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ABSTRACT Objective: We designed, prototyped, and tested a system that measures the viscoelastic
response of tissue using nondestructive mechanical probing, with the goal of aiding clinical providers during
epidural needle placement. This system is meant to alert clinicians when an epidural needle is about to strike
bone during insertion.Methods:During needle insertion, the system periodically mechanically stimulates and
collects viscoelastic response data from the tissue at the needle’s tip using an intra-needle probe. A machine-
learning algorithm detects when the needle is close to bone using the series of observed stimulations. Results:
Tests run on ex vivo pig spine show that the system can reliably determine if the needle is pointed at and
within 3 mm of bone. Conclusion: Our technique can successfully differentiate materials at and in front of
the needle’s tip. However, it does not provide the 5 mm of forewarning that we believe would be necessary
for use in clinical epidural needle placement. The technique may be of use in other applications requiring
tissue differentiation during needle placement or in the intended application with further technical advances.
Clinical and Translational Impact Statement: This Early/Pre-Clinical Research evaluates the feasibility of a
method for helping clinical providers receive feedback during epidural needle insertion—thereby reducing
complication rates—without significant alterations from current workflow.

INDEX TERMS Epidural, needle placement, viscoelastic response, machine learning, biomedical
engineering.

I. INTRODUCTION
Several medical procedures require primary physicians or
clinicians to blindly insert needles into precise locations
with little feedback, leading to high complication rates.
One such procedure is epidural needle placement. This
procedure is typically performed by anesthesiologists, who
must precisely guide a needle between a patient’s vertebrae
and into a 2–7 mm wide area known as the epidural
space (see Figure 1) [1]. This procedure has a complica-
tion rate between 2% and 20% with complications aris-
ing from a variety of sources [2]. Improving the efficacy
of epidural needle insertion could immediately improve
healthcare outcomes, specifically for women undergoing

childbirth, people with chronic pain, and patients undergo-
ing surgical procedures aided by epidural placement such as
anesthesia, which is used in several types of orthopedic and
gastrointestinal surgeries. Other medical procedures requir-
ing precise needle placement may also benefit from such
improvements.

A common complication is striking vertebral bone during
insertion. Normally this requires the clinician to retract the
needle and steer it down a different path, which increases
patient discomfort and procedure time. Our goal is to elim-
inate this complication. We aim to develop a technique to
detect an imminent bone strike before it occurs, allowing the
needle to be preemptively steered and the strike prevented.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4900611

https://orcid.org/0000-0002-1448-403X
https://orcid.org/0000-0002-5474-705X
https://orcid.org/0000-0001-5428-9530
https://orcid.org/0000-0003-3416-4727


B. Simpson et al.: Epidural Needle Guidance Using Viscoelastic Tissue Response

FIGURE 1. Needle insertion for epidural anesthesia [3].

Based on the clinical experience of the anesthesiologists on
the team, we estimate that 5 mm of forewarning is needed to
steer the needle away from bone without first retracting it.

Multiple technologies are in use or are being studied to
aid in epidural needle insertion, each with benefits and draw-
backs. The most common is ultrasound, which provides visu-
alization of the path to the epidural space and is readily avail-
able in hospitals. Additional training is required to interpret
ultrasound, and its use adds complexity to a typically unaided
procedure. Assistive technologies to reduce the burden of
using ultrasound [4]–[8] often require expensive specialized
devices. X-ray fluoroscopy is an established assistive technol-
ogy but requires access to expensive equipment and exposes
the patient to ionizing radiation, making it inappropriate to
use for labor epidurals. Fiber optic techniques have been
shown to differentiate tissue at the needle’s tip, but their range
is limited to approximately 2 mm—too short-ranged to aid in
bone strike avoidance [1], [9], [10].

We investigate measuring tissue mechanical properties to
aid in epidural needle insertion. This involves applying a
mechanical stimulus to tissue and observing the resulting
force and motion responses, which vary widely between bio-
logical materials. A relevant example is the elastic moduli
of bone and soft tissue, which differ by orders of magni-
tude [11], [12]. Viscoelastic models, which treat a material
as having properties of both a fluid (viscosity) and a solid
(elasticity), have been found useful in analyzing biological
tissue [13]. Viscoelastic response can be used to measure the
mechanical response of not just a single tissue but of tissue
systems as well. Researchers have shown that viscoelastic
measurements of soft tissue over bone vary depending on the
thickness of the soft tissue [14]. This is promising for our
goal of making a device to alert clinicians when the remaining
soft tissue between needle and bone is less than a specified
thickness.

