air are usually un-

known and unpredictable, which cause additional uncertainties to the measurement
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Figure 1.1: Flow chart of the thesis.

results and make the drift calibration more unreliable. For cross sensitivity, the main

challenge is, “How to identify the gas composition in the air and quantify their con-

centration separately under the influence of drift?”

• Sensor noise The readings reported by the metal oxide sensors usually contain a

significant amount of noises. They can be caused by random environment and elec-

trical noises, cross sensitivity, and drift. The sensor error caused by random noises

and cross sensitivity can be detected and compensated for using a Bayesian network

based approach by exploiting the correlation between sensors. However, the abnor-

mal readings caused by sensor drift can not be corrected by a basic Bayesian belief

network directly. Thus, the main challenge is, “How to differentiate and remove the

sensor noise caused by drift and re-calibrate the drifted sensor?”

In this work, We have demonstrated that using indoor airflow based modeling, hu-

man mobility based sensor placement optimization, and Bayesian reasoning based

machine-learning techniques can reduce error due to sensor drift and noise by more
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than 30% relative to the existing error compensation methods, making mobile air

quality sensor networks more practical in real-world applications.

Specifically, in this work, we will design novel calibration and deployment schemes to

minimize drift error, classify and correct noisy readings, design and build low-cost sensing

devices and use them to validate the concept of mobile sensor network through real-world

deployments. Figure 1.1 describes the steps to achieve these goals. I’ll elaborate on each

piece in the following subsections.

1.1 Mobile Sensor Network Design and Deployment

To form mobile sensor networks, the basic requirement is the availability of low-cost

sensing devices capable of sensing multiple relevant environmental parameters. For ex-

ample, we need several metal oxide gas sensors to monitor various types of pollutants in

the air. We also need temperature and humidity sensors to calculate the pollutant con-

centration from the analog readings reported by the metal oxide sensors. Therefore, we

have designed a personal mobile air quality sensing (MAQS) platform, which includes a

small mobile pollution sensing pod (M-Pod) and a smartphone application. The M-Pod

is a wireless embedded sensing, computation, and communication device based on the

design of Arduino BT [1]. It supports detection of various air pollutants, including NO2,

CO, CO2, O3, and volatile organic compounds (VOCs). It can also measure temperature,

humidity, and light intensity. The total cost of all the components of the sensing platform

is less than $150.

Because of all the drift, cross sensitivity, reliability, and noise problems, the concept

of mobile air quality sensor network needs to be evaluated and validated. We have de-

signed a system, based on the M-Pod design, that can automatically collect data from the

individual users, transfer them to the database via WiFi, and display them through a web
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interface. Using our mobile sensor network system, we have performed various real-world

deployments, which can provide user exposure data, help us understand the sensor drift

and cross sensitivity, and build dataset for the evaluation of our techniques.

1.2 Collaborative Calibration and Sensor Placement

Another significant problem of the metal oxide sensors is drift. The low-cost sensors

stationed on the M-Pod are susceptible to measurement drift and can accumulate substan-

tial drift error in short time spans. The cause of drift has been demonstrated by many

existing works [28, 57]. We have also performed a controlled experiment in a gas cham-

ber to better understand and model drift error. To compensate for drift error, we propose

a realistic drift model based on analysis of our drift experiment data. Based on the drift

model, we have designed optimal collaborative calibration and stationary sensor place-

ment techniques. By allowing the mobile sensors to calibrate with each other optimally

and maximizing the rates at which mobile sensors can implicitly calibrate with stationary

sensors, the overall accuracy of mobile sensor networks can be significantly improved.

1.3 Hybrid Sensor Network Modeling and Synthesis

The collaborative calibration technique can improve the accuracy of individual sen-

sors under assumption of a densely deployed sensor network. However, in real-world

applications, deployment is usually subject to cost constraint. Therefore, it is desirable

to develop a sensor network synthesis technique to maximize the accuracy of the sensor

network while controlling the total cost. We propose a hybrid sensor network architecture,

which includes accurate stationary sensors (to support calibration) and inaccurate mobile

sensors (to provide personalized measurement). The deployment field is divided into mul-

tiple zones. We have derived optimal models to estimate the pollutant concentration in
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zones that are not covered or covered by inaccurate sensors. Based on the optimal model,

we have developed a synthesis algorithm that can maximize the sensor network accuracy

under a cost constraint.

1.4 Error Reduction and Sensor Re-calibration

For the low-cost sensors, one major problem that causes measurement error in real-

world applications is cross sensitivity. Besides the targeting pollutant, the low-cost sensors

usually respond to a wide range of pollutants. However, cross sensitivity also causes

correlation between different types of sensors, which can be exploited to compensate for

drift and re-calibrate the sensors.

To detect the abnormal readings and identify the gas composition in the air, we propose

to use the Bayesian network to model and quantify the inter-dependencies of different

types of sensors observing the same physical environment. Furthermore, to address the

sensor drift problem which can not be handled by Bayesian network directly, we have

designed a system incorporating virtual evidence and sensor function re-calibration. Based

on the dataset derived from a real-world co-location deployment, it is shown that our

technique can reduce error significantly.

1.5 Thesis Organization

This dissertation is organized as follows.

• Chapter II describes our custom-built M-Pod sensing platform, which is the basic

sensing node of our mobile air quality monitoring system. This chapter explains the

design of our system and some real-world deployment experiences.

• Chapter III describes the technique to automatically calibrate the sensors collabo-

ratively, i.e., calibration among mobile sensors. It also presents the mixed-integer
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linear programming (MILP) based stationary sensor placement technique to maxi-

mize the opportunities for calibration.

• Chapter IV talks about a hybrid sensor network synthesis technique based on indoor

environment modeling. This technique aims to improve the accuracy of the sensor

network given a budget constraint.

• Chapter V presents our Bayesian network based technique that can detect and re-

cover the sensor noise caused by sensor drift, re-calibrate the sensor functions, and

identify the gas composition in the environment simultaneously.

• Chapter VI concludes the thesis.



CHAPTER II

M-Pods and Air Quality Monitoring Systems Design

2.1 Introduction

Research has shown that people in the U.S. spend 90% of their time indoors [67]. Only

26% of buildings meet the air quality standards established by the American Society of

Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) [31]. Poor air quality

hurts human health, productivity, safety, and life quality [17, 40, 69]. We propose to use

mobile environmental sensor networks to monitor personal air quality. Mobile personal

air quality sensors have a tremendous advantage over stationary sensing systems: they

measure pollution where their users (carriers) are.

Air quality data are presently primarily measured using accurate, professionally main-

tained, stationary, and expensive pollution sensing equipment. For example, the instru-

ment used to measure carbon dioxide at Mauna Loa requires thousands of dollars to main-

tain and staff [63], while a portable infrared carbon dioxide sensor costs less than $100 [3].

Compared to stationary sensors, mobile sensor networks support more accurate per-

sonal pollution exposure measurement. Stationary sensors and instruments are usually

sparse and many pollutants have nonuniform spatial and temporal distributions [66]. Al-

though the on-going reduction of miniature sensors’ prices might allow more dense sta-

tionary sensor networks in the future, the mobile sensors can still be more accurate in many

8
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Figure 2.1: M-pod personal air quality sensor.

situations, e.g., while in transit or in locations visited by few people. Inaccurate personal

exposure estimation can result in incorrect scientific conclusions, unnoticed health risks,

and bad regulation decisions.

We describe a personal mobile environmental sensing network composed of a large

number of compact, light, and energy-efficient pollution sensors [35]. We have developed

the M-pod, a mobile air pollution sensing device for personal air quality monitoring. It

uses miniature and inexpensive sensors. The low price of platforms such as the M-pod

may permit widespread use by non-scientists as well as scientists.

2.2 Mobile Pollution Sensing Device

The M-pod (shown in Figure 2.1) is a mobile sensing platform supporting embedded

sensing, computation, and wireless communication. Table 2.1 lists the components. It
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Table 2.1: M-Pod Components
Hardware MCU Bluetooth Battery Size (inch)

specs ATMEGA 168 WT11 Off-the-shelf 2×2.5
On-board Temperature CO2 Humid. & Temp. Light
sensors TMP100 S100 SHT21 GL5528

supports detection of various air pollutants, including NOx, CO, CO2, ozone, and VOCs.

It can also measure temperature, humidity, and light. The latest revision of the M-pod is

compact (2×2.5 inches) and energy efficient, with a battery life of greater than 12 hours.

The whole device, including a Li-ion battery with a capacity of 6,000 mA-h, is enclosed

by a low-cost off-the-shelf case that can be carried using an armband or attached to a

backpack. A 3.3 V DC fan is used to control airflow. A rectangular filter is installed around

the sensors to increase sensing accuracy and prolong sensor life. Most of the power hungry

on-board sensors are power gated and can be controlled by commands from smartphones.

Data are temporally stored in a one megabyte non-volatile EEPROM. The total cost of the

on-board components and sensors is less than $150 and can be reduced further if produced

in quantity.

To receive, store, and present the data gathered by our M-pod device, we have devel-

oped on-board firmware, smartphone applications, data servers, and web interfaces. The

firmware defines protocols of sensing, storing, and sending the environmental data. The

smartphone application communicates with the M-pod via its Bluetooth interface. It can

issue commands to and receive data from the M-pod. The data are transmitted to the on-

line data server and stored in the databases. A web-based user interface allows users to

access and analyze air quality data.

2.3 Deployment Experience

The M-pod has been used in several experiments at the University of Michigan and the

University of Colorado Boulder. M-pods were introduced to students from Diné College



11

Sensors  

CO2, NOX, CO, Ozone, 
VOCs, temperature, 

humidity, light

M-POD
Hardware

MCU, Bluetooth, 
fan, battery, 

etc.

Smartphone  

Bluetooth

Data server & web interface  

Wifi

Data Management

User interface

Query language

Social network

Figure 2.2: M-pod system overview.

at two workshops. At each workshop, approximately 10 participants paired up to carry

5 M-pods. The first workshop deployment lasted several days and the second workshop

deployment lasted four weeks. Another co-location deployment, which lasts two month-

s, allows us to investigate sensor drift. The details of this deployment can be found in

Chapter V.



CHAPTER III

Collaborative Sensor Calibration and Sensor Placement

3.1 Introduction

During the deployment of our M-Pod system, as well as other metal oxide sensor

based devices, a major problem we have encountered is sensor drift. Drift is a function

of various factors such as sensing material, exposure to sulfur compounds or acids, aging,

or condensate on the sensor surface [6, 28]. It is reported that short-term sensor drift

can be modeled accurately with simple models but long-term drift is less predictable [21,

28, 57]. Erroneous measurements caused by sensor drift can result in incorrect scientific

conclusions, false alarms, and bad decisions. Therefore, low cost sensors require frequent

re-calibration.

Manually calibrating sensors to compensate for drift is time-consuming and burden-

some; it can annoy users and limit their desire to use the sensors, which will result in an

ineffective system. Automatic calibration (which requires no explicit user intervention)

has the potential to solve these problems, thereby increasing mobile sensing opportunities.

We propose a system supporting automatic, opportunistic, and collaborative calibration

among mobile sensors. Our solution takes into account the gradual increase in sensor drift

error with time, and appropriately weights different calibration events based on the time-

dependent estimated errors of the other sensors, i.e., we consider the temporal and spatial

12
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properties of the graph formed by (transitive) calibration events. Although we do not

require the presence of stationary sensors, we support their inclusion in the system, and

also provide algorithms for determining their best locations. Our evaluation makes use of

controlled sensor drift studies as well as measured human motion patterns.

The proposed collaborative calibration approach is appropriate for applications with

the following characteristics.

1. Spatial variation of sensor readings are low within certain physical distance.

2. Sensor nodes are able to communicate with each other and detect when they are

within calibration distance, e.g., either by tracking their own locations or by mea-

suring signal attenuation between nodes.

3. Sensor drift can be compensated for using a drift predictor. The residual error of

this predictor has a Gaussian distribution with variance that increases as a function

of time, as explained in Section 3.4.2 and demonstrated in Section 3.6.1.

Our technique can potentially be used in many mobile sensing applications, such as radia-

tion sensing applications in which sensors are carried by individuals and unmanned aerial

vehicles, remote sensing applications in which detailed data are available from in-field

sensors and sparse data are available from satellites, and personal environmental sensing.

Although the concepts we develop apply to a broader range of mobile sensing systems

susceptible to drift error, in the rest of paper, we focus our discussion on a personal air

quality sensing application.

It should be noted that collaborative calibration minimizes the increase in the rate of

uncompensable drift error, but does not eliminate error. Without the stationary accurate

sensors, the mobile sensor network’s overall accuracy degrades over time. The use of a

few stationary accurate sensors to augment mobile collaborative calibration is beneficial;
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it allows the drift error to be bounded.

Our work makes the following main contributions.

1. We formulate and solve the opportunistic collaborative mobile sensor calibration

problem.

2. We formulate and solve the mobility aware stationary sensor placement problem to

augment collaborative calibration.

3. We propose a sensor drift model built using experimental data from 15 VOC sensors.

To better understand and characterize the effects of real-world human motion on calibra-

tion, we also carried out an indoor human motion pattern study on a university campus.

Compared with our collaborative calibration scheme, the most advanced existing auto-

calibration technique has an average error of 23.2%, while our efficient heuristic has an

error of 2.2%. We also present two algorithms for placing stationary sensors to further

improve mobile collaborative calibration. The use of well-placed stationary sensors with-

in the collaborative calibration system techniques reduces sensing error significantly, e.g.,

by about 40% for a density of 1 stationary sensors per 25 mobile sensors. The approx-

imation algorithm based placement technique results in only 6.2% more error than an

mixed-integer linear programming (MILP) based technique.

The rest of this chapter is organized as follows. Section 3.2 gives a motivating example.

Section 3.3 summarizes the related work on collaborative calibration and stationary sensor

placement. Section 3.4 describes the sensor random drift model and our collaborative

calibration method. Section 3.5 generalizes the human mobility model, and provides an

MILP based solution for the human motion aware stationary sensor placement problem

as well as an approximation algorithm. Section 3.6 describes our controlled-environment

experiments for sensor drift and the data analysis results. It also evaluates the performance
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Figure 3.1: (a) Human motion traces and calibration events and (b) drift errors for three
sensors.

of our techniques using simulations based on real-world and synthesized human motion

traces. Section 3.7 concludes the paper.

3.2 Motivating Example

Consider a mobile sensor network formed by sensing devices carried by individuals

to monitor their air pollution exposures. Each device houses small, energy efficient, and

inexpensive metal oxide gas sensors that measure various air pollutants. The sensor mea-

surements gradually drift over time. Drift rates can vary greatly; to minimize error, the

sensors must be re-calibrated frequently. In many cases, accurate stationary sensors are

not readily accessible for users, and the occasional calibration opportunities they provide
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are insufficient to cover all the participants in the sensing system. By using collabora-

tive calibration together with optimized placement of stationary sensors, accuracy can be

significantly improved.

Figure 3.1 illustrates an example of our mobile sensor network calibration technique.

Figure 3.1(a) shows the trajectories of three mobile sensors (A, B, and C). Figure 3.1(b)

shows their uncompensable drift errors over time. Each vertical drop in Figure 3.1(b)

corresponds to one calibration event. Between calibration events, the drift error increases

with time as a result of reduced drift prediction accuracy. Given the mobile sensor motion

traces, our sensor placement approach decides where to put accurate stationary sensors to

maximize the probabilities of mobile sensors being calibrated against the stationary sensor.

In this example, the stationary sensor is located at a position both sensor A and B visit,

thus providing ground truth calibration for two sensors. When sensor A and B get close to

the accurate stationary sensor, their errors drop due to calibration (refer to Figure 3.1(b)).

Our problem formulation and solution also consider a realistic human mobility model

that considers individual motion traces able to represent day-to-day variation. With our

collaborative calibration technique, even though sensor C never directly calibrates with any

(accurate) stationary sensor, its drift error still reduces in the third day by calibrating with

sensor A, which has a smaller error due to recent calibration with an accurate stationary

sensor.

3.3 Related Work

This section summarizes prior work on auto-calibration and placement for distributed

sensor networks.

Bychkovskiy et al. [12] proposed a two-phase post-deployment calibration technique

for dense stationary sensor networks. In the first phase, linear relative calibration relations
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are derived for pairs of co-located sensors. In the second phase, the consistency of the pair-

wise calibration functions among groups of sensor nodes is maximized. Their technique

requires a dense deployment of stationary sensors. In contrast, our work focuses on mobile

sensor networks.

Miluzzo et al. [49] proposed an auto-calibration algorithm for mobile sensor networks,

called CaliBree. In their approach, uncalibrated mobile nodes opportunistically calibrate

themselves when interacting with stationary sensors. In their work, calibration events

always involve stationary sensors. Our work supports calibration with stationary sensors,

but in contrast also supports calibration among mobile sensors, allowing either higher

accuracy or a reduction in the number (and therefore cost) of stationary sensors.

Tsujita et al. [65,66] studied calibration for air pollution monitoring networks. They [66]

observed that at a certain time of day, the nitrous oxide pollutant concentration becomes

low and uniform in certain areas. They use these opportunities to calibrate mobile sensors

using the pollutant concentration reported from nearby environment monitoring stations.

In their other work [65], when multiple sensors are close to each other, the average of

their readings is used as ground truth to estimate sensor drift. In contrast, we account for

the gradual increase in drift error as a function of time, allowing an optimal weighting

for each of the many calibration events used to determine drift compensation parameters.

Our experimental results show that the technique proposed by Tsujita et al. technique has

23.2% error relative to the optimal result; our proposed heuristic only has 2.2% error.

Berry et al. [7] used an MILP based method to solve the NP-hard problem of placing

sensors in water networks for optimal contamination detection. Chakrabarty et al. [13]

tried to find an optimal sensor placement scheme to minimize the cost of sensors while

meeting coverage constraints. Our problem formulation differs in that mobile sensors are

carried by individuals. A realistic human mobility model is therefore necessary to solve
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our placement problem. We build our human mobility model based on previous research

and our indoor human motion study, and solve the stationary sensor placement problem

using a high quality but potentially slow MILP method and an efficient approximation

algorithm based technique.

3.4 Collaborative Calibration

This section describes our collaborative calibration technique. We present the problem

definition, mathematical analysis, and our algorithm to solve this problem optimally.

3.4.1 Overview

Our collaborative calibration technique uses drift modeling and sensor fusion to reduce

drift-related sensor measurement error. Sensor drift models, or drift predictors, are built

based on past measured or estimated drift errors. They are used to estimate sensor drift at

any point of time and (partially) compensate for drift errors in sensor measurements. In

addition, the drift model allows the residual error of the drift predictor to be predicted as a

function of time. Sensor fusion uses measurements from co-located sensors to improve the

accuracy of the combined results. The fusion algorithm determines how to combine multi-

ple sensor measurements based on their residual errors in order to maximize the combined

accuracy. In implicit mobile calibration, sensor fusion happens whenever sensors happen

to be close to each other; our calibration technique is opportunistic and collaborative.

Since nearby sensors are exposed to similar physical conditions, readings from co-

located sensors can be combined to statistically improve accuracy. As mentioned before,

each sensor has a residual error associated with its post-drift-compensation measurement.

Each calibration event allows this error to be reevaluated and potentially reduced. If the t-

wo residual errors are independent, the measurement with the smaller residual error should

be given more weight during combination. Calibration relationships introduce correlations
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in sensors’ residual errors that the calibration algorithm must account for. Section 3.4.3

describes our correlation-aware fusion algorithm in detail.

