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Abstract. Advances in embedded systems and low-cost gas The deployments revealed that collocation calibrations
sensors are enabling a new wave of low-cost air quality monprovide more accurate concentration estimates than labo-
itoring tools. Our team has been engaged in the developratory calibrations. During collocation calibrations, median
ment of low-cost, wearable, air quality monitors (M-Pods) standard errors ranged between 4.0-6.1ppb for 64—
using the Arduino platform. These M-Pods house two types8.4 ppb for NG, 0.28-0.44 ppm for CO, and 16.8 ppm for
of sensors — commercially available metal oxide semicon-CO,. Median signal to noise (8N) ratios for the M-Pod sen-
ductor (MOXx) sensors used to measure CQ, RO,, and  sors were higher than the regulatory instruments: fooNO
total VOCs, and NDIR sensors used to measure.Clbe 3.6 compared to 23.4; for4£1.4 compared to 1.6; for CO,
MOx sensors are low in cost and show high sensitivity nearl.1 compared to 10.0; and for GO42.2 compared to 300—
ambient levels; however they display non-linear output sig-500. By contrast, lab calibrations added bias and made it dif-
nals and have cross-sensitivity effects. Thus, a quantificatiofficult to cover the necessary range of environmental condi-
system was developed to convert the MOx sensor signals inttions to obtain a good calibration.
concentrations. A separate user study was also conducted to assess uncer-
We conducted two types of validation studies — first, de-tainty estimates and sensor variability. In this study, 9 M-

ployments at a regulatory monitoring station in Denver, Col- Pods were calibrated via collocation multiple times over
orado, and second, a user study. In the two deploymentg weeks, and sensor drift was analyzed, with the result be-
(at the regulatory monitoring station), M-Pod concentrationsing a calibration function that included baseline drift. Three
were determined using collocation calibrations and labora-airs of M-Pods were deployed, while users individually car-
tory calibration techniques. M-Pods were placed near reg+ied the other three.
ulatory monitors to derive calibration function coefficients  The user study suggested that inter-M-Pod variability be-
using the regulatory monitors as the standard. The form otween paired units was on the same order as calibration un-
the calibration function was derived based on laboratory ex-certainty; however, it is difficult to make conclusions about
periments. We discuss various techniques used to estimathe actual personal exposure levels due to the level of user
measurement uncertainties. engagement. The user study provided real-world sensor drift

data, showing limited CO drift (under0.05 ppm day?),

and higher for @ (—2.6 to 2.0 ppbday'), NO, (—1.56 to
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3326 R. Piedrahita et al.: The next generation of low-cost personal air quality sensors

0.51 ppbday?), and CQ (—4.2 to 3.1 ppm day'). Overall, cross-sensitivities to other reducing gases, and can be poi-

the user study confirmed the utility of the M-Pod as a low- soned by certain gases or high doses of target gases.

cost tool to assess personal exposure. The typical reducing gas MOx sensor uses a heated tin-
oxide n type semi-conductor surface, on which oxygen can
react with reducing gases, thus freeing electrons in the semi-

1 Introduction conductor. This lowers the electrical resistance proportional
to the concentration of the reducing gas (Moseley, 1997).
1.1 Background and motivation These sensors suffer from cross-sensitivities to temperature,

humidity, and other pollutants. Korotcenkov (2007) provides
Health effects such as asthma, cardio-pulmonary morbidity comprehensive review of MOx materials and their charac-
cancer, and all-cause mortality are directly related to persondeeristics for gas sensing, while Fine et al. (2010) and Bour-
exposure of air pollutants (EPA ISA Health Criteria, 2010, geois et al. (2003) review the use of MOx sensors and arrays
2013a, b). To comply with the U.S. Clean Air Act, state mon- in environmental monitoring.
itoring agencies take ongoing measurements in centralized As compared to traditional monitors, electrochemical sen-
locations that are intended to represent the conditions norsors are relatively low in cost-USD 50-100, and have
mally experienced by the majority of the population. Becausebeen used in multiple studies that required low power sen-
these measurements require sophisticated, costly, and powegors for measuring CO (Milton and Steed, 2006; Mead et
intensive equipment, they can 0n|y be taken at a limitedal., 2013). These sensors exhibit hlgh sensitivity, low de-
number of sites. Depending on the pollutant, individual, andtection limit (sub-ppm for some models), fast response, low
location, this can lead to misleading personal exposure ascross-sensitivity, and consume power in the hundreds of pw
sessments (HEI, 2010). Low-cost, portable, and autonomougange. However, they have more complicated and expensive
sensors have the potential to take equivalent measuremenfgeasurement circuitry, are susceptible to poisoning, have a
while more effectively capturing spatial variability and per- shorter life span (generally 1-3 years), more expensive than
sonal exposure. Thus, we set out to survey such sensors, aMOX, and are generally larger in size than MOX.
alyze their performance, and understand the feasibility of us-
ing them. We describe the M-Pod hardware and quantifical.2.2 Ozone
tion system, and personal exposure results in greater detail

below. FRM measurements of Oare made using the principle
of chemiluminescence (EPA ISA Health Criteria, 2013a).
1.2 Low-cost portable air pollution measurement Chemiluminescence instruments typically cost USD 10 000—
techniques 20000 and use approximately 1 kW. A Federal Equivalence

