
Electrical Engineering and Computer Science Department

Technical Report

NWU-EECS-09-07

April 08, 2009

Fast Voltage Assignment by Convex-cost Flow

Stephen P. Tarzia Hai Zhou Robert P. Dick

Abstract

In this work, we cast the continuous voltage assignment problem as a minimum convex-

cost network flow problem to solve it both optimally and efficiently. Experiments show

that, on real circuits, our algorithm is two orders of magnitude (100X) faster than

previous work [1]. Another research group independently developed and published the

continuous voltage assignment algorithm that we describe [2]. The purpose of this

technical report is to present an alternative mathematical derivation and experimental

evaluation of the same algorithm. We also present a new and elegant dynamic-

programming discrete voltage assignment heuristic.

This work was supported in part by the Semiconductor Research Corporation under

award 2007-HJ-1593 and in part by the National Science Foundation under awards

CCF-0702761 and CNS-0347941. Stephen P. Tarzia is supported by a Dr. John N.

Nicholson fellowship.

Keywords: voltage assignment, network flow, convex programming, optimization,

VLSI-CAD

I. INTRODUCTION

In Multiple Supply Voltage (MSV) digital circuits, we can

slow portions of the circuit at design-time by powering them

with reduced supply voltages. Voltage assignment is a dual-

objective optimization problem; there is a tradeoff between

delay and energy. In the deadline problem, the maximum

circuit delay is given and energy is minimized. In the budget

problem, the maximum circuit energy (or power) is given and

delay is minimized. We focus on the deadline problem.

A. Related work

Other problem definitions: A great deal of work has been

done on voltage assignment due to its huge energy saving

potential. However, most of these works use very different

problem definitions [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[13] [14] [15] [16] [17] [18] [19] [20]. Our problem definition

is in many ways a simplification of these; we ignore both

voltage-level shifter costs and floorplanning considerations.

We believe that these complexities can be handled in a multi-

stage design flow based on our basic voltage assignment

algorithm. However, we do handle timing deadlines that span

circuits with reconverging paths, so our timing model is among

the most sophisticated. In addition, we do not presume a given

set of available voltage levels as many work does. Instead, we

show in Section IV how a set of discrete voltage levels can

be chosen for each circuit. This added flexibility leaves more

options available for energy reduction while staying within the

limitations of practical power delivery.

Delay budgeting: The voltage assignment problem that

we solve is based on static timing analysis. The circuit’s

connections form a directed acyclic graph of precedence

constraints upon which we are to distribute timing slack. An

optimal flow-based solution to linear-cost delay budgeting was

introduced to the CAD community by Ghiasi et al. [21] and to

a broader audience even earlier by Boros et al. [22]. Previous

delay budgeting algorithms were path-based and suboptimal;

typically a variant of the Critical Path Method called the Zero

Slack Algorithm [23] has been used [24]. Lin et al. [25]

give a flow formulation for an interconnect-delay budgeting

problem with convex, rather than linear, costs. We use the

same underlying network flow problem to solve a different

CAD problem.

The continuous voltage assignment problem is analogous to

a classical problem in Operations Research; it is an instance

of the well-studied time-cost tradeoff in project management

problem [26] [27] with non-linear costs [28]. Our main insight

has been recognizing the voltage assignment problem as such.

The discrete version of the problem that we solve in Section IV

has not been considered in the project management literature,

as far as we know.

Direct relatives: Niyogi and Marculescu [29] optimally

solve the same continuous voltage assignment problem, but

their formulation has an exponential number of constraints,

one for each path in the circuit. Dabiri et al. [1] give a

polynomial-time formulation for same problem. Our main

contribution is an algorithm that is much faster in practice. The

(a)

inputs

+ block
delay=2-3

* block
delay=7-10

+ block
delay=2-3

outputs
deadline=10 (b)

circuit start

+ start

 0

* start

 0

+ finish

 2-3

+ start

 0

* finish

 7-10

 0

circuit finish

 0

+ finish

 2-3

 0

 -10

Fig. 1. (a) is an example data flow graph with two addition blocks and a
multiplication block. (b) is the activity-on-arc timing graph representation of
(a). Edge labels are delays, either a range of operating points or a fixed value.

recent work of Ma et al. [2] presents essentially the same fast

algorithm as our work, but was completed simultaneously and

without our knowledge. Ma et al.go a step further to build a

complete voltage assignment and voltage-island floorplanning

design flow.