3.4.2 Collaborative Calibration Problem Definition

Our analytical framework can handle classes of mobile and stationary sensors with

arbitrary drift rates. Without loss of generality, we will focus our discussions on systems

composed of inexpensive, high drift rate mobile sensors, and expensive but accurate s-

tationary sensors with low drift rates. We assume that these stationary sensors provide

accurate readings, either because they are inherently resistant to error or because they are

maintained by experts.

For the mobile sensors, we assume only that (1) there exists an unbiased drift predictor

whose residual error has Gaussian distribution and that (2) we have knowledge of how

its variance increases over elapsed time since the most recent calibration event. As ex-

plained in Section 3.6.1, we observed that high-quality predictors for our sensors have this

property.

Our goal is to develop a distributed technique that automatically compensates for sen-

sor drift error; there is no notion of a central controller that has access to data from all

sensors. Avoiding dependence on a central controller can reduce sensing system energy

consumption, cost, and security problems.

We now present the formal problem definition. Given N mobile sensors and M ac-

curate stationary sensors, the location of a mobile sensor i at time t is Li(t), i ∈ N . The

location of accurate stationary sensor j is Lj, j ∈ M . Sensor i’s raw reading (including

drift error) at time t is ri(t). Its drift prediction function is fi(t, k1, k2, ..., kn). The parame-

ters of this function may be different for each sensor and may change over time. The error

associated with the drift predictor e(t) changes over time. The drift-compensated sensor
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Figure 3.2: An example of sensor error correlation as a result of previous calibration
events.

reading is Ri(t) = ri(t)−fi(t). The accurate value of the monitored parameter at location

l and time t is Gt
l . Let Ci(t) be the post-calibration sensor reading. In other words, Ci(t) is

the sensor reading after drift compensation and sensor fusion. The goal is to determine k1,

k2, ..., kn for each sensor to minimize its total mean squared error, i.e.,
∑

t (Gt
l − Ci(t))2.

Each sensor i at time t, only has access to Rj(t) of sensor j when |Li(t) − Lj(t)| < Dc

(Dc is the calibration range).

Our measurements in several rooms suggest that in well-ventilated rooms with no obvi-

ous pollution sources, the pollutant mixture is spatially homogeneous within 2 m distance.

We will use this distance as calibration range Dc in simulations. Note that the spatial

distributions of air pollutant concentrations vary based on nearby pollution sources and

ventilation conditions, thus the calibration range depends on circumstances.

3.4.3 Error Estimation and Error Propagation

As we mentioned before, each sensor has a residual error that is adjusted after each

calibration event. In this section, we describe how this residual drift error is calculated and

minimized via calibration and prediction. We address the problem of predictor design for
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one particular type of sensor in this paper. In general, the predictor should be provided by

the sensor manufacturer or determined by pre-deployment lab calibration.

We start with a simple scenario where errors of two sensors are independent. Assume

two co-located sensors A and B. Sensor A’s current error estimate is na and sensor B’s

current error estimate is nb, where na and nb are random numbers with Gaussian distribu-

tions Na and Nb and standard deviations Ea and Eb (in the rest of the paper, we use N to

represent a Gaussian distribution, n to represent a random number following distribution

N , andE to represent its standard deviation). Assume this is the first time sensors A and B

calibrate with other sensors. Na and Nb are independent and their standard deviations, Ea

and Eb, are determined by how long the sensors remain uncalibrated. Let G be the ground

truth value of the physical condition measured by the sensors. Readings from these two

sensors can be represented as Ra = G + na and Rb = G + nb. The weighted sum of Ra

and Rb is Rab = α ·Ra + (1− α) ·Rb = G+N(0,
√
α2 · E2

a + (1− α)2 · E2
b ). It is easy

to prove that when

α = E2
b /(E

2
a + E2

b ), (3.1)

the weighted sum has minimal standard deviation for both calibrated sensors, i.e., G +

N(0, EaEb/
√
E2
a + E2

b ). A reading from the sensor with smaller error is given more

weight. After calibration, both sensors should adjust their readings to Rab and use Rab to

estimate their current ground truth readings as well as to predict future drifts.

Now we consider the scenario in which Na and Nb are correlated. This may hap-

pen as a result of both sensors directly or transitively calibrating with the same mobile

sensor prior to their calibration with each other. In this case, we need to know the cor-

relation between Na and Nb to compute the optimal combination of their readings. Let

us consider the example shown in Figure 3.2. Assume three sensors A, B, and C all start

operating at time 0. At time t1, sensors A and B calibrate. Their calibration parameters
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are independent of each other at that time and thus the analysis in the previous paragraph

for independent errors can be applied. Assume weights of 0.2 and 0.8 are used, thus the

error after calibration is 0.2na1 + 0.8nb1. At time t2, sensors B and C calibrate. As-

sume sensor B’s drift prediction error increased by nb12 from time t1 to t2. The errors

of B and C are still independent. Assume the optimal weight is 0.5 in this case. After

calibration, B’s and C’s errors are 0.1na1 + 0.4nb1 + 0.5nb12 + 0.5nc2. At time t3, sen-

sors A and C calibrate. A’s error is now na3 = 0.2na1 + 0.8nb1 + na13 and C’s error is

nc3 = 0.1na1 + 0.4nb1 + 0.5nb12 + 0.5nc2 + nc23. Note that at that moment, these two

sensors contain the same errors generated from the previous calibration, which are na1 and

nb1. Now Na and Nc are correlated and Equation 3.1 cannot be directly applied. However,

it is still possible to use the weight assignment technique to find an optimal solution. To

do that, we can remember all the independent distributions and weight assignments from

previous calibration events.

Now we present the general approach that accounts for correlation introduced by tran-

sient calibration events among sensors. Each sensor’s error distribution is represented as a

weighted sum of multiple independent error distributions. Each independent distribution

is from the other sensor’s or its own increased prediction error over the uncalibrated time

interval. Label the two calibrating sensors as sensor 1 and 2. Let S1 and S2 be the sets

of independent error distributions for sensors 1 and 2. Let C be the intersection of S1

and S2, i.e., C = S1 ∩ S2. Let C1 and C2 be S1 and S2’s non-overlapping regions, i.e.,

C1 = S1 − C, C2 = S2 − C. Let W1i and W2i be the weights associated with the error

distributions for sensors 1 and 2, δi be the standard deviation of each distribution, and G

be the ground truth value of measured object. Sensor 1’s reading after drift compensation
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is

R1 = G+
∑
i∈C

W1iN(0, δi) +
∑
j∈C1

W1jN(0, δj). (3.2)

Sensor 2’s reading is

R2 = G+
∑
i∈C

W2iN(0, δi) +
∑
k∈C2

W2kN(0, δk). (3.3)

In order to generate more accurate results by combining the readings of sensor 1 and 2,

we use a linear weighted sum function to combine their drift-compensated measurements.

Assuming the weights are α and 1−α for sensor 1 and 2 respectively, the combined result

is

R12 = αR1 + (1− α)R2

= G+
∑
i∈C

[αW1i + (1− α)W2i]N(0, δi)

+
∑
j∈C1

αW1jN(0, δj) +
∑
k∈C2

(1− α)W2kN(0, δk). (3.4)

The variance of the error for the combined reading is

V ar =
∑
i∈C

[αW1i + (1− α)W2i]
2δ2i +

∑
j∈C1

W 2
1jα

2δ2j

+
∑
k∈C2

W 2
2k(1− α)2δ2k. (3.5)

The derivative of the variance is

dV ar

dα
= 2α

∑
i∈C

(W1i −W2i)
2δ2i + 2

∑
i∈C

W2i(W1i −W2i)δ
2
i

+ 2α
∑
j∈C1

W 2
1jδ

2
j + 2α

∑
k∈C2

W 2
2kδ

2
k − 2

∑
k∈C2

W 2
2kδ

2
k. (3.6)

To minimize the variance, we have dV ar
dα

= 0, therefore

α = ∑
i∈CW2i(W2i −W1i)δ

2
i +

∑
k∈C2

W 2
2kδ

2
k∑

i∈C(W1i −W2i)2δ2i +
∑

j∈C1
W 2

1jδ
2
j +

∑
k∈C2

W 2
2kδ

2
k

. (3.7)
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Equation 3.7 gives the general expression for weight assignment. In the case of two

independent sensors (C is empty), we have

α =

∑
k∈C2

W2kδ
2
k∑

j∈C1
W 2

1jδ
2
j +

∑
k∈C2

W 2
2kδ

2
k

=
E2

2

E2
1 + E2

2

, (3.8)

which is consistent with Equation 3.1.

Note that the above analysis applies only to the scenario where collaborative calibra-

tion involves two sensors. It is possible to extend the evaluation to an arbitrary number of

co-located sensors, although this would increase the complexity of the weight assignment

expression.

3.4.4 Collaborative Calibration Algorithm

We have presented the key concept allowing the optimal calibration algorithm to com-

bine readings from co-located sensors. Now we present the complete algorithm for col-

laborative calibration, which includes drift compensation, weight assignment, and drift

reevaluation. Note that calibration opportunity detection is not part of our algorithm.

There are multiple existing approaches to discover calibration opportunities, including

radio communication (e.g., Bluetooth), ultrasound, and passive audio environment based

proximity detection schemes [23, 35, 54].

The key data structure used is a table that stores all the independent error distributions

and their corresponding weight assignments for each sensor. Each entry is a tuple of

name, weight, and standard deviation. The names are used to distinguish independent

error distributions. The calibration algorithm for a mobile sensor labeled i that calibrates

with sensor j is shown in Algorithm 1.

Mobile sensors participating in the collaborative calibration system carry out three ac-

tions every time a calibration event happens: (1) estimate its current drift with its drift

predictor and use the result to compensate its raw reading, (2) estimate the ground truth
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value and update its error table, and (3) use the estimated ground truth value to recompute

its drift, residual error, and drift predictor. The type of co-located sensor determines the

details of step (2). If the co-located sensor is an accurate stationary sensor, its reading can

be directly used as ground truth to estimate the mobile sensor’s drift. The mobile sensor

ignores its own reading and directly overwrites its own reading with the reading from the

stationary sensor and its current error immediately drops to zero. As a consequence, it can

forget all previous calibration errors as they become irrelevant (clear the table). Otherwise,

if the co-located sensor is also a mobile sensor with a non-zero error, its drift-compensated

reading is combined with the mobile sensor’s drift-compensated reading according to E-

quation 3.7 to generate an estimate of ground truth and the error distribution table will be

updated accordingly.

3.5 Stationary Sensor Placement

In this section, we consider placement of stationary sensors to further assist the collab-

orative calibration of mobile sensors. Our discussion will focus on human-carried sensors.

3.5.1 Overview

Adding stationary sensors to a system composed of collaboratively calibrating mobile

sensors can further improve accuracy. The number of stationary sensors is constrained by

cost; they must be carefully positioned to enable frequent calibration opportunities with

mobile sensors. Fortunately, humans move with patterns that can be used to our benefit;

some locations are more frequently visited than others [44].

Recent research has shown that most people’s daily motion patterns are predictable [25,

58,60]. We present a stochastic human mobility model capable of capturing the most rele-

vant motion patterns for the stationary sensor placement problem. The field for stationary

sensor deployment is modeled as a grid in which implicit calibration may occur among
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Algorithm 1 Collaborative calibration algorithm for mobile sensor i
Require: ri // i’s raw reading
Require: Rj // j’s calibrated reading
Require: Ti // i’s error table
Require: Tj // j’s error table
Require: t // current time

if j is accurate stationary sensor then
Ri ← Rj

Di′(t)← ri −Ri

Update drift model
Ti.clear()

else
Predict current drift Di

Ri ← ri −Di

Ti.insert(i.t, g(t− last cali t), 1))
C ← Ti

⋂
Tj

C1 ← Ti − C
C2 ← Tj − C
Compute α using Equation 3.7
Rij ← αRi + (1− α)Rj

Update current drift D′i(t)← ri −Rij

Update drift model
for k ∈ C do
Ti[k].weight← Ti[k].weight ×α + Tj[k].weight × (1-α)

end for
for k ∈ C1 do
Ti[k].weight← Ti[k].weight ×α

end for
for k ∈ C2 do
Ti[k]← (Tj[k].name, Tj[k].var, Tj[k].weight ×(1− α))

end for
end if
last cali t← t
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Figure 3.3: Example human motion trace with 3 patterns.

sensors in the same grid element. It is possible to eliminate discretization problems by

making grid elements arbitrarily small and permitting calibration between nodes in mul-

tiple grid elements within the calibration distance. We define a motion pattern as a set of

locations (grid elements) that a person is likely to visit on a particular day. An individual’s

mobility model is a probability-weighted collection of possible motion patterns. Extreme

sensor drift typically occurs on a timescale of days, not hours, enabling a simplified model

that neglects the order of visited locations within a single day. In our evaluation, these

models are extracted from measured motion traces as well as those generated by software

provided by human motion pattern researchers [44].

Daily motion patterns are weighted with probabilities. For example, as shown in Fig-

ure 3.3, there are three distinct patterns: r1, r2, and r3. A value ranging from 0 to 1 is

associated with each pattern to indicate its probability. It is possible for multiple station-

ary sensors to be encountered by a person in a day. However, encountering one is sufficient

for calibration.
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3.5.2 Sensor Placement Problem Definition and MILP-Based Solution

We now define the problem of stationary sensor placement to assist calibration of mo-

bile sensors.

Problem Definition: The field for stationary sensor deployment can be represented by

a grid G. A set of people S move within the grid. Each person s ∈ S carries a mobile

sensor. A person’s motion pattern for a particular day, rs, is a set of locations. R is the

set of all motion patterns, and the motion patterns associated with a particular person s

are represented with Rs. Each motion pattern r is associated with a value psr, which is

the probability of person s having pattern r. The sum of the calibration probabilities of

all patterns of person s is Ps. A total number of k sensors are deployed in the field. The

optimization objective is to find a set of grid elements in which stationary sensors should

be placed to maximize the average daily probability of mobile sensor calibration, i.e.,∑
s∈S Ps

k
.

This problem is NP-hard. Let each pattern be represented by an element associated

with a probability weight and each possible stationary sensor placement location be repre-

sented by a subset. An element belongs to a subset if and only if the corresponding pattern

contains the placement location. Given a resource constraint, k, the original problem can

be stated as selecting at most k subsets such that the covered elements have maximum total

weight. This is the weighted maximum coverage problem [38]. We will now describe an

MILP formulation for the problem.

Maximize

∑
Ps
k

,∀s ∈ S,
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subject to

∑
(i,j)∈G

xij ≤ k, (3.9)

∀r ∈ R,
∑

(i,j)∈r

xij −Mdr ≤ 0, (3.10)

∀r ∈ R,
∑

(i,j)∈r

xij −mdr ≥ 0, (3.11)

Ps −
∑
r∈Rs

dr ∗ psr = 0, (3.12)

1 ≥ xij, and dr ≥ 0. (3.13)

xij, dr are integers. M and m are constants and are set to k + 1 and 0.5. The probabilities

psr are known. The properties of binary indicators xij and dr are described below.

xij =


1 if a sensor is placed at grid element (i, j)

0 otherwise,

(3.14)

and

dr =


1 if pattern r is covered by at least one sensor

0 otherwise.

(3.15)

M is greater than the largest possible value of
∑

(i,j)∈r xij (which is satisfied by setting M

to be k + 1) and m is less than the smallest possible non-zero value of
∑

(i,j)∈r xij (which

is satisfied by setting m to be 0.5).

3.5.3 Approximation Algorithm Based Placement Technique

Normally MILP-based solutions are not tractable for large instances of hard problems.

Fortunately, the number of patterns per person is limited: it is possible to directly use the

MILP formulation for substantial problem instances. The solver performance is further
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Algorithm 2 Approximation based placement technique
Require: G // deployment field grid
Require: R // set of all patterns
Require: P // probabilities
Require: k // stationary sensor count constraint
C ← {} // output set
while size(C) ≤ k do

Select g ∈ G s.t.
∑

r∈g Pr is maximized
Remove the covered patterns from R
C ← C ∪ g

end while

improved because human motion traces tend to be spatially clustered [44]. We will show

in Section 3.6.3 that our algorithm can be applied to deployment cases with up to 840 km2

area or 200 patterns. It is conceivable that some problem instances will exceed the size

tractable for MILP solvers. Therefore, we also present an approximation algorithm based

polynomial time heuristic.

The maximum coverage problem can be solved with the polynomial time (1 − 1
e
)-

approximation algorithm shown in Algorithm 2. This is minimum achievable bound [38].

However, the (1− 1
e
)-approximation bound only applies for the average calibration proba-

bility between stationary and mobile sensors. There are many other factors influencing the

network sensing accuracies, such as collaborative calibration events, calibration time, and

calibration order. Section 3.6.3 evaluates the approximation algorithm based technique in

detail.

3.6 Experimental Results

In this section, we first describe our controlled drift experiments (Section 3.6.1), which

support the hypothesis in Section 3.4.2. Section 3.6.2 presents simulation results for our

optimal and efficient collaborative calibration techniques and compares them with two ex-

isting works that are most related. Section 3.6.3 reports on the performance of our MILP

based stationary sensor placement algorithm and compares it with the efficient approxi-
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Figure 3.4: Calibration chamber used for sensor drift experiments.

mation algorithm we propose.

3.6.1 Calibration Procedure and Drift Experiments

Section 3.4.2 describes our sensor drift model. We assume that drift can be (partially)

compensated for by an unbiased predictor, and the residual error can be modeled using

a Gaussian distribution with a variance that predictably increases with time. To test this

hypothesis, we have conducted a drift experiment in our controlled chamber.

Before the drift experiment, we manually calibrated all sensors. Calibrations were per-

formed using de-humidified zero grade air (i.e., air with less than 1 ppm total hydrocarbon-

s) and controlled-concentration iso-butylene (a VOC unlikely to damage graduate students

when used at low concentration). The purpose of this calibration is to compensate for ini-
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Figure 3.5: Measured drift error as a function of time for Figaro TGS2602 VOC sensors.

tial measurement offsets, possibly due to variation in the manufacturing process. During

calibration and drift experiments, sensors are mounted on a custom printed circuit board

enclosed in the 250 cm3 polycarbonate chamber as shown in Figure 3.4. A fan is mounted

inside the chamber to improve mixing and make convection heat loss from the sensors

uniform. The temperature and humidity inside the chamber are stabilized at 43.8±1.3 ◦C,

and 7.8±1.7% respectively. A LabVIEW interface controls the gas mixture using mass

flow controllers. During calibration runs, the sensors are held at concentrations of 0, 0.25,

and 1.0 ppm (parts per million by volume) of iso-butylene in a total volume flow of 4 liters

per minute, for 20 minutes each. The sensors are powered continuously throughout the

experiment period, and were warmed up for two weeks prior to starting the experiments to

allow the sensors to reach an initial equilibrium, as recommended by the manufacturer.

During the drift experiment, 15 pre-calibrated Figaro TGS 2602 VOC sensors are

placed in the controlled gas chamber and exposed to 4 liters per minute air. These ex-

posure tests last 120 minutes and are performed daily. Since the sensors are powered

continuously, they should drift constantly during the experiment. The drift data are cal-

culated by averaging the last 30 minutes of readings from each test to avoid any warm-up
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effects from changes in the air flow rate.

We use the analog to digital converter on Labjack U3 data acquisition modules to

measure the voltage output of the TGS sensors, at a sampling frequency of 0.5 Hz. We

use log-based transfer function to convert the voltages to VOC concentrations, based on

calibrations performed before the experiment. The concentration readings after conversion

are shown in Figure 3.5. Since the ground truth reading should be 0 ppm, the readings after

the conversion already represent drift. Seven of the 48 measurements were discarded due

to inconsistent air flow rate or relative humidity levels due to transient problems with the

testing chamber air supply.

