
2218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Improving Reliability of Soft Real-Time Embedded
Systems on Integrated CPU and GPU Platforms

Yue Ma , Student Member, IEEE, Junlong Zhou , Member, IEEE, Thidapat Chantem , Senior Member, IEEE,

Robert P. Dick , Member, IEEE, Shige Wang, Senior Member, IEEE,

and Xiaobo Sharon Hu , Fellow, IEEE

Abstract—Multiprocessor systems on a chip consisting of
integrated CPUs and GPUs are suitable platforms for real-time
embedded applications requiring massively parallel processing.
For such applications, lifetime reliability due to permanent faults
and soft-error reliability due to transient faults are major con-
cerns. Detailed execution profiling has revealed that a CUDA
task’s CPU execution time significantly increases if the task exe-
cutes on a different core than the operating system (OS). Based
on this observation, an extended task model is introduced to
consider the execution time dependencies among tasks and the
OS. A hybrid framework is proposed to improve soft-error reli-
ability while satisfying a lifetime reliability constraint for soft
real-time systems executing on integrated CPU and GPU plat-
forms. This framework: 1) reduces the total utilization of cores
and improves soft-error reliability via off-line task mapping;
2) achieves a higher lifetime reliability through task migration at
run time; and 3) improves soft-error reliability by dynamically
scaling frequencies of CPU and GPU cores. The experimental
results show that the proposed framework leads to a system that
can execute without soft errors for at least 4 days (4 times) and
6 days (6 times) longer, on average, than existing approaches.

Index Terms—CUDA, GPU, lifetime reliability, real-time
embedded system, resource management, soft-error reliability.

I. INTRODUCTION

TO HELP meet the performance and power consumption
demands of many applications, various heterogeneous

Manuscript received March 25, 2019; revised June 28, 2019; accepted
August 14, 2019. Date of publication September 11, 2019; date of current
version September 18, 2020. This work was supported in part by the National
Science Foundation of the United States under Award CNS-1319904, Award
CNS-1319784, and Award CNS-1618979, in part by the National Natural
Science Foundation of China under Grant 61802185, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20180470, and in part
by the Fundamental Research Funds for the Central Universities under Grant
30919011233. This article was recommended by Associate Editor J. Henkel.
(Corresponding author: Junlong Zhou.)

Y. Ma and X. S. Hu are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
yma1@nd.edu; shu@nd.edu).

J. Zhou is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
jlzhou@njust.edu.cn).

T. Chantem is with the Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Arlington, VA 22203 USA
(e-mail: tchantem@vt.edu).

R. P. Dick is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
dickrp@umich.edu).

S. Wang is with the Global Research and Development Center, General
Motors, Warren, MI 48090 USA (e-mail: shige.wang@gm.com).

Digital Object Identifier 10.1109/TCAD.2019.2940681

multiprocessor systems on a chip (MPSoCs) have been
introduced [1]. One type of MPSoCs is composed of inte-
grated CPU and GPU. Thanks to the massively parallel
computing capability offered by GPUs and the general-purpose
computing capability of CPUs, this type of MPSoC has
been widely used in many applications [2], [3]. For such
applications, soft-error reliability due to transient faults and
lifetime reliability due to permanent faults are typically impor-
tant design concerns. For example, Nvidia provides a full
stack software to support an autonomous driving [3]. The
software relies on the GPU’s parallel computing capabil-
ity to implement key features such as detecting obstacles
and drivable paths. One big challenge for autonomous vehi-
cles is to achieve high reliability under the harsh automotive
conditions [4]. However, the methods to improve soft-error
reliability may reduce the lifetime reliability. Since tran-
sient faults occur much more frequently than permanent
faults [5], in this article, we aim to maximize soft-error reli-
ability under a lifetime reliability constraint for soft real-time
applications.

Although most existing papers focus on CPU reliability
[6]–[18], there are also several techniques to improve
GPU soft-error reliability [19]–[22] and/or lifetime
reliability [23]–[25]. However, these techniques are designed
to recover from soft errors instead of reducing soft-error rate
and are not supported by all GPUs. In addition, they only
consider the reliability of the GPU, not that of the CPU. For
MPSoCs with integrated CPU and GPU, errors from either
can cause failure. Hence, jointly considering the reliability of
CPU and GPU is necessary.

This article systematically addresses reliability concerns for
tasks running on both CPU and GPU. For a given task, our
goal is to maximize soft-error reliability under lifetime relia-
bility and real-time constraints. In addition, to avoid thermal
throttling, we require that the system’s operating tempera-
ture remains lower than a thermal threshold. We consider this
problem in the context of systems using CUDA because it is
widely used in many real-world applications [2]. A CUDA
task uses GPU resources through the driver in the operat-
ing system (OS) and may rely on some I/O services1 to
complete. Note that although this article focuses on CUDA

1In this article, we refer to the OS as the OS kernel, including hardware
drivers, and refer to the I/O services as default services shipped with the OS,
such as video and audio services.

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-5688-5720
https://orcid.org/0000-0001-5428-9530
https://orcid.org/0000-0002-6636-9738

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2219

tasks, the proposed techniques can be readily applied to other
programming models.

In order to solve the above problem, we first explore
how the mapping of CUDA tasks affects task CPU times
and then develop a hybrid framework called HyFRO (Hybrid
Framework for Reliability Optimization). This framework:
1) statically maps tasks to CPU cores2 to improve soft-
error reliability; 2) dynamically migrates tasks among CPU
cores to balance the wear states among cores and hence
achieve a higher lifetime reliability; and 3) dynamically scales
frequencies of CPU and GPU cores to increase soft-error
reliability under peak temperature, real-time, and lifetime reli-
ability constraints. This article makes three main contributions.

1) Our experiments on multiple hardware platforms reveal
that for a CUDA task, CPU time increases if the OS
and/or related I/O services are running on different CPU
cores from the task. Based on this observation, we gen-
eralize a real-time task model to consider the impact of
the OS and I/O services on task execution times. This
model captures dependencies among tasks, the OS, and
I/O services to assist system design and analysis.

2) We develop an off-line task mapping policy to reduce
the execution times of tasks and the utilizations of cores.
This lower core utilization leads to a higher soft-error
reliability.

3) By considering uneven wear states among cores and
unavoidable workload and operating environment vari-
ations, we design two on-line algorithms. The first one
migrates tasks to balance the wear states among cores,
which is optimal to maximize lifetime reliability if cores
are homogeneous and have same fault-to-failure rate, but
suboptimal in other cases. The second algorithm scales
frequencies of CPU and GPU cores to further improve
soft-error reliability.

We implemented and evaluated HyFRO on Nvidia’s
TK1 [26] and TX2 [27] chips. The experimental results show
that HyFRO increases the probability that no soft-error occurs
for at least 3.9 days (about 5 times) and 7.1 days (about
6 times) more than existing approaches on TK1 and TX2,
respectively.

The rest of this article is organized as follows. We review the
related work in Section II. Section III introduces the system
and reliability models. We experimentally explore how task
mapping impacts execution times in Section IV. Based on the
experiments, we extend the real-time task model in Section V.
Section VI formulates the problem and provides an overview
of our framework. Section VII describes HyFRO in detail.
Sections VIII and IX describe our experimental setup and
results, respectively. Section X concludes this article.

II. RELATED WORK

MPSoCs with integrated CPUs and GPUs provide both
massively parallel and general-purpose computing capabili-
ties. For such MPSoCs, several papers have discussed how to
achieve a lower power consumption and higher performance

2Although Nvidia’s GPU has multiple cores, we cannot explicitly schedule
specific cores to execute tasks.

