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The process of reading has attracted decades of scientific research. Work in this field primarily focuses on using eye gaze
patterns to reveal cognitive processes while reading. However, eye gaze patterns suffer from limited resolution, jitter noise,
and cognitive biases, resulting in limited accuracy in tracking cognitive reading states. Moreover, using sequential eye gaze
data alone neglects the linguistic structure of text, undermining attempts to provide semantic explanations for cognitive states
during reading. Motivated by the impact of the semantic context of text on the human cognitive reading process, this work
uses both the semantic context of text and visual attention during reading to more accurately predict the temporal sequence
of cognitive states. To this end, we present a Cognition-Aware Smart Eyewear System (CASES), which fuses semantic context
and visual attention patterns during reading. The two feature modalities are time-aligned and fed to a temporal convolutional
network based multi-task classification deep model to automatically estimate and further semantically explain the reading
state timeseries. CASES is implemented in eyewear and its use does not interrupt the reading process, thus reducing subjective
bias. Furthermore, the real-time association between visual and semantic information enables the interactions between visual
attention and semantic context to be better interpreted and explained. Ablation studies with 25 subjects demonstrate that
CASES improves multi-label reading state estimation accuracy by 20.90% for sentence compared to eye tracking alone. Using
CASES, we develop an interactive reading assistance system. Three and a half months of deployment with 13 in-field studies
enables several observations relevant to the study of reading. In particular, observed how individual visual history interacts
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with the semantic context at different text granularities. Furthermore, CASES enables just-in-time intervention when readers
encounter processing difficulties, thus promoting self-awareness of the cognitive process involved in reading and helping to
develop more effective reading habits.

CCS Concepts: • Human-centered computing→Mobile devices.
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1 INTRODUCTION
Reading is a fundamental approach to learning, through which people can expand their vocabulary, gain knowl-
edge, and develop skills. Research has shown a positive relationship between reading and learning; for example,
the more people read, the more effectively they improve vocabulary, knowledge levels, and cognitive skills [15].
In fact, reading has long been considered the most important path to lifelong learning, and lifelong readers are
generally more successful, both personally and professionally [24, 76].

The science of reading has attracted decades of interest in human-computer interaction (HCI) [27, 81], cognitive
science [40, 44], psychology [67], educational psychology [11, 77], cognition and neuroscience [82], pedagogy [37],
and brain science [2, 51]. Reading is a cognitive process and understanding it benefits numerous research commu-
nities. Studying how people understand the semantics and syntax of text can aid in understanding natural language
representation and processing, which are key functionalities of human-level intelligence [38]. Understanding
the reading process can also advance the theory of human behavior, thus benefiting the domains of applied
psychology, pedagogy, and educational psychology. For instance, we can scrutinize human cognitive abilities [35]
such as verbal working memory capacity, inhibitory control ability, perceptual speed, and immediate and delayed
effects on reading processes. Furthermore, understanding how people read sheds light on reading patterns and
strategies, potentially helping readers achieve metacognitive awareness and read more efficiently [21, 58, 84].
In particular, HCI researchers have studied enhancing human reading efficiency [80], reading proficiency [52],
reading skills [55], reading comprehension performance [34, 43], and reading outcomes [28].
Reading is a multi-level interactive eye-mind cognitive process. In the short term, readers visually perceive

each word, encode it, and mentally assign semantics. In the long term, readers visually perceive a sentence and
mentally associate it with context and domain knowledge [39]. Reading can be viewed as a sequence of numerous
time-varying states. For instance, some studies explored the state of mind wandering, to detect whether a reader
is cognitively engaged or decoupled from the current reading task [19, 54]. Furthermore, some researchers studied
the state of having difficulty processing unfamiliar words [33, 72]. However, we note that processing difficulties
can present at multiple granularities, e.g., readers may encounter difficulties at the level of a single word, a
sentence, or a paragraph. Since it is hard to enumerate all reading states, we focus on the problem of probing
the reading cognitive process to detect and explain multiple states at word and sentence levels. Specifically,
we investigate whether a reader’s mind is wandering, whether the reader is positively engaged, and when
comprehension is delayed due to word- or sentence-level processing difficulties.
Eye movements are good indicators to infer the cognitive process [1, 64, 74, 83]. This is based on the eye-

mind hypothesis [39], which states that there is a close relationship between where the eyes look and where
the mind is engaged. Owing to the fast development of eye-tracking technologies, we can easily access eye-
tracking data [3, 50] to explore eye-mind relationships. Numerous researchers have extended the relationship
between eye movements and cognitive processes [65, 67]. Also, numerous prevalent methods design eye-tracking
reading systems to automatically track the participants’ eye movements in a non-intrusive way [16, 37, 72, 73].
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These works have summarized some hand-engineered eye movement features to probe the reading cognitive
process [72, 73].

However, eye-tracking technologies suffer from a number of shortcomings. The error of commercially
available eye-tracking technologies typically ranges from 1 to 4 degrees [46, 60]. Under reading scenarios, this
angular accuracy translates to a spatial tracking resolution of about 1.4–2.6 cm. Considering a computerized-
reading task where the distance from eye to screen is 40–50 cm, this means that the resolution of the eye tracker is
about 3 to 4 lines for a single-spaced document and about 1 to 3 words in the horizontal direction. Such low spatial
resolution makes it infeasible to track reading states during word-by-word and line-by-line reading because we
cannot accurately locate the words and lines. Previous studies tackled this problem by using an unrealistic setting
with a very wide line spacing (e.g., triple-spaced [16]), leaving them unsuitable for use with normally spaced text.
In addition, eye-tracking techniques are subject to the inherent transient jitter [9] of human gaze and vertical
drift, which require constant calibration [7]. Eye-tracking techniques suited to real-world scenarios have the
potential to advance the study of reading.
Furthermore, existing methods ignore contextual influences from text, resulting in less accurate

reading state estimation and undermining semantic explanation for these states. Given the same reading
context and motivations, the factors influencing reading states mainly pertain to the reading material’s and
subject’s domain knowledge about the content. For example, a good reader may cross-reference previously read
text to assist in understanding new and unfamiliar text [33]. In such cases, the high reading frequencies of the
earlier text do not necessarily imply that they are difficult. To correctly estimate the current reading state, it
is important to be aware of the semantic meaning of the current text, the cross-referenced text, their semantic
correlations, and real-time eye gaze patterns. However, it is a non-trivial task to properly fuse the semantics of
reading text and eye movements and learn from them in progressive reading scenarios, and it is more challenging
to infer semantic explanations for reading state timeseries.
This work aims to provide accurate estimations and semantic explanations for reading state timeseries to

support research and outreach efforts in the field of reading science. To this end, we pose the following two
research questions (RQ) and posit the corresponding hypotheses.

RQ1: Do readers in the same reading states show different visual attention distributions on the reading text?
Hypothesis 1: Readers in the same reading state will show varying visual attention histories (detailed in

Section 3), e.g., different total fixation duration, reading times, number of fixations, etc. That is, the visual
attention histories of readers in the same reading state differ from each other.

RQ2: When readers are in the same reading states, e.g., encountering difficulty progressing, how does reader
visual attention interact with semantic cues in the text?

Hypothesis 2: As indicated by previous studies [19, 73], readers’ cognitive effort in processing text is positively
related to the difficulty of the text. However, in contrast with previous studies, we further hypothesize that
readers can overcome reading difficulties by fetching contextual semantic cues from the surrounding text. When
progress is blocked, easy text that is semantically related to difficult text also receives more visual attention and
cognitive effort.

Themotivation for this work is that the semantic context of text has a direct impact on themulti-level interactive
eye-brain cognitive reading process. Leveraging the rich semantic information about reading materials, which
can be extracted by advanced natural language processing (NLP) techniques [61, 87], can improve estimation
accuracy and provide semantic interpretation of reading states. The semantic information is high-resolution
because NLP models can provide semantics at the word level [61, 87]. The inherent hierarchical structure of
the semantic information can also be inferred by summarizing the semantics of words to a sentence level. The
high-resolution semantic information can compensate for the low-resolution eye movements for more accurate
reading state estimation. More importantly, the real-time interaction of eye movements and semantic context can
provide semantic explanations for the ongoing reading states.
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Application scenario: an interactive reading assistant system
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Fig. 1. The proposed CASES smart eyewear system.

To this end, we present a Cognition-Aware Smart Eyewear System (CASES) capable of measuring reading
(cognitive) state timeseries. Figure 1 illustrates the overview of the proposed system. At the heart of CASES is a
bi-modal multi-task network named CASES-Net, which takes the bi-modal data, i.e., the eye-tracking and reading
text data, as inputs and estimates cognitive reading states in real-time at two granularities: word and sentence
level. To collect high-quality bi-modal data, CASES uses two cameras to record the two required modalities
automatically: an outward-facing scene camera to capture text and an inward-facing camera to track gaze points
during reading. CASES is implemented in the form of eyewear to avoid interfering with the reading process
when collecting data. Surveys are deferred until after a reading task is completed, also to avoid interference.