We now evaluate a simple drift predictor based on linear extrapolation of two consec-

utive drift errors to predict future errors. The difference between the predicted drift value

and the measured drift is the portion of the drift error that is not captured by the drift

model. We have also evaluated higher-order non-linear predictors but they did not have

higher prediction accuracies than the linear predictor. The linear predictor compensated

for 94.1% and 87.7% of the drift on average when predicting one day and two days ahead.

We therefore consider it to be a good predictor for this kind of sensor. Note that for dif-

ferent sensor types, the forms of the predictor function may be different. In some cases, a

higher order non-linear fitting function might be necessary.

We applied the Lillie normality test to the residual error of the linear predictor. The

residual error has a Gaussian distribution, with an exception for predictions eight days in

advance. For most cases, the linear predictor meets Gaussian residual requirement posed in

Section 3.4.2. For specific sensors and time offsets passing the normality test, we perform

t-tests to assess whether the distributions have means of 0 ppm. The significance levels

used in the Lillie test and t-test are both 0.05 and the test results are shown in Figure 3.6(a).

Figure 3.6(b) shows the standard deviation of the remaining drift error after applying the
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Figure 3.6: (a) The normality test results and (b) the standard deviations of prediction
errors using the 2-day linear predictor to compensate for 1 to 10 days of future
drift.

linear predictor for up to 10 days in the future. The results clearly show an increasing

trend for all the sensors, consistent with our hypothesis in Section 3.4.2 that the variance

increases over time. The standard deviations of the short-term drift errors can be well

predicted using simple linear functions.

With one possible anomaly at an eight-day offset, the drift experiment results confirm

our hypothesis that the residual error after drift prediction has a Gaussian distribution with

mean 0 and predictable variance that increases over time.



35

Table 3.1: Aggregated Sensor Error with Synthesized Human Motion Traces

Trace
Num. of cali. events Total aggregated mean squared error

Total Uncorrelated Stationary CaliBree Averaging Heuristic Optimal
1 44,290 5,072 21,818 964.6 393.6 321.9 312.1
2 43,378 3,368 20,144 1,716.6 559.0 454.9 434.8
3 9,701 1,722 4,429 3,059.0 1,461.1 1,244.3 1,229.8
4 5,659 1,048 2,589 6,805.8 2,359.6 1,984.0 1,966.3
5 14,308 2,496 4,398 8,610.6 3,234.7 2,681.8 2,643.6

Average overhead (%) 224.8 23.2 2.2 0
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Figure 3.7: Histogram of assigned weights for an example trace using the optimal collab-
orative calibration scheme.

3.6.2 Evaluation of Collaborative Calibration

To evaluate our collaborative calibration algorithm, we compare it with two other ap-

proaches proposed in relevant and recent work. In the first approach, Calibree [49], al-

l mobile sensors calibrate with stationary accurate sensors. In contrast, our calibration

technique allows sensors to calibrate with each other as well as stationary sensors. In
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Figure 3.8: Memory use of the optimal collaborative calibration scheme.

the second approach [65], readings from co-located sensors are averaged to estimate the

ground truth value. In contrast, our technique enables more accurate drift compensation

by considering the differing drift prediction errors of calibration events, i.e., sensors. We

also propose and evaluate a calibration heuristic that reduces computation complexity and

memory use at the cost of a very slight reduction in calibration accuracy. This heuristic

ignores correlations between prediction errors. Instead tracking independent error distri-

butions from previous calibration events and temporal error growth, this algorithm only

stores an aggregated error for each sensor. During calibration, it uses Equation 3.1 to as-

sign weights to readings from co-located sensors. We evaluate the four approaches with

the same set of motion traces and sensor placements, and compare the resulting accumulat-

ed mean squared error. For this experiment, we use 10 stationary accurate sensors placed

at the most frequently visited locations and use a random walk model for sensor drift.



37

Section 3.1 shows the results for the four approaches with five synthesized motion

traces generated using the SLAW human mobility model [44]. The second to the fourth

columns present statistics for calibration events for the optimal algorithm. The second

column shows the total number of calibration events. A pair-wise calibration between two

sensors is considered to be two calibration events. The third column shows the number of

calibration events in which the errors from two sensors are independent. The fourth colum-

n shows the number of calibrations with stationary accurate sensors. The last four columns

show the aggregated mean squared errors of all sensors during the entire experiment.

On average, CaliBree [49] has 224.8% more error than optimal. This is because it

only considers calibration events between stationary and mobile sensors, and thus misses

opportunities for calibration between mobile sensors. 43.6% of calibration events occur

between mobile and stationary sensors; the rest occur between pairs of mobile sensors.

Tsujita’s technique (averaging) has 23.2% more error than optimal result. Figure 3.7

shows the distribution of the weights generated with the optimal algorithm for Trace 5.

The weights are widely distributed from 0 to 1. Only 25.4% are in the range from 0.4

to 0.6. The structure of this histogram has implications for the effectiveness of Tsujita’s

approach: the closer weights are to 0.5, the more effective Tsujita’s approach.

Our heuristic produces results with accuracy that deviates from optimal by only 2.2%.

Even though the percentage of correlated events is fairly large (41.8%), ignoring the cor-

relation does not significantly degrade accuracy. However, this algorithm greatly reduces

required memory compared with the optimal algorithm. With the optimal algorithm, the

memory use increases linearly with time for most sensors. Figure 3.8 shows the memory

use over time for all sensor nodes in our experiment with trace 1. Each point corresponds

to a sensor node involved in a calibration event. We therefore conclude that the heuristic

is more efficient and likely to be appropriate for most practical applications.
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Table 3.2: Statistics for Human Mobility Case Study

Participant
Duration On campus # of # of

(days) prob. (%) patterns locations
1 30 90.0 12 11
2 30 86.7 5 5
3 22 77.3 4 4
4 23 100.0 5 4
5 21 76.2 7 6

Average 25.3 85.2 6.6 6

The optimal algorithm allows us to evaluate the quality of various calibration approach-

es. In summary, utilizing the interactions among mobile sensors improves the accuracy by

224.8% compared to only permitting mobile sensors to calibrate with stationary sensors.

The accuracy is improved by 23.2% by considering the heterogeneity of drift estimation

parameters among different sensors. Considering correlations among sensors due to cal-

ibration imposes large computation complexity and memory use with a relatively small

gain (2.2%). In summary, a technique using collaborative calibration among mobile sen-

sors that considers heterogeneity in drift estimation parameters but ignores calibration

event induced inter-sensor correlations represents a good trade off between accuracy and

run-time overhead/complexity.

3.6.3 Evaluation of Stationary Sensor Placement

This section introduces our human motion pattern case study and evaluates our sta-

tionary sensor placement algorithms with both measured and synthesized human mobility

traces.

Measured Human Mobility Case Study

Much human mobility modeling research is based on outdoor GPS data [25, 44, 60].

However, GPS is inaccurate indoors, where humans spend 90% of their time [22]. Ac-

cording to a survey-based model, office worker indoor activities can be modeled using a
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Table 3.3: Statistics for Measured and Synthesized Human Motion Traces and Solver Per-
formance

Trace
Area Total Sensor Cand. Runtime
(km2) pat. no. loc. (s)

Case study N/A 33 5 17 0.01
KAIST 840.1 92 92 41,270 1.2
NCSU 142.3 35 35 10,691 0.13

New York 618.8 39 39 12,180 0.05
Orlando 122.0 41 41 26,662 0.07
State fair 1.2 19 19 4,422 0.03

1 0.01 200 50 1,225 0.13
2 0.01 200 50 1,001 0.24
3 1.0 200 50 26,448 2.44
4 1.0 200 50 39,695 5816.10
5 4.0 400 100 101,891 ¿ 6 h

few patterns [39]. In our evaluation, we use mobility traces generated using algorithms

proposed by other researchers as well as data gathered in our real-world human mobility

study, which was conducted on the campus of University of Colorado Boulder.

In our study, five graduate students, undergraduate students, and professors used their

mobile phones to record their daily motion patterns. Participants manually entered loca-

tions and times into their smart phones as they moved and these data were sent to a server

via the Internet. Locations in which users spent fewer than five minutes were omitted from

the motion patterns. The study was conducted between August 3rd, 2011 and September

12th, 2011. Statistics from the study are shown in Table 3.2. Motion patterns contain

1.94 locations on average, which implies that the indoor activities of the participants were

spatially concentrated, which is consistent with the findings of other human motion stud-

ies [39, 60].

Experiment on Measured and Synthesized Human Motion Traces

To solve the MILP problem, we use the CPLEX v.12.2 solver [32] on an Intel 4-core

Xeon E31230 CPU running at 3.2 GHz with 8 GB of memory. The evaluation is performed
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Figure 3.9: The MILP stationary sensor placement results for (a) measured human motion
traces and (b) synthesized human motion traces.

on both real-world and mobility model generated [44] human motion traces.

The statistics of the real-world and synthesized human motion traces [44], as well as

our case study trace, and their MILP solver performances are shown in Table 3.3. The case

study trace does not contain detailed location information, but lasts for multiple days. The

rest of the real-world traces contain detailed location information, but are finished within

a day each, i.e., each person has one motion pattern. The duration for each trace is 4

days, i.e., each person has 4 patterns. According to our real-world case study, the average

probabilities of the top 4 patterns are 0.48, 0.2, 0.1, and 0.08. The same probability values

are used in the synthesized traces. The fourth column of the table shows the total number
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Table 3.4: Aggregated Sensor Errors for Different Placement Algorithms

Trace
Sensor number Aggregated error

MILP
Approx.

Improvement
All

MILP
Approx.

Improvement
Algo. Mobile Algo.

KAIST 16 19 18.8% 9,880 7,875 8,465 7.5%
NCSU 15 15 0.0% 6,075 3,095 3,333 7.7%

New York 23 26 13.0% 4,720 2,076 2,504 20.6%
Orlando 15 16 6.7% 7,208 3,683 3,954 7.4%
State fair 7 7 0.0% 5,303 2,649 2,786 5.2%

1 2 2 0.0% 910 523 551 5.4%
2 2 3 50.0% 1,083 701 738 5.3%
3 5 5 0.0% 2,326 1,783 1,831 2.7%
4 8 9 12.5% 3,370 2,522 2,511 -0.4%

5* 10 11 10.0% 3,924 3,195 3,205 0.3%

*The MILP solution is derived by setting the relative tolerance of the MILP solver to be
0.3%.

of mobile sensors in each trace. The fifth column shows the total number of candidate

locations where stationary sensors may be placed. Grid elements visited by one or more

person are considered as placement location candidates. The total number of the candidate

locations is equal to the number of variables xij in Equation 3.9.

The MILP placement algorithm quickly solves all the problem instances, except for

synthesized trace 5. For this trace, the solver terminated after six hours without producing

a solution. This trace contains 400 patterns and 101,891 candidate placement locations.

We conclude that the MILP solution is suitable for many useful-scale problem instances,

but there may be some real-world cases for which a more efficient solution is required,

e.g., that in Section 3.5.3.

The results of the MILP placement algorithm are shown in Figure 3.9. For most of

the solutions, the number of sensors is far less than the number of patterns. This is con-

sistent with the hypothesis that people’s motion traces tend to be clustered, repetitive, and

frequently overlap each other. The synthesized human motion traces typically required
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fewer sensors despite having more motion patterns because a relatively small geographi-

cal area was considered in these traces. In summary, although personal mobile sensors are

needed to monitor the conditions experienced by many individuals, the accuracy of these

sensors can be improved substantially by using a few accurate stationary sensors to assist

a collaborative calibration technique.

The results of evaluating the algorithms on both real-world and synthesized human mo-

tion traces are shown in Table 3.4. We assume that repeated calibration with a stationary

sensor during the same day does not further reduce error. The aggregated network error

(the sum of mean square errors of all the sensors in the network for readings taken every 30

seconds) is measured when both placement algorithms are permitted to use the number of

stationary sensor listed in the second column of Table 3.4. For the synthesized traces, we

assume that all the patterns occur with the same probability. The fifth column of Table 3.4

shows the aggregated network error using our optimal collaborative calibration technique,

assuming there are no stationary sensors. The results show that the approximation algo-

rithm based technique increases aggregated network error by 6.2% compared to the MILP

placement algorithm. Note that for Trace 4, the approximation algorithm based technique

outperforms the MILP solution. In that case, the approximation algorithm had already

reached 99% average calibration probability, making its solution essentially equivalent to

the MILP solution. Note that in our placement problem formulation, the error caused by

calibration order is neglected. However, since the uncompensable drift error within a day

is small (less than 0.1 ppm as shown in Figure III.6(b)), this simplification has very little

impact on solution quality.
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3.7 Conclusions

We have presented a collaborative calibration and sensor placement framework for mo-

bile sensor networks. We have developed a random sensor drift model based on controlled

experiments and developed a collaborative calibration technique to compensate for drift

error. We have also described placement techniques for stationary sensors used to aug-

ment collaborative calibration among mobile sensors. Experimental results indicate that,

compared with our collaborative calibration algorithm, the most advanced existing work

has an average sensor error of 23.2%. Our stationary sensor placement algorithms further

reduce the effects of drift error.



CHAPTER IV

Hybrid Sensor Network Modeling and Synthesis

4.1 Introduction

In Chapter III, we have described a collaborative calibration technique to address the

sensor drift problem. In that work, arbitrary number of stationary and mobile sensors can

be included in the network. However, in the real-world applications, the number of sensors

are usually constrained by cost. Therefore, in this work, we investigate the possibility of

using both mobile and stationary sensors for indoor air quality monitoring and maximizing

the accuracy of the network under cost constraint. It should be noted that our techniques

can be easily extended to outdoor applications.

Indoor air quality is important. People spend more that 90% of their time indoor.

Moreover, pollutant concentrations are usually much higher indoors than outdoors. Many

indoor pollutants are closely related to various diseases, cancers, and human mortality [27,

55]. Other less dangerous indoor pollutants, such as carbon dioxide (CO2), can have

significant impact on office worker and students productivity, performance, and health [59,

64].

Indoor pollutant distribution can be very dynamic and heterogeneous. Indoor pollutant

concentrations may vary significantly even within the same building, e.g., indoor VOC

concentrations can differ by more than 7 times for different rooms in a same building [47].

44
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Thus, a sensor network composed of a few stationary sensors is inadequate to estimate the

indoor personal pollutant exposure.

The mobile sensors are susceptible to drift and require frequent calibrations. Com-

paring with the opportunistic collaborative calibration technique, calibrating with accurate

stationary sensors is more predictable and accurate. However, the high cost of those sen-

sors limits their number, which in term can reduce the calibration opportunities. Given

a fixed budget, one must trade off the (cost constraint) inaccuracies of stationary sensor

networks with the (drift) inaccuracies of mobile sensor networks.

We propose a hybrid sensor network architecture composed of both accurate stationary

sensors and inaccurate mobile sensors. Stationary sensors can provide accurate readings

and more importantly, calibration opportunities for the mobile sensors. Mobile sensors

carried by individuals can measure more relevant personal exposure data. Note that al-

though our technique focuses on the hybrid sensor network architecture, it is also capable

of designing mobile-only or stationary-only sensor networks.

The purpose of this work is to provide a comprehensive solution for hybrid air quality

sensor network architecture analysis and construction. Network performance analysis is

challenging because it is difficult to predict actual concentrations given only readings from

other locations and drift-influenced readings. The challenge for network synthesis is to

maximize accuracy via sensor selection and allocation given a fixed budget. Our work

addresses both analysis and synthesis problems.

This work makes the following contributions:

1. we formulate the problem of indoor pollutant concentration estimation and propose

an optimal solution taking into account of sensor inaccuracies;

2. we describe algorithms for automatically designing hybrid sensor networks;
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3. we demonstrate how to use real-world CO2 measurement data to estimate the airflow

inside a building, and use these estimates to evaluate our analysis and synthesis

techniques.

To the best of our knowledge, this is the first work addressing the problem of optimal

concentration prediction with inaccurate sensors and automated design for hybrid (mobile

/stationary) air quality sensor networks.

The rest of this chapter is organized as follows. Section 4.2 discusses previous related

work. Section 4.3 provides a motivating example and gives an overview of our analysis

and synthesis system. Section 4.4 describes models to predict the indoor pollutant con-

centration optimally and estimate the prediction error. Section 4.5 presents algorithms to

select and allocate different types of sensors to minimize average sensor network error.

Section 4.6 describes our deployment and evaluation results.

4.2 Related work

This section summarizes the prior works on sensor network architecture, indoor envi-

ronment modeling, and sensor noise reduction.

Sensor network architecture. Postolache et al. [53] described an ad hoc sensor net-

work for indoor and outdoor air quality monitoring. Jiang et al. [36] described MAQS, a

mobile environmental sensing network utilizing portable, indoor location tracking sensors.

Common Sense [68], designed by Willett et al., tried to establish an environmental sensing

network based on the response from communities. The placement problem of stationary

sensors has also been well studied [7,13]. Krause et al. [42] proposed a sensor placement

algorithm based on sensing quality and communication cost prediction. In their approach,

the sensor nodes are all stationary, while we consider both stationary and mobile nodes.

Recently, Xiang et al. [61] proposed a mixed integer linear programming based place-
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ment algorithm for stationary sensors in a hybrid sensor network. Our technique differs

from previous work in that we consider both stationary and mobile sensors in our network

design and exploit the cost and accuracy trade-off between them. Moreover, in contrast

with prior work, we assume no prior knowledge of the types and quantities of sensors or

the carriers of the mobile sensors. Instead of relying upon an established sensor network

architecture, we describe how to construct hybrid sensor networks from scratch.

Indoor environment modeling. The single compartment mass balance-based model,

developed by Hayes [29,30], is widely used in modeling indoor pollutant distributions [24,

26, 48] and was validated using real-world measured data [14]. Liu et al. [45] gave a

detailed description of the model and used it together with a probability-based adjoint

inverse method to back-track indoor pollution sources. In this work, we build an extended

model based on the mass balance-based model. In most prior work, it is assumed that

the readings reported by the sensors are always accurate, and the mass balance model

is mainly used to interpolate the pollutant concentrations at the locations without sensors.

However, this assumption is not true in real-world applications using low-cost sensors. We

extend the current model by considering and optimally compensating for the drift error.

Sensor noise reduction. One major problem for the low-cost sensors is their unreliable

readings caused by long-term drift. To reduce the sensor noise, Tsujita et al. [65, 66]

proposed using accurate stationary sensors to calibrate mobile sensors. Bychkovskiy et

al. [12] proposed a two-phase post-deployment calibration technique. Miluzzo et al. [49]

proposed an auto-calibration algorithm for mobile sensor networks. Elnahrawy et al. [20]

described a sensor noise cleaning framework based on Bayes’ theorem. In this work, we

evaluate the impact of sensor noise to the synthesis and construction process of sensor

networks. In contrast with prior work, our model incorporates indirect observations, i.e.,

concentration levels of adjacent locations, and thus improves accuracy of the network.
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Figure 4.1: Motivating example.

4.3 Motivation and System Overview

In this section, we present a motivating example and give an overview of our hybrid

sensor network analysis and synthesis system.

4.3.1 Motivating Example

This example describes the previously unsolved indoor pollutant concentration estima-

tion and sensor network construction questions that motivate our work. The rest of this

paper will provide answers to the questions appearing in this section.

Assume that a research team wants to deploy a small sensor network in the building as

shown in Figure 4.1. The building contains 3 rooms: A, B, and C. All of the rooms are

connected and hence have airflow between them. Assume that the budget is limited and
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the team can only afford one accurate sensor, which is placed in room A. The first question

is, “How should the pollutant concentrations in rooms B and C be predicted based

on the reading in room A?”