[28]–[31]. Since the integrated CPU and GPU share memory,
Jeong et al. proposed to adapt the priority of CPU and GPU
memory requests to improve GPU Pathania et al. [29] and
Prakash et al. [30] proposed to maximize MPSoC performance
by scaling CPU and GPU core frequency. By considering
the specific thermal features of integrated CPUs and GPUs,
Wang et al. [31] developed a framework to partition and
map concurrent applications to maximize system performance
under a temperature constraint. While all the above papers
consider the specific features of CPUs and GPUs, none focus
on reliability.

Several researches have worked to increase CPU soft-error
reliability [6]–[11] and/or lifetime reliability [12]–[15]. For
soft-error reliability, Zhao et al. [7], [9] and Ma et al. [11]
proposed multiple methods to allocate recoveries to failed
tasks. Zhao et al. [6] and Fan et al. [8] proposed to reduce
soft-error rate by increasing core frequencies. In order to
improve lifetime reliability, Huang et al. [12] mapped and
scheduled tasks to guard against aging effects. Das et al. [15]
proposed a machine learning based algorithm to reduce
temperature and mitigate thermal cycling (TC). Since both
soft errors and permanent errors may cause system fail-
ure, lifetime reliability, and soft-error reliability have been
jointly studied [10], [32], [33]. In order to improve system
availability, Das et al. [10] scaled core frequencies while
Zhou et al. [32] proposed to allocate replications of tasks and
determine core frequencies statically. Ma et al. [33] focused on
“big–little” type MPSoCs and improved their soft-error reli-
ability under lifetime reliability constraint. All above efforts
are effective in improving CPU reliability but ignore the GPU
reliability.

In contrast to CPU reliability, there has been little
research on GPU reliability [19], [21]–[24]. Tan et al. [19]
developed a framework to estimate the soft-error vulnera-
bility of general-purpose GPU (GPGPU) and proposed to
leverage resistive memory to improve soft-error reliability
and reduce energy consumption [21]. To improve soft-error
reliability, Lee et al. [22] developed a compilation and
instruction scheduling method. To improve GPU lifetime reli-
ability, Namaki-Shoushtari et al. [23] proposed to balance
the wear states of GPU register files. To minimize GPU
aging, Rahimi et al. [24] developed an aging-aware instruction
assignment scheme to evenly distribute the stress of instruc-
tions. Although these methods improve soft-error reliability
or lifetime reliability, not all GPUs support them. In addition,
they ignore CPU reliability.

In this article, we consider the reliability of both CPU and
GPU, and propose to maximize reliability by mapping tasks
and scaling core frequencies.

III. PRELIMINARIES

This section introduces our hardware and reliability models.

A. Hardware Model

We focus on MPSoCs composed of one GPU (ρG) and m
homogeneous CPU cores ({ρ1, . . . , ρm}). Although Nvidia’s
GPUs have multiple cores, we cannot explicitly assign tasks

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

2220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

to specific cores. Hence, we abstract the GPU as a single pro-
cessor. The GPU is idle only when no operations execute on
any of the GPU cores [34].

We assume both the CPU and GPU support voltage and
frequency scaling. A higher voltage and frequency generally
produce a higher temperature. We define the utilization of
a CPU core or the GPU in a given time interval |�t| as
U = [ta/|�t|], where ta is the amount of time that the core
executes operations. Clearly, a lower core frequency leads to a
higher core utilization. The core utilization is commonly used
to estimate soft-error reliability and guarantee deadline con-
straints. The operating temperature of both CPU and GPU
cores can be estimated by using an RC thermal modeling
tool (e.g., HotSpot [35]) or measured by thermal sensors.
Generally, a higher operating temperature leads to a lower
lifetime reliability. In order to avoid unexpected thermal throt-
tling, we also require the operating temperature be lower than
a threshold.

B. Soft-Error and Lifetime Reliability Model

We consider both soft-error reliability due to transient faults
and lifetime reliability due to permanent faults. Since CPU and
GPU are identical at the device level, the device-level soft-
error reliability, and lifetime reliability models are applicable
to both CPU and GPU. The soft-error reliability in a time
interval is the probability that no soft errors occur in that time
interval [32], i.e.,

r = e−λ(f)×U×|�t| (1)

where f is the core frequency, |�t| is the length of the time
interval, and U is the core’s utilization in this time interval.
λ(f) is the average fault rate depending on f [32], i.e.,

λ(f) = λ0 × 10
d(fmax−f)
fmax−fmin (2)

where λ0 is the average fault rate at the maximum core
frequency. fmin and fmax are the minimum and maximum core
frequency and d (d > 0) is a hardware specific constant indi-
cating the sensitivity of fault rates to frequency scaling. The
system-level soft-error reliability of an MPSoC is

R = rG ×
m∏

i=1

ri (3)

where rG and ri (i = 1, . . . , m) are the soft-error reliability of
ρG and ρi, respectively [33].

We consider four main integrated circuit (IC) failure mech-
anisms in this article: 1) electromigration (EM); 2) time
dependent dielectric breakdown (TDDB); 3) stress migration
(SM); and 4) TC [36]. EM is the dislocation of metal atoms
and TDDB is the deterioration of the gate oxide layer. SM
is caused by directionally biased motion of atoms in metal
wires. Wear due to EM, SM, and TDDB are exponentially
dependent on operating temperature. Wear due to TC depends
on the amplitude, period, and peak temperature of each cycle.
Generally, a lower operating temperature, a smaller amplitude,
and a larger period result in a higher lifetime reliability. In
this article, we use an existing tool [33] to check whether the

TABLE I
CUDA TASKS USED TO MEASURE ADDITIONAL EXECUTION TIMES

lifetime reliability resulting from a thermal profile exceeds a
lifetime reliability constraint. Note that this article is inde-
pendent of the lifetime reliability modeling tool used. The
goal of this article is to improve soft-error reliability under
peak temperature, real-time, and lifetime reliability constraints.
Before developing a framework to address this problem, we
first discuss our observations on the relationship between task
assignment and execution time.

IV. EMPIRICAL STUDY: EFFECTS OF MAPPING ON TASK

EXECUTION TIMES

In this section, we discuss one of our major contributions.
We focus on CUDA tasks, which use GPU resources through
the driver in the OS and some I/O services. One open question
is whether a CUDA task’s execution time varies if the OS3

and/or related I/O services are executed on different CPU cores
from this CUDA task. We determine the answer by conducting
experiments on different hardware platforms.

We performed experiments on Nvidia’s TK1 [26] chip (with
CUDA 6.5) to measure the CPU times of a CUDA task. We
use the default settings: CPU frequency is 2.1 GHz and GPU
frequency is 72 MHz. Note that we use the CUDA API cud-
aEventRecord to record the time stamps before and after the
GPU execution, and the elapsed time between two time stamps
is GPU time. So, if running CUDA tasks at a high frequency,
the elapsed time is about to zero. Hence, in this measurement,
we run tasks at a low GPU frequency and repeat multiple
times to get the average GPU time. However, for systems
having soft real-time requirements, a high GPU frequency
is necessary to guarantee the tasks that can complete before
their deadlines. To obtain general conclusions, we execute 6
CUDA tasks from different benchmark suites (see Table I).
Each task’s increases in CPU times are shown in Fig. 1 and
the averages of additional GPU times are shown in Table II.
The additional CPU times can be significant and vary with dif-
ferent inputs. Although the additional CPU times increase or
decrease with different inputs, they can be predicted if tasks’
inputs are given. We will use the maximum additional CPU
time when designing our framework. In contrast to the addi-
tional CPU time, the additional GPU time is negligible: the
additional GPU times of all measured CUDA tasks are less
than 1% of the tasks’ execution times. This increase can be
ignored in most of the soft real-time applications.