CASES-Net employs a four-layer temporal convolutional network (TCN) based module to fuse the two types
of sequential modalities, one of which is informed by semantic information extracted from the pre-trained
NLP models [6, 86]. We treat estimations at two granularities as two distinct but related tasks and propose a
shared convolutional filter mechanism within the TCN to learn the characteristics of the two tasks and their
commonalities. Moreover, we design a multi-task and hierarchical loss function to guide reading state estimation.
To evaluate CASES, we first collect and construct a dataset and then demonstrate that CASES has higher reading
state estimation accuracy than baseline methods. To sum up, CASES-Net combines gaze and semantic information
to better estimate reading states. More importantly, it provides semantic explanations for these reading states.
The well-trained deep model can automatically detect when users encounter reading difficulty without requiring
further inputs (e.g., feedback) from them, thereby limiting potential subjective biases.
This work makes the following contributions.

• We present a Cognition-Aware Smart Eyewear System (CASES) to probe and explain human cognitive
processes while reading. CASES aims to support the study of reading and learning to read, as well as
supporting HCI and educational applications investigations on improving reading productivity. The CASES
system is equipped with a deep neural network, CASES-Net, that extracts features pertaining to the visual
attention history and text semantic content. It fuses the two types of features via a shared convolutional
filter mechanism based on TCN to enable accurate reading state estimation at various granularities.

• CASES is evaluated in real-world contexts. We conduct an ablation study involving 25 participants, in
which CASES delivered superior reading state detection to baseline methods. Specifically, encoding text
semantic content facilitates learning from context cues and improves reading state estimation accuracy.
Compared with the conventional eye-tracking-only method, we improve accuracy by 20.90% for sentence.
Furthermore, the text semantic context enables quantitative explanations of reading (cognitive) states.

• We integrate CASES into a novel interactive reading assistant system. Three and a half months of deployment
with 13 in-field studies demonstrate that the integrated system can enable helpful interventions for readers,
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thus improving self-awareness in the reading process and helping readers adopt more effective reading
habits.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3 clarifies the key concepts
used in this work. Section 4 details the proposed network and our built real-time reading state detection and
intervention system. Section 5 presents the experimental setups and results. Section 6 presents our findings when
using CASES in practice, general discussion, and future direction. Finally, Section 7 concludes this work.

2 RELATED WORK
This work is mostly relevant to three broad areas: reading science, eye-tracking in reading, and natural language
processing.

2.1 Science of Reading
Reading science has attracted decades of interest in various research communities, e.g., HCI, pedagogy, and
educational psychology. These studies primarily deal with the outcomes of reading [28] and reading compre-
hension [43]. Recently, researchers have studied reading patterns and strategies that improve the efficiency of
reading [21, 27, 58, 84], e.g., interactive reading systems that detect mind wandering during reading [19, 54].
They mitigated the negative effect of mind wandering on reading comprehension using just-in-time interven-
tions [19, 54]. Other methods detect words readers do not know automatically [27] and provide appropriate
help [33, 72]. In psychology, applied psychology, and educational psychology, researchers primarily focused
on studying how texts are read and comprehended [11, 62, 67, 77, 83]. For example, Perfetti et al. delivered a
blueprint of reading, consisting of the visual process, representation process that converts visual perception into
a linguistic representation, and operation process on the representation [62]. In cognition science, neuroscience,
and brain science, extensive reading studies focus on developing computational theories of cognition [47]. One
important branch studies the representations and processing of natural languages by the human brain [38]. For
example, Lewis et al. contributed a theoretical framework to explain how verbal working memory supports
sentence processing [47]. Kamide et al. studied how the global and local information in texts impact sentence
processing [40]. Cognitive scientists usually jointly consider language representation and processing [23] based
on the belief that discovering language representation can help answer questions about computation, and vice
versa. Schrimpf et al. provided computationally explicit evidence that language comprehension mechanisms in
human brains are fundamentally shaped by predictive processing through an integrative modeling approach [69].
In summary, previous works on the science of reading primarily focus on leveraging eye-tracking during

reading to study the reading process and outcomes. However, they focus less on how individual readers perceive
and process the text in real time. This study introduces context information from texts to the study of reading
cognitive processes.

2.2 Eye-Tracking in Reading
Eye-tracking technology can acquire real-time eye movements in a non-intrusive manner [8]. It is natural to
utilize eye movement data to probe the reading process, as the reading process initiates visual input and operates
as an interactive eye-mind cognition process [39]. Over the past decades, numerous studies have focused on
analyzing eye movement data obtained during reading to understand the reading cognitive process and provide
reading assistance [4, 19, 25, 32, 54, 73]. For example, Hyrskykari proposed a gaze-aware reading assistance system
to provide help at the right time without interrupting the reader’s thoughts [32]. Cheng et al. proposed a social
reading system, in which they demonstrated that sharing eye gaze annotations generated by experts promoted
reading comprehension for non-experts [10]. Bottos and Balasingam presented an approach to accurately track
the horizontal eye-gaze points in reading scenarios [4]. In addition, there are also many studies focused on
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detecting reading behaviors, such as mind wandering [19, 54] or encountering difficulties in comprehending
unfamiliar words [33, 72].

In general, these relevant methods have demonstrated that eye movement data helps understand the reading
cognitive process. However, the semantic information of the text, which is closely related to the reading process,
is rarely used in previous studies. This study jointly considers text semantic information and eye movement data
can facilitate understanding the reading process and how readers comprehend texts.

2.3 Nature Language Processing
Natural language processing (NLP) uses computational techniques to represent and analyze human languages [12]
(see [42] for a comprehensive review). NLP can usually be classified into two categories: natural language under-
standing and natural language generation. As discussed above, this work uses natural language understanding
techniques to obtain semantic contextual information from texts. Successful natural language understanding
techniques can provide generic models for NLP downstream tasks, such as analyzing the association among
text components [18], extracting keywords [6, 71], and analyzing syntax [48]. For example, Linzen et al. pointed
out that, given targeted syntax supervision, a long short-term memory (LSTM) network can learn syntax infor-
mation [49]. Later, they further stated that linguists and neural network researchers might contribute to each
other’s areas [48]. Furthermore, NLP neural networks can provide good representations of text; for example, the
bidirectional encoder representations from transformers (BERT) model [18], which is based on transformers [79],
can obtain state-of-the-art results on several NLP tasks by providing high-quality language representations.
Considering the dependency between the masked positions and the discrepancy from pretrain-finetune that
BERT neglects, Yang et al. proposed a generalized autoregressive pretraining method to overcome the limitations
of BERT [86]. Their pre-trained model, XLNet, outperforms BERT on various tasks. Our work builds on recent
progress in NLP by using pre-trained NLP models to help understand the reading cognitive process.

3 PROBLEM FORMULATION
This section clarifies three important concepts used in this work: eye movements, visual attention, and semantic
attention.

Eye Movements: Eye movement patterns can reveal reading strategies and are vital to understanding the reading
cognitive process. As shown in existing studies [16, 53], reading generally consists of a series of pauses and rapid
shifts in gaze locations. The pauses are called fixation, and the shifts are called saccades. These patterns reflect
the low-level oculomotor characteristics during reading, typically determined by the physical properties of text,
such as the positions or lengths of words.
By exploring eye movement patterns, researchers establish connections between low-level eye movement

behaviors and higher-level cognitive processes during reading [74]. First, research shows that the direction and
duration of eye fixation reveal how the cognitive process unfolds over time [72, 73]. More specifically, fixation
locations indicate the attended content, while fixation duration suggests the level of cognitive effort invested
by the reader, i.e., longer fixation suggests more effort. Second, the processing time-course of eye movement
patterns is widely used to reveal the temporally continuous reading process, often linked with comprehending or
memorizing. For example, one common temporal reading activity is to move the gaze backward to review the
already-read content. In this case, the informative eye movement patterns might be the reading and regression
durations, also called the second pass [31]. Finally, to alleviate the potential inter-person variations, recent
work also designs global features or statistical features based on eye movement patterns to access the reading
process, such as the number of saccades, saccade frequencies, and variations in fixation duration [16]. Given
the potential ability of eye movement patterns to reveal reading cognitive processes, this work also employs
these hand-engineered features as valuable indicators. However, to better suit our case, we first distinguish the
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Fig. 2. Overall pipeline of the CASES-Net.

representing eye movement patterns at two granularities and then re-design them at word and sentence levels.
More details can be found in Section 4.1.3.