Then a somewhat inaccurate sensor is placed in room B. Suppose that one day the

sensor reports a reading of 0.8 parts per million (PPM) pollutant concentration, while the

estimation based on A’s measurement suggests that the concentration in room B should

be 0.5 PPM. The second question is, “How can these two estimates be reconciled to

minimize the expected value of error?”

Given a method of estimating pollutant concentrations, the problem of determining

the numbers and types of mobile and stationary sensors remains. Subject to budget con-

straints, there are multiple options. One might deploy one stationary sensor and four

mobile sensors, or two stationary sensors and two mobile sensors. The third question is,

“How should the numbers, types, and positions/carriers of sensors be determined to

minimize the expected value of personal pollutant exposure error?”

In this work, we aim to answer the three questions considered above. The first two

questions led us to develop an optimal pollutant concentration prediction model based on

analysis of indoor airflow and knowledge of pollutant source generation rate and sensor

drift distributions. The third question led us to develop a hybrid sensor network synthesis

algorithm that considers human mobility patterns and sensor costs.

4.3.2 Hybrid Sensor Network Synthesis System Overview

Figure 5.1 shows the overview of our hybrid sensor network synthesis system. The

system has two major components: the concentration prediction model and synthesis al-

gorithm. The concentration prediction model takes as inputs pollutant source generation

rate distributions, sensor drift distributions, and sensor architecture information. By us-
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Figure 4.2: Hybrid sensor network synthesis system overview.

ing Monte-Carlo simulation, it can provide the concentration predictions and calculate the

estimation errors.

Given the estimation error information, the sensor network synthesis flow searches
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for a hybrid sensor network architecture that minimizes pollutant concentration estima-

tion error. The synthesis algorithm requires the estimation error distributions, the motion

patterns of individuals in the building, the prices of the available sensors, and the set of

sensor carrier candidates as inputs. It searches the design space and records the solution

with minimal error. The result is a hybrid network sensor architecture, including the types

and quantities of sensors as well as their locations (for stationary sensors) and carriers (for

mobile sensors).

4.4 Pollutant Concentration Prediction Models

In this section, we describe the design of an optimal pollutant concentration prediction

model. Section 4.4.1 gives a problem definition. Section 4.4.2 introduces concentration

and error estimation models. Section 4.4.3 describes the optimal model.

4.4.1 Problem and Term Definitions

The deployment field, which is typically a building, is divided into multiple zones with

inhabitants moving inside. Within the same zone, the pollutant distribution is well-mixed

and uniform. This can be achieved by subdividing zones when necessary. Depending on

the pollutant type and ventilation conditions, a zone can be part of a room, an entire room,

or multiple closely connected rooms.

A sensor network is deployed in a building so that a subset of the zones are covered,

i.e., contain sensors. There are two potential causes of inaccurate concentration predic-

tions. First, it is necessary to (imperfectly) estimate the pollutant concentrations of zones

that are not covered. Second, sensor readings for covered zones may be inaccurate due to

drift. We describe a model that takes into consideration both error sources and minimizes

the expected value of prediction error.

We now define error. The error of the estimated concentration for zone i, denoted



52

as ei, is the difference between the predicted concentration and the ground truth. Since

the estimation error is a random number, it can not be used to directly evaluate models.

Therefore, we use expected error, which is the standard deviation of the distribution that ei

follows, as the evaluation criteria. The expected error is denoted as Ei, and its relationship

with estimation error ei is

Ei = std(ei). (4.1)

Thus, an optimal pollutant concentration prediction is the concentration estimation with

the minimal expected error.

The multi-zone pollutant concentration modeling problem can be defined as follows.

Assume knowledge of the following deployment field information: inter- and intra-zone

airflow, ventilation conditions, corresponding human motion patterns, pollutant source

generation rates, and sensor drift information. A sensor network architecture, i.e., the

types and quantities of the sensors, the locations of the stationary sensors, and the carriers

of the mobile sensors, is deployed. Find a model to estimate the pollutant concentrations

of all zones in the field so that the average expected error is minimized.

4.4.2 Pollutant Concentration Modeling and Analysis

In this section, we discuss concentration prediction models given various deployment

schemes.

Concentration Estimation without Sensors

Assume that we want to evaluate the pollutant concentrations of all the zones in a

building where no sensor is deployed. In general, the dynamic concentration change rate
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can be modeled using the following multi-zone pollutant transport equation [45].

dCi
dt

=

[
n∑

j=1, 6=i

(
Fj,i(1− ηj,i)

Qi

· Cj
)
−
∑n

j=1,6=i Fi,j

Qi

· Cj

]

+

[
si
Qi

+
Fi,0 · C0

Qi

]
=

n∑
k=1

aik · Ck +Bi. (4.2)

The coefficients in Equation 4.2 are

aik =


−

∑n
j=1,6=i Fi,j

Qi
(k = i)

Fk,i(1−ηk,i)
Qi

(k 6= i)

, (4.3)

Bi =
si
Qi

+
Fi,0 · C0

Qi

, (4.4)

where Ci is the concentration for zone i, C0 is the outdoor concentration, n is the total

number of zones, Fi,j is the airflow rate from zone i to j, Fi,0 is the net airflow rate between

zone i and outdoor environment, ηi,j is the efficiency of the pollutant filters in the heating,

ventilation, and air conditioning (HVAC) system, Qi is the air volume in zone i, and si

is the local pollutant source generation rate. Note that the airflow rate Fi,j is directional

and Fi,j is not necessarily equal to Fj,i. In our problem formulation, we neglect the kinetic

reaction among various pollutants and local removal rate. Those parameters can be easily

incorporated into the model if the information about other pollutants in the air is known.

Now consider a building with n zones. The estimated concentrations for all the zones

in the building can be represented by a vector C = [C1, C2...Cn]T . Thus, the pollutant

transport function can be re-written as

dC

dt
= A · C +B, (4.5)
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and

A =


a11 · · · a1n

... . . . ...

an1 · · · ann

 , B = [B1, B2, ..., Bn]T . (4.6)

In the rest of the paper, matrix A is referred to as the airflow matrix. This model is widely

used and found to be accurate in real-world experiments [14].

For most of the pollutants, the health and/or performance impact is evaluated on a

time scale varying from days to years. Moreover, if some pollutant is released and causes

a sudden change in local source generation rates, the indoor environment can return to

a well-mixed state quickly. For example, it takes about 80 minutes for a 238 m3 smoke

lounge to become well-mixed [41]. Therefore, in personal exposure measurement appli-

cations, the dynamic variation in Equation 4.2 can be neglected [11], leaving dCi

dt
= 0.

The equilibrium state equation for zone i can be described using the following equa-

tion.

n∑
j=1

aijCj + bisi + uiC0 = 0, (4.7)

where bi equals 1
Qi

and ui equals Fi,0

Qi
. In matrix form, we have

A · C +B = 0. (4.8)

If all the zones are in the well-mixed state, the pollutant concentration in any zone is a

linear combination of the concentrations of other zones (including outdoor environment)

and its own local source generation rate.

The airflow matrix A can be estimated using multiple methods. For example, Liu et

al. [45] suggest that we can derive the airflow matrix by applying the following procedure:

(1) build the multi-zone model for a building; (2) determine the building leakage; and (3)
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incorporate the effects of the HVAC systems. After we obtain the required information and

parameters, we can derive the airflow matrix by solving the corresponding computational

fluid dynamics equations using tools such as CONTAM [50]. Another approach is to use

the existing sensors, with the help of regression analysis, to estimate the airflow matrix. We

will show in Section 4.6.1 how to use a CO2 sensor network to derive the average airflow

matrix. The first approach does not require any existing sensor infrastructure. However, it

is less accurate since it relies on the empirical estimation for parameters such as building

leakages.

The inter-zone airflow may vary in time as the human behavior and ventilation condi-

tions change, e.g., doors and windows opening and closing or changes in the state of the

heating system. However, it is not necessary to derive multiple airflow matrices for all

the scenarios. Since the concentration relationship between zones is linear, we can use a

single averaged matrix as long as the equilibrium state assumption in Equation 4.7 holds.

To solve Equation 4.7, it is also necessary to know the pollutant source generation rate

si. However, its value can not be accurately predicted and varies according to the char-

acteristics and locations of the zones. The uncertainties in source generation rates cause

uncertainties in pollutant concentrations, making more complete coverage by sensors valu-

able.

To estimate the pollutant concentrations of uncovered zones, we need to estimate the

source generation rates. We assume that the source generation rates follow certain distri-

butions with known mean values and standard deviations. The knowledge of the distribu-

tions can be obtained by analyzing the historical data or existing literature for buildings

with similar characteristics [10, 19, 47]. The error of the estimation can be captured and

compensated for by sensors located in or near the zone.
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Assume that the source generation rate distribution for zone i is

Si = L(mi, vi), (4.9)

where L is the type of source generation rate distribution, mi is its expected mean value,

and vi is its standard deviation. For each zone, its actual generation rate is a random

number si that follows distribution Si.

The optimal generation rate prediction, for any uncovered zone i, is the mean value

mi of its distribution. Thus, when there is no sensor deployed in the building, by solving

Equation 4.7, the concentration of zone i can be estimated as

Ci = −
n∑
j=1

a′ij(bjmj + ujC0), (4.10)

where a′ij is the element of the inverse matrix A−1 of the airflow matrix as shown in the

following equation.

A−1 =


a′11 · · · a′1n

... . . . ...

a′n1 · · · a′nn

 . (4.11)

Given that there is no sensor deployed, Equation 4.10 predicts pollutant concentra-

tion with minimal expected error. The ground truth concentration, denoted as gi, can be

calculated as

gi = −
n∑
j=1

a′ij(bjsj + ujC0), (4.12)

where sj is the ground truth source generation rate of zone j.

By its definition, the estimation error of zone i is the difference between the predicted

concentration and ground truth and can be expressed as

ei = Ci − gi. (4.13)

Note that ei is a random number and its standard deviation is the expected error, Ei.
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By replacing Ci and gi in Equation 4.13 with Equation 4.10 and Equation 4.12, the

estimation error becomes

ei = −
n∑
j=1

a′ij · bj(mj − sj). (4.14)

Note that the outdoor concentration C0 can be measured by accurate stationary monitoring

stations. Thus, it is accurate and does not cause any errors in Equation 4.14.

Since the term mj − sj in Equation 4.14 is a random number that follows distribution

L(0, vi), we define the local generation rate vector H as

H = [b1h1, b2h2, ..., bnhn]T , (4.15)

where hi equals mi − si. Assume that the estimation errors of all the zones are e =

[e1, e2, ..., en]T . In the matrix form, the estimation errors can be calculated as

e = A−1 · (−H). (4.16)

Equation 4.10 gives the optimal pollutant concentration prediction with no sensors

deployed. Equation 4.16 calculates the estimation errors for the prediction for all zones.

As indicated in Equation 4.14, the estimation error is a random number which is the linear

combination of the generation rates of all the zones.

Instead of predicting the pollutant concentration using empirical concentration distri-

bution of each zone directly, we estimate the distributions of source generation rates and

use them to calculate the concentrations. The reason is that unlike the source generation

rates, the concentrations are highly correlated. For example, assume we have two zones i

and j, with estimation errors ei and ej respectively. The airflow between i and j is high.

If there is an accurate sensor located in zone i, the prediction error in zone j, based on

the observation on zone i, should decrease significantly. However, if we model their em-

pirical pollutant concentration distributions independently, the estimation error in zone j
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remains the same, which greatly overestimates the error. By modeling the distributions of

the independent source generation rates, one can avoid error overestimation resulting from

ignoring correlations.

Concentration Estimation with Accurate Sensors

In the previous discussion, we have derived the optimal concentration prediction mod-

el for a non-monitored building in Equation 4.10. Now we consider a scenario in which

stationary and accurate sensors are deployed. Specifically, we will evaluate how the de-

ployment of accurate sensors affects the concentration estimation accuracies of uncovered

zones.

Assume that in zone i, an accurate and stationary sensor is deployed. Thus, the esti-

mation error for zone i is 0. The predicted concentrations are
Ci = ri i ∈ R∑n

j=1,j 6∈R aijCj +
∑

j∈R rj + bisi + uiC0 = 0 i 6∈ R,
(4.17)

where ri is the reading of the sensor in zone i and R is a subset of the set of all zones Z

and contains the zones that are covered by accurate sensors. Thus, the airflow matrix A is

A =



a11 · · · a1i · · · a1n

... . . . ...
...

0 · · · aii · · · 0

...
... . . . ...

an1 · · · ani · · · ann


. (4.18)

In general, if a sensor is placed in zone i, all the elements aij,j 6=i should be 0.

The stationary sensors are assumed to be accurate. Thus, ri equals gi. The prediction
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error of zone i, instead of Equation 4.14, is calculated as

ei =


0 i ∈ R

−
∑n

j=1,j 6∈R a
′
ij · bjhj i 6∈ R,

(4.19)

where a′ij is the elements of the inverse matrix A−1 of the modified airflow matrix. As

shown in Equation 4.19, the source generation rate uncertainties of the covered zones no

longer introduce errors in the concentration prediction of the uncovered zones. The source

generation rate vector H is therefore

H = [b1h1, ..., bihi = 0, ..., bnhn]T . (4.20)

With the modified coefficients shown in Equation 4.18 and Equation 4.20, Equa-

tion 4.16 is still valid. As more stationary sensors are deployed, the overall uncertainty,

i.e., the number of zones whose generation rates influence the prediction accuracies for

other zones, decreases. Thus, there are two benefits of deploying accurate sensors: (1) the

estimation errors of covered zones become 0 and (2) it can help reduce the expected errors

of other uncovered zones.

Concentration Estimation with Inaccurate Sensors

The mobile, low-cost, and miniature sensors carried by individuals are essential to

address the uneven spatial pollutant distribution problem. One problem for such sensors

is that they typically suffer significant drift error [61]. In other words, if we have placed a

mobile sensor in zone i, the sensor reading ri is not equal to the ground truth gi.

As demonstrated in Section 4.6.2, the long term drift of Figaro TGS2602 sensors,

after compensation, can be modeled using a Gaussian distribution with mean 0. Thus, the

relationship between the ground truth and inaccurate mobile sensor reading becomes

di = ri − gi, (4.21)
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where di is the sensor reading error and is a random number following Gaussian distribu-

tion N(0, qi), in which qi is the standard deviation. Note that this error, caused by sensor

drift, is independent of source generation rates, and hence independent of the concentra-

tion prediction errors.

Assuming that there is an inaccurate mobile sensor located in zone i, the airflow ma-

trix and concentration prediction equation remain the same as in Equation 4.18 and Equa-

tion 4.17, while the estimation error is

ei =


di i ∈ R

−
(∑n

j=1,j 6∈R a
′
ij · bjhj +

∑
k∈R a

′
ikdk

)
i 6∈ R,

(4.22)

where R is the set of zones that are covered by mobile sensors. Also the source generation

rate vector H is

H = [b1h1, ..., bihi = di, ..., bnhn]T . (4.23)

4.4.3 Optimal Concentration Prediction Model

So far, we have derived concentration prediction and error estimation models for all

the following scenarios: (1) no sensors; (2) stationary sensors only; and (3) mobile sensors

only. However, the current solution for the inaccurate mobile sensors is sub-optimal.

For many types of low-cost mobile sensors, drift error eventually dominates empirical

data based prediction error. For example, the 4-month uncompensated drift error of Figaro

TGS2602 VOC sensor is about 0.8 PPM on average [61], while the standard deviation of

VOC distribution in many environments is only around 0.3 PPM [19, 47].

Thus, if a sensor network contains inaccurate sensors and gives them the same trust

as the accurate stationary sensors, there is no guarantee that deploying more such sensors

can reduce the overall expected error. At some point, the sensor drift error may exceed the

prediction errors caused by empirical estimations for the remaining uncovered zones. As
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a result, the addition of new inaccurate sensors can instead increase the overall expected

error of the sensor network. We will provide such an example in Section 4.6.3.

One naı̈ve approach to address this problem is to discard a mobile sensor’s reading

when its expected drift exceeds a certain threshold. However, this approach is both inef-

ficient and inaccurate. It is inefficient because it often unnecessarily shortens the useful

lifespans of the sensors. It is inaccurate because it neglects the additional information

provided by the mobile sensors, which can be useful even if the sensor readings are more

inaccurate than the empirical data based predictions.

The prediction model should optimally balance the weightings of the inaccurate sen-

sor readings and the similarly inaccurate source generation rate estimates to improve the

overall prediction accuracy. We use a weight assignment technique to address this prob-

lem. The weights represent trustworthiness values and should be determined based on the

distributions of the sensor drift and source generation rates.

Specifically, the weight-adjusted estimation of the concentration for zone i can be de-

scribed as

Ci = wi · Cestimate + (1− wi) · Csensor

= −wi
aii

(
n∑

j=1,j 6=i

aijCj + bimi + uiC0

)
+ (1− wi)ri, (4.24)

where Cestimate is the estimated concentration for zone i assuming no sensor is located in

that zone, Csensor is the sensor reading for zone i, and wi is the assigned weight that ranges

from 0 to 1. If wi equals 0, the sensor reading is considered accurate and hence determines

the concentration of the zone. If wi equals 1, it means there is no sensor located in the

zone.

The ground truth concentration for zone i can be re-written as

gi = −wi
aii

(
n∑

j=1,j 6=i

aij · gj + bisi + uiC0

)
+ (1− wi)gi. (4.25)
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Thus, the estimation error, defined as Ci − gi, is

ei = −wi
aii

(
n∑

j=1,j 6=i

aij · ej + bihi

)
+ (1− wi)di, (4.26)

Therefore, in matrix representation, the airflow matrix A is

A =



a11 a12w1 · · · a1nw1

a21w2 a22 · · · a2nw2

...
... . . . ...

an1wn a22wn · · · ann


, (4.27)

in which except for aii, each element in the ith row is multiplied by wi.

By solving Equation 4.26, we have

ei = −
n∑
j=1

a′ij · (wj · bjhj − (1− wj) · ajjdj), (4.28)

where the weight coefficient wi is calculated as

wi = argmin
w

Ei(w), 0 ≤ w ≤ 1. (4.29)

Since the optimal weight assignment minimizes the expected error, by definition it gives

the optimal concentration prediction. Thus, the local generation rate vector H becomes

H =



w1 · b1h1 − (1− w1) · a11d1

w2 · b2h2 − (1− w2) · a22d2
...

wn · bnhn − (1− wn) · anndn


. (4.30)

Equation 4.16 can be used to calculate the estimation errors of all the zones.

The assigned weight, wi, should be determined optimally based on the estimation ac-

curacies of source generation rates and sensor drifts. However, finding the optimal weights

is a non-trivial task. We can get a closed-form expression for expected error Ei if and only
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if all hi and di have Gaussian distributions. In this work we use Monte-Carlo simulation

technique, which can accurately calculate the expected error regardless of the distributions

of hi and di. The details will be discussed in Section 4.6.2.

In general, Equation 4.24 gives the optimal concentration predictions. Equation 4.28

allows us to calculate the estimation error of the optimal prediction. They are both unified

equations which can be applied for all the scenarios. Note that although we have presented

equations for zones containing a single sensor, it is easy to extend the current solutions to

cases where multiple sensors are co-located in a same zone.

4.5 Hybrid Sensor Network Synthesis

In this section, we describe algorithms to solve the hybrid sensor network synthesis

problem based on our optimal prediction model. Section 4.5.1 generalizes the problem and

provides definitions. Section 4.5.2 discusses the reasoning and underlying observations for

the synthesis algorithm. Section 4.5.3 describes the details of algorithm.