We also consider a category of tasks which rely on
I/O services to complete. CUDA tasks YOLO [39] and

3Although it is possible that kernel threads in the OS are allowed to execute
on multiple cores, not all of OSs support it. In this article, we assume all kernel
threads run on the same core.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2221

Fig. 1. Measured additional CPU times on TK1 if a CUDA task executes
on a different CPU core than the OS.

TABLE II
OBSERVED ADDITIONAL GPU TIME ON TK1

ThunderStruck [40] fall into this category. Both of them rely
on xorg, an I/O service in Linux’s display system. We deter-
mined whether their CPU times and GPU times increase if
executed on different cores than related OS services. The addi-
tional CPU times of YOLO and ThunderStruck are shown in
Fig. 2. Similar as Fig. 1, the additional CPU time can be
significant and must be considered. We also determine their
additional GPU times. For YOLO and ThunderStruck, the
additional GPU times are only 0.02 ms and 0.44 ms, respec-
tively. Since the additional GPU times are less than 0.1%
of the tasks’ execution times, they can be ignored in most
applications.

To determine whether our observation is platform indepen-
dent, we have also measured the execution times of these tasks
on Nvida’s TX2 [27] chip (with CUDA 8.0), which consists of
4 ARM cores and 2 Denver cores. Since the OS must execute
on the primary core (an ARM core) and a task’s execution
time is different if executing on an ARM core or a Denver
core, we only execute tasks on ARM cores and power off
all Denver cores. We set the frequency of the ARM cores to
2.0 GHz and the GPU frequency to 115 MHz. The additional
CPU times of CUDA tasks are illustrated in Figs. 3 and 4. The
experimental results are similar to those for TK1. Based on the
above experiments, we again observe that executing a CUDA

Fig. 2. Measured additional CPU times on TK1 if a CUDA task executes
on a different CPU core from the I/O service xorg.

Fig. 3. Measured additional CPU times on TX2 if a CUDA task executing
on a different CPU core from the OS.

Fig. 4. Measured additional CPU times on TX2 if a CUDA task executing
on a different CPU core from the I/O service xorg.

task on a different core from the OS and/or I/O services can
significantly increase CPU time but not GPU time.

In order to discover the sources of the additional CPU time,
we measured the CPU time of each used CUDA function by

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

2222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

(a) (b)

Fig. 5. Measured additional CPU times on TK1 if (a) calling the CUDA
API, cudaMemcpy, a different number of times and (b) copying different size
of data between CPU’s and GPU’s memory space.

using nvprof, Nvidia’s profiling tool [41]. This reveals that
CPU time due to calling synchronized CUDA functions, such
as cudaMemcpy, significantly increases if the CUDA task exe-
cutes on a different core from the OS. Fig. 5(a) illustrates
how the additional CPU time depends on the number times of
cudaMemcpy is called. Generally, a task that frequently calls
synchronized CUDA functions suffers a larger additional CPU
time. The data copy between CPU and GPU memory spaces
is the another reason for additional CPU time4 [see Fig. 5(b)].
Hence, we measured the additional CPU time when calling
the memory copy CUDA function, cudaMemcpy, only once
but copying different amounts of data between CPU and GPU
memory space. Fig. 5(b) illustrates how the size of the copied
data impacts the additional CPU time. Although the additional
CPU time increases with more data, the percentage is a con-
stant. The above experimental results lead to a guideline: to
reduce the additional CPU time, a CUDA task should transfer
more data per copy to reduce the number of data transfers,
and thus the number of CUDA API calls.

Based on the above experiments, we conclude that a GPU
task’s CPU time increases if executing on a different core
from the OS and/or I/O services, but its GPU time does not
change. Although all intracore communications may increase
the execution times of tasks, our experiments show that the
additional CPU times of GPU tasks are much more significant
than those of CPU tasks. Hence, we extend the real-time task
model to account for the additional CPU times of GPU tasks.
In addition, since soft-error reliability is increased if a system
has a lighter workload [in (1)], we develop a mapping policy
to minimize task CPU times.

V. INTEGRATED TASK, OS, AND I/O SERVICES MODEL

We extend the real-time task model to account for the fact
that a task depends on the OS and I/O services to complete.
The real-time tasks considered in this article are independent,
periodic, and have soft deadlines. Task τi is associated with a
tuple {ei, di, Ai} where ei is the execution time, di is the dead-
line, and Ai captures the dependencies of τi on the OS and I/O

4For TK1 and TX2, although their CPU and GPU share main memory,
memory copy functions, such as cudaMemcpy, still copy data between CPU
and GPU memory spaces.

Fig. 6. Example of our task model showing tasks rely on the OS and I/O
services to complete.

services. The execution time of a CUDA task consists of two
parts: 1) the execution time on CPU, eC

i and 2) the execution
time on GPU, eG

i . Since a CUDA task may call multiple syn-
chronous and asynchronous CUDA functions, the relationships
among eC

i , eG
i , and ei are complicated. However, for CUDA

tasks executing on Nvidia’s TK1 or TX2, the CPU busy waits
during GPU operation [42], i.e., eC

i including the time execut-
ing code on CPU. Hence, it is safe to assume that eC

i = ei and
a longer (shorter) eG

i leads to a longer (shorter) eC
i and ei.

For task τi, we use Ai to describe its dependencies on the
OS and I/O services. Ai is a hash table where the key is
the name of an I/O service or the OS, and the value is the
additional CPU time. This table can be built off-line through
profiling. For example, for the task YOLO (in Section IV),
entry A = {OS:0.7, xorg:0.5} indicates that YOLO depends
on OS and xorg, an I/O service. The additional CPU times are
0.7 and 0.5 ms if executing YOLO on different cores from the
OS and xorg, respectively. Although the additional CPU time
varies with input, we choose the worst-case additional CPU
time for each dependency to guarantee the real-time constraint.

We can use an undirected graph to describe how tasks
depend the OS and I/O services to complete. Tasks, the OS,
and I/O services are represented by nodes, and edges represent
their dependencies. The weight of each edge is the additional
CPU time, if the task and the OS or I/O service execute on
different cores. For example, Fig. 6 illustrates that the tasks
YOLO and ThunderStruck rely on both xorg and the OS, but
VectorAdd and BFS only depend on the OS. The BitCount
task from the MiBench Benchmark Suite [43] only uses CPU
resources. It is independent of the OS and I/O services. Since
this graph shows all dependencies, we can use it to develop a
mapping method to minimize additional CPU times of tasks
and reduce the overall workload of cores and hence improve
soft-error reliability.

VI. PROBLEM FORMULATION AND FRAMEWORK

OVERVIEW

In this section, we first formulate the problem addressed in
this article and give an overview of our solution HyFRO.

A. Problem Formulation

The problem in this article is motivated by applications
such as in-vehicle infotainment system. Such system has soft
deadline, temperature, lifetime reliability, and soft-error relia-
bility requirements [44]. Before formulating the problem, we

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2223

first introduce two concepts: 1) sampling window (W) and
2) profiling window. A sampling window is defined as a time
interval in which the temperature can be treated as constant.
Task migration is not allowed inside a sampling window [33].
A profiling window is composed of multiple equal-length sam-
pling windows and is used to estimate lifetime reliability. Note
that our proposal can be easily applied to profiling windows
of arbitrary length.