Viscoelastic response is frequency dependent. Tradi-
tional measurement techniques can involve running multiple
stress-relaxation tests or repeatedly subjecting the material
to vibrations at different frequencies. Such laboratory mea-
surement techniques are too slow for taking in vivo clini-
cal measurements. Fortunately, Zhang [13] has developed a

technique for rapid viscoelastic measurements. By applying
a mechanical step input to a material and measuring the
resulting stress and strain, an impulse response is obtained,
which can be converted to a transfer function via a Fourier
transform. According to signal processing theory, the transfer
function can be used to fully characterize the tissue’s response
to arbitrary mechanical strains, thus yielding a fully charac-
terized complex modulus.

In this paper, we design and evaluate a prototype device
for avoiding bone strikes during epidural needle insertion.
The device measures the viscoelastic properties of the tissue
before a needle’s tip with the objective of providing 5 mm of
forewarning. Inspired by Zhang’s method [13], viscoelastic
data are obtained via a stiff metal probe that replaces the stylet
that normally occupies the needle shaft during insertion.
Sensors and an actuator are attached to the rear of the probe
to produce a mechanical step input and collect the resulting
response. Signal processing and machine learning are used to
infer the needle’s proximity to bone.

While the device in this paper is table-mounted, a hand-
held design is envisioned for clinical use. It would attach to
the back of the epidural needle during insertion. After the
needle is in place, it would be removed so that a catheter
could be placed. Unlike other assistive technologies, such a
device would be designed to minimally change a clinician’s
normal procedure for epidural placement. The machine clas-
sifier decision would provide easily interpretable feedback.
In contrast to ultrasound, it would not require extensive addi-
tional training to interpret or the assistance of an additional
technician during procedures. We also believe that such a
device, which would require simple disposable probes and
modest sensors and computing, would be more cost effective
than assistive technologies requiring intensive sensors and
processing for visualization or which utilize more expensive
consumables, such as specialized through-needle ultrasonic
transducers.

This paper makes the following contributions:
1) the design of a device to measure viscoelastic response

through a needle and
2) the design and evaluation of a machine-learning tech-

nique for determining when a needle is about to strike
bone based on viscoelastic measurements.

We evaluate the prototype and analysis techniques on pig
spines.

II. RELATED WORK
A. VISCOELASTIC RESPONSE
There are multiple methods for measuring viscoelastic
response. Stress-relaxation tests measure stress as a material
is put under strain and released from that strain, resulting in
a hysteresis curve. These data are fit to a mechanical model
consisting of a combination of ideal springs (for elasticity)
and dashpots (for viscosity) in order to determine the vis-
coelastic properties. For unknown materials, this requires
curve fitting to various mechanical models to find the clos-
est match, thus making it impractical in general practice.
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Dynamic measurement tests perform stress and strain mea-
surements while sequentially exciting the probe or tissue with
a variety of sinusoidal waveforms. Each sinusoidal frequency
results in one data point, so multiple tests are needed to obtain
the full viscoelastic response, which may prevent use in low-
latency, real-time applications [13]. Measurements can also
be taken at multiple frequencies by using a chirped frequency
signal as input [15].

Zhang [13] proposes a method to obtain the entire vis-
coelastic response using a single step function as input. This
approach treats the tissue as a linear system with strain
from a probe as the input and measured stress as the out-
put. By applying a step input and measuring the response,
a Fourier domain transfer function can be derived, which
can be used to describe the system response to any input,
thus fully characterizing the tissue’s viscoelastic response.
Simulations show this technique’s results match theoreti-
cally derived solutions for both linear and non-linear tissue
models, even with non-idealities taken into account such as
the non-instantaneous transitions of real-world step function
approximations. Experimental results show that the resulting
technique successfully differentiates mouse bone tissue in
different stages of development [16].We use the step-function
measurement method due to its ability to characterize tissue
in real time and the simplicity of implementing a mechanical
step stimulus compared to sinusoidal signals.

We cannot implement Zhang’s method exactly. It uses
stress and strain measurements while our system measures
the force on and position of our mechanical probe, as
described in Section III-A. While it is possible to convert
from force to stress by taking into account probe cross-
sectional area, we cannot measure mechanical strain because
its calculation relies upon the total length of the material
in question. In this case, that would be the distance from
bone, which we are trying to estimate. Instead, we measure
the displacement of our mechanical probe. Displacement is
commonly used in second-order mechanical system models,
which—like viscoelastic models—are also used for calculat-
ing time-varying responses to mechanical inputs. Therefore,
while our measurement techniques are inspired by Zhang,
they cannot be directly compared to his. Despite these dif-
ferences, we still find that our viscoelastic data are able
to differentiate between materials with different viscoelastic
properties and be used in bone detection.

Normally viscoelastic measurements are taken ex vivo, but
our goal is clinical use on patients. We take advantage of
the fact that epidurals use large needles designed to accept
catheters. Normally, the inside of the needle is sealed using a
stylet during insertion, which we replace with a stiff rod for
probing tissue. This makes our technique similar to TeMPeST
1-D, a probe that can be inserted through a 12 mm cannula
for measuring viscoelastic tissue properties in vivo [17]. This
device, however, is designed for use with laproscopic equip-
ment and is too large for an epidural needle. To the best of
our knowledge, there is no previous work using viscoelastic
tissue response to aid in epidural needle placement.