4.5.1 Problem Definition

In a hybrid sensor network, there might be multiple types of sensors with varying

accuracies, long-term drift rates, lifespans, and prices. Our work mainly focuses on the

trade-off between accuracy and price. In other words, given the same budget, we want to

minimize the personal exposure estimation error of the sensor network.

Note that the exposure error, denoted asE ′i, is different from the estimation error ei and

expected error Ei as defined in Section 4.4.1. In real world applications, we are interested

in personal exposure rather than indoor concentrations. Thus, the value of a sensor should

be determined both by its measurement accuracy and the number of people it serves. For

example, if a sensor is placed in an isolated zone with no people in it, even if its reading is

accurate, it does not improve the quality of personal exposure measurement.



64

We define the exposure error for zone i as

E ′i =
k∑

m=0

Ei(t0 +m∆t) · Pi(t0 +m∆t) ·∆t, (4.31)

where E ′i is the exposure error, Ei(t0 + m∆t) is the expected error of zone i during time

interval from t0 +m∆t to t0 + (m+ 1)∆t, Pi(t0 +m∆t) is the number of people in zone

i during the same time interval, ∆t is a time interval during which the number of people

and expected error of each zone are considered to be constant, and k is the total number of

such time intervals in a day. Note that the expected error is a function of time because of

the motion of sensor carriers.

The problem of hybrid sensor network synthesis can be described as follows: given

a certain budget, find a sensor network architecture for which the total cost of sensors is

within the budget while the average personal exposure measurement error for all the zones

is minimized. One could modify this definition if the accuracy were more important for

some people than others, e.g., those with respiratory health problems.

4.5.2 Synthesis Overview

To construct a hybrid sensor network, we need to determine the types and quantities of

sensors first. This problem is similar to the knapsack problem, in which we have a budget

and a list of items. Each item has a weight and value, and we need to find the set of items

that maximizes value while meeting a weight budget. If each type of sensor has a fixed

value, i.e., amount of exposure error reduction, the problem is equivalent to the knapsack

problem and hence NP-hard.

In our problem formulation, the exposure error improvement of each type of sensor

is not fixed. It is dependent on the inter-zone airflow, sensor location, sensor drift dis-

tribution, source generation rate distribution, and the sensor architecture. For example,

different placement locations for a sensor can lead to significantly different exposure er-
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ror improvement results. Therefore, to determine the correct value of each sensor, we

must perform sensor placement and allocation algorithms during the process of sensor s-

election. However, the sensor placement problem, even for the stationary sensors, is also

NP-hard [61].

To address this problem, we rely on the observation that the price of the accurate

stationary sensors is much higher than that of the inaccurate mobile sensors. For example,

an accurate photo-ionization detector (PID) based VOC sensor may cost about $600, while

a metal oxide VOC sensor costs only about $7.50. Even after considering the cost of all

the peripheral components, the stationary sensors are still several times more expensive

than the mobile sensors. Moreover, the stationary sensors need to be manually calibrated

frequently, which increases the maintenance cost.

Therefore, we decompose the synthesis problem into two sub-problems. The first sub-

problem is the selection and placement of the stationary sensors, which we solve by ex-

haustively searching all the possible selection and placement schemes. There are mainly

two reasons for this design: (1) the high cost of the stationary sensors constraints the

quantities that can be deployed in the sensor network and (2) stationary sensors can pro-

vide calibration opportunities for the mobile sensors, thus help to improve the accuracy of

the entire network.

The second sub-problem is the selection and allocation of the mobile sensors, which

we solve using a greedy algorithm. Because of the relatively large quantity of the mobile

sensors, it is no longer suitable to use exhaustive search. We use a heuristic in which

we choose one sensor per iteration based on its unit value. Unit value is defined as the

exposure error reduction per unit cost. This is repeated until the budget is met.

4.5.3 Algorithm
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Algorithm 3 Hybrid sensor network synthesis algorithm
Require: Z // set of rooms
Require: SM // set of mobile sensors
Require: SST // set of stationary sensors
Require: J // set of mobile sensor carriers candidates
Require: U // set of source generation rate distributions
Require: D // set of sensor drift error distributions
Require: T // set of sensor prices
Require: M // set of mobility patterns of all the individuals
Require: b // budget
emin =∞ // minimal personal exposure error
Ymin ← {} // sensor network architecture of emin
YST ← placement search(SM , b) // YST is the set of all the possible stationary sensor
placement schemes under current budget
∀Y ∈ YST ,W (Y )← weight calculation(Y,D, U)// W is the weight table
for Y ∈ YST do
epre ← error calculation(Y, U,D,M,W (Y ))
Ypre ← Y
c← total cost(Y, T )
while c < b do

∆eint ← 0
for s ∈ SM do

for j ∈ J do
X ← Ypre ∪ (s, j)
W (X)← weight calculation(X,D,U)
ecur ← error calculation(X,U,D,M,W (X))
∆ecur = epre−ecur

T (s)

if ∆ecur ≥ ∆eint then
∆eint ← ∆ecur
eint ← ecur
Yint ← X

end if
end for

end for
epre ← eint
Ypre ← Yint
c← total cost(Ypre, T )

end while
if epre < emin then
emin ← epre
Ymin ← Ypre

end if
end for
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The detailed algorithm is shown in Algorithm 3. The algorithm first searches all the

possible assignments for stationary sensors within the budget limit. For each stationary

sensor assignment, a greedy algorithm is used to assign mobile sensors. As long as the

budget is not exceeded, the greedy algorithm tries to find the mobile sensor and the cor-

responding carrier so that the exposure error reduction per unit price, ∆E ′, is maximized.

∆E ′ is defined as

∆E ′ =
E ′pre − E ′cur

T (s)
, (4.32)

where E ′pre is the previous average exposure error before assigning the new sensor, E ′cur is

the current average exposure error after the assignment, and T (s) is the price of the sensor

to be assigned. When the algorithm ends, it returns a sensor network architecture, i.e., a

sensor selection and the location/carrier of each sensor, with the minimal exposure error

that the algorithm can find within the budget limit.

Each time a new architecture is considered, the weights are calculated according to

Equation 4.29 and recorded in the weight table. The weight table can help reduce compu-

tational overhead since mobile sensor carriers may visit the same zone at different times.

In that case, if other conditions did not change, the previous weight assignments can be

reused.

4.6 Experimental Results

This section describes the evaluation of our model and synthesis algorithms. Sec-

tion 4.6.1 gives the CO2 experimental measurement for an office building. Section 4.6.2

describes the experimental setup. Section 4.6.3 shows the evaluation results of our pollu-

tant concentration prediction model. Section 4.6.4 presents the simulation results of our

hybrid sensor network synthesis algorithm.
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4.6.1 A CO2 Sensor Network Deployment and Analysis

In this section, we describe our real-world CO2 sensor network deployment and the

data gathered with it.

Sensor Network Deployment

To estimate the airflow in a building, we performed a field experiment in which eight

air quality sensing platforms were distributed throughout an office building. The sensor

nodes, as shown in Figure 4.3(b), are custom-built with a processor-communication archi-

tecture based on the Arduino platform [5]. The sensor nodes are equipped with multiple

sensors, including the non-dispersive infrared S100 CO2 sensor from ELT. This sensor has

high accuracy, low drift, and low sensitivity to temperature and humidity. The unit cost is

approximately $60. The CO2 concentration is sampled at 0.2 Hz and is stored with a time

stamp on a micro-SD card. A fan is used to pull air through the sensors at a constant rate

of around 1 liter per minute.

Sensor calibrations were performed in a gas chamber before deployment. Gas mixtures

in the chamber were precisely set using mass flow controllers operated through a Labview

control system. We performed the calibration at 3 different CO2 levels: 0 PPM, 730 PPM,

and 2,268 PPM. The exposure at each concentration level lasted 60 minutes. The CO2

sensor readings had good linear relationships with the target pollutants.

Figure 4.3(a) shows the floorplan of the deployment building and sensor locations. The

building is divided into eight zones, and contains room types such as single-occupancy

office, large office with multiple occupants, and conference room. A sensor node is placed

in each zone and collects data continuously from 8 June 2012 through 21 June 2012. The

platforms were generally positioned near the room occupants, while trying to ensure they

were far enough away to not be a nuisance, or be disturbed.
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(a)

(b)

Figure 4.3: Deployment environment and equipment: (a) building for deployment and (b)
custom-built CO2 measurement equipment.
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Data Analysis

The measurement data from the deployment are used to derive the indoor airflow ma-

trix A. The daily average concentration for zone i can be estimated as

(−aii)


Ci(1)

...

Ci(l)

 =
n∑

j=1,j 6=i

aij


Cj(1)

...

Cj(l)

+


Gi(1)

...

Gi(l)

 , (4.33)

where Ci(t) is the average concentration for day t, l is the total duration of the experi-

ment, and Gi(t) is a constant determined by the daily outdoor concentration and indoor

generation rates. The average concentration is calculated by averaging all sensor readings

from 9:00 to 18:00. The airflow patterns between day and night are different. In this work,

we focus on the daytime pattern when the majority of human activities take place. The

nighttime pattern could easily be included as a separate time interval if desired. Linear re-

gression analysis is applied to Equation 4.33 to estimate the airflow matrix A. The airflow

matrix is later used in simulations to evaluate our concentration prediction and synthesis

techniques in Section 4.6.3 and Section 4.6.4.

4.6.2 Simulation Setup

In this section, we describe the general experiment setup and Monte-Carlo simulation

technique used to calculate the expected error.

General Setup

The prediction model and synthesis simulator is written in Matlab and runs on a 4-core

Intel Xeon E31230 machine with 8 GB memory. The airflow in the simulated building for

sensor deployment is assumed to be the same as in 4.6.1.

The expected error (standard deviation of the estimation error) without sensors is as-

sumed to be around 0.3 PPM based on the indoor VOC concentration measurement of an
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industrial area building [47]. The data have passed the Lillie normality test. Therefore, we

assume that the distributions of indoor source generation rates are Gaussian. We estimate

the sensor drift error based on existing work [61]. The drift error of Figaro TGS2602 VOC

sensors, after compensation, is about 0.24 PPM. The drift error data have also passed the

Lillie normality test and hence its distribution is assumed to be Gaussian.

In our synthesis, the mobile sensor is modeled on Figaro TGS2602 VOC sensors,

which cost about $7.50 each. The stationary sensor is modeled on Baseline-MOCON VOC

sensors. Its accuracy is determined by the resolution of the analog-to-digital converter in-

terface, and is assumed to be 0.03 PPM. The cost of the accurate Baseline-MOCON sensor

is about $600. Both of these sensors require peripheral circuitry to gather and transmit data

and perform proximity detection. The cost of such supporting circuit is about $150 [36].

Thus, in this work, we assume that the total costs of the mobile and stationary sensor nodes

are $150 and $750, respectively.

Mobile sensors are automatically calibrated when in the same zone with a stationary

sensor. Typically, the mobile sensor requires calibration at 3 or 4 pollutant levels to com-

pensate for the non-linearity of the concentration translation function. In this case, since

the carriers’ daily mobility patterns are highly concentrated and repetitive [25,60], and the

pollutant concentration can change from day to day [14], multi-level calibration for the

mobile sensors is feasible. Thus, we consider the calibrated mobile sensors as accurate as

the stationary sensors. Note that this assumption is not a necessity. Our technique can be

used even if the calibration is imperfect or unfeasible.

To evaluate the sensor network performance and select appropriate mobile sensor car-

riers, human motion traces are needed. In this work, we generate motion traces using the

human mobility model described by Kim et al. [39]. Their mobility model is based on a

statistical survey of the existing literature and U.S. Bureau of Labor Statistics data. In the
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model, the number of people in each zone is proportional to the area of the zone. Each

individual’s motion trace is determined based on the distribution and characteristics of ar-

rival time, duration of work, and meetings. The details of the distributions and parameters

can be found in the existing literature [39].

Monte-Carlo Simulation

To calculate the expected error based on Equation 4.28, it is necessary to calculate the

standard deviation of ei, which is a linear combination of several random variables. It is

possible that those random numbers follow distributions other than Gaussian and thus we

cannot find a closed form expression of the expected error. Therefore, we use Monte-Carlo

simulation based on the following equation.

Ei =

std

−
n∑
j=1

a′ijwi · bi


hi,1

...

hi,k

+ a′ij(1− wi) · aii


di,1

...

di,k



 , (4.34)

where k is the number of Monte-Carlo simulation trials, hi,j is a random number following

distribution L(0, vi), and di,j is a random number following distribution N(0, qi).

Monte-Carlo simulation is general enough to handle arbitrary source generation rates

and sensor drift distributions. Its main disadvantage is the computational overhead. We set

the number of trials to 105. By increasing the trial number tenfold to 106, the simulation

results differ by 0.16% on average, thus we consider the current trial number sufficient.

4.6.3 Concentration Prediction Model Evaluation

In this section we evaluate our pollutant concentration prediction models. Since the

stationary sensors are accurate and hence always have fixed weights of 0, we do not include
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Figure 4.5: The average error for different error estimation schemes.

stationary sensors in this evaluation. We have randomly selected 5 carriers from the motion

traces and varied the number of mobile sensors. Based on the resulting sensor network

architectures, we apply different methods to predict the pollutant concentrations of all the

zones. During sensor network construction, the weights and average expected errors are

recorded. Figure 4.4 shows the distributions of all the weights. The X axis gives the weight

values and the Y axis gives the frequency of appearance.

Figure 4.5 shows the expected errors of various concentration prediction schemes. The

“sensor isolated” scheme assumes that a sensor’s readings are not used to aid in estimating

concentrations in other zones. The “sensor dependent” scheme uses sensor readings to aid
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Table 4.1: Comparison Between the Heuristic and Optimal Solution
Budget Heuristic Optimal Differences

($) (PPM×minute) (PPM×minute) (%)
750 108.93 108.93 0
900 88.72 88.72 0

1050 81.26 66.97 17.58
1200 73.32 62.24 15.11
1350 68.62 60.13 12.38
1500 59.00 59.00 0

Average 7.51

in estimates for distant zones; the prediction error is calculated based on Equation 4.22. In

contrast to our technique, neither of the two schemes use weights to trade off position error

and drift error. As a result, our technique improves the prediction accuracy by 40.4% on

average compared with the “sensor isolated” method, and by 11.2% on average compared

with the “sensor dependent” method. The results show that both indoor airflow modeling

and weight adjustment are important.

When the deployed number of sensors increases from 4 to 5, the average prediction

error of the “sensor dependent” method increases as shown in Figure 4.5. When we use

the greedy algorithm to add sensors to the network, the new sensor is often located in an

uncovered zone with highest estimation error. Thus, at some point the prediction errors of

the remaining uncovered zones are smaller than the sensor drift error. As a result, without

the weight adjustments used in our optimal prediction technique, increasing the number

of inaccurate sensors in the network may cause the decrease of the overall average sensor

network accuracy. When there are 5 sensors deployed, the “sensor dependent” method

incurs 26.3% more error compared with our optimal technique.

4.6.4 Hybrid Sensor Network Evaluation

We compare hybrid sensor network architecture accuracy against that of two other

architectures. The first contains only mobile, inaccurate, low-cost sensors. The second
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Figure 4.6: The synthesis results for (a) small, (b) medium, and (c) large human motion
traces.

contains only stationary, accurate, expensive sensors. All of the three approaches use the

algorithm described in Algorithm 3 to construct the network.

Figure 4.6 presents the simulation results. The simulation is performed on small, medi-

um, and large human motion traces. There are 20 individuals and 4 sensor carrier candi-

dates in the small trace, 30 individuals and 6 sensor carrier candidates in the medium trace,

and 40 individuals and 10 sensor carrier candidates in the large trace. When the budget

is less than $750, we are not able to afford any stationary sensors, thus the solution is the

same for both the mobile-only and hybrid schemes. As the budget increases, the hybrid

solution starts to outperform the other two solutions. Note that the stationary-only solu-

tion is optimal (but for a constrained problem definition), while the mobile only and hybrid

solutions are heuristic due to the problem decomposition described in Section 4.5.2.

When the budget is very limited, the mobile-only solution outperforms the stationary-
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only solution since no stationary sensor can be afforded. When we have a large enough

budget, the stationary-only solution gives the most accurate measurement by placing an

accurate sensor in every zone. The hybrid sensor network architecture, however, provides

the best solution when the budget is between these extremes. In our simulation, when

the budget is no less then $750 (thus can afford at least one stationary sensor), the hybrid

architecture improves the sensor network accuracy by 23.9% on average compared with

the mobile-only architecture, and by 35.8% on average compared with the stationary-only

architecture.

Even though our proposed algorithm can significantly improve the personal exposure

measurement accuracy, it is not optimal. We compared the algorithm with the optimal

solution for a small trace with 20 individuals and 5 carrier candidates (computational cost

prevented us from finding optimal solutions for larger problem instances). The optimal

solution was found using exhaustive search for both the stationary sensors and mobile

sensors. The results are shown in Table 4.1. In 3 of the 6 test cases, our heuristic returns

the optimal solution. In the worst case, it has 17.58% more error. On average, our heuristic

achieves an accuracy that is about 7.5% less than optimal.

It should be noted that this work addresses the long-term personal exposure monitoring

problem. It requires an estimation of the average indoor pollutant generation rates and

the average air flow rates over a long period of time. However, for short-term pollutant

estimation, e.g., an emergent outbreak, since the air flow patterns and generation rates

are dynamic and unpredictable, it cannot be guaranteed that our technique can always

improve the prediction results. To improve the performance for instant event detection, a

denser sensor network deployment and some additional information of the field, such as

the ventilation conditions, are required.
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4.7 Conclusion

We have described a synthesis and evaluation framework for hybrid sensor networks.

This framework is composed of an optimal indoor concentration prediction and its error

estimation model and hybrid sensor network synthesis algorithm. A field experiment was

used to measure the inter-zone airflow. Our model improves accuracy by 40.4% on average

by considering the trade-offs between location-dependent and drift-dependent measure-

ment error. Simulations indicate that our hybrid sensor network architecture on average is

23.9% more accurate than the mobile-only architecture and 35.8% more accurate than the

stationary-only architecture.



CHAPTER V

Mobile Sensing Networks Noise Reduction and Sensor
Calibration

5.1 Introduction

In Chapter III and Chapter IV, we have described methods that can improve the sensor

network accuracy by employing novel calibration, modeling, and synthesis techniques

during the deployment. However, by analyzing the data collected from the deployments,

we find that sensor data typically contain significant noises even with the accurate and

undrifted sensor networks. Those noisy readings can trigger false alarms, lead to incorrect

scientific conclusions, and generate sub-optimal solutions, all of which can greatly limit

the application and usefulness of mobile sensor networks. Thus, this problem must be

addressed.

There are several causes of noisy sensor readings. The metal oxide sensors are typ-

ically very sensitive to environment parameters, e.g., temperature and humidity, which

cannot be perfectly measured near the sensor surface. The imprecise estimation of those

parameters contributes to the noises. Moreover, there can be many unexpected problems

in the real-world deployment, such as breakdown of electrical components, surge of power

supplies, and signal noise in the circuits, all of which can introduce noises [20]. Another

source of noises, observed and reported both by existing literature [57] and our own de-

78
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ployment, is sensor drift. Sensor drift changes the sensor calibration function, shifting the

measurement results from the ground truth without proper compensation. For example, in

our own deployment, we find that the sensor drift can increase the average sensor error by

orders of magnitude. Drifted sensors must be re-calibrated before they can be trusted and

used again.