Method uses UV absorption to measure gtOncentration.
Quantitative measurements of pollutant concentrations genSuch instruments have prices in the low USD 1000s.
erally require techniques to be sensitive at ambient concen- MOx Oz sensors have been commercialized and can cost
trations and unigque to that particular compound (in otheranywhere in the range of USD 5-100, with power con-
words, free from interference from other pollutants). Nu- sumption as low as 90 mW. Aeroqual has commercialized
merous techniques currently exist (including several EPA apa tungsten oxide semiconductor sensor board. Power con-
proved methods); rather than provide an exhaustive report ofumption is 2—-6 W, and this material is reported to have less
all available measurement techniques, we provide brief decross-sensitivity and calibration drift than other MOx materi-
scriptions of the various techniques, along with their mea-als (Williams et al., 2009, 2013). As discussed in more detail

surements, costs, and potential. later, we refer to drift when discussing changes to the cali-
bration function coefficients over time, given recalibrations
1.2.1 Carbon monoxide under the same conditions. Electrochemical sensors are also

available with reported noise of 4 ppb, but with significant
Federal Reference Method (FRM) measurements of CQcross-sensitivity to N@(Alphasense, 2013a).
are made using infrared absorption instruments, which use
~ 200 W power, cost- USD 15 000—-20 000, and require fre- 1.2.3 Nitrogen oxides (NQ)
quent calibrations and quality control checks (EPA Quality
Assurance Handbook Vol. 1, 2013). By comparison, metal FRM measurements of NOare made using the chemi-
oxide semiconductor (MOX) sensors often ceddSD5-15  luminescence reaction of :0with NO along with the
and require less than 1 W of power. One example of thiscatalytic reduction of N@ to NO (EPA ISA Health
kind of device is the SGX 5525 sensor used for CO mea-Criteria, 2013b). These instruments typically cost
surements that uses approximateh80 mW power. MOx  USD 10000-20000 and consume approximately 1kW
sensors have fast responses, low detection limits, and requingower. NQ can also be measured with electrochemi-
simple measurement circuitry. However, they can have highcal sensors USD 80-210) (Alphasense, 2013b; SGX
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Sensortech http://www.sgxsensortech.com/and MOx  design that provides good selectivity and low detection lim-
sensors £ USD4-54) SGX Sensortech; Synkeram{w. its, but the device is not yet commercially available. Elec-

Synkerainc.com Figaro fttp://www.figarosensor.cof)/ tronic nose systems for sensing VOCs are commercially
available, often designed to detect specific gas mixtures from
1.2.4 Carbon dioxide (CQ) processes. Such systems use a variety of sensing techniques,

including those mentioned above, as well as polymer-coated
CQO, is the primary anthropogenic greenhouse gas, as welkensors, mass spectrometry, ion mobility spectrometry, and
as a proxy for assessing ventilation conditions in indoor en-gas chromatography, among others (Gardner and Bartlett,
vironments. Elevated concentrations have been found to af1994; Réck et al., 2008). Much potential remains to be ex-
fect decision-making and exam performance (Satish et al.ploited in this area, as there has been difficulty in transferring
2012). Portable non-dispersive infrared (NDIR) carbon diox-laboratory success to the field (Marco, 2014).
ide sensors are precise, easy to calibrate, easy to integrate These models and most real-time personal exposure moni-
into a mobile sensing system (Yasuda et al., 2012), and aréors are currently too expensive to be truly ubiquitous. Fortu-
commercially available for under USD 100 to a few hundred nately, advancements in technology and increasing concern
USD. The sensors operate by emitting a pulse of infrared raabout air quality in many regions have produced a wave of
diation across a chamber. A detector at the other end of théow-cost personal exposure instruments. Reliable results are
chamber measures light intensity. Absorption of light byoCO needed for users of these low-cost monitors before they take
accounts for the difference between expected and measureattion to reduce their exposure. We describe our novel quan-
intensity. Interference can occur due to absorption by watetification system that includes collocation calibration (some-
vapor and other gasses and drift can occur due to changedsnes referred to as normalization), modeling of sensor re-
in the light source (Zakaria, 2010). Electrochemical sensorsponses with environmental variables, and uncertainty esti-
are also available to measure £@hey are inexpensive and mation for these measurements. We demonstrate this quan-
have low power requirements, but generally have slower retification system by presenting results from a user study
sponse times, shorter life spans, and are more susceptible tehere six users wore monitors for 10-20 days.
poisoning and drift than NDIR-type sensors.