B. OTHER NEEDLE GUIDANCE TECHNOLOGIES
Most epidural procedures are performed without assistive
technology. The success of these procedures relies on a
combination of clinician experience, patient physiology, and
patient positioning. Nevertheless, many assistive technolo-
gies have been studied and developed, and some see occa-
sional use. The most common of these is ultrasound.

Clinical providers use a standard ultrasound probe to visu-
alize the route the needle should take between vertebrae to
the epidural space. This can be done before insertion—a
pre-scan—or it can be done during insertion for real-time
feedback. The latter generally requires adding another oper-
ator to the nominally single-operator procedure. Ultrasound
is feasible for lumbar and cervical epidurals, but occlusion
by the vertebrae precludes its use in most thoracic epidural
procedures [18].

Multiple systems have been studied or developed to sim-
plify ultrasound for epidurals including systems that physi-
cally align the needle with the probe [4], [5] and ones that
use additional sensors to display the projected needle path
on the ultrasound monitor [6], [7]. One group [8] has studied
the possibility of placing an ultrasound probe through the
needle to measure tissue properties at the needle’s tip. While
these systems may obviate the need for a second operator,
most of them still require the clinician to be trained to inter-
pret ultrasound data. Our system uses a machine learning
algorithm to provide the distance to bone, which is easy
to interpret. Also, ultrasound techniques require access to
an ultrasound machine, which–while common in hospitals–
are complex and expensive. Techniques requiring custom
ultrasound probes add more expense. In contrast, our system
uses relatively simple hardware and inexpensive metal rods
as probes, which we believe will result in lower costs.

X-ray fluoroscopy is an established assistive technol-
ogy used for epidurals, most commonly in treating chronic
pain [9]. This method requires a fluoroscopy room and is
impractical in most applications. Furthermore, it exposes the
patient to ionizing radiation and is therefore not used in labor
epidurals to avoid harming the fetus. Our technique does not
require access to a dedicated room and does not expose the
patient to ionizing radiation.

Multiple optical techniques have been studied for use
in epidural needle insertion. Optical coherence tomog-
raphy (OCT) uses the timing delay and magnitude of
reflected light to measure tissue composition and is analo-
gous to the use of sound waves in B-mode ultrasound [9].
Tang et al. have shown its ability to differentiate between
tissues during epidural needle insertion [1]. The penetration
depth of OCT is approximately 2 mm [9]. Optical reflectance
spectroscopy (ORS) measures the reflectance of tissue at
the needle’s tip, which can be used to reliably differentiate
tissues [9], [10]. Lin et al. developed a machine learning
method for differentiating between the epidural space and
the ligamentum flavum during epidural needle insertion.
Their intelligent recognition system uses linear discriminant
analysis to classify ORS spectra of tissue at the needle’s
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FIGURE 2. Test bed block diagram.

tip [10]. These optical techniques are not well suited to
our problem, because they are too short-ranged for steering
around bone.

III. DATA COLLECTION METHODS
In order to develop and evaluate our needle guidance tech-
nique, we designed and built a data collection test bed.
Figure 2 diagrams its mechanical, computational, and algo-
rithmic features. We envision a final, working version of our
needle guidance technique embodied in a handheld device to
facilitate clinical use on live patients. However, our test bed
uses a computer-driven, bench-mounted linear stage to insert
a needle into secured sample material. This design helps
us obtain accurate data for our machine learning algorithm.
An embedded microcontroller controls the testbed, collects
data from its various sensors, and sends data to a desktop
computer for processing. Our algorithm consists of prepro-
cessing steps and a machine learning classifier, which infers
whether the needle is close to bone. The rest of this section
describes the test bed in detail.

A. ELECTRO-MECHANICAL DESIGN
The testbed consists of a linear stage that inserts the nee-
dle into the test material and an adjustable test platform to
hold the test material. A mounting clamp and multiple other
clamps and braces (only some ofwhich are shown in Figure 2)
secure and immobilize the test material.

Force is applied to the tissue via a stiff stainless steel rod
which serves as a probe. The probe is attached to the piston of
a solenoid (ROB-10391; SparkFun Electronics; Niwot, CO,
USA), with the motion resulting from activating the solenoid

approximating a step function. The probe is passed through
the needle and cut to length so that when the solenoid is not
actuated, the probe is completely within the needle, and when
the solenoid is actuated, the probe extends beyond the needle
by approximately 2 mm. Importantly, the probe is blunt so
that it deforms the tissue rather than cutting it.

The needle used (17G × 3.5 in, SKU 4076; Cadence
Science; Cranston, RI, USA) has a standard beveled
tip and differs from the Tuohy needles most commonly
used for epidurals in that it has a completely straight
shaft. The curve at the distal end a Tuohy needle shaft
would not allow the probe to pass through without high
friction.