B. The need for speed

An important premise of this work is that very fast voltage

assignment algorithms are needed. We believe that in many

design flows this is the case. For example, the high-level

synthesis work by Gu et al. [24] runs a voltage assignment

procedure in it’s inner loop to evaluate the energy cost of

each candidate design. A floorplanner might also run a voltage

assignment procedure on each candidate design since varying

interconnect delays would affect the voltage assignment. We

present the first optimal continuous voltage assignment algo-

rithm that is fast enough to run within such an inner loop.

In Section II we define the continuous voltage assignment

subproblem and present for it a fast polynomial-time algo-

rithm. We demonstrate its efficiency relative to previous work

in Section III. Building on that, we present an elegant discrete

voltage selection and assignment heuristic in Section IV and

demonstrate its closeness to optimality in Section V.

II. CONTINUOUS VOLTAGE ASSIGNMENT

A. Problem definition

Informally, the continuous voltage assignment problem is to

assign voltages to circuit blocks in a data flow graph (DFG)

to minimize total energy consumption while still meeting a

given timing deadline. This continuous assignment problem is

impractical in that it ignores the costs and limitations of the

power delivery network; we assume that any voltage can be

delivered anywhere at no cost. In Section IV we round the

voltages to several discrete levels for realistic designs.

A DFG with timing requirements is modeled by a graph

G = (V,E). Without loss of generality, we assume that blocks

in the DFG are represented by edges rather than vertices; this

is known as the activity-on-arc model. The vertices V are

I/O ports or “events” representing the completion of a set of

(incoming arc) tasks. For each vertex i ∈ V , the labelling ti
represents the arrival time of i. The transformation from DFG

to timing graph G is shown in Figure 1.

For each edge (i, j) ∈ E, the variable dij represents the

delay from i to j and is bounded by the constants lij and uij .

The edge set E is composed of three subsets: E = Eblk ∪
Eint∪Etim. Eblk is the set of circuit blocks; for (i, j) ∈ Eblk,

dij is the computational delay of the block, where lij and uij

are determined by the operating voltage range. Eint is the set

of the interconnect edges; for (i, j) ∈ Eint, dij = lij = uij is

the constant interconnect delay. Etim is the set of the timing

requirement edges; for (i, j) ∈ Etim, we set lij = uij = −Rij

where the maximal path delay from j to i is required to be no

more than the constant Rij . In most cases there is only one

edge in Etim, from outputs to inputs, representing the desired

computation period of the circuit.

Let εij(dij) be the energy consumption for the edge (i, j).
Note that the energy, ε, is expressed as a continuous function

of delay rather than of voltage. In our problem formulation

we are actually doing delay assignment but this is clearly

equivalent to voltage assignment. We thus have the following

problem for finding the lowest feasible total energy consump-

tion E :

E = min
t,d

∑

(i,j)∈E

εij(dij) (1)

s.t. ti + dij ≤ tj , ∀(i, j) ∈ E (2)

lij ≤ dij ≤ uij , ∀(i, j) ∈ E (3)

We must minimize total energy (1) while enforcing precedence

constraints (2) and honoring voltage bounds (3).

B. Minimum convex-cost flow formulation

In this section, we will see how to solve above nonlinear

mathematical program efficiently by minimum convex-cost

flow. We draw heavily from the work of Ahuja, Hochbaum,

and Orlin [28]. Instead, we could have proven the convexity

of the problem and entered equations 1, 2 and 3 directly into

a general-purpose convex programming solver, as done by

Dabiri et al. [1]. However, we will see in Section III that our

convex-cost flow code is much faster than the general solvers.

First, we dualize constraint 2 using vector ~x to obtain the

following Lagrangian Subproblem:

L(~x) =min
~t,~d

{

∑

(i,j)∈E

εij(dij) +
∑

(i,j)∈E

(ti + dij − tj)xij

}

s.t. lij ≤ dij ≤ uij , ∀(i, j) ∈ E

(4)

Since the Lagrangian subproblem is a relaxation of the original

problem

L(~x) ≤ E , ∀~x ∈ R
+. (5)

An optimal solution to the original problem will also be a

solution to the Lagrangian subproblem for some ~x∗; specifi-

cally, it will be the largest such solution by equation 5. Thus,

the following Lagrangian Multiplier Problem is equivalent to

equations 1, 2, and 3.