1.3 Instruments for personal air quality monitoring 2  Methods

Personal exposure has been characterized extensively usiigl MAQS — Mobile Air Quality Sensing System
filter samplers, particle counters, and sorbent tubes. These
methods can provide simple, accurate, and comprehensivEhe key requirements for our mobile sensing system in-
speciation results; however, because each filter or adsorbertuded wearability and portability, low-cost, multi-pollutant,
tube typically samples for durations of a day or more, impor-wireless communication, and enough battery life to wear
tant time series information is often lost when using thesefor an entire day. The goal was for our system to sense as
methods. Relatively recent sampling techniques allow formany National Ambient Air Quality Standards (NAAQS) cri-
higher time-resolution personal measurement of pollutants. teria pollutants at typical ambient concentrations as possible.
Electrochemical sensors have been used to monitor CO ifThe result of our development effort is the M-Pod, shown in
many works, including Kaur et al. (2007), Mead et al. (2013), Fig. 1.
Honicky et al. (2008), and Milton and Steed (2006). Shum et The M-Pod collects, analyzes, and shares air quality data
al. (2011) developed a wearable CO, £@nd Q monitor. using the Mobile Air Quality Sensing (MAQS) system (Jiang
Mead et al. (2013) and Honicky et al. (2008), using electro-et al., 2011). An Android mobile phone application, MAQS3
chemical and MOx sensors, also monitored botta@d NG, (Mobile Air Quality Sensing v.3), pairs with the M-Pod via
in the works listed above. Williams et al. (2009) developed Bluetooth, and the M-Pod data is transmitted to the phone
and deployed a portable tungsten oxide-basgddéhsor and periodically. The data is then sent to a server for analysis. A
NO; sensor. Hasenfratz et al. (2012) also monitorgdi  web-based analysis and GIS visualization platform can ac-
train-mounted instrument study using metal oxide semiconcess new data from the server. Wi-Fi fingerprints can also
ductor sensors. Hasenfratz’s work tested collaborative calbe used to identify an M-Pod’s indoor locations (Jiang et
ibration performance, in which sensor nodes were periodi-al., 2012). The M-Pod has also been configured to operate
cally co-located to check and improve calibrations. De Vito with another environmental data collection app, AirCasting
et al. (2009) developed a wearable system to measure CQhttp://aircasting.org/
NO,, and NQ, using MOx sensors, and employed machine Each M-Pod houses four MOx sensors to measure CO, to-
learning techniques for calibration and quantification. tal VOCs, NQ, and @@ (SGX Corporation models MiCS-
Tsow et al. (2009) developed wearable monitors to meab525, MiCS-5121WP, MiCS-2710, and MiCS-2611), an
sure benzene, toluene, ethyl-benzene and xylene at ppb IeWNDIR sensor (ELT, S100) to measure @ fan to pro-
els. The measurement is based on a MEMS tuning forkvide steady flow through the device (Copal F16EA-03LLC),
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The CO and N@ sensors were calibrated for changes in
both temperature and humidity. By contrast, the;@énsors
were only calibrated for temperature, as they show a small
non-linear response to temperature. While humidity effects
have been reported for NDIR sensors in other studies (Yasuda
et al., 2012), previous calibrations in our lab showed that it
is not a significant issue in this case. Temperature is con-
trolled using a heat lamp and by performing calibrations in-
side a refrigerated chamber. Routing a portion of the airflow
through deionized water controls relative humidity, using a

. i . . 3-way valve.

Eﬁ;ﬁ 1.The M-Pod and the accompanying MAQS3 phone appl The M-Pods were placed in a carousel type enclosure that
holds 12 M-Pods and allows for uniform gas diffusion into
each pod (Supplement Fig. S2). The carousel, which is made

a light sensor, and a relative humidity and temperature sensaf steel with a polycarbonate lid, has a volume of 2.2L, and

(Sensirion, SHT21). Socket-mount MOx sensors were pre-conditions reaciyg steady state in 120s or less using our

ferred over surface-mount sensors because of the difficultselected flow rate of 4.3 Lpm. For calibrations, the carousel

replacing the surface-mount sensors and possible poisoning either placed inside of the Teflon coated chamber, or in a

of the surface-mount sensors due to soldering (hot-air rerefrigerator, depending on the desired temperature level.

flow). Calibrations were performed after sensors operated con-
_ . tinuously for at least a week. Performance of these sensors
2.2 Calibration system for 1 week was important to ensure adequate sensor warm-

. . up and stabilization time. Specifically, warm-up time allows
MOx sensors represent the lowest cost sensing solution by, g¢apilization of the semiconductor heating element, which
hold significant quantification challenges. MOx sensor r'€-can drift substantially in the first week (Masson et al., 2014).
sponses are non-linear with respect to gas concentration, a er this period, warm-up times when the sensor is simply

are affec.ted by ambient temperature and humidity (Sohn ®heating up to operating temperature are shorter, on the order
al., 2008; Barsan and Weimar, 2001; Delpha etal., 1999; Royt 19 min. Because each calibration run consisted of differ-

main etal., 1997; Marco, 2014). , ent gas concentrations, temperature and humidity set points,

Baseline drift and changes in sensitivity over time are alSogesors were held at each state for periods of 15 min to allow
common. AS, will be dlscussgd further_ later, we deflng _d”ft them to reach steady state. The last 30 s of each 15 min period
as changes in sensor baseline over time. More specificallyyqre averaged, and these points were used for the calibration.
we identify two factors contributing to temporal drift: pre- Aqministered concentrations depend on the expected deploy-
dictable drift due to changes in the heater output, and UNPréqant environment, and in this case stepped from 0-1.0-2.0-

dictable drift due to poisoning or irreversible bonding to the 4 5 ppm for CO, and 0-500-1075-1650 ppm for £0ombi-
sensor surface (Romain and Nicolas, 2010). As such, USING ations of environmental conditions for these calibrations in-

MOx sensors quantitatively requires that a model be devel,qed M-Pod temperatures of approximately 302 and 317K,

oped which not only characterizes the relationship between, g ¢ o calibration additional relative humidity levels of
sensor resistance and gas concentration, but also includes tB8) 214 60 9% were employed. A CO calibration time series

impacts of these other variables and sensor characteristicand surface used after one deployment at CAMP is shown in
Below we describe our calibration system and strategies fo'i:igs. S3 and S4 in the Supplement.
overcoming these challenges. Initially, the sensors were calibrated by mounting them on