Our testbed uses multiple sensors for detecting the force
and distance curves that constitute viscoelastic response.
A force sensor (LCM100; FUTEK; Irvine, CA, USA) placed
between the probe and solenoid piston directly measures
force. It has a resolution of 2.9× 10−2 N. A magnetic linear
encoder (iC-MU; iC Haus; Bodenheim, Germany) measures
the probe movement with a resolution of 3.1× 10−4 mm.

We designed and built an embedded system for control-
ling and collecting data from our testbed. Based around
an S7G2 microcontroller (Renesas Electronics Corporation;
Tokyo, Japan), it uses custom firmware to advance the
stepper motor, actuate the probe, collect and preprocess
data from sensors, and transmit those data to a computer
for further analysis. Care was taken in the printed circuit
board (PCB) design to electrically isolate the power circuits
for the actuators from the sensors to reduce measurement
noise.

Our completed testbed is pictured in Figure 3.
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FIGURE 3. Data collection test bed showing mechanical components,
sensor circuitry, embedded microcontroller, clamped sample, and bracing.
This photo has been flipped horizontally to match the orientation of the
mechanical components in Figure 2.

B. DATA COLLECTION
A working clinical version of our technique would periodi-
cally collect data as a practitioner inserts the epidural needle
and would send an alert when the needle is close to bone.
In contrast, the goal of our test bed is to obtain labelled
data for training and evaluating our classification algorithm.
To this end, the test bed mimics an epidural needle inser-
tion resulting in accidental bone strike rather than successful
placement.

Securing the tissue so that the needle is aimed at bone, the
needle is advanced in increments of 0.5 mm. At each needle
depth, the probe is actuated to generate a step input in the
tissue, during which the system captures sensor data. Once
the sensor data are captured, the probe retracts, and the sensor
data and needle depth are recorded as a single probe event.
To obtain more data and determine the impact of hysteresis in
visco-elastic tissue, the actuation and recording are repeated
to capture three probe events at each needle depth. Probe
events only occur when the needle is stationary, and no data
collection occurs while the needle is advancing.

When the needle strikes bone, the test stops and the tissue
is dissected to verify the bone strike (see Figure 4). If bone
was struck, the final needle depth is recorded as the bone
strike depth. All probe events in the test are then labelled by
subtracting their recorded depth from the bone strike depth,
yielding the distance from bone for each probe event. The
sequence of probe events constitutes the data for one needle
insertion, which is the basic input to our classification algo-
rithm. For additional information on detecting bone strikes,
see Appendix III.

Each probe event lasts 0.25 s and samples 100 data points,
yielding a sampling rate of 400 Hz. According to sampling

FIGURE 4. Dissection of test material with needle in place to verify bone
strike.

theory, this allows us to measure signals up to 200 Hz, which
covers many frequency ranges found useful in past work [14].
Both the force and probe position (also referred to as distance
in this manuscript) data are sampled, yielding two time series
of 100 points each as the raw data for each probe event.

Figure 5 shows an example of the raw force and distance
data from a single probe event. Note that the probe motion
does not constitute a perfect step input. Though it has a
mechanical hard end stop, it is impossible to achieve instan-
taneous probe motion in a real system. If we were using this
to calculate the system’s transfer function, the approximately
18 ms travel time of the probe would translate to an error
ratio greater than 3 dB at frequencies above 25 Hz. However,
because we use both the probe position (input) and force
(output), our primary interest is in the relationship between
them rather than the transfer function. Thus the 25 Hz corner
frequency on our error is a pessimistic lower bound on the
maximum frequency our technique can measure.

IV. PRELIMINARY EXPERIMENTS
We ran several preliminary experiments to determine whether
our testbed was able to collect useful viscoelastic data and
to verify a hypothesis that is helpful when using mechanical
viscoelastic response for needle guidance.

A. DISTINGUISHING EMULATED ADIPOSE AND
LIGAMENT TISSUE
We aim to establish that the proposed technique is capable
of distinguishing between viscoelastic materials of different
hardnesses by measuring their responses when mechanically
stimulated using step function approximations. To this end,
we prepared hard and soft silicone samples. Using silicone
simplifies the classification problem: it can be made to dif-
ferent hardnesses and is more spatially homogeneous, tempo-
rally stable, and easier to work with than biological soft tissue
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FIGURE 5. Example of raw force and distance data from a single probe
event with the subsequences used in feature extraction highlighted.
These subsequences are initial conditions (0–12.5 ms; yellow), step input
(12.5–30 ms; green), unsteady force (12.5–60 ms; purple), and steady
state (200–250 ms; red). The subsequence timing windows are the same
for all probe events.

samples. One sample was designed to have the consistency
of ligament tissue while the other was designed to have
the consistency of adipose tissue. A needle passes through
both types of tissue during an epidural insertion. The raw
data for probe events taken in the middle of each sample
showedmarkedly different characteristics.While the distance
data only showed small differences, there were significantly
higher force readings in the ligament-like silicone than in
the adipose-like silicone. This proved that the viscoelastic
data our device collects can be used to distinguish between
tissues of different types. Further details on this experiment,
including graphs of the data, can be found in Appendix V.
Section VI will explain evaluation on biological tissue.