Let us assume that a profiling window is composed of n
sampling windows and the MPSoC has m CPU cores and
one GPU. Our objective is to maximize the system-level soft-
error reliability in each profiling window and satisfy the design
constraints in each sampling window (represented by the jth
sampling window Wj), which is formulated as

max

⎧
⎨

⎩

n∏

j=1

(
rG,j ×

m∏

i=1

ri,j

)⎫⎬

⎭ (4)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{T(ρi, Wj
)} ≤ TC

th,∀ρi,∀Wj (5)

T
(
ρG, Wj

) ≤ TG
th,∀ρi,∀Wj (6)

U
(
ρi, Wj

) ≤ Uth,∀ρi,∀Wj (7)

min{LTR(ρi), LTR(ρG)} > LTRth,∀ρi (8)

rG,j and ri,j are the soft-error reliability of ρG and ρi at Wj,
respectively. For any CPU core ρi and the GPU core ρG, the
constraints in (5)–(8) should be satisfied. The first two con-
straints require the temperature of both CPU cores and the
GPU to be less than some thresholds TC

th and TG
th in each sam-

pling window. For soft real-time systems, temporarily violating
the deadline and the lifetime reliability constraints is accept-
able, but the temperature constraint must be satisfied to avoid
thermal throttling. The third constraint captures the real-time
requirement, where U(ρi, Wj) is the utilization of ρi at Wj and
Uth is the upper bound on utilization to satisfy schedulability.
The last constraint requires the MTTF resulting from the run-
time temperature to be larger than a threshold LTRth. In this
article, the CPU and GPU are integrated on a single chip
and permanent faults from either the CPU or GPU can cause
system failure. Hence, we require that the minimum lifetime
reliability of CPU and GPU cores be larger than the lifetime
reliability threshold [45].

Since soft-error reliability is related to core utilization, we
first design an off-line heuristic to map tasks, the OS, and
I/O services to reduce the total utilization of cores. Then,
we dynamically migrate tasks among CPU cores to achieve
a higher lifetime reliability and scale frequencies of CPU and
GPU cores in each sampling window to improve the soft-
error reliability. We integrate these two efforts into a hybrid
framework to solve our problem efficiently.

B. Overview of HyFRO

In this article, we develop a hybrid off-line/on-line
framework, HyFRO, to solve the problem defined in (4)–(8)
(see Fig. 7). There are three major challenges to address:
1) the impact of task mapping on task execution times;
2) unbalanced wear states among cores, which reduces the
lifetime reliability; and 3) workload and runtime environment

Fig. 7. High-level overview of HyFRO.

variations. In order to address these challenges, the basic idea
of our framework is to: 1) map tasks, I/O services, and the
OS to appropriate CPU cores statically to minimize additional
CPU time; 2) dynamically migrate tasks to balance the wear
states among cores; and 3) scale frequencies of CPU and
GPU cores to maximize soft-error reliability under lifetime
reliability and operating temperature constraints.

The off-line component in HyFRO maps tasks, I/O services,
and the OS to appropriate CPU cores (the left part of Fig. 7).
Based on the soft-error reliability model in (1), soft-error
reliability is improved with shorter task execution times. We
develop a task mapper that allows CUDA tasks, the OS, and
related I/O services to execute on the same core. This mapping
minimizes additional CPU times and reduces task execu-
tion times, which improves soft-error reliability. However, it
reduces lifetime reliability since cores’ workloads and wear
states are uneven [45]. We improve lifetime reliability by
dynamically migrating tasks and balancing the wear states
among CPU cores in the on-line component of HyFRO.

The on-line component in HyFRO: 1) balances the wear
states among cores by migrating tasks and 2) improves soft-
error reliability by dynamically increasing CPU and GPU core
frequencies. This component consists of four main parts: 1) a
wear balancer 2) a frequency governor; 3) an executor; and
4) a state collector (the right part of Fig. 7). The wear bal-
ancer and frequency governor are triggered at the beginning
of each profiling window, and the executor and state collector
are triggered in each sampling window.

In order to compensate for the impact of the off-line task
mapping on lifetime reliability, the wear balancer swaps the
workload among CPU cores at each profiling window to
balance the wear states among cores and improve lifetime
reliability [45]. To improve the soft-error reliability, the state
collector, frequency governor, and executor work together to
dynamically increase CPU and GPU core frequencies. In each
sampling window, the state collector collects and saves the
system states, including each core’s temperature, utilization,
and frequency. Based on the system states, at the beginning
of each profiling window, the frequency governor determines
the cores’ frequencies for both CPU and GPU for all sam-
pling windows in the next profiling window. This decision is
based on the past system states. However, since the workload
may change at run time, the decision made by the frequency

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

2224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Algorithm 1 Task Mapping
1: U(si): utilization of the service si, which can be measured offline
2: U(ρi): utilization of the core ρi
3: δi,j: the additional CPU time if si and τj are on different cores
4: �: {δi,j, for all dependencies among tasks and services}
5: procedure MAPPING
6: Set U(ρi) = 0 for all cores
7: Sort � in deceasing order
8: for each element in the sorted � do
9: Assume the current element in � is δi,j

10: if Both si and τj have not been mapped then
11: ρl: the core with lowest utilization
12: if U(ρl) + U(si) + ej

dj
≤ Uth then

13: Map si and τj to ρl
14: else
15: Map si, τj to two cores with lowest utilizations
16: end if
17: end if
18: if τj (or si) is already mapped then
19: ρl: the core τj (or si) executes on
20: if U(ρl) + U(si) ≤ Uth (or U(ρl) + ej

dj
≤ Uth) then

21: Map si (or τj) to ρl
22: else
23: Map si (or τj) on the core with lowest utilization
24: end if
25: end if
26: end for
27: Map CPU tasks to balance the workload among cores
28: end procedure

governor may not meet all the constraints in (5)–(8). In order
to always meet the hard constraint, i.e., the temperature con-
straint in (5) and (6), in each sampling window, the executor
may modify that the decision to adapt to runtime variations.
We elaborate on the details of HyFRO in the next section.

VII. FRAMEWORK DETAILS

In this section, we provide the details of our framework to
improve soft-error reliability under temperature, real-time, and
lifetime reliability constraints.

A. Task Mapper

The task mapper maps tasks, I/O services, and the OS to
appropriate CPU cores to reduce total execution times, which
helps to improve soft-error reliability. Since the assignment-
dependent CPU times of GPU tasks is large, we first try to map
GPU tasks, I/O services, and the OS. Then, we map normal
CPU tasks to spatially balance the workload among cores.
In order to reduce computational complexity, we minimize
the additional CPU time, thus improving soft-error reliability
(see Algorithm 1). The general idea of this algorithm is to
map tasks to the same core running the OS and related I/O
services. In this algorithm, we represent OS with sos and I/O
service as si. δi,j (δos,j) represents the additional CPU time if
the I/O service si (the OS sos) and task τj are on different
cores. We first sort the dependencies and iteratively select the
largest additional CPU time (supposing it is δi,j), and map
si and τj to appropriate cores (lines 7–26). If both si and τj

have not been mapped, we attempt to map them to a single
core if doing so would not violate the real-time requirement.