E = max
~x∈R|E| ∧ ~x≥~0

L(~x) (6)

Now we coax the above Lagrangian multiplier problem into

a convex cost flow problem. Observe that by expanding and

recombining the second summation in equation 4 we have

L(~x) = min
~t ∈ R

|V |

dij ∈ [lij , uij]

{

∑

(i,j)∈E

εij(dij) +
∑

(i,j)∈ E

dijxij

+
∑

(i,j)∈ E

(tj − ti)xij

}

(7)

= min
dij∈[lij ,uij]

∑

(i,j)∈E

(

εij(dij) + dijxij

)

+ min
~t

∑

i∈V

(

∑

(j,i)∈E

xji −
∑

(i,j)∈ E

xij

)

ti (8)

= min
dij∈[lij ,uij]

∑

(i,j)∈E

(

εij(dij)+dijxij

)

+min
~t

∑

i∈V

eiti (9)

where

ei ,
∑

(j,i)∈E

xji −
∑

(i,j)∈ E

xij (10)

We can simplify this formulation as follows. We introduce a

new vertex to the DFG, called node zero, and add |V | edges

(i, 0) to it, one from each existing vertex. After extending

vectors ~d and ~t by renaming the variables ti → di0 and ei →
xi0 and defining li0 , −∞, ui0 , ∞, and εi0(di0) , 0 we

get

L(~x) = min
dij∈[lij ,uij]

∑

(i,j)∈E′

(

εij(dij) + dijxij

)

(11)

s.t. xi0 =
∑

(j,i)∈E

xji −
∑

(i,j)∈ E

xij , ∀i ∈ V (12)

Observe that objective function 11 is separable; we can min-

imize with each dij independently. Now equation 6 can be

expanded into

E = max
~x∈R+

{

∑

(i,j)∈E′

min
dij∈[lij ,uij]

{

εij(dij) + dijxij

}

}

(13)

s.t. constraint 12. If we define

cij(χ) , − min
~d:dij∈[lij ,uij]

{

εij(d) + dχ
}

(14)

we get

E = min
~x∈R+

∑

(j,i)∈E′

cij(xij) s.t. constraint 12 (15)

Note that, assuming εij are convex, cij(xij) are convex

functions which we can evaluate in logarithmic time [28].

We can now see that minimization problem 15 is a minimum

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

se
co

nd
s

(lo
g

sc
al

e)

problem size (edge count, log scale)

Voltage assignment runtime

Fig. 2. Runtimes of our flow-based continuous voltage assignment code for
problems of various size. Scalability is evident.

convex-cost circulation problem. ~x is the edge-flow vector,

c(xij) are the flow cost functions, and constraint 12 enforces

mass balance (the flow into a node is equal to the flow out

of the node). A circulation problem is simply a flow problem

without any flow sources or sinks. None of the edges have

any capacity restrictions. Solving this flow problem gives us

the Lagrangian multipliers ~x and the optimal energy value

E . In addition, if we solve the dual flow problem with a dual

method (like the cost-scaling method described in [28]) we get

the dual-dual variables as well; that is, the primal variables ~d

and ~t, The voltage of each block is simply a function of the

assigned delay: vij(dij).
Note that we have made no assumptions about the energy

functions εij other than convexity. Convexity, in this case,

means that continually decreasing a circuit block’s delay by

∆d creates increasingly higher energy consumption changes

∆ε. Formally, the derivative of energy with respect to delay

is nondecreasing.

Time complexity: Using the cost-scaling algorithm de-

scribed by Ahuja et al. [28], the above minimum convex-

cost flow problem can be solved in O(|V ||E|b log(|V |b)) time

where V and E are the vertex and edge sets from flow graph

(or equivalently the DFG) and b is the bit-precision. Our

runtime complexity has an extra factor of b compared to the

basic cost-scaling convex cost flow algorithm to account for

the time needed to evaluate the edge cost function cij(χ) by

binary search.

III. EXPERIMENT 1: CONTINUOUS VOLTAGE ASSIGNMENT

We implemented a cost-scaling minimum convex-cost flow

code in C++ following the algorithm of Ahuja et al. [28]. Our

code solves the integer flow problem. However, the Lagrangian

multipliers ~x are fractional, so we adjusted the edge cost

functions to get an fixpoint fractional flow solution.