Our calibration system uses automated mass flowg e arrays, but we found that the sensor response is highly
controllers (MFCs, Coastal Instruments FC-2902V) andjenendent on the position in the array and air-flow condi-

solenoidal valves to inject specific mixtures of gas standardqiOns The convective cooling of the sensors is thus an im-

into a Teflon-coated aluminum chamber that is equipped ithy o nt variable, as will be discussed further later. To ensure
temperature and relative humidity control. The CO anNO ,5; cajibration temperature and flow conditions about each

used were premixed certified gas standards, while the COgengor are the same as during operating conditions, they are
and air were industrial and zero-grade, respectively. Constant, inrated in their individual M-Pods

gas flows were administered using the mass flow controllers,

which were calibrated prior to the M-Pod calibrations. Cus-, 5 Development of quantification models

tom LabVIEW software (LabVIEW 2011) and Labjack data

acquisition devices (LabJapk U3-LV) were used for instru- 1 simplify the inter-comparison of MOx sensors (which

ment control and data logging. are often heterogeneous from sensor to sensor; Romain and
Nicolas, 2010), it is common practice to normalize a sensor’s
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resistance by a reference resistarRg, The reference resis- 13
tance is the sensor’s unique response to a given environment 121
for example, cleans air at 2&, standard atmospheric pres- 11
sure, and 20 % relative humidity. As such, a sensor quan- 1
tification model relateRs / Ro to concentration, tempera- & oo
ture and humidity. Other works have developed procedures os-
for this for different sensors and applications, using a vari- o7}
ety of techniques. For example, De Vito et al. (2009) used os}-
a multivariate approach with automatic Bayesian regulariza- o5 ' '

. .. e 290 295 300 305 310 315 320
tion to limit the effects of cross-sensitivity. Numerous works Temp [K]

have also used machine-learning techniques such as neu- . .

ral networks to determine concentration values and/or idenEFr gf;ﬁszwm:gijgi? d(i:f?e rsei':zc:]:g?;f’tﬁfnept;;ﬁ?gss CO concen-
tify mixtures (Kamionka et al., 2006; Zampolli et al., 2004; '

Sundgren et al., 1991; Wolfrum et al., 2006) and identify

pollution sources. However, to our knowledge, a parametgq ation (1) was chosen as the best fit for the observed sen-
ric regression-based model has yet to be developed for thesg,, response to CO concentration and temperature. A third

specific sensors. We believe this type of model is preferablqerm of the same form was added to the model to account for
for ease of implementation. Comparing system performanc%hanges in absolute humidity).

with an aforementioned machine learning-based approach is
a logical next step for this research. Rs
Two sensor models were chosen for the majority of theR_0
analysis conducted thus far: the MiCS-5121WP CO/VOC
sensor and MiCS-5525 CO sensor (both manufactured byn this model, f(C) describes the change in temperature
SGX Sensortech). The VOC sensor was chosen because sfope with respect to pollutant concentratigi¢) describes
our strong initial interest in indoor air pollution. The MiCS- the change in resistance in dry air at 298 K due to concen-
5525 was the logical next step because it has the same sentration; andi(C) describes the change in absolute humidity
conductor sensor surface as the MiCS-5121, but with an actislope with respect to concentration. The terfii€), g(C),
vated charcoal pre-filter. Both lab data and ambient colloca-andi(C) were chosen to be of the form exp(Cp2).
tion data were used to convert sensor signal to concentration. This model form performed well for all MOx sensors used,
In lab experiments, the sensors were calibrated in the Teflonbut is computationally challenging to work with because it is
coated chamber. The chamber and calibration system are d&ot algebraically invertible. Instead, we used a second-order
scribed in detail in the Supplement. The model derived fromTaylor approximation for this model (Kate, 2009). However,
this data was then applied to each M-Pod CO sensor useéin even simpler model in temperature, absolute humidity,
in the collocation. Our results show that the CO, Né&hd and concentration (Eq. 2) was found to perform similarly in
O3 MOXx sensors can detect ambient concentrations in Colimany cases. The comparable performance of the models is
orado when frequently calibrated. For context, ambient condikely due to the low variation in CO concentration observed
centrations of the criteria pollutants in Colorado are usuallythroughout the field experiments. Though we did not perform
NAAQS compliant. Q is the only pollutant with occasional the same lab calibration tests with the Nénd QG sensors,
violations at some local monitoring sites (CDPHE Annual we found that in collocation calibrations, Egs. (2) and (3)

= f(ONT —298 +¢(C)+h(O)H @

Data Report, 2012). also fit the data comparably to the model in Eq. (1).
Figure 2 illustrates the MiCS-5525 CO sensor response to
changing temperature at various concentrations of CO. AI-E = p1+ p2C + p3T + paH (2)

though humidity can have a substantial effect on sensor reXo

sponse, we found that with these sensors the expected rangs cases with longer time series and multiple calibrations, a

of absolute humidity has a lesser effect on signal responsg :
ime term,pst, was added to correct for temporal drift.
than the effect of the expected temperature range. Therefore, Ps P

absolute humidity was held constant so as to simplify the g,

procedure and minimize the degrees of freedom within thep - = P17+ p2C + p3T + paH + pst 3
model response. We later add a humidity term in the collo-

cation calibration analysis to improve model performance.Equation (3) was used throughout the results unless other-
From experimental observation, the sensor response appeangse noted.