Algorithm 2 Balance Workload Among CPU Cores
1: procedure BALANCER
2: Sort cores with temperature: T(ρi) > T(ρi+1)
3: for i = {1, . . . , m − 1} and j = {m, m − 1, . . . , i + 1} do
4: if T(ρi) − T(ρj) < Tcyc and ρi and ρj not swapped then
5: Swap the workload between ρi and ρj
6: break
7: end if
8: end for
9: end procedure

Otherwise, we map si and τj to two cores with low utilizations
(lines 10–17). If si (τj) is already mapped, we map τj (si) to the
same core running si (τj) if allowed, and map τj (si) to a core
with lowest utilization otherwise (lines 18–25). After mapping
all GPU related tasks, we attempt to map normal CPU tasks
and spatially balance workload among CPU cores by using
an existing approach [45] (line 27). Since Algorithm 1 checks
every dependency, its complexity is linear in the number of
dependencies among tasks, I/O services, and the OS.

B. Wear Balancer

Although the task mapper in HyFRO can avoid additional
CPU time and reduce the total utilization of cores, it leads
to the unbalanced core workloads and wear states. For homo-
geneous cores having same fault-to-failure rate, balancing the
wear states among cores is optimal to maximize lifetime reli-
ability, but still suboptimal in other cases. Hence, to achieve
higher lifetime reliability, it is necessary to migrate tasks and
balance the wear states among cores at run time. In order to
not sacrifice the soft-error reliability, we design a heuristic
to balance the wear states by swapping the workload among
cores.

The basic idea of the wear balancer is to swap the entire
workload on a core having a higher temperature with that on
another core having a lower temperature (see Algorithm 2).
Swapping workload is efficient to balance the wear states, but
it may cause TC which reduces lifetime reliability. Hence, at
the beginning of each profiling window, we first sort cores by
their temperatures (in line 2) and only swap the workloads
between cores if the difference in the cores’ temperatures is
smaller than a prespecified threshold, Tcyc (lines 3–8). Tcyc is
used to ensure that the TC will not become the dominant rea-
son for permanent faults [45]. We can determine the value of
Tcyc by using an existing lifetime reliability modeling tool [46]
at design time. Specifically, for a given thermal profile, this
tool reports the effect of both temperature and TC on lifetime
reliability. Tcyc is the largest value where the effect of TC
is smaller than the effect of temperature. The complexity of
Algorithm 2 is O(m) where m is the number of CPU cores.

C. Frequency Governor

To improve the soft-error reliability, the frequency gover-
nor is triggered at the beginning of each profiling window
to determine core frequencies for the next profiling window
based on the past system states. The resulting, schedule, for

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2225

Algorithm 3 Determine Core Frequencies

1: Wp,q: the pth sampling window in the qth profiling window
2: L(ρi, Wp,q): core frequency level of ρi at Wp,q
3: U(ρi, Wp,q): utilization of ρi at Wp,q
4: T(ρi, Wp,q): operating temperature of ρi at Wp,q
5: procedure GENERATOR(Schedq, Stateq)
6: if LTR(GPU) < LTRG

th then
7: Sort W: T(ρG, Wp,q, L) > T(ρG, Wp+1,q, L)
8: for i = {1, 2, 3, . . . , n} do
9: if L(ρG, Wi,q) − 1 not violating Eq. (7) then

10: L(ρG, Wi,q+1) = L(ρG, Wi,q) − 1
11: Break
12: end if
13: end for
14: else
15: while T(ρG, Wp,q, L + 1) ≤ TG

th do
16: L(ρi, Wp,q+1) = L(ρi, Wp,q) + 1
17: end while
18: end if
19: if LTR(CPU) < LTRC

th then
20: Wh,q: the CPU has highest average temperature at Wh,q
21: for i = {1, 2, . . . , m} do
22: if L(ρi, Wh,q) − 1 not violating Eq. (7) then
23: L(ρi, Wh,q+1) = L(ρi, Wh,q) − 1
24: end if
25: end for
26: else
27: Wl,q: the CPU has lowest average temperature at Wl,q
28: for i = {1, 2, . . . , m} do
29: if T(ρi, Wl,q, L + 1) ≤ TC

th then
30: L(ρi, Wl,q+1) = L(ρi, Wl,q) + 1
31: end if
32: end for
33: end if
34: Return the schedule Schedq+1 with updated core frequencies
35: end procedure

the (q+1)th profiling window, Schedq+1, is generated by tun-
ing the schedule Schedq, along with the system states Stateq.
The initial schedule used in the first profiling window sets the
lowest frequencies of both CPU and GPU cores to honor the
temperature constraint.

The main procedure of the schedule generator is given in
Algorithm 3. If a GPU schedule violates the lifetime reliabil-
ity constraint, we sort the sampling windows by temperatures,
then iteratively find sampling windows in which the GPU has
the highest temperature. The core frequencies in these win-
dows are reduced if doing so does not violate the utilization
constraint (lines 6–14). If the current schedule satisfies the life-
time reliability constraint for the GPU, we increase the GPU
frequency in each sampling window to maximize soft-error
reliability if doing so does not violate the temperature con-
straint (lines 15–17). We also adjust CPU core frequencies in
a similar manner. The core’s frequencies in the sampling win-
dow with highest (lowest) temperature are reduced (increased)
if the previous schedule cannot (can) adhere to the lifetime
reliability constraint (lines 19–33). After tuning the schedule
in the previous profiling window, a new schedule for the next
profiling window is generated (line 34). The complexity of
Algorithm 3 is O(m × n + n), where m is the number of CPU
cores and n is the number of sampling windows in a profiling
window.

D. Executor

The executor sets the frequencies of CPU and GPU cores
at the beginning of each sampling window. A straightforward
approach is to simply follow the schedule generated by the
frequency governor. However, this schedule is generated based
on the past system state and the workload of tasks may vary
at the run time. Hence, this schedule may actually violate
some or all of the constraints. For soft real-time systems, it
is acceptable to temporarily violate constraints (7) and (8),
as this can be compensated for in the next profiling window.
However, violating the temperature constraint in (5) and (6)
may cause thermal throttling. Therefore, the executor should
be designed properly to handle this case. We statically estab-
lish a safe initial temperature for every core frequency [33].
At the beginning of each sampling window, the executor only
needs to determine whether the initial temperature exceeds the
constrain. If so, the temperature of this sampling window may
be larger than the thermal threshold, so we need to reduce the
core frequency in this sampling window [33]. We can statically
establish the safe initial temperature, so the time complexity
of executor is O(1).

VIII. EXPERIMENTAL SETUP

We conducted the experiments comparing HyFRO with
existing approaches. In this section, we present the exist-
ing approaches, experimental platforms, and workloads in the
experiments.

A. Comparison Targets

We compared our framework with two representative
approaches: 1) the dynamic reliability improvement framework
(DRI) [33] and 2) multiobjective optimization of reliability
(MOO) [10]. Similar to HyFRO, DRI dynamically scales core
frequencies to improve soft-error reliability under tempera-
ture, real-time, and lifetime reliability constraints. However,
the additional CPU times of GPU tasks are ignored and task
migration is not allowed at run time. MOO maximizes the
minimum of soft-error reliability and lifetime reliability by
statically determining the frequencies of CPU cores [10]. Since
both DRI and MOO ignore GPU reliability requirements, they
use the default strategies deployed in the OS to scale the GPU
frequency.