Visual Attention: Although no previous work explicitly defines visual attention in reading scenarios, substantial
studies demonstrate a strong correlation between eye movement patterns and attentional processing during
reading. For instance, the E-Z reader model [66] posits that attention during reading moves from word to
word continuously. The serial-processing assumption states that attention is linked to focus changes in text
processing [26, 56, 85]. Following these studies, our work describes visual attention during reading by establishing
the connection between eye movement patterns and the corresponding while-reading text components, such
as words and sentences. Specifically, we define the visual attention state as the collection of eye movement
features on each text component. For example, when reading the sentence “They race to maturity, with the shortest
generation time of any vertebrate”, the visual attention for the word “vertebrate” consists of fixation duration,
reading times, number of fixations, etc. At the sentence level, the visual attention state is defined using the total
dwell time, saccade times, etc.

Semantic Attention:We are interested in exploring how the semantic meaning from text assists in estimating the
time-series reading states and how they explain these states. From this perspective, it is necessary to have a holistic
semantic understanding of while-reading texts. Furthermore, such understanding should cover the semantic
meaning of different grain sizes of texts, ranging from single words and sentences to passage levels. This works
terms this semantics collection at various granularities as semantic attention. For example, semantic attention can
hint at whether the while-reading text components are difficult. These difficult components may be unfamiliar or
ambiguous words or sentences with complex syntax, which often delay reading. In this case, appropriately using
such semantic meaning regarding the difficult score can provide additional evidence in revealing the current
reading state and deliver a reasonable interpretation regarding why the current text components block the
reading.

4 SYSTEM DESIGN
This section describes the CASES design. We first detail the CASES network (CASES-Net), a deep neural network
for detecting and interpreting ongoing reading states. Then, we describe a real-time reading state estimation and
intervention system aiming to boost reading comprehension performance.
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4.1 CASES Network
4.1.1 Overall Pipeline. Figure 2 depicts the overall pipeline of the proposed CASES-Net. It consists of four
modules: semantic attention extraction (SAE), visual attention extraction (VAE), cross-attention extraction (CAE),
and reading state estimation/explanation.

The first step in the CASES-Net pipeline provides a comprehensive semantic understanding of the text before
the reading begins. This semantic meaning information compensates for the low-resolution eye-tracking data,
thus enabling accurate reading state estimation. Semantic meaning also enables explanations during reading state
detection tasks in later pipeline stages. To extract semantic meaning, the system turns on the outward-facing
scene camera to obtain the text to be read. The SAE module then runs once on the text. It utilizes NLP techniques
to extract the high-resolution semantic features and the inherent linguistic structure from the text, thus facilitating
subsequent tasks.

Texts contain rich semantic information, but for better individual reading state estimation, personalized visual
attention data are also necessary. To capture it, the VAE module is triggered to obtain the online visual attention
features corresponding with text components (e.g., while-gazing words or sentences). More specifically, CASES-
Net senses reader eye images to predict gaze sequences using continuous eye-tracking [46, 60]. Then, the VAE
module extracts visual attention features from the sequential gaze data. In parallel, the scene camera records
time-aligned scene images to help track gaze positions.

Since the obtained semantic meaning of the text and visual attention features are at different spatial resolutions,
we propose the CAE module to properly align them. We use words to segment the visual attention features
because words are the minimal text units considered in this work, upon which sentences and global context
depend.

The TCN-based network estimates the reading states at word and sentence levels, aiming to explore the task-
specific features for the assistance of the multi-task output. One feature represents the binary determination of
whether a reader has difficulty processing a word; we call this the “word-level task”. The second task is hierarchical
multi-label classification at the sentence level, which includes (Task I) estimating whether a reader is having
sentence-level processing difficulty and if so, (Task II) estimating whether the reader is facing comprehension
challenges, the reader’s mind is wandering, or both. A multi-task and hierarchical loss function for training
guides CASES-Net. We can qualitatively understand the reasons for the predicted reading states by visualizing
the learned semantic attention and visual attention features.
The rest of this section explains the technical details of each module.

4.1.2 Semantic Attention Extraction Module. SAE module aims to understand the high-resolution semantic mean-
ing of the document R, ranging from the word level to the document level. There are two primary prerequisites
for extracting accurate semantic features: obtaining the while-gazing locations and text contents. The former, i.e.,
while-gazing locations, can be obtained by using eye tracking and represented as Points of Gaze (PoG) timeseries.
Each PoG corresponds to a two-dimensional coordinate in the scene image recorded by the scene camera. Given
the locations of PoG, we can easily load the while-gazing text contents because the reading system has already
stored all the reading materials in advance. After that, we propose to extract the following three types of semantic
features by utilizing various advanced NLP techniques.
(1) Each word in R is encoded as a 768-dimensional vector by XLNet model [86], which can learn the semantic

meaning of the document by processing the whole text passage once. To lower the potential adverse effect
incurred by the high dimensionality, we reduce the XLNet features to 64 dimensions via a fully-connected
(FC) layer and denote them as r𝐵 = {r𝐵𝑤}𝑊𝑤=1, where r𝐵𝑤 ∈ R64 and𝑊 is the total number of words.

(2) To understand the keyword information in the document, we calculate the probability of each word
describing the whole document via the YAKE model [6]. The keyword features are denoted as r𝐾 = {𝑟𝐾𝑤 }𝑊𝑤=1,
where 𝑟𝐾𝑤 ∈ R.
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(3) We use word difficulty to assist in the final task of identifying the reading state. Following Franklin et
al. [22], we describe the word difficulty using the length of the word, number of syllables, and familiarity
scored by the MRC psycholinguistic database [14]. We denote the difficulty of words by r𝐷 = {r𝐷𝑤}𝑊𝑤=1,
where r𝐷𝑤 = C(𝑙𝑤, 𝑠𝑤, 𝑓𝑤) ∈ R3, C is the concatenation operation, 𝑙𝑤 , 𝑠𝑤 , and 𝑓𝑤 denote the word𝑤 ’s length,
syllable number, and familiarity score, respectively.

Finally, each word in the document is represented by the concatenation of the three feature vectors; that is
r𝑤 = C(r𝐵𝑤, 𝑟𝐾𝑤 , r𝐷𝑤) ∈ R68 (𝑤 = 1, 2, . . . ,𝑊 ). Note that the semantic features regarding more coarse levels (e.g.,
sentence- and passage- level) can be generalized from that of the word level, as words are inherently structured
and semantically connected — a passage consists of multiple sentences and a sentence of multiple words.

4.1.3 Visual Attention Extraction Module. A reliable gaze sequence is a foundation for accurate visual attention
feature extraction. However, the raw gaze points are noisy due to difficult-to-avoid human motion and limited
eye-tracking resolution. To alleviate this issue, we design a filtering algorithm to smooth the raw gaze points,
leveraging their sequential characteristics. More specifically, we first employ an existing eye-tracking technology
to estimate the PoGs and record the PoGs sequences as E = {e𝑡 }𝑇𝑡=1, where 𝑇 is the total number of timestamps
considered. The designed filtering method first uses median filtering to discard outliers due to gaze jitter. Then,
we use mean filtering to stabilize the fluctuations of sequential PoGs due to the limited eye-tracking resolution.
After filtering, we obtain the smoothed PoGs E∗ = {e∗𝑡 }𝑇𝑡=1. We segment each word and sentence using E∗ and
then send them to the next step for visual attention extraction.

The number of PoGs will increase rapidly during reading. To reduce the size of PoGs, experts have engineered
a large number of representative features reflecting how people comprehend characters during reading [16,
31, 72, 73] or whether people are disengaged from reading [19, 54]. In this work, we propose to further enrich
the engineered visual features. The following features are widely used to describe word-level processing state
while reading: fixation duration, number of fixations, and number of repeated word readings. However, we
observe that these three features vary not only differ from person to person but also change while reading. Such
variation significantly affects estimation performance. The personal variation is usually removed by normalizing
personal data [29]; however, the latter while-reading variation is rarely considered. This work introduces local
information to tackle the latter problem: every 𝜏 seconds, we add the statistical features to describe the mean and
the variance of each engineered feature, for E∗ = {e∗𝑡 }𝜏𝑡=1, to describe the visual attention for each word. In total,
we obtain a 9-dimensional feature for each word. Moreover, we normalize the four sentence-level representative
visual features, including dwell time [17], saccade times [20], forward saccade times [59], and backward saccade
times [59], using the sentence length, so these features better describe the local variation. Given that we segment
𝑀 words during 𝜏 , the visual feature of each word is represented using r𝐸𝑤 ∈ R(9+4) (𝑤 = 1, 2, . . . , 𝑀). There are
nine word-level features and four sentence-level features that are identical to the words in the same sentence.