Sensor drift is typically one directional and stable within a short period of time, mak-

ing it possible to compensate for it and recover the corrupted data. Once near an accurate,

stationary, and regularly maintained air quality monitoring station [63], the drifted sensor

can be calibrated using ground truth readings. However, such calibration opportunities are

scarce. In many applications, people typically do not have frequent access to the ground

truth readings. Moreover, the drift rates of sensors differ. They are determined by the

sensor type and the actual environment the sensors are exposed to. For example, during

our deployment, the CO sensor drifted by more than 30 times compare with ground truth

on average, while the ozone sensor drifted by 5 times. Therefore, it is inadequate to use

a predetermined offset to predict and compensate for drift. To address this problem, re-

searchers rely on the observation that the co-located sensors nodes, which are equipped

with the same type of sensors, observe the same physical environment and thus their read-

ings are correlated and can be used to calibrate each other. However, in real-world appli-

cation without a dense deployment, such calibration opportunities are still rare and heavily

limited by the mobility patterns of individuals [70].

Another significant problem for mobile air quality sensor networks is cross sensitivity.

The metal oxide sensors, utilizing either the oxidation or reduction reactions with the pol-

lutant gases occurring in the sensor surface, can respond to and quantify the air pollutants

with reasonable sensitivity and accuracy. However, for those sensors, many pollutants

share the same reaction property. For example, both CO and NO2 can cause oxidation
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reactions with the surface materiel. Thus, the sensors usually respond to a wide range of

pollutants other than the targeting gas. This property is called cross sensitivity [71]. Cross

sensitivity is typically considered as a drawback for the metal oxide sensors since the gas

composition in the environment is usually unknown and hard to differentiate. Because

of cross sensitivity, the readings of different types of sensors are usually correlated. This

property can be used to identify the compositions of pollutants in the environment [18].

We leverage the correlations of different metal oxide sensors to help identify and re-

cover the abnormal readings, as well as addressing the cross sensitivity problem. In many

recent mobile sensing network designs, researchers have built sensing devices equipped

with multiple types of sensors to detect various pollutants co-existed in the environmen-

t [36, 68]. For such applications, it is possible to exploit the correlation of readings and

reduce sensor errors using Bayesian belief networks [33]. The basic Bayesian network

approach works well for the noises caused by random factors, but fails when sensors drift,

which is common in real-world applications.

In this work, we aim to design a system that can efficiently reduce sensor noises,

re-calibrated sensor functions, and identify the gas compositions in the air simultaneous-

ly. To achieve those goals, we have developed a Bayesian belief network based system

which is capable of incorporating uncertain evidence and re-calibrating drifted sensors.

The Bayesian network provides estimated ground truth readings for sensor re-calibrations,

while the re-calibrated sensors can help the Bayesian network improve its estimates. To

evaluate our technique, we have deployed 9 co-located mobile sensing devices equipped

with different types of metal oxide sensors close to an air quality monitoring station in

Denver, Colorado. The monitoring station can provide the ground truth reference, which

allows us to determine and quantify the noise and drift.

In sum, this work makes the following contributions:
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1. we have designed and implemented a Bayesian belief network based system to re-

duce sensor noises;

2. we incorporate and address the sensor function calibration problem within the Bayesian

network framework; and

3. we have deployed a real-world mobile sensor network to investigate the sensor drift.

The data from the deployment are later used to evaluate our technique.

By analyzing the collected data, we have observed significant drift within a short peri-

od of time, e.g., a couple of months for most of the sensors. For the drifted data, compared

with the closest and state-of-art technique, our method can reduce error by 34.1% on aver-

age. Our system can recover 36.4% of the abnormal readings, which is 4 times better than

the most relevant existing technique. Since our technique mainly targets the drift, it should

have similar performance with the Bayesian network approach for the undrifted data. Ex-

perimental results show that our technique can achieve 87.3% abnormality detection rate,

which is almost equal to the Bayesian belief network.

The rest of this chapter is organized as follows. Section 5.2 discusses existing related

work. Section 5.3 provides an overview of the system. Section 5.4 describes the Bayesian

belief network approach and how to use it to reduce sensor noises. Section 5.5 discusses

the limitations of existing Bayesian network approaches and presents our solution. Sec-

tion 5.6 describes our real-world deployment and the evaluation results of different tech-

niques.

5.2 Related Work

The related work can be placed in three categories: co-located sensor calibration, sen-

sor outliers detection and correction, and Bayesian network based approaches.
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Co-located sensor calibration. Xiang et al. [61] developed a model to estimate sen-

sor drift and designed a compensation technique to minimize the sensor drift assuming

no access to ground truth readings. Their approach assigns weights to co-located sen-

sors to combine sensor readings optimally given known sensor drift distributions, which

can be derived from their model. Bychkovskiy et al. [12] have proposed a two-phase

post-deployment sensor drift compensation technique in which co-located sensors are cal-

ibrated in pairs using linear functions. Miluzzo et al. [49] have proposed CaliBree, an

auto-calibration algorithm for mobile sensor networks, in which mobile sensor nodes op-

portunistically interact with accurate stationary sensors and hence enable calibration to

reduce sensor drift. Those techniques require that the co-located sensors are of the same

type and thus should have the same response from the physical environment. However,

such calibration opportunities are usually unrealistic and rare in real-world application-

s. In contrast to the previous work, our technique can work on mobile sensing devices

containing various types of metal oxide sensors.

Sensor outliers detection and correction. Great efforts and resources have been in-

vested in addressing the sensor outlier detection and cleaning problem [16,72]. For exam-

ple, Bettencourt et al. [8] have presented an abnormalities detection technique to identify

errors during event detection in ecological wireless sensor networks. Their technique uses

the spatio-temporal correlations of sensor data to detect outliers. Rajasegarar et al. [56]

have proposed a support vector machine (SVM) based technique to detect sensor out-

liers. Their approach uses a one-class quarter-sphere SVM to classify and identify the

local outliers. Unlike our technique, their method cannot estimate the actual ground truth

readings and recover outliers. Papadimitriou et al. [51] have developed a technique that

uses multi-granularity deviation factor to dynamically detect the outlier readings based on

the correlations of local nodes. Their technique cannot address the sensor drift problem
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though, when one or more sensors’ readings are shifted persistently. Kumar et al. [43]

proposed a technique that performs a two-stage drift correction. First, they use a Kriging-

based approach to provide estimated ground truth readings. Then a Kalman-filter based

technique is used to compensate for sensor drift. However, Kriging requires certain spatial

density in sensor nodes deployment. Moreover, a Kalman-filter based approach relies on

the assumption of a state-space underlying model and knowledge of the model parameter-

s, which is unrealistic in real-world applications when the environment of the deployment

field is often unknown and very dynamic.

Bayesian network based approaches. Elnahrawy et al. [20] have used a naive Bayesian

network to identify local outliers and detect faulty sensors. This technique uses a trained

Bayesian classifier for probabilistic inference. Each node locally computes the proba-

bilities of each of its incoming readings and determine the readings as outliers if their

probabilities are not the highest among all the possible outcomes. Their approach can on-

ly work for the homogeneous sensors. Janakiram et al. [33] have proposed a technique

to detect sensor outliers based on Bayesian belief network. They leverage the condition-

al correlation of the readings from different types of sensors. However, their approach

does not take into consideration sensor drift and sensor function re-calibration, which are

considered and addressed by our method.

5.3 System Overview

Figure 5.1 shows the overview of our system. The input of the system is the raw

analog sensor readings in the form of voltage or resistance. Note that actual ground truth

readings are not required and only used for evaluation. The input sensor readings are first

processed using a Bayesian belief network, which is trained with normal data from the in-

field deployment. The Bayesian network can generate the estimated ground truth readings
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Figure 5.1: System overview.

based on the readings from all the correlated sensors. The estimated ground truth readings

are then used to re-calibrate the sensors, i.e., generate the new sensor functions which

can translate the input analog readings into pollutant concentration in the unit of parts per

million (PPM). The new sensor functions are used to generate the sensor concentration

readings, which can derive the error distribution together with the estimated ground truth.

The error distribution can be used to update the virtual evidence of the Bayesian network.

The virtual evidence is used by the Bayesian network to calculate the estimated ground

truth, thus forming a loop. If the system is stabilized, the loop exits and the recovered

sensor readings are produced.

5.4 Basic Bayesian Belief Network

In this section, we first introduce the basic Bayesian belief network. Then we discuss

how to use it in real-world applications.
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Figure 5.2: An example of Bayesian belief network.

5.4.1 Bayesian Network Introduction

Bayesian networks are widely used to detect and recover abnormal data points for

sensor networks. The Bayesian network is built based on Bayes’ theorem, which can be

described using the following equation [20]:

P (t|o) =
P (o|t)P (t)

P (o)
, (5.1)

where t is the ground truth reading and o is the observed sensor reading. Bayesian network-

s are capable of exploiting the inter-dependent or causal relationships of correlated sensors
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readings. The types of the sensors involved can be different, which makes it appropriate

for our application. A Bayesian network is a directed graph consisting of nodes and arc-

s [37]. The nodes represent variables, and in our application they represent readings from

different types of co-located pollutant sensors. The arcs represent causal or conditionally

dependent relationships between nodes. In our application, different types of sensors ob-

serving the same physical environment are considered to be conditionally dependent with

each other. For example, the CO sensor and temperature sensor are correlated since the

readings of the metal oxide sensors are heavily influenced by temperature.

Figure 5.2 shows an example Bayesian belief network for a simple sensor network. In

this application, there are three different types of sensors, which can measure temperature

(T.), carbon monoxide (CO), and nitrogen dioxide (NO2), respectively. Each sensors’

readings can be discretized into n values, with each discrete value denoted as Tn, Cn, and

Nn, respectively. Without loss of generality, we assume two distinct discrete values for

each sensor type. All the sensors are correlated. The readings of metal oxide sensors are

strongly affected by the temperature [4]. Moreover, the readings of the NO2 sensor and

CO sensor are also correlated with each other because of cross sensitivity.

As shown in the figure, the Bayesian network describing this sensor network contains

three nodes, with each representing one type of sensor. There are two arcs connecting

the temperature sensor with the metal oxide sensors and one arc connecting the two metal

oxide sensors. To calculate the probability inference of each variable given the input of

other variables as evidence, each node is associated with a table, which is called condition-

al probability table (CPT). CPT describes the conditional dependence between any node

with its parents. For the root node with no parents, CPT describes the distribution of the

variable itself. CPT can be derived by training the network using historic data. The size of
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the probability table is determined using the following equation.

Ni = (
∏
j∈Pi

dj)× di, (5.2)

where Ni is the total number of entries in the table for node i, di is the number of discrete

values, and Pi is the set of direct parent nodes. The size of the CPT grows exponentially

with the number and size of the direct parent nodes. Thus, to limit the requirement for the

memory space, it is important to carefully design the network so that the number of parent

nodes and their numbers of discrete values are appropriate. Based on the CPT and using

the readings of other sensor nodes as evidence, we can calculate the probability inference

for each discrete value using Equation 5.1. Note that the evidence can contain an arbitrary

number of observed sensor nodes. For example, even if we only know the readings of the

temperature sensor, we can still estimate the ground truth readings of the NO2 and CO

sensors. Increasing the number of inputs can improve the confidence of the output.

5.4.2 Bayesian Network for Real-world Applications

In this section, we discuss how to apply the Bayesian network technique to our real-

world application, which is air quality monitoring using mobile sensing devices equipped

with multiple types of sensors. Without loss of generality, we assume that there are four

types of equipped sensors: temperature, NO2, CO, and ozone (O3). Their readings are all

correlated. The Bayesian network graph for this application is shown in figure 5.3. In the

graph, there are four nodes, denoted as T, CO(S), NO2(S), and O3(S), represent the tem-

perature sensor and metal oxide sensors. Besides the sensor nodes, there is another type of

nodes, which are instances of CO(T), NO2(T), and O3(T). Those three nodes represent the

actual concentration (ground truth) of the corresponding pollutants in the environment.

In the figure, there are arcs connecting the temperature sensor to all the three types of

metal oxide sensors since the readings of the temperature sensor influences them all. The
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Figure 5.3: The basic Bayesian network structure for our application.

metal oxide sensors are assumed to be independent from each other, and the same is true

for the ground truth concentration nodes. However, for each type of pollutant, its ground

truth readings can have significant impact on the readings of all of the three metal oxide

sensors. Thus, there are three arcs connecting the ground truth concentrations of each type

of pollutant to all the three sensors. When the ground truth is not available, which is the

case for most of the time, the probability inference of the three ground truth nodes can be

calculated using the input of the four actual sensors. The value with the highest probability

is considered as the estimated ground truth. In other words, the readings of the temperature
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and metal oxide sensors are treated as input evidence, and the estimated values of ground

truth concentrations are the output of the system.

5.5 Bayesian Network with Sensor Re-calibration

In this section, we first talk about the problems of the basic Bayesian network for real-

world applications in which sensors may drift. Then we introduce virtual evidences to

address the drift problem and the sensor re-calibration technique to improve the perfor-

mance of the Bayesian network. Finally, we present the combined recursive system and

describe the details and algorithm to implement it.

5.5.1 Problems for Basic Bayesian Network

As discussed in Section 5.4, Bayesian network can clean the corrupted data and de-

tect abnormal readings by leveraging the inter-dependency of correlated sensors. For the

sensor noises caused by random environment and electrical noises, it is quite efficient and

sufficient. However, in our applications, sensors frequently drift. It has been shown, both

by existing literature [57, 61] and by our own measurement data presented in 5.6.1, that

sensor drift is a very common and severe problem in real-world applications for those

metal oxide sensors. Significant drift can be accumulated within just a couple of months,

making the sensors effectively useless afterwards if not re-calibrated. Thus, the problem

of sensor drift and the error caused by drift must be addressed.

The basic Bayesian belief network approach described in Section 5.4 cannot address

the drift problem. Drift can be considered a systematic deviation of the sensor readings

from the ground truth caused by the changing of the sensor function. When multiple

sensors drift, the basic Bayesian network approach can no longer identify the abnormal

readings, let alone correct them and recover the ground truth. For example, consider a

Bayesian network containing three nodes, which represent CO, NO2, and O3, respectively.
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Table 5.1: An Example Error Distribution with Reported Reading of 1.5 PPM
Ground truth prob. (%)

0 ∼ 1PPM 1 ∼ 2PPM 2 ∼ 3PPM
Accurate 0 100 0
Drifted 30 70 0

Breakdown 33 33 33

Assume that the CO and NO2 sensors are drifted and constantly report extreme values that

can rarely be observed in the normal environment. In that case, even if the ozone sensor

is not drifted, the results of the Bayesian network can still be erroneous because the two

drifted sensors out-weight the one undrifted sensor. Thus, the basic Bayesian network

cannot produce reasonable results due to the influence from multiple drifted sensors. Note

that the scenario that we have more than one drifted sensors in the system simultaneously

is not uncommon, as shown by our deployment results in Section 5.6.1. Thus, the system

described in Figure 5.3 is inadequate to address the real-world problems. To apply the

Bayesian network in such circumstances, we need to (1) incorporate a ranking mechanism

that can quantify the sensor uncertainties into the Bayesian network and (2) design a drift

compensation scheme to re-calibrate the sensor function and recover the corrupted data

simultaneously within the Bayesian network framework.

5.5.2 Error Distribution and Uncertain Evidences

As the sensor drifts, its sensing sensitivity deteriorates and the uncertainty of its read-

ings increases. A Bayesian network treats all its input equally, which is problematic con-

sidering sensor drifts. For example, if a CO sensor is recently calibrated while a O3 sensor

has not been calibrated for a long time, we should clearly give the CO sensor more weights

in determining the final output of the Bayesian network. In other words, within a Bayesian

network framework, we must have an evaluation mechanism which can rank and quantify

the trustworthiness of each particular sensor.



91

To address this problem, we use error distributions to represent the sensitivity and

trustworthiness of the sensors. An example of error distributions is shown in Table 5.1.

In the example, we assume that the sensor has reported an environment concentration

of 1.5 PPM. The actual ground truth ranges from 0 to 3 PPM and is divided into three

discrete categories. We assume that in the environment the probability for the ground truth

to be in any of these three categories is equal. As shown in the table, if the sensor is

accurate, then the probability that the actual ground truth is within the range of 1 to 2 PPM

given a reported reading of 1.5 PPM is 100%. If the sensor is drifted, the sensor becomes

less accurate and the possible value of the ground truth spreads wider. If the sensor is

breakdown, it loses most of its sensitivity and the ground truth is no longer correlated to

the sensor readings.

In that way, we have translate the determined sensor readings into distributions, which

inherently represent the trustworthiness of the sensors. Such input to the Bayesian network

is called virtual evidence. Note that virtual evidence cannot be applied to the Bayesian

network directly. The Bayesian network must be modified to incorporate such uncertain

evidences.

5.5.3 Bayesian Network with Virtual Evidence

In this section, we discuss how to address the problem of noise reduction with drift-

ed sensors using virtual evidences. For the basic Bayesian network, the inputs can only

be determined value. Thus, virtual evidences cannot be directly applied to the Bayesian

network. To incorporate the virtual evidences, some constraints, which is called Jeffrey’s

rule [34], must be honored. The concept of Jeffrey’s rule is described as follows.

Suppose the universe of all the events is denoted as U . We have a set of mutually

exclusive events γ1, ..., γn, which is a subset of U , and P is the probability distribution of
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Figure 5.4: An example of virtual node.

those events. After applying the virtual evidence, the beliefs for events γ1, ..., γn change

and the updated distribution is denoted as P ′. P ′ should satisfy the following equation.

P (α|γi) = P ′(α|γi), ∀i = 1, ..., n. (5.3)

where α is any event in the universe. In other words, after the virtual evidence is accepted,

the posterior probability of α can be changed, but the conditional probability for α ∈ U

regarding to the events γ1, ..., γn must remain the same.
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To treat the virtual evidence as determined value while honoring the Jeffrey’s rule,

the Bayesian network should be modified by adding a virtue node to the drifted sensor

nodes [15]. Figure 5.4 shows an example Bayesian network with virtual nodes. In the

figure, there are two sensor nodes, which are temperature and CO. The temperature sensor

is assumed to be accurate and with little drift, while the CO sensor can drift. The CO sensor

node is associated with a virtual node, denoted as CO(V). The virtual node also has its

own conditional probability table. The CPT of the virtual node should be calculated using

the error distribution of the actual sensor node so that the beliefs of the whole Bayesian

network comply with Jeffrey’s rule. The detailed methods and equations to calculate its

probability table can be found in existing literature [15, 52]. Note that the virtual nodes is

only dependent on the corresponding sensor node and independent of all the other nodes

in the network.

Figure 5.5 shows the Bayesian network structure of our application after incorporating

the virtual evidences. Since the temperature sensor and the hypothetical ground truth

concentration sensors are assumed to be accurate, they are not associated with any virtual

nodes. Each metal oxide sensor, which is prone to drift, is associated with a virtual node.

The contents in the CPT of the virtual nodes can be calculated using the error distributions

of the actual nodes, which can be derived with the information of the (estimated) ground

truth readings and the sensor readings. Note that unlike the simple example shown in

figure 5.4, in our real-world application, there are multiple sensor nodes associated with

virtual nodes, reflecting the fact that more than one sensor can drift at the same time. We

address the problem of multiple virtual nodes using a recursive method as suggested by

Peng et al. [52].
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Figure 5.5: The Bayesian network with virtual nodes.