Three metrics are considered in the comparison. The prob-
ability of failures (PoFs) due to soft errors quantifies the
soft-error reliability. The PoF is defined as 1 − R, where
R is the system-level soft-error reliability defined in (3).
Approaches achieving lower PoFs achieve higher soft-error
reliabilities. The percentage of feasible solutions under the
real-time constraints (FS-RT) is used to describe the probabil-
ity of satisfying real-time constraints. Based on the concept of
job, i.e., a task instance, the percentage of FS-RT is quantified
as the ratio of the number of jobs meeting their deadlines over
the total number of jobs. Similarly, the percentage of feasible
solutions for lifetime reliability constraint (FS-LTR) describes
the capability of satisfying lifetime reliability requirements.
FS-LTR is the ratio of the number of profiling windows
achieving a higher lifetime reliability than the lifetime reli-
ability constraint over the total number of profiling windows.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

2226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Meanwhile, we set one profiling window to contain 50 sam-
pling windows. The length of each sampling window is 1 s.
Similar to our previous work [47], a thermal profile with
50 temperature points (sampling one temperature point per
sampling window) is long enough to analyze the effect of TC.

B. Experimental Platforms

The experiments were conducted on two boards containing
Nvidia’s TK1 [26] and TX2 [27] chips. The TX2 contains
two Denver [48] cores and four ARM Cortex-A57 cores. We
implemented HyFRO on user space and deployed it on one
Denver core. Tasks, OS, and I/O services are executed on
ARM cores. TX2 also contains a Pascal architecture-based
GPU that is highly power efficient and supports most mod-
ern graphics APIs. As a low-power chip, the CPU supports
multiple frequencies from 0.35 GHz to 2.04 GHz, and the GPU
frequency ranges from 0.83 GHz to 1.30 GHz. Thermal sen-
sors are used to sample temperatures of the CPU, GPU, and
other components. Since the default interface only provides
one CPU temperature for all CPU cores, we assume all CPU
cores have the same temperature. TX2 is shipped with an OS
based on Ubuntu and is capable of executing some widely
used benchmarks.

The TK1 provides four homogeneous high-performance
CPU cores5 and contains a Kepler architecture based GPU.
These four CPU cores must share the same voltage and
frequency. We use all CPU cores to execute tasks as well
as HyFRO. TK1’s CPU supports multiple frequencies from
1.32 GHz to 2.32 GHz, and its GPU can work from 0.25 GHz
to 0.54 GHz. Similar to TX2, we obtain CPU and GPU oper-
ating temperatures by reading thermal sensors and assuming
all CPU cores have the same temperature.

C. Workloads

We now discuss the task set used in the experiments.
We selected six tasks from multiple benchmark suites:
MiBench [43], CUDA samples [37], and Rodinia [38] (see
Table III).6 Tasks VectorAdd, MatrixMul, Backprop, and
Gaussian are CUDA tasks and rely on the OS. CRC and
Dijkstra only use the CPU. We measured the CPU and GPU
times of these tasks on TX2’s ARM core at 2.04 GHz and GPU
at 1.30 GHz. The measured execution time and additional CPU
time will be used by the task mapper in Algorithm 1. In the
experiments, the jobs of each task are periodically released,
and a job missing its deadline is immediately terminated.
Considering the different real-time requirements, we designed
two groups of task setups. In the first group, tasks are frame-
based and share the same period and deadline. We evaluated
HyFRO when the deadlines are 0.50, 0.75, 1.00, and 1.25 s. In
the second group, a task’s deadline and period are randomly
selected from the following ranges: 0.50–0.75 s, 0.75 –1.00 s,
and 1.00 –1.25 s.

5TK1 also has a low-power CPU core, but it cannot run simultaneously
with the high-performance cores. Hence, in the experiments, the low-power
CPU core is powered off.

6Note that we do not use all cores to execute more tasks. One reason is for
the memory limit. The other reason is to avoid the overhead of GPU whose
resources are shared by all tasks.

Fig. 8. Probabilities of failures due to soft errors and percentages of feasible
solutions for frame-based tasks running on TX2.

Fig. 9. Probabilities of failures due to soft errors and percentages of feasible
solutions for general periodic tasks running on TX2.

IX. EXPERIMENTAL RESULTS

In this section, we compare HyFRO with DRI and MOO.

A. Experiments on Nvidia’s TX2 Chip

We first validated our approach on Nvidia’s TX2 chip whose
GPU can work at a high frequency. We compared HyFRO with
MOO and DRI to determine whether HyFRO can improve soft-
error reliability without violating temperature, real-time, and
lifetime reliability constraints.

Fig. 8 illustrates the experimental results when tasks are
frame-based. As can be seen, HyFRO achieves lower PoFs
than both DRI and MOO for all considered periods. The PoFs
of HyFRO are 2×10−6, 1.6×10−6, 1.1×10−6, and 9.4×10−7

when the periods are 0.50, 0.75, 1.00, and 1.25 s. The achieved
PoFs indicate that the system can work without soft errors
about 5.8 days, 7.4 days, 10.2 days, and 12.3 days. In contrast
with DRI, HyFRO dynamically migrates the tasks among CPU
cores and scales GPU core frequencies, which represents CPU
and GPU executing at high frequencies and reducing soft error
rates. Our experimental results show that the PoFs of HyFRO
is 19.10%, 21.14%, 19.48%, and 20.08% of DRI. With DRI,
the time that the system can run without soft errors is only
1.1 days, 1.6 days, 2.0 days, and 2.5 days when the period is
0.50 s, 0.75 s, 1.00 s, and 1.25 s, respectively. Similarly, the

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2227

TABLE III
TASKS IN EXPERIMENTS

PoF of HyFRO is only 19.11%, 21.17%, 19.45%, and 19.89%
of MOO. It means that HyFRO can make the system can run
4.7 days, 5.8 days, 8.2 days, and 9.9 days longer than MOO. In
addition, since all these approaches consider real-time and
lifetime reliability constraints, the percentages of FS-RT and
FS-LTR are HyFRO, DRI, and MOO are close.

We also evaluated HyFRO on implicit deadline periodic
tasks with randomly generated periods (see Fig. 9). The PoF of
HyFRO is 1.6×10−6, 1.2×10−6, and 1.0×10−6 when periods
of 0.50 –0.75 s, 0.75 –1.00 s, and 1.00 –1.25 s. This indicates
that the system can work without soft errors about 7.0 days,
9.6 days, and 11.4 days. The average PoF of HyFRO is 19%
of DRI, which translates to HyFRO allowing the system to
successfully work for 7.5 days longer on average, and 5.7 days
longer, in the worst case. Similarly, the average PoF of HyFRO
is 16% of MOO, and HyFRO allows the system to successfully
work for 7.8 days longer on average, and 6.0 days longer, in
the worst case. In contrast to HyFRO, both DRI and MOO use
Linux’s default power management strategy to control the core
frequency of the GPU. With this strategy, the GPU frequency
increases only when the workload is heavy. However, in our
experiments, the GPU workload is not heavy, so the GPU
frequency is generally low. On the contrary, HyFRO increases
core frequency but still honor the peak temperature constraint.
Compared to DRI and MOO, HyFRO achieves a similar per-
centage of FS-RT when the workload is light and a higher
one when the workload is heavy. Although the FS-LTR for
HyFRO is 2% lower than DRI and MOO when the workload is
light, the impact on lifetime reliability can be ignored since it
is compensated for in the next profiling window.

We also measured the time and power consumption of
HyFRO. HyFRO generally scales core frequencies once per
second, and this imposes less than 1 ms of overhead. Hence,
we claim that the time overhead and power consumption of
HyFRO can be ignored.

B. Experiments on Nvidia’s TK1 Chip

We conducted the experiments on TK1 chip to evaluate
the performance of HyFRO. The GPU in TK1 has a differ-
ent microarchitecture from the TX2 and runs CUDA 6.5. This
experiment is used to determine whether the effectiveness of
HyFRO is independent of hardware platform.