to change linearly with respect to temperature for a given We determined concentration uncertainty by propagating
CO concentration between concentrations of 0 and 2.8 ppmthe error in the calibration model through the inverted cal-
The slope and intercept of the linear temperature trendsbration function (NIST Engineering Statistics Handbook
also appear to decrease with increasing CO concentratior2.3.6.7.1). The calculation included co-variance terms, but
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did not include the propagated uncertainty of the temperaDenver. Total system performance was assessed by compar-
ture, humidity, nor voltage measurements, as those are exng laboratory-generated calibrations with calibrations based
pected to be insignificant relative to the other sources ofon “real-world” ambient data, referred to as collocation cal-
error. The calculated uncertainty does not directly accounibrations. This procedure may technically be sensor normal-
for sources of error such as convection heat loss or crosszation, but we will refer to it as calibration here, as that is
sensitivities that may be seen in field measurements but nahe practical purpose, and the mathematical procedure does
during calibration. Convective heat loss due to changes imot differ. Although less sophisticated, collocation calibra-
airflow through the M-Pod are a concern with any systemtion provides a practical and useful method of assessing sen-
using passive aspiration, as has been shown by Vergara sbr performance. The 2nd collocation was performed with a
al. (2013). Collocation calibration should account for somefresh set of sensors and yielded slightly better results (Sup-
cross-sensitivity effects since there is simultaneous exposurplement). Reference instruments for calibration and valida-
to a wide array of environmental conditions. Some sourcedion were provided by CDPHE and the National Center for
of error are still not accounted for though, such as transienfAtmospheric Research (NCAR). CO was measured using a
temperature effects due to convection. Such effects are likelyfhermo Electron 48c monitor, G&nd HO were measured
more substantial when users carry the M-Pod than during avith a LI-COR LI-6262, NQ was measured using a Tele-
collocation, due to the user’s motion and activity. dyne 200E, and ®was measured with a Teledyne 400E. The
To explore the validity of this uncertainty propagation, we CO, instrument was calibrated before the deployment (LI-
employed duplicate M-Pods during a user study. For this use€COR, 1996), while the others were span- and zero-checked
study data, when there were duplicate M-Pod measurementdaily as per CDPHE protocol. The M-Pods were positioned
but no reference monitors, we used two additional methods3 feet from the sampling inlets. They operated continuously
to explore uncertainty, the average relative percent differencén a ventilated shelter on the roof of the facility.
(ARPD), and the pooled pairwise standard deviation of the In the user-study portion of the validation, nine M-Pods
differences (Skaf) (Table 3). These formulas are defined as were carried for over 2 weeks, with three users each carrying
follows: two M-Pods. The objective of the user study was to under-
stand M-Pod inter-variability and how they drift over time
Shur = | L Z (C_Primary_ Cqupncate)z @ during pelrsonal usage. There]_‘ore, the actual personal expo-
o 4 i i sure results are deemed less important, and are found in the
i=1 Supplement. The M-Pods were calibrated before and after
the deployment using collocation calibrations, following the
cprimary _ Cdupncate‘ same procedures as described for the December and January
i i .100 % ®) f:ollogatlpns. They were collocated at the CDPHE monitor-
ing site in downtown Denver for- 1 week before and af-
ter the user study. They were worn on the user’s upper arm

This approach, outlined in Dutton et al. (2009), provides an®" attached to backpacks or bags, and were placed as close

additional assessment of measurement uncertainty, and caly Pessible to the breathing area when users were sitting or
be compared to the uncertainties calculated using propagas-leep'ng_' Users also kept daily logs with location and activity
tion of error to understand if the propagation has capturednformation. _ _

most real sources of error. To calculate the ARPD, negative Measurement values are minute medians of the 1/10Hz
data were removed. In the future, zero replacement, or deted@V data. The raw data were filtered beforehand for elec-
tion limit replacement for data with negative values, will be tr'on.|c noise. Sen;or—speuflc thresholds of tvvp standard de-
considered. The ARPD was then multiplied by the averagev'at'ons on the differences between sequential values were

pooled concentration measurements to get units of concer!S€d 10 identify and remove noise spikes. An upper bound
tration that could be directly compared with the uncertaintythresmld on sequential differences provided another layer of

estimates derived through propagation. This approach of udiltering for the noisiest data. To ensure that sensors were

ing paired M-Pods does not necessarily incorporate error du/armed up, 10 minutes of data were removed after power-
to convection either, since the pair will generally have very ©"- Additional noise filtering was applied for the collocation
¢ tests due to a bad USB power supply. These data were fil-

similar airflow effects in both units. This is a limitation tha g - -

should be studied further in this system. tgred for noise by applying the Grubbs test for outliers to the
differences between all the M-Pods and a “reference” M-Pod

2.4 Validation and user study that displayed less electronic noise. Final data completeness
for the first and second collocation deployments ranged from

From 3 to 12 December 2012, and later from 17 to 22 Jan-74.5 to 90.1, and 56.5 to 99.1 %, respectively. Data filtered

uary 2013, nine M-Pods were co-located with reference in-from each deployment were then 0.4-10.9 and 0.4-4.8 %.

struments at a Colorado Department of Public Health and

Environment (CDPHE) air monitoring station in downtown

2 n
ARPD= — E . .
n = (Cipnmary+ Clqupllcate)
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Table 1. Collocation calibration summary statistics for December collocation using the linear model from Eq. (3).