B. DIRECTIONALLY SELECTIVE REMOTE DETECTION OF
HARD MATERIALS
It is common for a needle to pass close to bone without strik-
ing it during a correct epidural needle insertion. Therefore,
our goal is to detect nearby hard material in the needle path,
without detecting off-axis hard material. Were we unable to
do this, our system would be inundated with false positives.
We hypothesize that the information collected by our needle-
axis-aligned directional probing is directional in nature.

To test this hypothesis, we prepared a mock bone-tissue
interface consisting of 20A durometer silicone, which has a
hardness similar to ligament, juxtaposed with polyether ether
ketone (PEEK), which has a hardness similar to bone. To test
directionality, we compare probe events taken at the same
distance from PEEK but with the needle either pointing at
(perpendicular to) or not at (parallel to) the PEEK. We took
both parallel and perpendicular measurements with offsets

from PEEK ranging from 1 mm to 8 mm in 1 mm increments.
For each depth, we trained a linear support vector machine
(SVM) binary classifier using 5-fold cross validation to dif-
ferentiate between parallel measurements and perpendicular
measurements. This did not follow the data analysis pipeline
in Figure 2 but simply used the raw time-series data from
each probe event as input to the SVM. We had more par-
allel measurements than perpendicular measurements, so to
avoid errors due to differently-sized training sets, each SVM
was trained with the 30 perpendicular measurements taken
at the specified depth and a set of 30 randomly selected
parallel measurements taken at the same depth. The SVMs
were trained three times using different random selections of
parallel data and splitting of testing/training data during cross
validation, and the resulting classification accuracies were
averaged. Using this methodology, our SVMs correctly clas-
sified a given probe event as perpendicular or parallel with an
accuracy of 99.8%, averaged across all eight distances.

This high degree of separability implies that our measured
viscoelastic data are sufficient to determine whether a needle
is pointed at bone-like material or is near it but not pointed
at it. These results, combined with our testing on silicones of
different hardnesses, indicate that our device is able to clas-
sify based on material properties and the needle’s orientation
to interfaces between materials with differing properties.

V. CLASSIFICATION ALGORITHM
Our classification problem presents unique challenges.
Its input is an ordered series of probe events, which each
contain time series data from two sensors. The output is a
binary decision indicatingwhether the needle is close to bone.
Since the goal is to avoid striking bone, wemust infer distance
to bone using only probe events at or prior to the current
needle depth. To achieve this, our classification algorithm
examines the probe events of a needle insertion in order,
deciding whether the needle is close to bone at each step. The
needle depth of the first probe event classified as occurring
within 5 mm of bone becomes the detection depth for the
entire needle insertion. The data processing and decision
making steps used on each probe event are shown in Figure 2
and are described below.

The first steps preprocess the raw data for individual probe
events into feature vectors for the machine learning classifier.
The feature extraction step generates additional features from
the raw force and distance sequences. The mean, standard
deviation, skewness, and kurtosis are extracted as individual
scalar features. FFTs are also performed on the raw sequences
and added as vector features. Note that force and distance
are treated as two separate sequences for feature extraction.
We also found it useful to make the same set of statistical
calculations and perform FFTs on subsequences of the probe
data. These subsequences were manually selected based on
observations of the raw data. They constitute regions of inter-
est in the probe event such as the period of time when the
probe is moving or the period when the force reading has
reached steady state. The exact subsequences can be seen in
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Figure 5. After feature extraction, the feature selection step
removes any extraneous features, such as the raw force or
distance data, that are not used by the current feature set. After
this, the features are concatenated to form the feature vector.
In our experiments, we test multiple feature sets, which are
described in Section VI.

Sequence sampling randomly samples one of the three
probe events collected by our test bed at each depth of a
needle insertion to create needle insertion sequences with
only one probe event at each depth. Multiprobe compilation
concatenates the feature vector at the current depth with the
feature vectors at the N − 1 previous depths. This allows the
machine learning classifier to make a decision based on a
window of N probe events, thus making use of the sequential
nature of the needle insertion data rather than making deci-
sions based solely on the current probe event.

The machine learning classifier takes the fully processed
feature vector as input and outputs a binary classifier decision
indicating whether the needle is close to bone. Any binary
classifier might be used for this purpose. We experimentally
evaluated the performance of multiple classifiers under mul-
tiple training regimes.