Similar to the experiments on TX2, we tested HyFRO for
1) frame-based tasks (see Fig. 10) and 2) general periodic
tasks (see Fig. 11). For the frame-based task set, the PoF of
HyFRO is 4.8×10−6, 3.5×10−6, 2.9×10−6, and 1.9×10−6

for periods of 0.50 , 0.75 , 1.00 , and 1.25 s. This indicates that
the system can work without soft errors for 2.4 days, 3.3 days,
4.1 days, and 6.1 days. Compared to DRI, the PoF of HyFRO
is 0.15%, 0.16%, 0.18%, and 0.15% of DRI when the period

Fig. 10. Probabilities of failures due to soft errors and percentages of feasible
solutions for frame-based tasks running on TK1.

Fig. 11. Probabilities of failures due to soft errors and percentages of feasible
solutions for general periodic tasks running on TK1.

is 0.50 , 0.75 , 1.00 , and 1.25 s. In other words, DRI can only
make the system successfully run 0.08 , 0.13 , 0.17 , and 0.22 h.
Compared to Fig. 8, the soft-error reliability improvement of
HyFRO is much longer. The TK1 has a larger range of GPU
core frequencies with the highest being double to the low-
est. In this situation, HyFRO reduces the soft-error rate more.
Compared to MOO, the PoF of HyFRO is 0.18% of MOO at
most, and 0.16% on average. This leads to a system that can
run 3.9 days longer than MOO on average and up to 6.1 days. In
terms of satisfying the real-time and lifetime reliability con-
straints, HyFRO achieves similar percentages of FS-RT and
FS-LTR to both DRI and MOO.

Fig. 11 shows the performance of HyFRO when running
periodic tasks with randomly generated periods. The PoF of
HyFRO is about 0.16%, 0.18%, and 0.17% of DRI for task
periods of ranges 0.50 –0.75 s, 0.75 –1.00 s, and 1.00 –1.25 s.
This indicates that HyFRO allows the system to function
4.0 days more than DRI on average, and up to 5.4 days.
Meanwhile, the soft-error reliability improvement of HyFRO
over MOO is similar to that over DRI. The time overhead and
power consumption of HyFRO on TK1 are also too small to
be observed. In summary, the above experiments confirm that
HyFRO is better of improving the soft-error reliability in all
considered cases.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

2228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

X. CONCLUSION

In this article, we aimed to improve the reliability of
real-time embedded systems on integrated CPU and GPU plat-
forms. We observed that the tasks CPU execution times may
vary with task-to-core mappings. Based on this observation,
we first extended the real-time task model by considering
the dependencies among tasks, the OS, and I/O services.
We then described a hybrid soft-error reliability improvement
framework that considers temperature, real-time, and lifetime
reliability constraints. We described an off-line mapping policy
to reduce the total utilization of cores and improve soft-
error reliability. We also described an on-line component that
dynamically migrates tasks to achieve a higher lifetime relia-
bility and adjusts the frequencies of CPU and GPU cores to
improve soft-error reliability. The experimental results show
that our approach increases the soft-error reliability with-
out violating temperature, real-time, and lifetime reliability
constraints.

XI. FUTURE WORKS

In the future, we plan to extend our measurements in
Section IV by experimenting with additional GPU frequencies
and hardware platforms. We also plan to establish a concrete
method to model the impact of assign decisions on CPU and
GPU times.

REFERENCES

[1] Z. Li, Y. Wang, T. Zhi, and T. Chen, “A survey of neural network
accelerators,” Front. Comput. Sci., vol. 11, no. 5, pp. 746–761, Jan. 2017.

[2] Nvidia Metropolis—The Foundation for Smart Cities, Nvidia,
Santa Clara, CA, USA, 2018. Accessed: Oct. 2018. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-
analytics-platform/

[3] CUDA DRIVE Software, Nvidia, Santa Clara, CA,
USA, 2019. Accessed: Apr. 2019. [Online]. Available:
https://developer.nvidia.com/drive/drive-software

[4] J. McLeish. (2018). Autonomous Vehicles Electronics: Reliability
Challenges and Solutions. Accessed: Oct. 2018. [Online]. Available:
https://www.dfrsolutions.com/autonomous

[5] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-time
embedded applications under hard energy constraint,” IEEE Trans. Ind.
Informat., vol. 6, no. 3, pp. 316–328, May 2010.

[6] B. Zhao, H. Aydin, and D. Zhu, “Reliability-aware dynamic voltage
scaling for energy-constrained real-time embedded systems,” in Proc.
Int. Conf. Comput. Design, Oct. 2008, pp. 633–639.

[7] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power
management through shared recovery technology,” in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2009, pp. 63–70.

[8] M. Fan, Q. Han, S. Liu, and G. Quan, “On-line reliability-aware dynamic
power management for real-time systems,” in Proc. Int. Symp. Qual.
Electron. Design, Santa Clara, CA, USA, Mar. 2015, pp. 361–365.

[9] B. Zhao, H. Aydin, and D. Zhu, “Generalized reliability-oriented energy
management for real-time embedded applications,” in Proc. Design
Autom. Conf., Jun. 2011, pp. 381–386.

[10] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined
DVFS and mapping exploration for lifetime and soft-error susceptibil-
ity improvement in MPSoCs,” in Proc. Design Autom. Test Europe,
Dresden, Germany, Mar. 2014, pp. 1–6.

[11] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving reliability for
real-time systems through dynamic recovery,” in Proc. Design Autom.
Test Europe, Dresden, Germany, Mar. 2018, pp. 515–520.

[12] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task alloca-
tion and scheduling on MPSoC platform,” in Proc. Design Autom. Test
Europe, Nice, France, Mar. 2009, pp. 51–56.

[13] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and
B. Veeravalli, “Run-time mapping for reliable many-cores based
on energy/performance trade-offs,” in Proc. Design Autom. Conf.,
Jun. 2013, pp. 58–64.

[14] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained applica-
tions on multimedia MPSoCs,” in Proc. Design Autom. Test Europe,
Mar. 2014, pp. 1–6.

[15] A. Das, R. Shafik, G. V. Merrett, B. Al-Hashimi, A. Kumar, and
B. Veeravalli, “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems,”
in Proc. Design Autom. Conf., San Francisco, CA, USA, Jun. 2014,
pp. 1–6.

[16] J. Zhou et al., “Resource management for improving soft-error
and lifetime reliability of real-time MPSoCs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., to be published.
doi: 10.1109/TCAD.2018.2883993.

[17] Y. Ma, J. Zhou, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu, “On-line
resource management for improving reliability of real-time systems on
‘Big–little’ type MPSoCs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., to be published. doi: 10.1109/TCAD.2018.2883990.

[18] J. Zhou, X. S. Hu, Y. Ma, J. Sun, T. Wei, and S. Hu, “Improving
availability of multicore real-time systems suffering both perma-
nent and transient faults,” IEEE Trans. Comput., to be published.
doi: 10.1109/TC.2019.2935042.

[19] J. Tan, N. Goswami, T. Li, and F. Xu, “Analyzing soft-error vulner-
ability on GPGPU microarchitecture,” in Proc. Int. Symp. Workload
Characterization, Austin, TX, USA, Nov. 2009, pp. 226–235.

[20] D. J. Palframan, N. Kim, and M. H. Lipasti, “Precision-aware soft error
protection for GPUs,” in Proc. Int. Symp. High Perform. Comput. Archit.,
Orlando, FL, USA, Feb. 2014, pp. 49–59.