CO (ppm) G (ppb)
drift drift

N mean std med 5th% 95% (ppmday S/N N mean std med 5th% 95% (ppbday S/N
M-Pod 1 14157 0.59 0.69 047-0.18 1.87 0.02 1.22 12919 11.8 184 9.7-9.2 41.1 -0.6 0.7
M-Pod 13 13835 0.60 0.71 0.47-0.23 1.92 —0.01 1.14 13987 13.1 1238 99 -28 36.0 —-0.4 1.8
M-Pod 15 13769 0.60 0.76 0.47-0.26 2.00 0.03 1.00 11749 105 183 7.9-9.1 37.5 -0.4 0.5
M-Pod 17 14006 0.60 0.74 0.49-029 191 —0.01 1.11 13365 12.2 129 9.0 —-3.9 35.2 —-0.3 1.4
M-Pod 18 13976 0.60 0.69 0.47-0.16 1.90 —0.03 1.26 14090 13.0 15.0 9.9 —4.6 38.2 -0.3 1.0
M-Pod 19 14097 0.60 0.78 0.52-0.39 1.98 —0.02 1.03 13451 122 128 8.3 —-3.2 35.6 —-0.1 1.4
M-Pod 21 14007 0.60 0.75 0.51-0.32 1.90 —0.05 1.09 13365 122 122 8.2 -20 325 -0.1 2.0
M-Pod 23 14013 0.60 0.74 0.50-0.30 1.95 —0.03 1.14 13368 122 122 8.3 -2.1 33.2 —-0.2 1.9
Median 14007 0.60 0.74 0.48-0.27 192 —0.01 1.13 13366.5 122 129 8.7 —3.6 35.8 —-0.3 1.4

NO3 (ppb) CQ (ppm)
drift drift

N mean std med 5th% 95% (ppbddy) S/N N mean std med 5th% 95% (ppmday) S/N
M-Pod 1 14157 29.3 16.3 304 31 523 -0.3 3.7 14318 466.8 45.0 453.7 426.6 558.5 —-15 53.9
M-Pod 13 14311 466.8 46.7 455.1 418.1 562.4 -2.8 27.2
M-Pod 15 14188 466.4 448 4540 423.7 555.6 —-1.6 47.6
M-Pod 17 13997 294 17.0 30.3 0.4 53.0 0.3 3.2 14295 466.9 44.8 4542 4260 557.0 -0.7 63.4
M-Pod 18 14079 294 16.8 29.6 1.8 539 -0.9 34 14080 466.7 449 4536 427.2 561.2 —-1.2 57.7
M-Pod 19 14096 29.4 16.6 30.6 1.8 53.0 0.0 3.5 14309 466.8 455 453.3 4244 5579 -23 369
M-Pod 21 13883 29.3 16.2 305 3.1 517 -0.4 3.8 14311 466.8 48.1 456.8 4119 5585 0.3 24.7
M-Pod 23 14013 29.2 158 30.3 4.4 51.9 -0.5 4.4 14311 467.3 504 4571 4109 5734 -15 18.5
Median 14046 29.3 165 304 25 526 -0.34 3.6 14310 466.8 45.3 4541 4241 5585 —-15 42.2

Table 2. Standard errors for the various calibration models tested with the December collocation data set. Equation (1), the exponential
model, was not able to fit §satisfactorily for some unknown reason.

CO; (ppm) CO (ppm) Q (ppb) NGO, (ppb)
Model Eq. (69 Eq.(6)wtim® Linea® Linea® Egq. (1P Eq. (2 Eq.(3P Eq. (1P Eq. (1 Eq.(2P Eq.(3P Eq. (1P Eq.(2P Eq.(3)
M-Pod 1 8.4 7.3 11.0 1387 0.4 0.38 0.38 3.69 NA 154 14.9 7.2 8.2 8.2
M-Pod 13 16.8 14.4 18.2 29.1 0.4 0.42 0.41 3.54 °?NA 56 5.4
M-Pod 15 9.5 8.4 10.1 43.3 0.4 0.46 0.46 2.85 NA 153 14.9
M-Pod 17 7.2 6.9 155 15.2 0.4 0.44 0.44 3.22 NA 6.4 6.2 75 95 95
M-Pod 18 7.9 7.1 105 30.0 0.3 0.38 0.37 3.58 NA 98 9.6 7.9 9.0 8.8
M-Pod 19 12.3 10.4 314 1253 1.8 0.52 0.51 4.49 °NA 58 5.8 7.0 8.6 8.6
M-Pod 21 185 18.6 224  105.0 0.7 0.49 0.47 3.42 CNA 42 41 6.9 8.0 7.9
M-Pod 23 24.8 23.9 48.8 93.5 0.4 0.45 0.44 5.33 °NA 44 4.4 6.0 6.9 6.8
Median 10.9 9.4 16.8 68.4 0.4 0.45 0.44 3.56 23064.1 6.1 6.0 7.1 8.4 8.4

2L ab calibration? Collocation calibration, NA unable to find a reasonable numerical solution.

3 Results (range 2.85-5.33 ppm). Adding a linear time correction, as in
Eqg. (3), was found to improve the fitin most MOx sensor data
3.1 Labvs. collocation calibration results sets. In this case, it improved the fit of the collocation cali-

brations slightly, giving a median standard error of 0.44 ppm
A summary of the results from the 3 to 12 December collo- (range 0.38-0.51 ppm). The median standard error for the
cation and lab-calibrated data are presented in Tables 1 angikponential-based model from Eq. (1) was 0.39 ppm (range
2. Table 1 shows summary statistics for the first collocation0.34—1.78 ppm), but it actually provided a worse fit in some
calibration, while Table 2 shows the performance for the dif- cases. The linear form of the equation, Eq. (2), is a good ap-

ferent calibration methods and models. proximation of the exponential form shown in Eq. (1), likely
because of the small environmental variable space spanned
3.1.1 MOx sensor results by the observed data. We have included residual plots (Fig. 3)

to demonstrate model performance. Note the absence of a
The MiCS-5525 CO sensor was found to have substantiallftrend in these residual plots.

higher error using lab-calibrations versus collocation calibra-
tions. As shown in Table 1, the median standard error for
collocation calibration was 0.45 ppm (range 0.38-0.52 ppm),
while the median lab calibration standard error was 3.56 ppm
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The relationship between collocation-calibrated sensor
readings and reference data showed a slight negative bias ¢ 270" 400
the higher end of observed concentration levels, but this ap-.. _— . .