To evaluate the system’s accuracy, the depth of the first
probe event that is classified as close to bone is recorded and
compared to the ground truth close-to-bone depth for that
needle insertion, which we have set as 5 mm before bone
strike. This yields an error value in millimeters for each test.
A negative error means the system’s classification distance
was earlier (further from bone) than our 5mm threshold while
a positive error indicates the classification distance occurred
later (closer to bone) than the threshold.

VI. EXPERIMENTS
We experimentally measured 20 needle insertions using
3–5 cm thick slices of pig spine as our test material, which
we obtained from a local butcher. Slices were purchased at
different times, making it very unlikely that they all came
from the same pig. We generally limited ourselves to doing
two needle insertions on each slice—one on each side of
the spinous process—to avoid having needle insertions in
close proximity to each other. Bone strike depths ranged from
17.5 mm to 54 mm with an average depth of 40.5 mm and
a median depth of 43.5 mm. The tissue temperature during
testing had a range of 20.4–22.3 ◦C. Figure 6 shows raw probe
event data from one of the needle insertions.

We evaluated different feature sets both by inspecting fea-
ture values for visible changes near or before our desired clas-
sification depth and by running our classification algorithm
on different groups of features. We ultimately selected four
feature sets to show in this manuscript. The Force FFT ∪Dist
FFT feature set consists of the FFTs of the force and distance
data; this is inspired by Zhang’s method [13], which uses the
ratio of the stress FFT divided by the strain FFT. Instead of
finding a ratio between our force and distance viscoelastic
data, we concatenate the two in order to retain more complete
data for the classifiers. The Force ∪ Dist feature set simply

FIGURE 6. Force and distance data from a single insertion. For clarity only
a subset of probe events are shown, with more probes that are close to
bone being shown as they change more between depths than probe
events that are far from bone. Figures 9 and 10 in Appendix I contain
graphs showing all the probe events for this same needle insertion.

uses the raw, time-domain force and distance sensor data.
The Raw ∪ Stats feature set contains the raw force and
distance sensor data aswell asmean and/or standard deviation
values for certain subsequences which were found to perform
well in preliminary testing. The Subsequence Force FFTs
feature set consists of FFTs of the force data contained in
the subsequences in Figure 5; only force data are used as the
distance subsequence FFT data were found to be less helpful.
The specific features used in each feature set and details on
the information provided by individual features are described
in Appendix VII.

We selected three machine learning classifiers for our
experiments. The first, SVM, was selected for its simplicity
and versatility. We use a linear kernel since others did not
generally improve accuracy. Random Forest was the second
classifier. Unlike SVM, which searches for an optimal hyper-
plane to separate the data classes, Random Forest relies on
results from multiple decision trees to classify data. Our third
classifier was eXtreme Gradient Boosting (XGBoost) [19].
Like Random Forest, XGBoost relies on an ensemble of deci-
sion trees; however, rather than using random feature and data
splits to generate multiple trees, XGBoost uses a technique
known as gradient boosting to generate the classifier forest
so that each new decision tree reduces the decision error of
the ensemble of previously generated trees [20].

For our experiments, SVM and Random Forest are trained
using binary labels that divide all probe events into two
categories: ‘‘within 5 mm of bone’’ and ‘‘not within 5 mm
of bone.’’ These are calculated from the regular distance-
from-bone labels of each probe event by applying a binary
threshold. Probe events within 5 mm of bone receive a label
of ‘1’ while those not within 5 mm of bone receive a label of
‘0’. For the SVM and Random Forest classifiers, the output
for each probe event is a binary decision on the category to
which the probe event belongs. XGBoost uses the standard
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FIGURE 7. Learning curve showing results for a Random Forest classifier
using the Raw ∪ Stats feature set with a multiprobe number of 3 and
5-fold cross-validation as the number of sequences sampled is swept. Ten
sequences were extracted per needle insertion from the training set,
resulting in 120 total sequences. Since this learning curve uses 5-fold
cross-validation, 80% of the total sequences are used for training and
20% for testing; thus, the number of training examples on the x-axis
range from 9 to 96. For each set of results, the lines indicate the mean
error while the similarly colored shaded regions around each line show
±1 standard deviation away from the mean error. Convergence between
the two sets can be seen at around 80 training samples.

distance-from-bone labels and outputs an estimated distance
from bone for each probe event. The estimated distance is
thresholded using our classification depth of 5 mm to reach a
binary decision.

To determine the values for the number of sequences
to sample and the number of probe events to concatenate,
we ran sweeps of those two variables across all machine
learning classifiers and multiple feature sets. We trained
these classifiers using both a train/validation split as well
as cross-validation on the training set. Figure 7 shows an
example of the results of a sweep across the number of
sequences for a fixed classifier, feature set, and multiprobe
number. We select the final number of sequences per needle
insertion to extract from values that show low training and
validation errors.