Figure 2 and Table I show the efficiency and scalability

of our continuous voltage assignment algorithm. Dabiri et

TABLE I
CONTINUOUS VOLTAGE ASSIGNMENT RESULTS

benchmark nodes edges runtime (s)

jj1 4 7 0.00
ex1 6 13 0.00

paulin 8 21 0.01
diffeq new 10 26 0.01

mac 10 25 0.02
tseng 13 33 0.01

chemical 20 56 0.06
ewf-hyper 22 61 0.08

elliptic 22 61 0.08
iir77 25 73 0.10

dct dif 40 110 0.10
wdf 48 133 0.19

dct lee 50 139 0.14
jacobi sm 51 147 0.22

pr1 51 140 0.17
pr2 60 165 0.20

dct wang 60 164 0.21
dct ijpeg 61 167 0.20

dct 61 167 0.21
jacobi 115 331 0.69

c432 359 897 0.11
c499 448 1130 0.12
c880 829 2026 0.45

c1355 1136 2818 0.84
c1908 1796 4231 2.29
c2670 2622 6263 2.62
c3540 3391 8070 6.16
c5315 4795 11788 10.84
c6288 4867 12146 34.15
c7552 7234 17204 21.11

 0

 1

 2

 3

 4

 5

 6

 7

chem
ical

dct_dif

dct_ijpeg

dct_lee

dct_wang

elliptic

iir77
jacobi_sm

m
ac

paulin

pr1
pr2

wdf

E
ne

rg
y

de
cr

ea
se

 (
%

)

Fig. 3. Energy savings of our optimal continuous voltage assignment relative
to critical path method [24].

al.solve their convex program using Matlab and MOSEK with

a runtime of about two minutes for their largest problem (84

nodes and 140 edges) [30]. We solve problems of the same

size in under 0.5 seconds, so we conservatively (allowing

for possible differences in machine speed) report a 100×
speedup. In fact, we expect that a better-optimized flow code

can perform even faster.

Figure 3 shows the improvement of our optimal continuous

voltage assignment algorithm compared to the heuristic path-

based approach of Gu et al. [24]. The energy decrease we

achieve peaks at 6.5% and comes at no cost.

 1.2 1.3 1.4 1.5 1.6 1.7 1.8

voltage (V)

Fig. 4. Partitioning-based voltage discretization. All blocks in a partition are
rounded up to the voltage at the right-hand side cutpoint, represented by a
dashed line.

IV. DISCRETE VOLTAGE SET SELECTION

In practical multiple supply voltage designs, only a handful

of voltages can be made available by the power distribution

network. Each requires a separate off-chip voltage regulator

and complicates power network design. One reasonable way

to choose a set of discrete voltages is to partition the sorted

voltage assignments and set each partition’s voltage to its

upper bound. This method is shown in Figure 4. In this case,

we never decrease any voltages from the continuous voltage

assignment, so we can be sure that the timing requirements

are still met. This partitioning discretization method was

introduced by Gu et al. [24] and also used by Dabiri et al.

[1]; however, we contribute an algorithm which is both optimal

and elegant. Gu et al.’s algorithm is optimal but very complex

and Dabiri et al.’s algorithm is simple but heuristic. Note that

we optimally solve the partitioning problem, which gives a

heuristic solution to the more general discretization problem.

A. Dynamic programming (DP) algorithm

We can consider the cost of a partitioning to be the energy

penalty incurred by increasing continuous voltages up to the

discrete level chosen. This cost can be expressed with the

recurrence

C[i, j, v] = min
k∈[i,j)

{

C[i, k, 1] + C[k + 1, j, v − 1]
}

(16)

where C[i, j, v] is the minimum cost of partitioning the se-

quence from positions i to j using v voltages. The integer

variable k indicates the optimum endpoint for the first parti-

tion. Translating recurrence 16 into a dynamic programming

algorithm is straightforward.

Gu et at.’s algorithm [24] has a runtime complexity of

O(n22v) while our DP algorithm is O(n3v), where v is the

number of voltage levels. Although exponential in the number

of voltage levels, we expect their solution to be faster for

practical designs with few voltage levels.

V. EXPERIMENT 2: DISCRETIZATION OVERHEAD

There is no known optimal polynomial-time algorithm for

the discrete voltage set selection and assignment problem; the

algorithm we present is suboptimal because timing slack is not

redistributed after rounding. For example, in Figure 4, after

rounding the first two blocks up to 1.27 V the rightmost block

may only require 1.75 V to meet the timing deadline. However,

we can use the continuous voltage assignment’s energy as a

lower-bound on the optimal discrete solution energy and thus

measure the maximum error of our partitioning heuristic. Our

experiments show that our DP discrete voltage selection and

TABLE II
VOLTAGE DISCRETIZATION OVERHEAD VERSUS OPTIMAL CONTINUOUS

VOLTAGE ASSIGNMENT, IN PERCENT.