5.5.4 Sensor Function Re-calibration

For the metal oxide sensors, the signals gathered from the sensors are actually analog

readings that indicate the voltage levels across the load resistance. Thus, we need a transfer

function to translate the analog input signal into pollutant concentration. Such a function is

called a sensor calibration function, or sensor function. The abnormal readings caused by

environmental noises do not reflect a change of the sensor calibration function. However,

when sensors are drifted, the sensor calibration functions change, which can result in a

systematic increase in the number of abnormal readings. To address the drift problem, the
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sensor functions can usually be compensated and corrected by comparing to the ground

truth readings reported by accurate stationary sensors [49] or the sensor readings of the

same types of mobile sensors nearby [12, 65, 66]. In our applications, the ground truth

reading is assumed unavailable mostly and we usually do not have a deployment density

high enough for frequent re-calibrations. Therefore, in our system, the sensor function

is re-calibrated on-the-fly with the help of the observations from other type of sensors

stationed in the same device and the estimated ground truth reported by the Bayesian

network.

In this work, we apply a piece-wise linear function as the sensor function, which is

shown in the following equation.

C = p1 + p2 ∗ V + p3 ∗ T, (5.4)

where C is the pollutant concentration, pi are the fitting parameters, V is the voltage, and T

is the temperature. The temperature information is reported by the on-board sensors. The

parameters in the equation is derived by applying linear regression technique to the train-

ing data, which is composed of the analog input signal and the ground truth concentration.

Since accurate sensors providing ground truth readings are usually not available, we use

the estimated ground truth concentration returned by the Bayesian network instead. We

apply the same linear regression technique to the estimated ground truth and generate the

new sensor function. Note that as the sensitivity of the sensors deteriorates, the perfor-

mance of this re-calibration scheme reduces. When a sensor breaks down and loses most

of its sensitivity, the sensor can no longer be re-calibrated.

5.5.5 System Design

In this section, we describe the recursive method to improve our results and the flow

and algorithm to implement our system.
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Recursive Sensor Re-calibration

Since we have described the Bayesian network and the sensor re-calibration compo-

nents of our system as shown in Figure 5.1, in this section we explain how to combine them

together and form the recursive loop in the system. Given the analog sensor input, it is in-

tuitive to use the Bayesian network to derive the estimated ground truth readings, and then

use the estimated ground truth readings to re-calibrate the sensor function. However, this

is insufficient for our application. Figure 5.6 shows the relationships of the components in

the system. We start from the sensor function first. The sensor function is determined by

the (estimated) ground truth readings, and is essential to derive the sensor readings. Sub-

sequently, the sensor readings can change the error distribution, which is derived using the

sensor readings and estimated ground truth readings. The virtual evidence is an interpreta-

tion of the error distribution, and thus is determined by the sensor readings and estimated

ground truth readings. However, as indicated in the figure, when the virtual evidence is fed

back into the Bayesian network, it in turn can impact the values of the estimated ground

truth. Thus, these components of the system form a loop and a single run usually cannot

generate a stabilized solution.

Therefore, in this work, we propose a recursive approach to address this problem. The
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Figure 5.7: System flow.

estimated ground truth and the sensor functions are updated recursively until convergence.

In that case, we assume that the final result is the best estimation possible for both the

sensor function and the ground truth.

System Flow and Algorithm

In this section, we describe the flow of the system and the algorithm to implement it.

Figure 5.7 shows the flow of our system. The input sensor readings are first processed

using a Bayesian belief network, which is trained using normal data from the in-field de-

ployment. The Bayesian network can generate the estimated ground truth values based on
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the conditional probability tables and readings from all the correlated sensors. The esti-

mated ground truth readings are then used to re-calibrate the sensors, i.e., generate the new

sensor functions which can translate the input sensor analog readings into actual pollutant

concentrations. The new sensor functions are used to generate the sensor readings, which

are compared with the estimated ground truth and derive the estimated error. The newly

updated estimated error is compared with the previous estimations. If the change between

them is within a certain threshold, we consider the system to be stabilized and the current

results as the our best guess and hence, final output. If the system is not stabilized yet,

the virtual evidence, which describes the error distributions of the input data, is updated

using the new estimated concentration and subsequently used by the Bayesian network to

generate the estimated ground truth readings for the next round of optimization. The loop

continues after a certain number of runs or until the system converges.

The detailed algorithm for the implementation is described in Algorithm 4. The input

of the system is the analog sensor readings. Before the loop starts, we first calculate

the size of the input set and the sensor concentration readings using the current sensor

functions. Then for each element in the input set, we use the Bayesian network, along with

the virtual evidence, to calculate the corresponding estimated ground truth concentration.

Subsequently, the estimated ground truth set, together with the input sensor readings, is

processed using a linear regression function to generate the new sensor functions. Finally,

the output set is derived using the new sensor function and the virtual evidence is updated.

The process repeats until the output converges. As a result, the algorithm can generate our

best estimation for both the ground truth concentrations and the sensor functions.
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Algorithm 4 Algorithm for the Implementation of the System
Require: S // The input analog readings
Require: B // The trained Bayesian network
Require: O // The output set
Require: V // The initial distributions of the virtual evidences
Require: F // The initial sensor calibration function
N ← size(S)
O ← F (S)
E ← ∅, E is the estimated ground truth set
while O does not converge do

for i = 1 : N do
E(i)← B(V (i), S(i))

end for
F ← Linear regression(E, S)
O ← F (S)
Update V using O and E

end while

5.6 Experimental Results

In this section, we first describe a real-world co-location deployment of 9 mobile sen-

sor nodes and the analysis results for the deployment data. We then evaluate our system

using the real-world data.

5.6.1 Mobile Sensor Network Deployment and Analysis

In this section, we discuss the details real-world deployment of a mobile sensor net-

work and the implications of the environmental study results.

The Mobile Sensing Device

To investigate the effect of sensor drift in real-world applications and collect data to

evaluate our data cleaning technique, we deployed a sensor network in Denver, Colorado.

During the experiment, we deployed 9 M-Pods [36], which are shown in Figure V.8(b).

The M-Pod is a custom-built mobile sensing device supporting embedded sensing, compu-

tation, and wireless communication. It supports detection of various air pollutants, includ-

ing NO2, CO, CO2, O3, and VOCs. It can also measure temperature, humidity, and light.
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(a) The Denver air quality monitoring s-
tation.

(b) The MPOD sensing platform.

Figure 5.8: The deployment site and the M-Pod.

The latest revision of the M-Pod is compact (2×2.5 inches) and energy efficient, with a

battery life of greater than 16 hours. The whole device, including a Li-ion battery with a

capacity of 6,000 mA-h, is enclosed by a low-cost off-the-shelf case that can be carried

using an armband or attached to a backpack. A 3.3 V DC fan is used to control airflow.

A rectangular filter is installed around sensor to increase sensing accuracy and prolong

sensor life. Most of the power hungry on-board sensors are power gated and can be con-

trolled by commands from smartphones. Data are temporally stored in a one megabyte

non-volatile EEPROM. The total cost of the on-board components and sensors is less than

$150 and can be reduced further if produced in quantity.

To receive, store, and present the data gathered by our M-Pod device, we have devel-

oped on-board firmware, smartphone applications, data servers, and web interfaces. The
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firmware defines protocols of sensing, storing, and sending the environmental data. The

smartphone application communicates with the M-Pod via its Bluetooth interface. It can

issue commands to and receive data from the M-pod. The data are transmitted to the on-

line data server and stored in the databases. A web-based user interface allows users to

access and analyze air quality data.

The Real World Deployment

The 9 M-Pods were used continuously from March to May 2013. The sensors were not

changed throughout this period. For the majority of the time, the M-Pods were worn by

users as part of an exposure assessment study. During three multi-day calibration periods

in March, April, and May, the M-Pods were placed at a reference air quality monitoring

site. The M-Pods were powered continuously on the roof of the monitoring building, in

a ventilated enclosure near the air inlets for the reference monitors. The reference site, as

shown in Figure V.8(a), monitors CO, NO2, and O3. It is located in downtown Denver,

Colorado, and operated by the Colorado Department of Public Health and Environment

(CDPHE). The highly accurate and regularly maintained air pollutant monitoring equip-

ment in the station is used to provide the ground truth readings.

By co-locating the M-Pods with the reference monitors, we are able to derive both

the sensor analog readings and ground truth, which can be used to determine the sensor

calibration functions. The forms of the sensor calibration functions vary depending on

sensor type. In this work, we use a piece-wise linear function. It is quite accurate according

to lab and field measurements, and requires much less resources to compute compared with

other more complicated forms of sensor functions. The calibrations are performed using

the field data. Thus, it does not require specialized equipment, and can cover a wider range

of environmental parameter space than lab calibrations. Before the fitting of the sensor
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Table 5.2: The Statistics of the Original and Drifted Sensor Readings

Errors
Undrifted (PPM) Drifted (PPM)

CO NO O3 CO NO O3

Average 0.31 16.13 0.04 10.72 112.45 0.20
Maximum 8.92 76.11 0.32 21.94 171.4 1.85

Std. 0.52 11.19 0.07 0.93 12.50 0.28
Corr. perct. 93%

function, data filtering was performed to remove noise from the sensor readings. Minute

medians were first calculated from the 6-second raw data. Then, we applied a filter based

on difference in consecutive differences in the medians. There were two thresholds for the

filter, an absolute threshold that was deemed unrealistic based on lab experiments, and 2

times the standard deviation of the differences. By performing calibrations periodically

with the same sets of sensors, we were able to assess the change in baseline readings and

sensitivity over time. The calibration functions derived by fitting to the data of the first

calibration period, which is considered as the undrifted baseline, are applied to the entire

data set.

Data Analysis

In this section, we present the analysis results of the collected data from the co-location

deployment. We examine and compare the readings of the CO, NO2, and O3 sensors. An

example of the measured data and the corresponding ground truth readings is presented

in Figure 5.9. The X axis in the figure shows the time line of the deployment in the unit

of days, while the Y axis shows the concentration of the pollutant in parts per million.

Two sets of data are presented. The red dots represent the ground truth data measured by

the accurate and regularly maintained equipment in the monitoring station, while the blue

dots represent the data measured by the less accurate and drift-prone metal oxide sensors

housed by the M-Pods. The total duration of the deployment is about two months. In the
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Figure 5.9: The measured data from the real-world deployment.
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figure, there are three separate time periods, with each lasting for about one week. During

that time period, the M-Pods are located in the station and calibrating. For the rest of the

time, the M-Pods are carried by individual users and the ground truth readings of their

exposed environments are unknown. Thus, the readings from those time periods are not

included.

The resultant data show that the drift rates for different types of sensors vary. For the

example in the figure, the NO2 sensor experiences large drift. After two months, its error

is increased more than 3 times. The CO sensor also suffers significant drift, though less

compared to the NO2 sensor with about 50% increase of error. But for the O3 sensor, no

significant drift is observed. The example shows that significant drift can occur within just

a couple of months, rendering the corresponding sensor almost useless if not carefully re-

calibrated. It demonstrated that drift is a real and severe challenge for those cheap sensors

to be useful in real-world applications. Moreover, since the exposed environment and the

properties of the sensors vary, different sensors usually exhibit different drift rates, making

it impossible to re-calibrate the sensors using a predetermined model.

Among the 9 M-Pods deployed, we choose 6 of them during our analysis and eval-

uations. For the rest three, one of them did not return enough data due to transmission

problem, and two of them have sensors completely dead within the two months deploy-

ment period. Table 5.2 shows the statistics of the sensing errors from the remaining 6

M-Pods. The error in the table are defined as the absolute variation between the sensor

reading and the ground truth. We compare the drifted and undrifted data. The undrifted

data are taken from the first time period as shown in Figure 5.9. The drifted data are taken

from the third time period. The first three columns shows the average, maximum, and

standard deviation of the error distributions. Significant drift can be observed for all the

types of sensors. It should be noted that for some pollutants, such as NO2 and CO, their
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mean values change more significantly than the standard deviation, which implies a close

to linear shift. The last column of the table shows the correlation percentage. Correlation

percentage is defined as the percentage of the sensor pairs that shows strong correlation

among all the possible pairs of all the sensors. The result shows a correlation percentage

of over 93%, indicating that Bayesian network might be an appropriate solution.

The environment the sensors exposed to during the co-location experiment varies over

time for different pollutants. For example, compared with the undrifted period, the av-

erage ground truth concentrations for the drifted period have shifted by 42.4%, 59.0%,

and 4.7% for CO, NO2, and O3, respectively. The distribution of CO and NO2 are highly

dynamic and their concentrations differ significantly during the two time periods, which

are separated by a time interval of about 2 months. The O3 distribution, on the other hand,

has much less deviations. We show in Section 5.6.2 that our technique works well for both

scenarios.

In conclusion, our deployment data show that sensor drift and consequently the noise

problem are very realistic and important for the metal oxide sensors. If not properly ad-

dressed, most of those sensors can be useless within just a couple of months. The drift

rates are dependent on the environment and sensor properties and hence, vary for different

sensors. Thus, it is not feasible to use predetermined correction methods: sensor calibra-

tion problem must be addressed using the field data. Moreover, different types of sensors

show strong correlations, permitting noise reduction and sensor calibration.

5.6.2 Data Recovery and Sensor Calibration Results

In this section, we discuss the experimental environment setup and contrast our tech-

nique with the alternatives.
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Experiment Setup

The sensor error cleaning and sensor re-calibration functions are written using Matlab,

with the help of an external Bayesian network toolbox called bnt [9]. The program runs on

a 4-core Intel Xeon E31230 machine with 8 GB memory. We use the data returned from

6 sensors out of a total of 9 sensors deployed, excluding the failed sensors and sensors

with insufficient data. The failed sensors are not used since their readings are no longer

correlated with each other and re-calibration cannot help improve the results. In other

words, our technique does not have effect on them and they should be simply replaced.

The failed sensor can be detected using both our technique and the Bayesian network

method.

The CPT of the Bayesian network is derived from training. The training set is generat-

ed using the co-location data from undrifted (the first) time period. This approach is more

appropriate since it require much less effort to cover a reasonable number of states than

lab environment, and can provide us a more realistic prior distributions for temperature.

The training dataset is filtered so that it contains only normal data. After the Bayesian

network is trained, the contents in the CPT remain unchanged until the sensor is close to

a reference station and have access to the ground truth readings again. For the parameter

states that are not encountered during the training phase, we replace their contents with the

encountered state of the closest distance, calculated using the Euclidean distance between

those two states.

To evaluate our noise reduction and sensor re-calibration technique, we compare the

following three approaches.

1. Uncompensated. This approach interprets the reported analog data using the pre-

determined sensor function from lab measurement and without any compensation
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Figure 5.10: The data recovery results of various techniques for the drifted data.

scheme.

2. Bayesian network. This approach implements a Bayesian belief network based

technique proposed by Janakiram et al. [33]. It is the most relevant and closely

related work to the best of our knowledge.

3. Our technique. It improved upon the Bayesian network approach by incorporating

the virtual evidence and sensor re-calibration.

We evaluate all the four approaches using the same set of testing data derived from our

real-world deployment. We compare those techniques in terms of error reduction, recovery

rate, and detection rate of the abnormal data. A data point is considered abnormal when

its deviation from the ground truth value exceeding a certain threshold. In this work,

the threshold is set as one standard deviation of the ground truth concentrations. Thus,

recovery rate is defined as the percentage of abnormal readings becoming normal after

being processed. The detection rate is defined as the percentage of correctly labeled data

(normal or abnormal) for a dataset composed of undrifted data with noises.
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Figure 5.11: The percentage of successfully cleaned data.

Drifted Sensor Recovery Evaluation

Many existing abnormality detection approaches, such as distance based techniques [51,

62] or classification based techniques [56], cannot estimate the ground truth data and pro-

vide re-calibration opportunities for the drifted sensors. Thus, we do not include them in

the comparison. Figure 5.10 shows the performance of various relevant data cleaning and

recovery techniques. Since our technique focuses on the sensor drift and re-calibration

problem, the experiment is performed on the third time period of the data set, which rep-

resents the drifted sensors. The Y axis of the bar graph shows the average errors, which

are normalized to our recursive technique. Compared with the uncompensated approach,

in which the sensor noises are not compensated and sensor calibration functions are not

re-calibrated, our technique can incur only about 2.13% error on average. Moreover, com-

pared with the Bayesian network approach, which is the closest existing technique, our

technique is capable of reducing errors by 32.0%, 34.7%, and 35.5% for CO, NO2, and

O3, respectively. Overall, our technique can reduce error by 34.1% on average.

After the estimated ground truth values are derived, we consider it as the ground truth

concentration. However, since the ground truth concentration estimation is imperfect, the

classification of sensor readings according to this estimate ground truth concentrations can
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Figure 5.12: The abnormality detection results of various techniques for the undrifted data.

be wrong. Hereby we define data recovery rate as the percentage of corrected label data

points after the data recovery scheme. Figure 5.11 shows the comparison results of various

techniques in terms of data recovery rate. The rate is obtained by comparing the estimated

readings against the ground truth. For our technique, the data recovery rates are 34.7%,

33.3%, 41.3% for CO, NO2, and O3, respectively. Compared with the Bayesian network

approach, our technique is about 4 times better.

The execution times of our technique and the Bayesian network approach are quite

similar. To process a day’s data, which include 1440 data points, the average running time

is 46 seconds for our technique and 39 seconds for the Bayesian network approach. This

includes the time to train a Bayesian network using a training set consisting of more than

4,000 samples. Moreover, in this work the time resolution of the dataset is one minute,

which is quite fine-grained compared with the requirement of many real-world applica-

tions. Thus, in general, we do not consider running time a problem.

5.6.3 Abnormality Detection and Cross Sensitivity

In addition to the data recovery and sensor function re-calibration for the drifted da-

ta, our technique is also capable of detecting abnormal readings caused by random noise
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during undrifted period. The testing dataset in this case consists of undrifted data points,

which are from the first time period. We create the testing dataset by manually setting the

ratio of normal and abnormal data points. In this work, we set the ratio at 50%, which can

be adjusted for the requirement of the application. We first pick all the abnormal readings

from the dataset, then randomly choose the same number of random samples. Thus, in

the testing set, the ratio of abnormal readings is set to be 50%. The detection rate is the

combined correct classification ratio by excluding the false positives and false negatives.

We compare the abnormality detection efficiency of our technique and the Bayesian net-

work approach. The results are shown in Figure 5.12. The performance of our technique

and the Bayesian network is quite similar, both having a detection rate of about 87%. This

is as expected since during normal operation, the sensors are not drifted and thus, sensor

function re-calibration should not have any significant impact on the results.

In addition to the sensor abnormality detection and drift compensation, another advan-

tage of our technique, as well as the Bayesian network approach, is that it can automat-

ically identify the pollutant composition in the air, thus addressing the cross sensitivity

problem. In the real-world deployment, the deployment environment is often complex and

heterogeneous. Therefore, without the knowledge of the pollutant composition in the air,

it is very hard to get an accurate estimation of the pollutant concentration using the metal

oxide sensors. Our technique can identify and quantify the pollutants in the air as long as

they are previously included in the training set. However, the total number of pollutants in

our system should be limited due to the constraint of storage space requirement.

5.7 Conclusion

In this work, we have presented a Bayesian belief network based system to reduce sen-

sor noises and re-calibrate the sensor functions in the presence of sensor drift. Our method
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improves upon the state-of-art Bayesian belief network techniques by incorporating the

virtual evidence and adjusting the sensor calibration functions recursively. We have also

performed a real-world deployment of mobile sensor network to investigate sensor drifts

and validate our technique. Compared with the existing Bayesian network technique, our

method can improve the result significantly. As a result, our technique can reduce error by

34.1% and increase the recovered data rate by 4 times on average.