Lastly, we propose to use the higher-level temporal features of the sequential gaze data, as recent studies have
demonstrated the effectiveness of deep neural networks (DNN) on eye movement pattern classification. We adopt
the existing feature extractor based on the 1D-CNN with BLSTM backbone [75] (denoted as N𝑒𝑦𝑒 ) to extract
8-dimensional deep features during time duration 𝜏 , i.e., r𝐷𝑁𝑁𝑤 ∈ R8 (𝑤 = 1, 2, . . . , 𝑀).

4.1.4 Cross-Attention ExtractionModule. To facilitate downstreammulti-task learning, the CAEmodule first fuses
the two modalities, then explores the commonalities and distinct task-specific information to make predictions at
different granularities.
Before fusing the two modalities, we use the following strategy to synchronize them for time alignment.

Specifically, for each smoothed PoGs sequence e∗𝑡 , we identify the 𝑀 words being processed at time 𝑡 , and
concatenate the three features vectors to obtain f𝑤𝑡 = C(r𝑤, r𝐸𝑤, r𝐷𝑁𝑁𝑤 ) ∈ R(68+13+8) as the overall representation
of the two modalities. For all other words𝑤 ′ that have not been visually processed till time 𝑡 , we pad the semantic
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attention feature vector r𝑤′ with a zero vector, i.e., f𝑤′
𝑡 = C(r𝑤′ ∈ R68, 0 ∈ R21). In this way, the word being

processed at time 𝑡 can be properly described semantically with its corresponding visual attention features. In
contrast, the unread words padded with zeros are given less attention.

The CAE module uses a Temporal Convolutional Network (TCN) model, which is capable of capturing temporal
dependencies. Specifically, the module uses temporal convolutional filters/kernels to process input sequences.
Each filter calculates a weighted average in the time domain, and the parameters of the filters are learned to
optimize the objective function. The CAE module has four TCN layers, each of which consists of temporal
convolutions, a non-linear ReLU activation function, and a max pooling function or an upsampling function. To
achieve efficient learning across different tasks, we divide the filters of the final layer into two types: task-specific
filters used for the word- and sentence- level tasks, and task-shared filters for both tasks.

4.1.5 Reading State Estimation and Explanations. After obtaining the cross-attention features, we are ready to
detect the reading state of “processing difficulty”. We have the following three tasks. (1) Word-level binary-class
classification task 𝑇𝑤𝑜𝑟𝑑 : The word-level features are fed to a fully connected layer (denoted as N𝑤𝑜𝑟𝑑 ) to predict
whether a reader finds the word being processed difficult. Sentence-level and word-level tasks differ. Since we
know that mind wandering may co-occur with reading difficulty for a sentence, we formulate the task at the
sentence level in the following hierarchical fashion. (2) Sentence-level binary-class classification task 𝑇 𝑠𝑒𝑛𝑡,1:
With the sentence-level features, we first determine whether the reader is in a normal reading state without any
processing difficulties using a binary classifier. We use N𝑠𝑒𝑛𝑡,1 to denote the subnetwork of conducting 𝑇 𝑠𝑒𝑛𝑡,1.
(3) Sentence-level multi-label classification task 𝑇 𝑠𝑒𝑛𝑡,2: If the reader enters into an abnormal state, the reader
can be either mind wandering or processing difficulty, or both; This is a multi-label classification task, where
multi labels can be assigned simultaneously; label 1 is mind wandering and label 2 is processing difficulty. We
use N𝑠𝑒𝑛𝑡,2 to denote the subnetwork of conducting 𝑇 𝑠𝑒𝑛𝑡,2.

Finally, to train the network, we propose the following loss function reflecting the performance of all tasks:

L = L(𝑇𝑤𝑜𝑟𝑑 ) + 𝛼L(𝑇 𝑠𝑒𝑛𝑡,1) + 𝛽L(𝑇 𝑠𝑒𝑛𝑡,2), (1)

where 𝛼 and 𝛽 are tradeoff parameters. Binary Cross Entropy (BCE) loss is used for 𝑇𝑤𝑜𝑟𝑑 and L(𝑇𝑤𝑜𝑟𝑑 ) is
illustrated as follows

L(𝑇𝑤𝑜𝑟𝑑 ) = − 1
𝑊

𝑊∑︁
𝑤=1

(
𝑦𝑤𝑜𝑟𝑑𝑤 log𝑝𝑤𝑜𝑟𝑑𝑤 + (1 − 𝑦𝑤𝑜𝑟𝑑𝑤 ) log(1 − 𝑝𝑤𝑜𝑟𝑑𝑤 )

)
, (2)

where𝑊 denotes the number of word; 𝑦𝑤𝑜𝑟𝑑𝑤 denotes the label of word𝑤 , 𝑦𝑤𝑜𝑟𝑑𝑤 = 0 indicates the reader finds
the word 𝑤 easy, 𝑦𝑤𝑜𝑟𝑑𝑤 = 1 indicates the reader finds the word 𝑤 difficult; 𝑝𝑤𝑜𝑟𝑑𝑤 is the word-level estimation
results given by the network N𝑤𝑜𝑟𝑑 .
BCE loss is also used for 𝑇 𝑠𝑒𝑛𝑡,1 and L(𝑇 𝑠𝑒𝑛𝑡,1) is illustrated as follows

L(𝑇 𝑠𝑒𝑛𝑡,1) = − 1
𝑆

𝑆∑︁
𝑠=1

(
𝑦𝑠𝑒𝑛𝑡,1𝑠 log𝑝𝑠𝑒𝑛𝑡,1𝑠 + (1 − 𝑦𝑠𝑒𝑛𝑡,1𝑠 ) log(1 − 𝑝𝑠𝑒𝑛𝑡,1𝑠 )

)
, (3)

where 𝑆 denotes the number of sentences; 𝑦𝑠𝑒𝑛𝑡,1𝑠 denotes the binary classification label of the 𝑠th sentence,
𝑦
𝑠𝑒𝑛𝑡,1
𝑠 = 0 indicates the reader is in a normal reading state for sentence 𝑠 , 𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1 indicates the reader is in an
abnormal reading state; 𝑝𝑠𝑒𝑛𝑡,1𝑠 is the sentence-level binary classification estimation results given by the network
N𝑠𝑒𝑛𝑡,1.
For sentences with 𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1, to solve the multi-label problem, BCE loss is used for each label separately, and the
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loss of 𝑇 𝑠𝑒𝑛𝑡,2 is illustrated as follows

L(𝑇 𝑠𝑒𝑛𝑡,2) = − 1∑𝑆
𝑠=1 1(𝑦

𝑠𝑒𝑛𝑡,1
𝑠 = 1)

𝑆∑︁
𝑠=1

𝐿∑︁
𝑙=1

1(𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1)
(
𝑦
𝑠𝑒𝑛𝑡,2
𝑠,𝑙

log𝑝𝑠𝑒𝑛𝑡,2
𝑠,𝑙

+ (1 − 𝑦
𝑠𝑒𝑛𝑡,2
𝑠,𝑙

) log(1 − 𝑝
𝑠𝑒𝑛𝑡,2
𝑠,𝑙

)
)
, (4)

where 𝐿 = 2 denotes the number of labels, i.e., label 1 as mind wandering and label 2 as processing difficulty;
𝑦
𝑠𝑒𝑛𝑡,1
𝑠,𝑙

denotes the supervised information of the 𝑙th label for sentence 𝑠 , 𝑦𝑠𝑒𝑛𝑡,1
𝑠,𝑙

= 1 indicates sentence 𝑠 has the
𝑙th label, 𝑦𝑠𝑒𝑛𝑡,1

𝑠,𝑙
= 0 indicates sentence 𝑠 does not have the 𝑙th label; 1(·) is an indicator function, 1(𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1) = 1

when 𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1, 1(𝑦𝑠𝑒𝑛𝑡,1𝑠 = 1) = 0 when 𝑦𝑠𝑒𝑛𝑡,1𝑠 = 0; 𝑝𝑠𝑒𝑛𝑡,2
𝑠,𝑙

is the sentence-level multi-label estimation results
given by the network N𝑠𝑒𝑛𝑡,2.

4.2 EYEReader: A Real-Time Reading State Detection and Intervention System
Our goal is to determine reading state series that influence reading fluency and mitigate the negative effects of
reading processing difficulties. To this end, we build a real-time reading state detection and intervention system
(called EYEReader) for English language. For the convenience of readers, EYEReader is implemented in the form
of a website, enabling cross-platform compatibility.
This section first gives a concrete example to show the key features of EYEReader and how to use it. Then it

details the system architecture, along with its operation pipeline. At last, it describes the hardware prototype.

equal

(a)

Imagine they think differently than us, and
need more sensory input or time to process it

before reaching a mental state.