benchmark single voltage 2 voltage 3 voltage 4 voltage

tseng 62.10% 1.10% 0.00% 0.00%
paulin 76.33 11.74 5.57 1.24

diffeq new 76.94 13.74 2.77 1.15
mac 67.01 0.12 0.03 0.01

dct dif 101.60 8.37 0.13 0.03
wdf 77.65 12.36 4.68 1.62

ewf-hyper 98.37 15.29 0.27 0.06
elliptic 98.37 15.29 0.27 0.06

pr1 105.30 6.10 1.74 0.07
chemical 117.56 11.25 0.11 0.03

dct lee 97.45 8.13 2.12 0.02
pr2 68.40 22.85 7.42 4.40

dct wang 82.91 20.22 5.12 1.73
dct ijpeg 96.28 12.84 0.89 0.06

dct 96.28 12.84 0.89 0.06
iir77 118.84 8.60 0.10 0.05

jacobi sm 95.17 0.04 0.02 0.01

average 90.38% 10.64% 1.89% 0.62%

assignment solutions are near even this somewhat loose lower

bound.

Table II gives the energy overhead of our discrete voltage

selection and assignment algorithm compared to the baseline

continuous voltage assignment. Note that we are comparing

to an optimal solution that uses up to n different voltages. In

reality, the optimal 2, 3, or 4 voltage energy will be higher, so

the results of Table II are an upper-bound on our true overhead.

For two-voltage assignment, worst-case energy overhead is

bounded by 23%, for three-voltage assignment by 8%, and

for four-voltage assignment by 5%. Average-case overhead is

lower still.

Similar experiments have been done by Dabiri et al. [1]

and Hua and Qu [4]. Their results also indicate that a few

discrete voltage levels can provide almost the same energy

savings as an infinite range of voltages. Due to the closeness

of our discretization energies and the theoretical lower bound,

we omit a comparison of competing discretization approaches.

The single-voltage column in Table II indicates the energy

consumption overhead of the circuit before applying the Mul-

tiple Supply Voltage technique. We observe, as others have

in the past, that the energy gains acheived by moving from a

single to two or three voltages are significant.

VI. EXPERIMENTAL SETUP

The benchmark problems we used are real circuits used

as high-level synthesis benchmarks by Gu et al. [24]; we

adopt their nonlinear power-delay model using α = 1.5. No

interconnect delay was included, although this would have

been possible, as described in Section II. We allow voltages

to vary from 1.8 V down to 1.2 V. Under our device model

this yields a maximum block slowdown of 22% corresponding

to an energy reduction of 56%. The deadlines were halfway

between the fastest and slowest possible execution time.

To evaluate the runtime on large problem instances we also

used the ISCAS85 combinational logic benchmarks. In these

experiments all gates were assumed to be of the same type. All

experiments were run on an Intel Core2 duo E6300 1.86 GHz

Linux workstation.

VII. CONCLUSIONS AND FUTURE WORK

Our fast flow-based voltage assignment algorithm provides

the same impressive energy savings as previous work but much

more efficiently. This enables accurate energy cost evaluations

to be made in the inner loop of design flows which solve

complex CAD problems [24].

One of the strengths of our work is its potential for extension

and adaptation; the edge cost functions can be replaced with

any convex function. In addition, our flow problem derivation

can be followed to solve silimar convex budgeting problems.

REFERENCES

[1] F. Dabiri, R. Jafari, A. Nahapetian, and M. Sarrafzadeh, “A unified
optimal votage selection methodology for low-power systems,” in Proc.

Int. Symp. Quality of Electronic Design, 2007.

[2] Q. Ma and E. Young, “Network flow-based power optimization under
timing constraints in msv-driven floorplanning,” in Proc. Int. Conf.

Computer-Aided Design, 2008, pp. 1–8.

[3] H.-Y. Liu, W.-P. Lee, and Y.-W. Chang, “A provably good approximation
algorithm for power optimization using multiple supply voltages,” in
Proc. Design Automation Conf., 2007, pp. 887–890.

[4] S. Hua and G. Qu, “Approaching the maximum energy savings on
embedded systems with multiple voltages,” in Proc. Int. Conf. Computer-

Aided Design, 2003, pp. 26–29.

[5] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “An ILP algorithm for post-
floorplanning voltage-island generation considering power-netowrk plan-
ning,” in Proc. Int. Conf. Computer-Aided Design, 2007, pp. 650–655.