CHAPTER VI

Conclusion

6.1 Conclusion

My thesis is dedicated to the design and validation of mobile air quality sensor net-

works, and developing techniques to solve the major challenges introduced by using the

low-cost, compact sensors: drift, cross sensitivity, and noises. My contribution in this

work can be summarized as follows.

1. We have designed a mobile sensing platform that can house multiple low cost metal

oxide sensors. The platform is used to automatically collect personal exposure data,

which are used in various researches.

2. To address the drift problem, we have developed a collaborative calibration tech-

nique for mobile sensors and sensor placement technique for the stationary sensors,

which tries to maximize the calibration opportunity of the mobile sensors. We have

also investigated the distribution of the sensor drift using the data collected from a

custom-built chamber.

3. We observe that in the real-world application, deploying more mobile sensors is not

always beneficial given that the sensor drift is significant. Thus, we propose a hy-

brid sensor network construction technique, which is based on the optimal indoor
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pollutant concentration prediction model we developed. The hybrid sensor network

consists of both stationary sensors and mobile sensors, and is able to achieve a better

performance than both of them. Note that this work aims at long-term air quality

monitoring and is not guarenteed to have a better prediction for instant events detec-

tion.

4. We observe that because of cross sensitivity, the metal oxide sensors housed on the

M-Pod are all correlated with each other. By exploiting this correlation, we design a

Bayesian network based system that can reduce sensor noise caused by sensor drift,

re-calibrate the sensors, and identify the gas composition in the air.



APPENDICES

114



BIBLIOGRAPHY

115



116

BIBLIOGRAPHY

[1] Arduino BT. http://www.arduino.cc/en/Main/ArduinoBoardBluetooth.

[2] Chinese protesters accuse solar panel plant of pollution. http://www.nytimes.com/
2011/09/19/world/asia/chinese-protesters-accuse-solar-panel-plant-of-pollution.
html.

[3] Senseair K22 product specification. http://www.senseair.se/Datablad/ed co2
engine k22 oc.pdf.

[4] Metal oxide sensors. Sensors and Actuators B: Chemical, 33(1–3):198 – 202, 1996.

[5] Arduino open-source electronics prototyping platform. http://www.arduino.cc/.

[6] K. Arshak, E. Moore, G. M. Lyons, J. Harris, and S. Clifford. A review of gas sensors
employed in electronic nose applications. Sensor Review, 24(2):181–198, 2004.

[7] J. Berry, L. Fleischer, W. Hart, C. Phillips, and J. Watson. Sensor placemen-
t in municipal water networks. J. of water resources planning and management,
131(3):237–243, 2005.

[8] LusM.A. Bettencourt, AricA. Hagberg, and LeviB. Larkey. Separating the wheat
from the chaff: Practical anomaly detection schemes in ecological applications of
distributed sensor networks. In Distributed Computing in Sensor Systems, volume
4549, pages 223–239. 2007.

[9] Bayes net toolbox for matlab. https://code.google.com/p/bnt/.

[10] S. K. Brown, M. R. Sim, M. J. Abramson, and C. N. Gray. Concentrations of volatile
organic compounds in indoor air – a review. Indoor Air, 4(2):123–134, 1994.

[11] J. M. Burke, M. J. Zufall, and H. ozkaynak. A population exposure model for partic-
ulate matter: Case study results for PM2.5 in Philadelphia, PA. Journal of Exposure
Analysis and Environmental Epidemiology, 11(6):470–489, 2001.

[12] Vladimir Bychkovskiy, Seapahn Megerian, Deborah Estrin, and Miodrag Potkonjak.
A collaborative approach to in-place sensor calibration. In Proc. Int. Symp. Informa-
tion Processing in Sensor Networks, pages 301–316, April 2003.

http://www.arduino.cc/en/Main/ArduinoBoardBluetooth
http://www.nytimes.com/2011/09/19/world/asia/chinese-protesters-accuse-solar-panel-plant-of-pollution.html
http://www.nytimes.com/2011/09/19/world/asia/chinese-protesters-accuse-solar-panel-plant-of-pollution.html
http://www.nytimes.com/2011/09/19/world/asia/chinese-protesters-accuse-solar-panel-plant-of-pollution.html
http://www.senseair.se/Datablad/ed_co2_engine_k22_oc.pdf
http://www.senseair.se/Datablad/ed_co2_engine_k22_oc.pdf
http://www.arduino.cc/
https://code.google.com/p/bnt/


117

[13] K. Chakrabarty, S.S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance and
target location in distributed sensor networks. IEEE Trans. Computers, 51(22):1448–
1453, December 2002.

[14] A. Chaloulakou and I. Mavroidis. Comparison of indoor and outdoor concentrations
of CO at a public school. Evaluation of an indoor air quality model. Atmospheric
Environment, 36(11):1769 – 1781, 2002.

[15] Hei Chan and Adnan Darwiche. On the revision of probabilistic beliefs using uncer-
tain evidence. Artificial Intelligence, 163(1):67–90, 2005.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-
vey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[17] J. M. Daisey, W. J. Angell, and M. G. Apte. Indoor air quality, ventilation and health
symptoms in schools: an analysis of existing information. Indoor Air, 13, 2003.

[18] V. Di Lecce and M. Calabrese. Discriminating gaseous emission patterns in low-
cost sensor setups. In Proc. Int. Conf. Computational Intelligence for Measurement
Systems and Applications, pages 1–6, 2011.

[19] Lars E. Ekberg. Volatile organic compounds in office buildings. Atmospheric Envi-
ronment, 28(22):3571 – 3575, 1994.

[20] Eiman Elnahrawy and Badri Nath. Cleaning and querying noisy sensors. In Proc.
Int. Conf. Wireless Sensor Networks and Applications, pages 78–87, 2003.

[21] A. Emami-Naeini, M.M. Akhter, and S.M. Rock. Effect of model uncertainty on fail-
ure detection: the threshold selector. IEEE Trans. Automatic Control, 33(12):1106–
1115, December 1988.

[22] EPA. Buildings and their impact on the environment: a statistical summary, 2009.

[23] S. P. Tarzia, Peter A. Dinda, Robert P. Dick, and Gokhan Memik. Indoor localization
without Infrastructure using the acoustic background spectrum. In Proc. Int. Conf.
on Mobile Systems, Applications, and Services, pages 155–168, June 2011.

[24] Panos G. Georgopoulos, Sastry S. Isukapalli, and Kannan Krishnan. Modeling expo-
sures to chemicals from multiple sources and routes, pages 315–351. John Wiley &
Sons, Ltd, 2010.

[25] M.C. Gonzalez, C.A. Hidalgo, and A.-L. Barabasi. Understanding individual human
mobility patterns. Nature, 453(7196):779–782, 2008.

[26] Radha Goyal and Mukesh Khare. Indoor air quality modeling for PM10, PM2.5,
and PM1.0 in naturally ventilated classrooms of an urban indian school building.
Environmental Monitoring and Assessment, 176:501–516, 2011.

http://robertdick.org/publications/tarzia11jun-a.html
http://robertdick.org/publications/tarzia11jun-a.html


118

[27] H. Guo, S. C. Lee, L. Y. Chan, and W. M. Li. Risk assessment of exposure to
volatile organic compounds in different indoor environments. Environmental Re-
search, 94(1):57 – 66, 2004.

[28] J.-E. Haugen, O. Tomic, and K. Kvaal. A calibration method for handling the tem-
poral drift of solid state gas-sensors. Analytica Chimica Acta, 407(1–2):23 – 39,
2000.

[29] S. R. Hayes. Estimating the effect of being indoors on total personal exposure to
outdoor air pollution. J. Air Pollution Control Association, 39(11):1453–1461, 1989.

[30] S. R. Hayes. Use of an indoor air quality model (IAQM) to estimate indoor ozone
levels. J. Air & Waste Management Association, 41(2):161–170, 1991.

[31] C. Huizenga, S. Abbaszadeh, L. Zagreus, and E. Arens. Air quality and thermal
comfort in office buildings: Results of a large indoor environmental quality survey.
In Healthy Buildings 2006, 2006.

[32] IBM ILOG CPLEX Division. IBM ILOG CPLEX 12.0 user manual, 2008.

[33] D. Janakiram, V. Adi Mallikarjuna Reddy, and A.V.U. Phani Kumar. Outlier detec-
tion in wireless sensor networks using bayesian belief networks. In Proc. Int. Conf.
Communication System Software and Middleware, pages 1–6, 2006.

[34] Richard C Jeffrey. The logic of decision. University of Chicago Press, 1990.

[35] Y. Jiang, K. Li, L. Tian, R. Piedrahita, Y. Xiang, O. Mansata, Q. Lv, R. P. Dick,
M. Hannigan, and L. Shang. MAQS: a personalized mobile sensing system for in-
door air quality monitoring. In Proc. Int. Conf. Ubiquitous Computing, pages 271–
280, September 2011.

[36] Y. Jiang, K. Li, L. Tian, R. Piedrahita, Y. Xiang, O. Mansata, Q. Lv, R. P. Dick,
M. Hannigan, and L. Shang. MAQS: A personalized mobile sensing system for
indoor air quality monitoring. In Proc. Int. Conf. Ubiquitous Computing, pages 271–
280, September 2011.

[37] Steven M Kay. Fundamentals of Statistical signal processing, Volume 2: Detection
theory. Prentice Hall PTR, 1998.

[38] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Infor-
mation Processing Letters, 70(1):39–45, 1999.

[39] J. Kim, V. Sridhara, and S. Bohacek. Realistic mobility simulation of urban mesh
networks. Ad Hoc Networks, 7(2):411–430, 2009.

[40] L. Kirkeskov, T. Witterseh, L. W. Funch, E. Kristiansen, NewAuthor5, M. K. Hansen,
and B. B. Knudsen. Health evaluation of volatile organic compound (voc) emission
from exotic wood products. Indoor Air, 2008.

http://robertdick.org/publications/jiang11sep.html
http://robertdick.org/publications/jiang11sep.html


119

[41] N. E. Klepeis. Validity of the uniform mixing assumption: determining human expo-
sure to environmental tobacco smoke. Environ Health Perspect, 107(Suppl. 2):357–
363, 1999.

[42] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg. Near-optimal
sensor placements: maximizing information while minimizing communication cost.
In Proc. Int. Conf. Information Processing in Sensor Networks, pages 2–10, 2006.

[43] D. Kumar, S. Rajasegarar, and M. Palaniswami. Automatic sensor drift detection and
correction using spatial kriging and kalman filtering. In Proc. Int. Conf. Distributed
Computing in Sensor Systems, pages 183–190, 2013.

[44] K. Lee, S. Hong, S. Kim, I. Rhee, and S. Chong. SLAW: A new mobility model for
human walks. In Proc. Int. Conf. Computer Communications, pages 855–863, April
2009.

[45] Xiang Liu and Zhiqiang John Zhai. Prompt tracking of indoor airborne contaminant
source location with probability-based inverse multi-zone modeling. Building and
Environment, 44(6):1135 – 1143, 2009.

[46] N. Maisonneuve, M. Stevens, M. Niessen, P. Hanappe, and L. Steels. Citizen noise
pollution monitoring. In Proc. Int. Conf. Digital Government Research, pages 96–
103, 2009.

[47] M. R. Mannino and S. Orecchio. Polycyclic aromatic hydrocarbons (PAHs) in indoor
dust matter of Palermo (Italy) area: Extraction, GC−MS analysis, distribution and
sources. Atmospheric Environment, 42(8):1801 – 1817, 2008.

[48] S. Miller-Leiden, C. Lohascio, W. W. Nazaroff, and J.M. Macher. Effectiveness of
in-room air filtration and dilution ventilation for tuberculosis infection control. J. Air
& Waste Management Association, 46(9):869–882, 1996.

[49] Emiliano Miluzzo, NicholasD. Lane, AndrewT. Campbell, and Reza Olfati-Saber.
Calibree: A self-calibration system for mobile sensor networks. In Proc. Int. Conf.
Distributed Computing in Sensor Systems, volume 5067, pages 314–331, 2008.

[50] NIST. CONTAM: A multizone airflow and contaminant transport analysis software.
http://www.bfrl.nist.gov/IAQanalysis/CONTAM/index.htm.

[51] S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and C. Faloutsos. Loci: fast outlier
detection using the local correlation integral. In Proc. Int. Conf. Data Engineering,
pages 315–326, 2003.

[52] Yun Peng, Shenyong Zhang, and Rong Pan. Bayesian network reasoning with
uncertain evidences. J. Uncertainty, Fuzziness and Knowledge-Based Systems,
18(05):539–564, 2010.

http://www.bfrl.nist.gov/IAQanalysis/CONTAM/index.htm


120

[53] O.A. Postolache, J.M.D. Pereira, and P.M.B.S. Girao. Smart sensors network for
air quality monitoring applications. IEEE Trans. Instrumentation and Measurement,
58(9):3253–3262, Sept. 2009.

[54] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support
system. In Proc. MOBICOM, pages 32–43, 2000.

[55] A. Rabl and J.V. Spadaro. Public health impact of air pollution and implications for
the energy system. Annual Review of Energy and the Environment, 25:601 – 628,
2000.

[56] S. Rajasegarar, C. Leckie, M. Palaniswami, and J.C. Bezdek. Quarter sphere based
distributed anomaly detection in wireless sensor networks. In Proc. Int. Conf. Com-
munications, pages 3864–3869, 2007.

[57] A.C. Romain and J. Nicolas. Long term stability of metal oxide-based gas sen-
sors for e-nose environmental applications: An overview. Sensors and Actuators B:
Chemical, 146(2):502 – 506, 2010.

[58] Uwe Schlink, Kathrin Strebel, Mark Loos, Rene Tuchscherer, Matthias Richter,
Thomas Lange, Jakob Wernicke, and Ad Ragas. Evaluation of human mobility mod-
els, for exposure to air pollutants. Science of The Total Environment, 408(18):3918–
3930, August 2010.

[59] D. G. Shendell, R. Prill, W. J. Fisk, M. G. Apte, D. Blake, and D. Faulkner. Associ-
ations between classroom CO2 concentrations and student attendance in washington
and idaho. Indoor Air, 14(5):333–341, 2004.

[60] C. Song, Z. Qu, N. Blumm, and A.-L. Barabasi. Limits of predictability in human
mobility. Science, 327(5968):1018–1021, February 2010.

[61] Y. Xiang, L. S. Bai, R. Piedrahita, R. P. Dick, Q. Lv, M. P. Hannigan, and L. Shang.
Collaborative calibration and sensor placement for mobile sensor networks. In Proc.
Int. Conf. Information Processing in Sensor Networks, pages 73–84, April 2012.

[62] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.
Online outlier detection in sensor data using non-parametric models. In Proc. Int.
Conf. Very large data bases, pages 187–198, 2006.

[63] Pieter Tans and Kirk Thoning. How we measured background co2 levels on Mauna
Loa. http://www.esrl.noaa.gov/gmd/ccgg/about/co2 measurements.html.

[64] D. Tsai, J. Lin, and C. Chan. Office workers’ sick building syndrome and indoor car-
bon dioxide concentrations. Journal of Occupational and Environmental Hygiene,
9(5):345–351, 2012.

[65] W. Tsujita, H. Ishida, and T. Moriizumi. Dynamic gas sensor network for air pollu-
tion monitoring and its auto-calibration. In Proc. Int. Conf. Sensors, pages 56–59,
2004.

http://www.esrl.noaa.gov/gmd/ccgg/about/co2_measurements.html


121

[66] Wataru Tsujita, Akihito Yoshino, Hiroshi Ishida, and Toyosaka Moriizumi. Gas
sensor network for air-pollution monitoring. Sensors and Actuators B: Chemical,
110(2):304 – 311, 2005.

[67] U.S. Environmental Protection Agency Green Building Workgroup. Buildings and
their impact on the environment: A statistical summary, 2009.

[68] W. Willett, P. Aoki, N. Kumar, S. Subramanian, and A. Woodruff. Common sense
community: Scaffolding mobile sensing and analysis for novice users. In Pervasive
Computing, volume 6030, pages 301–318.

[69] D. P. Wyon. The effects of indoor air quality on performance and productivity. In-
door Air, 2004.

[70] Yun Xiang, R. Piedrahita, R.P. Dick, M. Hannigan, Qin Lv, and Li Shang. A hy-
brid sensor system for indoor air quality monitoring. In Proc. Int. Conf. Distributed
Computing in Sensor Systems, pages 96–104, 2013.

[71] S. Zampolli, I. Elmi, F. Ahmed, M. Passini, G.C. Cardinali, S. Nicoletti, and L. Dori.
An electronic nose based on solid state sensor arrays for low-cost indoor air quality
monitoring applications. Sensors and Actuators B: Chemical, 101(1–2):39 – 46,
2004.

[72] Yang Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless
sensor networks: A survey. IEEE Communications Surveys Tutorials, 12(2):159–
170, 2010.


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Mobile Sensor Network Design and Deployment
	Collaborative Calibration and Sensor Placement
	Hybrid Sensor Network Modeling and Synthesis
	Error Reduction and Sensor Re-calibration
	Thesis Organization

	M-Pods and Air Quality Monitoring Systems Design
	Introduction
	Mobile Pollution Sensing Device
	Deployment Experience

	Collaborative Sensor Calibration and Sensor Placement
	Introduction
	Motivating Example
	Related Work
	Collaborative Calibration
	Overview
	Collaborative Calibration Problem Definition
	Error Estimation and Error Propagation
	Collaborative Calibration Algorithm

	Stationary Sensor Placement
	Overview
	Sensor Placement Problem Definition and MILP-Based Solution
	Approximation Algorithm Based Placement Technique

	Experimental Results
	Calibration Procedure and Drift Experiments
	Evaluation of Collaborative Calibration
	Evaluation of Stationary Sensor Placement
	Measured Human Mobility Case Study
	Experiment on Measured and Synthesized Human Motion Traces


	Conclusions

	Hybrid Sensor Network Modeling and Synthesis
	Introduction
	Related work
	Motivation and System Overview
	Motivating Example
	Hybrid Sensor Network Synthesis System Overview

	Pollutant Concentration Prediction Models
	Problem and Term Definitions
	Pollutant Concentration Modeling and Analysis
	Concentration Estimation without Sensors
	Concentration Estimation with Accurate Sensors
	Concentration Estimation with Inaccurate Sensors

	Optimal Concentration Prediction Model

	Hybrid Sensor Network Synthesis
	Problem Definition
	Synthesis Overview
	Algorithm

	Experimental Results
	A CO2 Sensor Network Deployment and Analysis
	Sensor Network Deployment
	Data Analysis

	Simulation Setup
	General Setup
	Monte-Carlo Simulation

	Concentration Prediction Model Evaluation
	Hybrid Sensor Network Evaluation

	Conclusion

	Mobile Sensing Networks Noise Reduction and Sensor Calibration
	Introduction
	Related Work
	System Overview
	Basic Bayesian Belief Network
	Bayesian Network Introduction
	Bayesian Network for Real-world Applications

	Bayesian Network with Sensor Re-calibration
	Problems for Basic Bayesian Network
	Error Distribution and Uncertain Evidences
	Bayesian Network with Virtual Evidence
	Sensor Function Re-calibration
	System Design
	Recursive Sensor Re-calibration
	System Flow and Algorithm


	Experimental Results
	Mobile Sensor Network Deployment and Analysis
	The Mobile Sensing Device
	The Real World Deployment
	Data Analysis

	Data Recovery and Sensor Calibration Results
	Experiment Setup
	Drifted Sensor Recovery Evaluation

	Abnormality Detection and Cross Sensitivity

	Conclusion

	Conclusion
	Conclusion

	APPENDICES
	BIBLIOGRAPHY