(b)

You just mind wandered;
please reread the missed content.

(c)

Fig. 3. Screenshots of three intervention examples. Detection and Interventions: (a) simplifying challenges word at the word
level (left), (b) streamlining complex sentences at the sentence level (middle), and (c) giving mind-wandering reminders at
the sentence level (right).

4.2.1 Key Features and Operation Process of EYEReader. We first give some key features of EYEReader, and we
then use a concrete case to show the automatic detection and intervention process.

Key feature 1: text materials selection. The text materials should contain various topics, as the intervention
is anticipated to be text-agnostic. We select 36 reading comprehension materials with diverse topics from an
English qualification test to match the participants’ reading comprehension ability. Each article has around 450
words on average. Users can log in to the system, select their preferred articles from existing materials, and start
reading by simply clicking a button.
Key feature 2: friendly reading interface. Because we have overcome the limited resolution issues when

eye-tracking is used during reading scenarios, the interface of text presentation of EYEReader is similar to
common computerized reading settings. More specifically, articles are automatically divided into several different
pages (around 240 words per page) with a regular line height, approximately single-spaced. We adopt an 18-point
default font typeface.
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Key feature 3: intervention design. The interventions are designed to help users overcome the three
while-reading processing difficulties, i.e., mind wandering, challenging words, and complex sentences, that may
lead to a negative impact on their reading comprehension performance. Three interventions are designed for
the three difficulties respectively: 1) providing an immediate reminder once mind wandering is detected, which
reminds readers to focus on the current reading; 2) simplifying the challenging words; and 3) streamlining the
complex sentences. We provide the following three examples to further clarify how the interventions support
reading.
(1) Simplifying challenges words. Once the system detects that a reader is facing a challenging word, it

highlights the word in blue and provides a more comprehensible one in the pop-up window. For example,
when a user struggles with “coextensive”, the pop-up window offers a more straightforward and easy-
to-understand one, “equal”. Figure 3 (a) provides a screenshot of this intervention. After receiving the
interventions, users can click on the highlighted words to hide the reminders and continue reading.

(2) Streamlining complex sentences. The procedure of streamlining complex sentences is similar to that of
simplifying challenging words. Differently, the system highlights the complex sentences in red and provides
simpler sentences in the pop-up window. For example, for a long and complex sentence, “Imagine that they
not only come to the belief in a different way than we, but that the sensory stimulations that suffice for us
do not suffice for most of them, at least without lengthy calculation, they do not go immediately from the
sensory stimulations to the “mental state”.” the system provides a relatively more straightforward version:
“Imagine they think differently than us, and need more sensory input or time to process it before reaching
a mental state.” A screenshot of this type of intervention is depicted in Figure 3 (b). Users can also click on
the highlighted sentences to hide the pop-up window and continue reading.

(3) Giving mind-wandering reminders.When the system detects that the reader is distracted while reading,
it highlights the missed content in yellow and displays a pop-up message in the center of the screen,
showing that “You just mind wandered; please reread the missed content.” A screenshot of this type of
intervention is depicted in Figure 3 (c). The pop-up message automatically fades out after one second.

Participants’ eye gazes are calibrated prior to their reading in order to correlate the two cameras equipped in
the eyewear. The calibration method follows Pupil Capture1 [41]. Specifically, during the calibration phase, the
participants wear the eyewear and sit in front of the computer, a pupil calibration marker appears on the screen
with fixed locations. The participant is instructed to gaze at the maker for approximately two seconds. The same
procedure is executed for the other four calibration markers on the screen. In this way, the system would record
these positions to correlate the two cameras.

During the reading process, readers wear the prototype eyeglass and sit in front of the computer to read. The
trained CASES-Net model is always-on to automatically detect potential abnormal reading states, i.e., whether
the user is struggling with difficult words or complex sentences, or their mind is wandering. When abnormal
events that affect reading are detected, the system triggers interventions automatically. The text components will
be highlighted, and the corresponding treatments will be shown on the right-top of the text content automatically
in a pop-up window.

4.2.2 System Architecture. Figure 4 illustrates the overall architecture of EYEReader. We use the Vue.js framework
to develop the front-end website, while we choose Django for the back-end of the website, as it is a widely-used
Python web framework [5]. Django offers a variety of third-party tools for building communication between the
front-end and back-end efficiently following the REST API specification. To store and manage the data on the
server, we adopt one of the widely-used open-source database management systems–MySQL [57]. The eyewear
and the PC used for reading are connected to the same LAN (Local Area Network). The eyewear is running on

1https://docs.pupil-labs.com/core/software/pupil-capture/#calibration
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Fig. 4. The architecture of the reading state detection and intervention system.

Android 12. We developed a service app without user interfaces to read the real-time video stream recorded by
the two cameras and push the video stream to the PC via the RTSP protocol2. On the PC edge, we receive the
coming video stream from the eyewear using the RTSP protocol. The received video is then handled by Pupil
Capture and Pupil Service provided by Pupil Labs 3.
Next, we describe the overall operation workflow of the built intervention system and show how it provides

just-in-time interventions for users encountering reading processing difficulties. There are mainly six steps
described below.

• Step 1: During system operation, EYEReader loads the trained CASES-Net from the server when receiving
the requests from the front end.

• Step 2: The recorded eye/scene images captured by eyewear are pushed to the user’s PC for eye-tracking
using the Pupil Capture [41].

• Step 3: The tracked gaze points are sent to the server for further visual attention feature extraction.
• Step 4: The server loads the historical eye-tracking data, visual attention features, and texts to decide when
to intervene.

• Step 5: Once processing difficulties are detected, the estimation results are returned to the front end for
triggering interventions. The corresponding treatment is shown at the front end to facilitate the current
reading.

• Step 6: The current interventions and all other data are saved in Database.

2https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
3https://docs.pupil-labs.com/core/diy/
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(a) 3D eyeglass frame (b) Front view (c) Lateral view

1

2

Scene camera

Eye camera

Fig. 5. Hardware prototype of CASES eyewear.

4.2.3 Hardware Design. We design prototype eyewear and integrate CASES-Net into the eyewear, as eyewear is
a natural way to be used in various reading scenarios.
We presume that the eyewear will be well-migrated to various reading scenarios. Therefore, we adopt a

stand-alone scheme to integrate the computing components and power supply into the headset frame. Figure 5
shows the eyewear hardware prototype.

The eye-tracker follows the Pupil 3, and we make slight adjustments to suit our case. More specifically, we use
Qualcomm Snapdragon 865 platform directly integrated into the left leg of the eyewear. The eye camera and
scene camera modules are replaced with 20MegaPixels (MP) Samsung S5K3T2 and 64MP Samsung S5KGW1,
respectively. The eye camera is used to record eye videos to perform eye tracking. The scene camera senses scene
videos to capture the text being read. We design the 3D eyeglass frame to fit the two cameras into the left leg
of the mounting frame. To balance the weight of the headset, the battery is integrated into the right leg of the
eyewear.

5 EVALUATIONS
This section describes experiments to evaluate CASES, the cognition-aware eyewear system for estimating
reading states. We first detail the experimental setup, data collection, and evaluation measures. Then, we present
results and quantify the technical capabilities of CASES. All experimental procedures are approved by the ethical
committee at Fudan University.

5.1 Evaluation Methodology
5.1.1 Experimental Setup. We recruited 25 participants by posting a questionnaire at the Fudan University
campus. We informed the participants about the purpose of our study and the procedure of the experiments
before they started. We also gave them the option to withdraw at any time during the experiments. Also, all
participants signed an informed consent form. After completing their sessions, the participants received either
local currency equivalent to 14 dollars or a thank-you gift worth approximately 14 dollars for their participation.

A summary of the participant demographics follows.

• Age: 22–28 years old with an average age of 23.5.
• Gender ratio: 19 males (76.0%) and 6 females (24.0%).
• Native/non-native speaker: 5 native speakers (20.0%) and 20 non-native ones (80.0%).
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As shown in Figure 6 (a), the participant wears eyeglasses and sits in front of the computer to read. While reading,
we record videos using the eye camera and time-aligned videos using the scene camera.

 There is something almost delightful in the detachment from
reality of advertisements showing mass-produced cars marketed
as symbols of individuality and of freedom when most of their

lives will be spent making short journeys on choked roads.

 ... round it.
5

liberation

(a) A participant is reading (b)  Screenshot from the labeling tool

Fig. 6. The in-lab setting of CASES experimental study.