9 . . pF|gure 4. Calibration surface (using Eg. 4) for a G@ollocation
pears to be driven by a small number of data points. - .

LT . . calibration performed from 3 to 12 December using M-Pod 1.

Inter-sensor variability is of interest if these sensors are to
be widely deployed. Low variability could allow us to cali-
brate fewer sensors and apply those calibrations to other semr previously unseen temperature effect, described by
sors in a large network. Inter-sensor variability for CO was )
generally low, with median correlation coefficients among v = P1+ p2C + p3(T — pa)*, (6)

the M-Po_ds 0'7.0 (range 0'62_.0'78)' The signal to NOIS&yherev is the raw sensor signal. This model fit better than
(S/N) ratio, defined as the median observed vallue over thea linear model in concentration, and an example is shown in
standard error, was 1.13 (range 1.00-1.26). This comparelgig. 4.

with the reference monitor SN of 10.0, calculated using As shown in Table 2, when using linear models in con-
the median standard error from four days of zero and SPaNzantration only, the meaian standard error for M-Pod,CO

c_heck dat‘fi from the monitor as the nqise. The\Fratio pro- measurements using the lab calibrations was 68.4 ppm (range
vides straightforward comparison of instruments, and shows, 5 5_1 257 ppm), and was 16.8 ppm (range 10.1-48.8 ppm)
us how often the measurements are above the noise. using the collocation calibration. Median standard error was

gave evenly ‘istibuted residuats and median siandard er.0-0PPM (f2nge 7.2-24.8ppm) using the collocaton cal-
brati del f Eq. (6), and addi li ti -
rors of 6.1 ppb (range 4.2—-15.4 ppb), and 8.4 ppb (range 6.9—ra lon model from Eg. (6), and adding a linear time cor

i . X tion to thi del further i d the fit, d ing th
9.5 ppb), respectively. As shown in Table 2, the linear modelrec 1on 10 this mode! IUrther improved the 1, dropping the

; Eq. (2 found to fit the d | It o median standard error to 6.9 ppm. This drift term was sta-
rom Eq. ( ).was ound to fit the data nearly as we orN tistically significant. The improvement in fit with the more
as the non-linear model from Eq. (1), and is much less com

tationally intensive t A le ti : ‘complex model may be due to a temperature effect of the
putationally Intensive o use. An 1—’03_ xample ime Seres o miconductor infrared sensor, or an unidentified confound-
using the linear model from Eqg. (2) is shown in Fig. 3. The

T del t able to fit the Gata with ing variable. Adding humidity as a variable was not found
non-tinearmodeiwas not able to it the tata with any suc- - improve the fit significantly. Using the collocation calibra-
cess, also shown in Table 2. The reason for this was not d

ined despi d ina. Lab calibrati Sion approach, the median correlation betweerp Génsors
terr;une d ?splte regeNate I\'/tlesdt.mg.. ta calibrations \:v?.re nol“l different M-Pods was 0.88 (range 0.58—0.98). The median
fpoerr(grmvias (())r 8% ?pang(?(.) 46e (')ags;)n Z:Zegz(g ?r%rr:g: g’g 4 signal to noise ratio was 42.2 (range 18.5-63.4), as compared

3 : AR : " with a reported 300-500 from the reference instrument used
0.99) for NG. The median N@ S/ N was 3.6 (range 3.3— P

4.4), compared with the median reference instrumehiNS (LI-COR, 1996).

of 23.4. For @, the median 3N ratio for the M-Pods was 32  User-study results

1.4 (range 0.5-2.0), while the reference instrument we collo-

cated with had $N of 1.6. The reference instrument/ 8l Based on initial lab and collocation calibration results, cal-
were calculated in the same way as for the CO monitor, usibrations for the user-study were performed only with col-
ing the median value of standard error from multiple days oflocation calibrations. Collocation calibrations were carried

500

zero and span data. out before and after the 3-week measurement period. Cal-
ibration fits were comparable to the prior collocation cali-
3.1.2 NDIR CO;, sensor results brations for CO (median standard error of 0.3 ppm),2NO

(median standard error of 8.8 ppb), and (nedian stan-
CO;, values quantified with lab calibrations showed bias indard error of 9.7 ppb). For COthe median standard error
some M-Pods (see Table 2), while others showed a high dewas high (36.9 ppm), likely because we were unable to co-
gree of accuracy. With collocation calibration, we also found locate a reference monitor with the M-Pods at these times.
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Table 3. Average pooled uncertainty calculations for user study duplicate measurements.

CO (ppm) Q (ppb) NG, (ppb)
Propagated Propagated Propagated
uncertainty  SRi ARPD uncertainty SBy ARPD uncertainty SBy ARPD
M-Pod 6, 9 0.24 0.58 0.63 (66.9 %) 7.9 15,5 20.6 (59.8%) 8.7 11.8 18.4(38.6%)
M-Pod 15, 16 0.92 3.8 4.57(133%) 14.6 17.1 18 (80.8%) 8.8 7.4 12.0 (24.2%)
M-Pod 23, 25 0.28 0.36 0.36 (55.5%) 11.2 257 12.8(53.3%) 8.8 4.4  7.4(19.9%)