[6] W.-K. Mak and J.-W. Chen, “Voltage island generation under perfor-
mance requirement for soc designs,” in Proc. Asia & South Pacific

Design Automation Conf., 2007, pp. 798–803.

[7] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware voltage
island generation for low power design,” in Proc. Asia & South Pacific

Design Automation Conf., 2007, pp. 666–671.

[8] B. Liu, Y. Cai, Q. Zhou, and X. Hong, “Power driven placement with
layout aware supply voltage assignment for voltage island generation
in dual-vdd designs,” in Proc. Asia & South Pacific Design Automation

Conf., 2006, pp. 582–587.

[9] H. Wu, I.-M. Liu, M. D. F. Wong, and Y. Wang, “Post-placement voltage
island generation under performance requirement,” in Proc. Int. Conf.

Computer-Aided Design, 2005, pp. 309–316.

[10] H. Wu, M. D. F. Wong, and I.-M. Liu, “Timing-constrained and voltage-
island-aware voltage assignment,” in Proc. Design Automation Conf.,
2006, pp. 429–432.

[11] Q. Ma and E. F. Y. Young, “Voltage island-driven floorplanning,” in
Proc. Int. Conf. Computer-Aided Design, 2007, pp. 644–649.

[12] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “Voltage island aware floorplan-
ning for power and timing optimization,” in Proc. Int. Conf. Computer-

Aided Design, 2006, pp. 389–394.

[13] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” in Proc. Int. Symp. Low Power Electronics & Design,
1995, pp. 3–8.

[14] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava,
and S. Kulkarni, “Pushing ASIC performance in a power envelope,” in
Proc. Design Automation Conf., 2003, pp. 788–793.

[15] R. Puri, L. Stok, and S. Bhattacharya, “Keeping hot chips cool,” in Proc.

Design Automation Conf., 2005, pp. 285–288.

[16] J.-M. Chang and M. Pedram, “Energy minimization using multiple
supply voltages,” IEEE Trans. VLSI Systems, vol. 5, no. 4, pp. 436–
443, Dec 1997.

[17] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On gate level power
optimization using dual-supply voltages,” IEEE Trans. VLSI Systems,
vol. 9, no. 5, pp. 616–629, 2001.

[18] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, “Voltage-
frequency idland partitioning for GALS-based newtorks-on-chip,” in
Proc. Design Automation Conf., 2007, pp. 110–115.

[19] Y. Cho, N. Chang, C. Chakrabarti, and S. Vrudhula, “High-level power
management of embedded systems with application-specific energy cost
functions,” in Proc. Design Automation Conf., 1996, pp. 568–573.

[20] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide
energy minimization in real-time embedded systems,” in Proc. Int. Symp.

Low Power Electronics & Design, 2004, pp. 76–81.
[21] S. Ghiasi, E. Bozorgzadeh, P.-K. Huang, R. Jafari, and M. Sar-

rafzadeh, “A unified theory of timing budget management,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 11, pp. 2364–2375, Nov. 2006.

[22] E. Boros, P. L. Hammer, and R. Shamir, “A polynomial algorithm for
balancing acyclic data flow graphs,” IEEE Trans. Computers, vol. 41,
no. 11, pp. 1380–1385, 1992.

[23] R. Nair, C. Berman, P. Hauge, and E. Yoffa, “Generation of perfor-
mance constraints for layout,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 8, no. 8, pp. 860–874, Aug 1989.
[24] Z. P. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang, “TAPHS: thermal-

aware unified physical-level and high-level synthesis,” in Proc. Asia &

South Pacific Design Automation Conf., 2006, pp. 879–885.
[25] C. Lin, A. Xie, and H. Zhou, “Design closure driven delay relaxation

based on convex cost network flow,” in Proc. Design, Automation &

Test in Europe Conf., 2007, pp. 1–6.
[26] D. R. Fulkerson, “A network flow computation for project cost curves,”

Management Science, vol. 7, no. 2, pp. 167–178, Jan. 1961.
[27] R. K. Ahuja, T. L. Magnanti, and J. Orlin, Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993.
[28] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin, “Solving the convex

cost integer dual network flow problem,” Management Science, vol. 49,
no. 7, pp. 950–964, Jul. 2003.

[29] K. Niyogi and D. Marculescu, “Speed and voltage selection for GALS
systems based on voltage/frequency islands,” in Proc. Asia & South

Pacific Design Automation Conf., 2005.
[30] F. Dabiri, personal communication, Jul. 2008.