5.1.2 Text Material Selection. Texts should cover a wide range of subjects so readers can enter multiple reading
states. Moreover, each text should be short, allowing participants to read several texts. This study selects 36
articles with the following three subjects:

Subject matter 1: One-minute BBC world news4: 10 articles with approximately 300 words per article on
average.
Subject matter 2: English qualification tests5 : 16 articles on reading comprehension materials with
approximately 450 words per article on average.
Subject matter 3: Philosophy related [63]: 10 articles with approximately 500 words per article on average.

The first two of these provide challenging words and sentences, respectively. The third may lead to mind
wandering. We anticipate that most participants are unfamiliar with the third subject matter, and it is hard to
understand the content without prior knowledge. The idea of mundane subject selection to introduce mind
wandering follows a recent work [54].

Considering the diverse backgrounds and prior knowledge of various participants, texts should also cover a
wide range of subject classes. According to Dewey Decimal Classification (DDC) method [70], we categorize
the selected articles into ten subject classes, including “social science”, “religion”, and eight other subjects. Prior
to data collection, we select an approximately equal number of articles from each topic class, except for the
philosophy articles.

5.1.3 Dataset. The CASES requires time-aligned eye gaze data and text data (i.e., the words or sentences being
read) to detect reading states. In addition, the synchronized data should capture continuous reading, during which
users may encounter various reading states. To the best of our knowledge, there are no publically available datasets
suitable for our problem. Therefore, we develop an online system to collect data meeting our requirements.

4https://www.bbc.com/news
5https://cet.neea.edu.cn/
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Fig. 7. Score of interest level and familiarity for each topic class.

Next, we detail the data collection procedure. The collected dataset is available online at6 to facilitate the
relevant research.

(1) Data Collection. The above articles are randomly assigned to each participant. Specifically, we randomly
select articles from each topic for the participants to ensure that they cover all three subject matters. This design
allows most participants to encounter numerous reading states. Each article is divided into pages. There are
around 240 words per page in single-spaced 18-point typeface. Then, we verbally instruct participants on how to
use the data-collection system, such as navigating to the next/previous page. Finally, each participant reads the
texts. Reading one article takes approximately six minutes.

(2) Ground-Truth Labeling. After completing an article, the participant is immediately instructed to label their
reading states. We developed a labeling tool with a GUI window to accelerate labeling. Participants can review
each page of the article. They mark the challenging words and sentences they do not comprehend on each page
using single and double clicks, respectively. We also provide a button at the top right of each sentence for users
to mark whether their minds wandered when reading it. The annotated words and sentences are highlighted in
different colors so users can quickly double-check their annotations. Figure 6 (b) provides a screenshot from the
labeling tool. Annotating one article takes around three minutes. In total, the data collection process, including
the annotation collection, took us approximately fourteen days.

(3) Dataset Statistics. The collected dataset is randomly split into training (80%) and test (20%) sets per par-
ticipant/article. The total numbers of labels for “word-level processing difficulties”/“sentence-level processing
difficulties”/“mind wandering” are 1005/244/200.
We survey the participants’ interest level and familiarity with the ten topics to further verify the fairness of

the selected topics, i.e., we expect that the interest level and familiarity are evenly distributed across all topics.
Using the Likert scale7, we ask participants to score their interest level and familiarity with the articles they read.
The scale ranges from 1 to 5; a higher score indicates that a participant is more familiar with or more interested
in the article. As shown in Figure 7, participants gave roughly similar interest scores (mean = 2.78, std = 1.18) and
familiarity (mean = 2.15, std = 0.93) on the ten topic classes, indicating that the ten topic classes have covered
individual participants evenly. The means of interest level and familiarity of all topics are around 2.5, suggesting
that the topics are intermediate to participants.

6https://github.com/MemX-Research/CASES
7https://en.wikipedia.org/wiki/Likert_scale
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Fig. 8. Number of labels per article on average at each interest level and familiarity.

We also visualize the distribution of the average number of labels per article at various levels of interest and
familiarity in Figure 8. As can be seen in Figure 8 (left), readers give approximately the same number of labels
per article under each interest level. Also, Figure 8 (right) shows that the number of labels per article decreases as
familiarity increases. This is in line with our intuition, as participants often give more labels for their unfamiliar
articles.

5.1.4 Evaluation Metrics. Because our framework is hierarchical and multi-task, we need to adopt appropriate
measures to evaluate each task. The first task is a binary classification of whether a reader is facing difficulty
processing a word. We evaluate its performance using accuracy and the receiver operating characteristics (ROC)
curve. The second task is hierarchical multi-label classification at the sentence level, which includes sentence-level
Task I and Task II. As Task I is a binary classification of whether a reader has sentence-level processing difficulty,
we also use accuracy and ROC curve to evaluate it. On the other hand, Task II is multi-labeled. Following previous
work [88], we use the multilabel-based macro-averaging metric, i.e., averaged-accuracy and ROC curve, to
evaluate it.

5.1.5 Baseline Methods. We conduct ablation studies to evaluate CASES, as there is no prior work solving the
problem addressed in this work, thus making direct comparisons with prior work infeasible. We use the following
three baseline methods for evaluation.
(1) Visual: Previous studies have demonstrated that some reading states, such as mind wandering, can be

identified using gaze-relevant features [19, 54], which are closely related to our work. To validate whether
the gaze-relevant features are sufficient for reading state recognition at multiple text element granularities
(words and sentences), this work uses a baseline method leveraging 13 gaze-relevant features (9 word-level
features and 4 sentence-level features described in Section 4.1.3) to identify the state while reading. We
use the support vector machine (SVM) method to conduct the three classification tasks: word-level task,
sentence-level Task I, and sentence-level Task II. This work adopts SVM as it has been successfully applied
to various classification tasks [78], and is one of the widely used methods in similar tasks [20, 54]. For
simplicity, we refer to this method as Visual.
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(2) Visual+: Eye movement patterns are good indicators for reading state recognition. Inspired by prior
work [75] that leverages deep neural network (DNN) to achieve accurate eye movement pattern identi-
fication, we use the 8-dimensional higher-level temporal features extracted from a deep neural network
(1D-CNN with BLSTM [75]) to improve the accuracy of reading state estimation. To make a fair comparison,
the extracted deep features are concatenated with the aforementioned 13 gaze-relevant features and sent to
the CAE module removing the semantic attention feature concatenation part to estimate reading states.
This baseline method is an improved version of the Visual method called Visual+.

(3) NLP: Visual and Visual+ identify reading states based solely on visual attention features. To verify the
classification performance based on the semantic context of texts, we designed this baseline method, dubbed
NLP. As in the Visual+ method, we first extract semantic features using the SAE module and then send
the extracted features to the CAE module without the visual attention feature concatenation part to infer
reading states.

5.2 Results
5.2.1 Overall Performance. Figure 9 shows the reading state recognition performance of our method and three
baseline methods. CASES achieves the best performance among all methods. Compared with the Visual method,
i.e., conventional eye-tracking only, CASES improves the accuracy by 6.85%, 8.55%, 20.90% for the word-level
task and the sentence-level Task I and Task II. Furthermore, compared with the baseline method Visual+ and
NLP, CASES has superior reading state estimation. For example, the sentence-level Task II detection accuracy of
CASES is 86.64% while it is 79.15% or lower for the baseline methods. We conclude that using context derived
from text improves reading state estimation.
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Fig. 9. Reading state classification accuracy for CASES and the baseline methods.

We plot the ROC of different methods. Figures 10a, 10b, and 10c demonstrate that CASES outperforms the
baseline methods in Area Under the Curve (AUC), which is one of the most widely used performance measures
in classification or retrieval problems.
The following section further explains why CASES outperforms the baseline methods and how it offers

semantic explanations of the predicted reading states.
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(a) Word-level task

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Ours (area = 0.85)
NLP (area = 0.77)
Visual+ (area = 0.82)
Visual (area = 0.74)

(b) Sentence-level Task I
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(c) Sentence-level Task II

Fig. 10. ROC for CASES and the baseline methods.

6 PILOT STUDY
This work aims to study progression through cognitive states while reading to assist our understanding of the
reading process. To this end, we have conducted in-field pilot studies using CASES, the proposed system, for three
and a half months. This section first summarizes the initial findings around our designed two RQ and hypotheses
using CASES. Then, it demonstrates the capability of EYEReader to make helpful real-time interventions when
reading difficulties are encountered. Finally, it revisits the two RQ, describes the limitations of our system, and
indicates possible extensions of this work.