Instead, a calibration curve was generated using data from ¢ 12f

Concentration

nearby ambient monitor operated by NCAR, and a lab cal- 10} - 95%cimpop-2s
95% Cl MPOD-23

ibration. The monitor, located at the Boulder Atmospheric
Observatory tower in Erie, Colorado, was used as referenceg
for a nighttime period when ambient background concentra- g
tion was assumed to be uniform over the region. Correlations3
among paired M-Pods during the user study ranged betweers

0.88 and 0.90 for N@ 0.48 and 0.76 for CO, 0.33 and 0.92 ’

for COy, and 0.04 and 0.35 for £ The range of correlations ‘ ‘ Megn e =028 pom

for CO, was due to power supply issues, which will be dis- * ° ? MPODA23 CO ppm ° ’ *°
cussed later. We expect reliable €8ensor performance to )

be easily achievable in future work. Despite the low standard 19ure 5. Personal CO measurement comparison between M-Pods
error from G sensor calibrations, we found low correlations 2> @nd 25, including 95% confidence intervals in light and dark
among the paired M-Pods during the user study, which is als@ respectively.

likely due to a power supply issue.

Measurement uncertainty calculated with the method ofag10)  thus requiring more complex corrections. With this
propagation and the duplicate M-Pod statistics, ARPD and 54 definition, drift includes confounding effects such as
SDyitt, defined in Egs. (4) and (5), are compared in Table 3.4,056 due to temperature, humidity, pressure, and system
The results show moderate agreement among the methodg, o This makes lab experimentation and fieldwork a chal-
for most pollutants. For CO andzOthe propagated uncer- o ging task with MOx sensors. Lab experiments must be de-
tainty is lower than the Sg and ARPD, roughly 50-75%  gjgned to precisely control sensor temperature, humidity, gas
of it, confirming that there are sources of error that are NOteoncentration, flow conditions, etc. (Vergara et al., 2012).
accounted for in the uncertainty propagation. ForN®e  gyen so, identifying mechanisms to cope with drift remain a
propagated measurement uncertainty seems to capture maghnificant challenge. Significant progress towards drift cor-
of the uncertainty observed in the pairs. The RMSE value§ection has been made in the domain of artificial machine
from the sensor calibrations were found to account for thelearning (Di Natale et al., 2002; Vergara et al., 2012; Fonol-
majority of the propagated error. Figure 5 compares the CQosa et al., 2013; Martinelli et al., 2013).
measurements from M-Pods 23 and 25, along with their 95% £ hortable devices with limited computational power, or

confidence interval, the ARPD, and &fo _ a widely distributed system where simplicity is preferable, it
S/N ratios during the user study were generally higheris 44yantageous to quantify the effect of drift through more
than during the collocations. This suggests that_ during peryirect means. We compensated for drift using multiple col-
sonal exposure measurement, when concentration peaks gi§.arion calibrations with linear time corrections (Haugen
often higher than background measurements, the M-Pod ig; 5 2000), and observed improved calibration fits. Aver-
able to detect those pea.ks above the noise. Analysis based Yye daily drift during the user study is shown in Table S1 in
the propagated uncertainty, ARPD, andqglsuggests that e sypplement. For CO, all M-Pods experienced drift under
propagated uncertainty is capturing most sources of error, but , o5 pom day?, apart from M-Pod 15, which showed be-
it does require more testing to further validate uncertainty esy,avior we cannc;t explain. £sensors e>,<perienced between
timation approaches. Personal exposure measurement results, ¢ 4nq4 2.0 ppb day drift. CO; drift ranged from—4.2
and discussion are shown in the Supplement. to 3.1 ppmday?, excluding the bad results from M-Pod 9.

Drift was seen to affect the measurement results, as deyo, generally showed a slight positive drift over time, with
scribed in detail in the Supplement. In the context of sensor, range of-1.56 to 0.51 ppb day?.

work, drift is commonly considered to be deviations from an-
ticipated or normal operation. These deviations are often di-
rectional rather than normally distributed (Ziyadtinov et al.,

n=14931
R?=0.80

ARPD = 0.50 ppm
ARPD = 63.2%
SD__=0.41 ppm
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4 Discussion reduce the population’s exposure, and improve our knowl-
edge of emissions as well as fate for each species. In this
The M-Pods performed well, given the relatively low am- work, we have demonstrated a quantification system that can
bient concentration environments encountered in the regiongrovide personal exposure measurements and uncertainties
For CO, NQ, and CQ, the reference instruments exhib- for CO,, O3, NO,, and CO. This type of quantification ap-
ited S/ N ratios 8-10 times higher than the M-Pod measure-proach provides access to air quality monitoring to a wider
ments. For @, the reference monitor AN ratio was only  audience of scientists and citizens. A laboratory calibration

slightly higher than the median M-Pod value. system may cost thousands or tens of thousands of dollars,
o while a collocation calibration system only requires a decent
4.1 Lab calibration enclosure for housing instruments. Whatever the application

and precision requirements, investment to develop a calibra-

Lab calibrations had higher measurement error than COIIO'tion infrastructure, whether in a laboratory or near a moni-

ce}gon callbra]flons_, likely k:elcaus_eb:he field t(:]atatf]0\1egad T{oring station, is worthwhile in applications like health and
widerrange of environmental variable space than the 1ab ca exposure, source identification, and leak detection.

ibration. The poor field performance of lab calibrations may

also be due to differences between the composition of zero-

grade air cylinders and ambient air. In this regard, filteredThe Supplement related to this article is available online
house air may be better suited to transfer calibrations out oft doi:10.5194/amt-7-3325-2014-supplement

the lab and to the field. Conducting field calibrations in the

region of interest helps to account for confounding factors

and meteorological variability.

CO, lab-calibration results showed accurate results in ) )
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