In our experiments, we use two training regimes for our
classifiers. The first is a test/train split where twelve needle
insertions are used to train the machine learning classifiers
and four are used to test them. The other four needle insertions
formed a validation set used as a test set during algorithm
development. The other training regime is referred to as
leave-one-group-out or LOGO. This regime trains the clas-
sifier on eleven of the needle insertions in the training set and
evaluates the algorithm with the remaining needle insertion.
This process is repeated with a different needle insertion
reserved for evaluation until each of the twelve insertions
have served as the evaluation set.

We evaluate our experiments using three error measures
calculated from the set of individual needle insertion errors:
average error, mean absolute error (MAE), and root mean
square error (RMSE). Average error indicates whether the

algorithm is classifying the needle as near bone too early or
too late.MAE is useful for determining how far away from the
threshold point classifications are made. RMSE emphasizes
more extreme errors.

VII. RESULTS
Table 1 shows the results of our experiments. Multiple gen-
eral trends are apparent. One trend is that the test/train split
training regime usually obtains smaller errors than LOGO.
However, there are a few notable cases—which are discussed
below—where LOGO does better in certain error measures.
Another notable trend is that among the results that achieve
low overall error rates, all of them have a positive average
error, indicating that they tend to classify the needle as close
to bone late, i.e., after it has already passed the 5 mm thresh-
old. We discuss this in-depth in Section VIII.

An interesting trend becomes apparent when one looks at
the results that achieve the lowest error rates in specific cat-
egories. The best results for average error were under 1 mm
and were achieved by Random Forest using the Force ∪ Dist
and Raw ∪ Stats feature sets and the LOGO training regime;
however, MAE and RMSE were 2 mm or more for these
cases, meaning that these cases had low bias but relatively
high variance.

The best results for MAE and RMSE occur in the same
cases and were obtained by SVM using the Subsequence
Force FFTs feature set and by Random Forest using the
Subsequence Force FFTs and Force FFT ∪ Dist FFT feature
sets. All of these cases use the test/train split training regime.
These error values range between 1.67 mm and 1.87 mm.
The fact that both of these error measures are in such a small
range implies that the contribution of rare high-error infer-
ences to aggregate error is minimal. Furthermore, the average
error is also within this range, implying that the majority of
bone detection classifications were clustered around the same
depth in each test. Thus, these cases result in high bias but low
variance.

As our best results are split into two groups, we analyze
both. The low-bias-high-variance best results (Random For-
est, Subsequence Force FFTs, test/train) show that we can
generally detect when the needle is within approximately
2–8 mm of bone using our classification label of 5 mm and
enforcing an RMSE of less than 3.19 mm. The best high-
bias-low-variance results (SVM, Subsequence Force FFTs,
test/train) show that we can consistently detect when the
needle is within 3.33 mm of bone based on an average error
and MAE of 1.67 mm.

These results indicate that, in general, our bone detec-
tion method works: it detects when the needle is near bone
before the needle strikes the bone with only 20% the error
of random guessing which, during a theoretical 40 mm nee-
dle insertion, would result in an average error of −15 mm,
MAE of 15.68 mm, and RMSE of 19.02 mm. However,
these results do not meet our self-identified standard for this
technique to be useful in epidural needle insertion, which we
believe would require alerting a clinician when the needle is
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TABLE 1. Experimental results. See Section V for a description of multiprobe compilation and Section VI for descriptions of the other columns. Highlighted
rows indicate specific results discussed in the text. Identification and analysis of trends can be found in Section VII and Section VIII, respectively.

within 5 mm of bone with a detection error of ±1 mm. The
next section further analyzes the results to determine why our
results end up in two main groups and how they might be
improved.

VIII. DISCUSSION
Our preliminary experiments showed that our method can
differentiate tissues and provide information on the needle’s
orientation in relation to a bone-tissue interface. For our
technique to work, these classifiable differences in material
properties must occur as an epidural needle approaches bone.
Other preliminary needle insertion data from sheep and pig
spine showed some changes as the needle approached bone,
with the steady-state force measurement often increasing.
This and previous research that showed differences in mea-
surable viscoelastic tissue properties for thick and thin layers
of soft tissue over bone [14] gave us reason to believe that we
would be able to determine when the needle is approaching
bone.

Though our classifiers had either low bias or low vari-
ability, none of them achieved both. Further examining the
data shows why. Figure 8 shows histograms of bone detec-
tion errors on our needle insertion training set for specific
classifiers in Table 1. Figure 8(a) shows a classifier with high
bias and low variance while Figure 8(b) shows a classifier
with low bias and high variance. It can be seen that in both
cases, most close-to-bone classifications occur in a cluster
with a center approximately in the range of 1.5–2 mm of
error or, equivalently, 3–3.5 mm away from bone. The main
difference between the low-bias-high-variability and the
high-bias-low-variability classifiers is that the latter are more
concentrated in the main cluster while the former have

outliers which bring the average error closer to 0 mm. This
clustering behavior can even be seen in some classifiers that
have very high error rates as shown in Figure 8(c): there still
exists a main cluster centered at the same location, but there
are many early detection outliers that ruin the averages.