6.1 The Procedure of the Pilot Study
We recruited thirteen volunteers to participate in the pilot study from Fudan University. The average age is 23.9
years (SD=1.6, min=22, max=28), with n=4 (30.8%) female and n=9 (69.2%) males. There are 10 non-native speakers
(76.9%) and 3 native ones (23.1%). The non-native speakers reported that they had passed Level 6 of the College
English Test (CET6) in our country8, and the native speakers were college-level students at our University.

During the pilot study, participants wore the prototype eyeglasses, sat in front of the computer, and logged in
to the development website to read. The participants either took the eyeglasses with them and used the eyeglasses
whenever they would like to do the experiments or came to our laboratory for the experiments. Participants were
encouraged to use the system whenever they read, as reasonable observations require the prolonged engagement
of participants.

The pilot study lasted three and a half months and consisted of two stages. During the first stage, we required
participants to label the words and sentences they encountered difficulty processing, and these labels were treated
as ground truth. Based on the qualitative evaluation [68], we examined the labeled data point by point at different
granularities around the designed RQ and hypotheses. Then, we made several findings on how people read at
different granularities, i.e., single words and sentences, and summarized the following six patterns to discuss.
The second stage focused on applying EYEReader in practice. At the end of the pilot study, each participant
completed a survey of their opinions on the usability and value of EYEReader. Finally, we confirmed the proposed
hypotheses.

6.2 Key Observations
6.2.1 Observations at Word Level. This section presents three observations on how users read at the single-word
level.
8https://en.wikipedia.org/wiki/College_English_Test
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Observation I: Users comprehend the lexical meanings of words by directing their gazes more frequently toward
material they find difficult to process.When users encounter difficulty processing a word, they usually gaze at
it longer and more times than typical. This observation is consistent with prior evidence about the process of
comprehending single words during reading [16, 53]. Figure 11 illustrates one example of this observation, where
participant P6 has difficulty comprehending the meaning of “mitigate” and “debris”. P6 fixates “mitigate” (fixation
label 13) and “debris” (with fixation label 19) for a long time and reads them more than two times. In particular,
P6 has the longest fixation duration on the word “debris” and has the most reading times on the word “debris”
and “mitigate”.

Fig. 11. Visualization of visual attention for P6 reading a sentence. Each circle represents a fixation point. The larger the area
of the circle, the longer the fixation duration. The circle number denotes the timestamp of the fixation time. Top: Raw text;
Bottom: Text with filtered point of gazes

Figure 12 provides another example of this observation for a native participant. Participant P12∗ (∗ indicates
native user hereinafter) is facing challenging words “counterbalanced” (with fixation label 10) and “sketch”
(fixation labels 19 and 21). Under the text context presented in Figure 12, we observe that P12∗ has the most
prolonged fixation duration on words “sketch” and “counterbalanced”.
Observation II: When a user encounters difficulty processing a word, the user first directs their gaze to the word

and then to other words to examine the semantic context. Readers generally avoid breaking their chain of thinking
by stopping when a difficult word is encountered, especially when the word does not affect their understanding
of the text. However, when readers consider a difficult word highly topic-relevant or meaningful for subsequent
text comprehension, they tend to interrupt their reading and attempt to deduce the semantic meaning of the
word from its semantic context. This observation differs from a previous study [16], and our next observation
complements it.
Observation III: When users examine the semantic context of a difficult-to-process word, they gather semantic

clues by shifting their gazes to different locations even when considering the same difficult word, from the same text,
under similar reading conditions. Readers typically attempt to find an appropriate location in the text to help
comprehend the current difficult-to-process word. The text at the location should reveal the relevant information
about the difficult word. Also, that location varies from person to person, depending on their current cognitive
states about the context.

Figure 13 shows the proportion of the three above observations for each participant by summarizing their past
experienced processing difficult words. We observe that the ten non-native participants experience Observation I
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Fig. 12. Visualization of visual attention for P12∗ reading a sentence. Top: Raw text; Bottom: Text with filtered point of gazes.

in most cases (around 87.47% cases on average), and they fall into Observation II & Observation III in fewer times,
i.e., around 12.53% on average. In contrast, the native participants experience Observation II & Observation III in
most cases (around 60.67% cases on average), and they fall into Observation I fewer times, i.e., around 39.33% on
average. This aligns with our intuition, as we anticipate that native readers are more adept at leveraging the
context cues from texts to help their reading comprehension.
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Fig. 13. Profile of word-level comprehension failures for thirteen readers. ∗ indicates native speakers.

Figure 14 shows an exemplary case to provide further insights on Observation II and Observation III. Here two
readers, P2 and P5, face the same reading difficulty in comprehending the word “liberation” when they read the
same sentence from the same article. We can see that the two participants first direct their visual attention to the
target word, “liberation” where the fixation labels are 14 and 13 for P2 and P5, respectively. They then shift their
gazes. Participant P2 gazes back at the previously read word, “pleasant”, while Participant P5 gazes forward to
the word, “promised”. Both of these words are semantically relevant to the difficult word, “liberation”, as shown
in Figure 14 (top row).
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Fig. 14. An example where two non-native speakers struggle to comprehend the word “liberation”.

Figure 15 provides an example for two native speakers, P12∗ and P13∗. They face the same reading difficulty
in comprehending the challenging word “realism”. Clearly, P12∗ and P13∗ first direct their gaze to “realism”
with fixation labels 14 and 11, respectively, and then shift their gazes. P12∗ gazes forward to an antonym word
“antirealism”. Differently, P13∗ gazes back at the already-read word “internal”, a modifier of the target word.

6.2.2 Observations at Sentence Level. This section focuses on twomodes of comprehending sentences: interpretive
(semantic) and structural (syntactic).

Observation IV: People incrementally comprehend the semantics of a sentence as they read each word, while with
different gaze time series. Figure 16 and Figure 17 show the inter-reader differences in gaze time series when
reading the same sentence for non-native and native speakers, respectively. As shown in Figure 16, native speaker
P1 focuses on the first parts of sentences (with more fixation, labels 0–12) while P4 focuses on other parts of
sentences (fixation labels 9–11). A similar phenomenon can be seen in Figure 17, two native speakers, P13∗
and P11∗, read the sentence sequentially but with different visual focuses. P13∗ focuses on the first parts of the
sentence, e.g., with more distinct locations of focus, while P11∗ focuses on other parts of sentences.
Observation V: Readers enter the “rereading” or “reanalysis” state at different times when having difficulty with

the same sentence. Figure 18 depicts such an example for two non-native speakers, P8 and P3. Both users face
challenges comprehending the sentence “The authors, who ...... in recent years.” P8 backtracks 3–4 words (with a
fixation label starting from 28) when reading the middle of the sentence and then continues reading the sentence;
while P3 rereads the sentence from the beginning when reading the middle of the sentence (fixation label 12).

Figure 19 depicts such an example for two native speakers, P11∗ and P13∗. Both users face challenges compre-
hending the sentence “As countless boards and ...... and overall performance.” We observe that P11∗ rereads the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 115. Publication date: September 2023.



CASES: A Cognition-Aware Smart Eyewear System for Understanding How People Read • 115:23

P12*

P13*

Sentence

Fig. 15. An example where two native speakers have difficulty understanding the word “realism”.

P4

P1

Fig. 16. An example of two non-native speakers reading the same sentence with different visual attention.

P11*

P13*

Fig. 17. An example of two native speakers reading the same sentence with different visual attention.

sentence (fixation label 23) right after completing the first-pass reading (fixation label 22); while P13∗ rereads the
sentence from the beginning of the sentence (fixation label 6) when finishing the middle of the sentence (fixation
label 5).
Observation VI: Different people “reread” the same sentence with different reading states. Figure 20 shows two

non-native speakers reading the same sentence twice. P1 gets distracted (i.e., enters the mind wandering state)
during the first reading of the sentence (typical fixation labels 2, 6, and 14); therefore, P1 spends more time and
has more fixations on the sentence in the second reading (fixation labels 21, 24, 26, 28) than in the first pass. In
contrast, P4 spends more time reading the sentence the first time (fixation labels 3, 17, and 18) but quickly skims
it the second time (fixation labels 26 and 37).
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P3

P8

Fig. 18. An example of two non-native speakers having different “reread” behaviors when encountering comprehension
difficulties on the same sentence.

P11*

P13*

Fig. 19. An example of two native speakers having different “rereading” behaviors when encountering comprehension
difficulties on the same sentence.

P1

P4

Fig. 20. An example of two non-native speakers “rereading” the same sentence with different reading states. P1 gets distracted
during the first reading and then rereads the sentence. P4 also reads the sentence twice, but without any comprehension
difficulties, i.e., he is in a normal state of comprehension.

Figure 21 shows two native users, P11∗ and P12∗, reading the same sentence twice. They label their reading
states as sentence-level processing difficulty and mind wandering. P11∗ spends more time and more fixations
when reading the sentence in the first pass (typical fixation labels 1, 5, and 18) than in the second pass (typical
fixation labels 26, 29, and 36). Also, P11∗ rereads the sentence after completing the next sentence (fixation label
25). Differently, P12∗ gets distracted during the first pass of the sentence (typical fixation labels 5-15); therefore,
P12∗ rereads the sentence with more time and has more fixations on the sentence in the second pass (fixation
labels 18, 21, 26 and 27).
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P11*

P12*

Fig. 21. An example of two native speakers “reread” the same sentence with different reading states. P11∗ encounters
processing difficulty with the sentence, and then P11∗ rereads the sentence; P12∗ gets distracted during the first reading and
then rereads the sentence.

6.3 Evaluation of EYEReader in Practice
Section 5 shows that CASES can accurately detect reading states. This section evaluates the ability of EYEReader
to improve reading comprehension by identifying reading states implying processing difficulties and making
real-time interventions.
To make quantitative assessment of EYEReader, we define the improvement of reading comprehension per-

formance (called reading gain for short in this work) as (𝑠𝑝𝑎𝑠𝑡 − 𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡 )/𝑠𝑝𝑎𝑠𝑡 , where 𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡 and 𝑠𝑝𝑎𝑠𝑡 de-
note the number of challenging words or sentences at present and in the past, respectively. The higher the
(𝑠𝑝𝑎𝑠𝑡 − 𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡 )/𝑠𝑝𝑎𝑠𝑡 , the higher the reading comprehension improvement. As shown in Figure 22, all thirteen
participants show non-negative reading gains, and the majority of them have significant improvements, with
most achieving a reading gain of at least 0.20. That means EYEReader is effective in helping users to overcome
unfamiliar words and complex sentences.
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Fig. 22. Profile of reading gain for 13 participants in pilot studies. ∗ indicates native speakers.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 115. Publication date: September 2023.



115:26 • Qi, Lu, and Pan, et al.

6.4 Feedback from Participants
We designed several open-ended questionnaires to qualitatively evaluate EYEReader. Thirteen questionnaires
were sent to participants, twelve of which were returned. Among them, 10/12 of the participants positively
commented on word-level intervention. They believe that fine-grained intervention at the word level can precisely
pinpoint the reading difficulties they are experiencing. Nine out of the twelve participants reported that the
sentence-level intervention was helpful. In particular, when facing challenging sentences with complex syntactic
structures, it was difficult to comprehend the sentences even though they were familiar with all the words. In
this case, EYEReader helped them overcome this reading difficulty by highlighting and explaining the sentence.
In addition, 9/12 of the participants found EYEReader valuable in reminding them when their minds wandered;
these participants stated that they usually do not realize when distracted. Timely reminders can make their
reading more focused and efficient.

Furthermore, we collect participants’ opinions regarding whether the eyewear hardware will negatively affect
their reading process. Through conducting a questionnaire, we asked the participants in the pilot study to give
scores for the comfortable level of hardware on a scale of 1-5; the corresponding description is listed in Table 1. A
total of 13 questionnaires were sent out, and 12 were recalled. Statistical results show that participants generally
think the hardware has a media or negligible impact on their reading process (mean = 3.33, std = 0.75).
In addition, once the trained CASES-Net is applied to practice, we design the proper system intervention

so as not to break the chain of thoughts of users. That is, the intervention can help readers avoid interrupting
reading due to the encountered processing difficulties that lead them to seek help from other means [32], such
as a dictionary. Therefore, we design the intervention process with minimal interaction cost and encourage
readers to focus on the current reading. To assess the impact of the intervention on reading, we also conducted a
questionnaire to collect readers’ opinions regarding the user-friendliness of intervention interaction. Similarly,
we asked the participants in the pilot studies to give scores on a scale of 1-5; the corresponding description is
listed in Table 2. Statistical results show that most participants think the intervention process is user-friendly
(mean = 3.92, std = 0.76).

Table 1. Rating scale of the comfort level with regards to
how the hardware affects the reading process.

Score Description
1 Severe impact
2 Significant impact
3 Neutral
4 Negligible impact
5 No impact totally

Table 2. Rating scale regarding whether the intervention inter-
action is user-friendly.

Score Description
1 Very unfriendly
2 Unfriendly
3 Neutral
4 Friendly
5 Very friendly

6.5 Discussion and Future Work
CASES has the goal of accurately estimating and providing semantic explanations of reading states over time,
which can facilitate the scientific study of reading by enabling a deeper understanding of the cognitive processes
involved in learning to read, disentangling the complex combination of cognitive skills and their impact on
reading fluency, and measuring the efficacy of methods for teaching reading and beneficial reading habits.
Next, we first revisit the proposed research questions and hypotheses. Then, we briefly discuss the potential

future works that will improve CASES.

6.5.1 Revisiting Research Questions and Hypotheses. We confirm the hypotheses for the two presented RQ based
on the results and observations, which we detail below.
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RQ1: Do readers in the same reading states show different visual attention distributions on the reading text?
Confirming hypothesis 1: Readers in the same reading state do show varying visual attention histories. As

inter-person variation, i.e., individual difference, is ubiquitous, the visual attention histories of readers in the
same reading states indeed differ from each other, which can be found from Observation II, Observation III,
Observation IV, Observation V, and Observation VI.

RQ2: When readers are in the same reading states, e.g., encountering difficulty progressing, how does reader visual
attention interact with semantic cues in the text?
Conforming hypothesis 2: When readers encounter the same processing difficulties, they shift their visual

attention to the surrounding text to fetch contextual semantic cues. In other words, when readers’ reading
progress is blocked, easy text that is semantically related to complex text also receives more visual attention and
cognitive effort, which can be found from Observation II and Observation III.

6.5.2 Discussion and Future Work.
(1) Science of reading. This work investigates the human cognitive reading process by exploring the com-
plementarity of eye movements and text. However, it is also important to integrate illustration information to
understand how people read. A recent study has shown that text-diagram instructions can improve reading
comprehension [36]. Thus, our future work aims to exploit semantic information, including text and illustrations,
and integrate them with eye movements to investigate the reading cognitive progress.
In addition, we aim to investigate more reading states that might provide a complete picture of the reading

cognitive progress. In addition to determining the reading states at the word and sentence levels, it would be
valuable to measure how people read at the entire passage level. This could deepen our understanding of how
people summarize and reflect on learned knowledge during reading.
(2) Interactive Reading System. Our system is still an early-stage prototype. A longer user study would

enable the collection of more data and user feedback to improve the interactive design and user experience.
This could help us to build a mature reading assistance system that contributes to educational applications, HCI
studies, etc.
(3) Reading Contexts.We would like to emphasize that we presume that the system will be well-migrated

to various reading scenarios, and therefore, we use the eyeglasses form to study reading. We believe wearing
eyeglasses to read is a portable way in numerous reading contexts, including computerized reading and physical
reading (e.g., reading newspapers). However, since our eyeglasses are still in the early prototype stage, in this
work, we did not experimentally cover all the scenarios. The system presented in this work is currently used in
a computerized-reading context, as reading using electronic devices has become common in our modern lives
and has been widely studied by a large body of researchers [13, 30, 54]. We are aware that investigating the
physical-reading context is also important, and we are interested in applying our eyeglasses to investigate the
reading (cognitive) states under this context in our future work.

(4) Brain-Sensing Methods in Reading. In addition to eye-tracking in reading, brain-sensing via electroen-
cephalograph can determine the level of cognitive workload under different rapid serial visual presentation
settings, as demonstrated in [45]. It can be utilized to determine the cognitive workload or attention of texts at
different granularity levels. However, this has to be done with the eye movement data jointly to accurately locate
the positions of text being read and allow fine-grained analysis on processing difficulty of words. We believe that
it is a direction that is worth exploring in the future to further improve the performance of our system.

7 CONCLUSIONS
This work presents CASES, a cognition-aware smart eyewear system that automatically recognizes reading (cog-
nitive) state timeseries using eye tracking and text semantic context. We conduct ablation studies to demonstrate
that CASES significantly improves the accuracy of reading state recognition over the conventional approach
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that relies only on eye tracking. Furthermore, in-field studies enable several observations about how individual
reading state timeseries are related to text semantic context at different granularities. The ability to track semantic
context cues enables better understanding of progressive reading states. We embody CASES in an interactive
reading assistant system that provides just-in-time interventions when users encounter reading difficulties.
Several months of deployment demonstrate the benefits of the system in promoting self-awareness of cognitive
processes while reading and improving reading comprehension performance. We envision that CASES will be of
use in the scientific study of reading, cognition, and human-computer interfaces.
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