These results indicate that our bone detection method
works: it detects when the needle is within 3 mm of bone,
before the needle strikes bone. However, as currently imple-
mented, it is unable to provide this warning soon enough to
be of clinical use in epidural needle insertion. Themeasurable
viscoelastic properties of soft spinal tissue near bone do not
change enough at a distance far enough away from bone
for our technique to give clinical providers the 5 mm of
forewarning that we estimate are needed to steer the needle
around bonewithout first retracting the needle. Our data show
that this change does not occur until the needle tip is within
3–3.5 mm of bone or, equivalently, until the extended probe
tip is within 1–1.5 mm of bone. This is verified by the clusters
shown in the histograms.

This also explains the bias-variance tradeoff seen in our
classifiers. The classifiers are being tasked with finding when
the needle is within 5 mm of bone, but the features do not
appear to meaningfully change until the needle is within
3.5 mm of bone. As a consequence, the inference algorithms
are unable to distinguish between these (overlapping) classes
until within 3.5 mm of bone, where features begin to diverge.

It may be possible to increase detection range with
improvements to our technique. Increasing the distance that
the probe extends beyond the needle would allow it to col-
lect data at a greater range from the needle’s tip. How-
ever, at some point this would open questions about how
far the probe can extend without risking tissue damage.
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FIGURE 8. (a) Histogram of a high-bias-low-variance classifier from Table 1 (Random Forest, Subsequence Force FFTs, test/train). (b) Histogram of a
low-bias-high-variance classifier from Table 1 (Random Forest, Raw ∪ Stats, LOGO). (c) Histogram of a classifier with poor error measures from
Table 1 (SVM, Force ∪ Dist, test/train).

Algorithmic improvements could also help. Our current clas-
sification algorithm does not make any underlying assump-
tions about the material being tested. Incorporating specific
tissue models may improve results. While our algorithm uses
data from multiple probe events, it is limited to a small
window of probe events. Machine learning techniques more
specifically designed for sequential data such as recurrent
neural networks may be able to find enough information
in needle insertion sequences to detect bone sooner. These
neural-network-based techniques require a large amount of
training data.

Our current viscoelastic response technique is promising
for medical applications beyond epidural placement. A key
contribution is showing the ability to directionally classify
tissue through a needle with non-destructive mechanical
probing. With results showing its ability to collect data for
tissue classification in a unique through-needle manner, our
technique might be used for other blind needle placement
medical procedures, such as non-invasive tissue biopsies,
laparoscopic instrument placement, and fluid drainage tech-
niques.

We also noticed a practical insight that may be useful
in developing machine learning models for similar appli-
cations. Table 1 shows that models which produced high-
bias-low-variance results mostly used the Subsequence Force
FFTs and Force FFT ∪ Dist FFT feature sets. This implies
that FFT-based features may be less susceptible to noise
and more useful in extracting the underlying information in
the data than time-domain sequences or statistically derived
scalars.

IX. OPEN QUESTIONS
The following questions may merit consideration in further
research.

1) Since tissue is viscoelastic, it may be deformed after
one or more probe events. Some force graphs of pre-
liminary data showed small differences based on the
order of probe events at the same depth, but preliminary

classifiers that explicitly took probe ordering into
account received no benefit, so we stopped con-
sidering probe order. It is possible that classifiers
with more advanced features—including sequence
sampling, which had not been implemented in these
preliminary tests—may be impacted by these small dif-
ferences and could benefit from taking probe ordering
into account.

2) Our directionality test only compares when the needle
is pointed perpendicular to or parallel to the simulated
tissue-bone interface. Determining the change in mea-
sured tissue response as a function of angle might be
useful.

3) It remains to be determined how effectively our device
can communicate to a practitioner during a real-time
insertion. Based on computation time estimates of our
algorithms and needle insertion speed estimates calcu-
lated from a small set of author-conducted interviews
with anesthesiologists and anesthesiologist residents,
the computational latency of our system is low enough
to allow for real-time use. An evaluation measuring
needle insertion speeds and practitioner reaction to
feedback would be beneficial.

X. CONCLUSION
We developed and evaluated a novel technique for avoiding
bone strike during epidural needle insertion by measuring the
viscoelastic response of tissue at the tip of the epidural needle.
We verify that the technique can successfully differentiate
tissue at the needle’s tip and identify when the needle is
pointed at and 3 mm away from bone. This does not give
us the desired forewarning of 5 mm that we estimate would
be necessary for use in clinical epidural needle insertion.
The probing technique may be useful in other applications
requiring blind needle insertion or in vivo tissue classifi-
cation. Lengthening the probe or further improvement to
the classification algorithm might yield a longer detection
range.
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