[21] J. Tan, Z. Li, and X. Fu, “Soft-error reliability and power co-optimization
for GPGPUs register file using resistive memory,” in Proc. Design
Autom. Test Europe, Grenoble, France, Mar. 2015, pp. 369–374.

[22] H. Lee, H. Chen, and M. A. Al Faruque, “PAIS: Parallelization aware
instruction scheduling for improving soft-error reliability of GPU-based
systems,” in Proc. Design Autom. Test Europe, Dresden, Germany,
Mar. 2016, pp. 1568–1573.

[23] M. Namaki-Shoushtari, A. Rahimi, N. Dutt, P. Gupta, and R. Gupta,
“ARGO: Aging-aware GPGPU register file allocation,” in Proc. Int.
Conf. Hardw./Softw. Codesign Syst. Synth., Montreal, QC, Canada,
Oct. 2013, pp. 1–9.

[24] A. Rahimi, L. Benini, and R. K. Gupta, “Aging-aware compiler-directed
VLIW assignment for GPGPU architectures,” in Proc. Design Autom.
Conf., Austin, TX, USA, May 2013, pp. 16–21.

[25] H. Lee, M. Shafique, and M. A. Faruque, “Low-overhead aging-aware
resource management on embedded GPUs,” in Proc. Design Autom.
Conf., Jun. 2017, pp. 1–6.

[26] Jetson Tegra K1, Nvidia, Santa Clara, CA, USA,
2018. Accessed: Oct. 2018. [Online]. Available:
https://developer.nvidia.com/embedded/develop/hardware

[27] Jetson Tegra X2, Nvidia, Santa Clara, CA, USA,
2018. Accessed: Oct. 2018. [Online]. Available:
https://developer.nvidia.com/embedded/buy/jetson-tx2

[28] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware memory
controller for dynamically balancing GPU and CPU bandwidth use in
an MPSoC,” in Proc. Design Autom. Conf., Jun. 2012, pp. 1–6.

[29] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU–GPU
power management for 3D mobile games,” in Proc. Design Autom.
Conf., San Francisco, CA, USA, Jun. 2014, pp. 1–6.

[30] A. Prakash, H. Amrouch, M. Shafique, and J. Henkel, “Improving
mobile gaming performance through cooperative CPU–GPU thermal
management,” in Proc. Design Autom. Conf., Jun. 2016, pp. 1–6.

[31] S. Wang, G. Ananthanarayanan, and T. Mitra, “OPTiC: Optimizing
collaborative CPU–GPU computing on mobile devices with thermal
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 3, pp. 393–406, Mar. 2019.

[32] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-
error reliability to improve system availability,” in Proc. Asia South Pac.
Design Autom. Conf., Macau, China, Jan. 2016, pp. 685–690.

[33] Y. Ma, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu, “An on-line
framework for improving reliability of real-time systems on ‘big-little’
type MPSoCs,” in Proc. Design Autom. Test Europe, Mar. 2017, pp. 1–6.

[34] P. Mercati et al., “Multi-variable dynamic power management for the
GPU subsystem,” in Proc. Design Autom. Conf., Jun. 2017, pp. 1–6.

[35] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[36] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in Proc. Int. Symp. Comp.
Archit., Jun. 2004, pp. 276–287.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2018.2883993
http://dx.doi.org/10.1109/TCAD.2018.2883990
http://dx.doi.org/10.1109/TC.2019.2935042

MA et al.: IMPROVING RELIABILITY OF SOFT REAL-TIME EMBEDDED SYSTEMS ON INTEGRATED CPU AND GPU PLATFORMS 2229

[37] CUDA Samples, Nvidia, Santa Clara, CA, USA, 2018. Accessed:
Oct. 2018. [Online]. Available: http://docs.nvidia.com/cuda/cuda-
samples/index.html

[38] Rodinia: Accelerating Compute-Intensive Applications With
Accelerators, Univ. Virginia, Charlottesville, VA, USA, 2018. Accessed:
Oct. 2018. [Online]. Available: https://rodinia.cs.virginia.edu

[39] J. Redmon, D. Santosh, G. Ross, and F. Ali, “You only look once:
Unified, real-time object detection,” in Proc. Comput. Vis. Pattern
Recognit., Jun. 2016, pp. 779–788.

[40] S. Hare et al., “Struck: Structured output tracking with kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 550–561,
Oct. 2016.

[41] Profiler—CUDA Toolkit Documentation, Nvidia, Santa Clara,
CA, USA, 2018. Accessed: Oct. 2018. [Online]. Available:
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

[42] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based
approach for predictable GPU access control,” in Proc. Int. Conf. Real
Time Comput. Syst. Appl., Aug. 2017, pp. 1–10.

[43] Mibench Version 1.0, Elect. Eng. Comput. Sci. Dept., Univ. Michigan,
Ann Arbor, MI, USA, 2018. Accessed: Oct. 2018. [Online]. Available:
http://vhosts.eecs.umich.edu/mibench

[44] Nvidia Automotive Driving Innovation, Nvidia, Santa Clara,
CA, USA, 2018. Accessed: Oct. 2018. http://www.nvidia.com/
content/tegra/automotive/pdf/automotive-brochure-web.pdf

[45] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing multicore
reliability through wear compensation in online assignment and schedul-
ing,” in Proc. Design Autom. Test Europe, Mar. 2013, pp. 1373–1378.

[46] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-
level reliability modeling for MPSoCs,” in Proc. Int. Conf. Hardw./Softw.
Codesign Syst. Synth., Oct. 2010, pp. 297–306.

[47] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving system-level
lifetime reliability of multicore soft real-time systems,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 6, pp. 1895–1905,
Jun. 2017.

[48] Nvidia Jetson TX2 Delivers Twice the Intelligence to the Edge, Nvidia
Develop. Blog, Santa Clara, CA, USA, 2018. Accessed: Oct. 2018.
[Online]. Available: https://devblogs.nvidia.com/parallelforall/jetson-
tx2-delivers-twice-intelligence-edge/

Yue Ma (S’16) received the B.S. degree from
the Chengdu University of Technology, Chengdu,
China, and the M.S. degree from the University
of Electronic Science and Technology of China,
Chengdu. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, University of Notre Dame,
Notre Dame, IN, USA.

His current research interests include real-
time embedded systems, reliable system design,
power efficiency, and temperature-aware resource
management.

Junlong Zhou (S’15–M’17) received the Ph.D.
degree in computer science from East China Normal
University, Shanghai, China, in 2017.

He was a Visiting Scholar with the University
of Notre Dame, Notre Dame, IN, USA, from
2014 to 2015. He is currently an Assistant
Professor with the School of Computer Science
and Engineering, Nanjing University of Science and
Technology, Nanjing, China. His current research
interests include embedded systems and cyber phys-
ical systems.

Dr. Zhou has been an Associate Editor of the Journal of Circuits, Systems,
and Computers, and serves as a Guest Editor for several special issues of
ACM Transactions on Cyber-Physical Systems, IET Cyber-Physical Systems:
Theory & Applications, and the Journal of Systems Architecture: Embedded
Software Design (Elsevier).

Thidapat Chantem (S’05–M’11–SM’18) received
the bachelor’s degree from Iowa State University,
Ames, IA, USA, in 2005, and the master’s and
Ph.D. degrees from the University of Notre Dame,
Notre Dame, IN, USA, in 2011.

She is an Assistant Professor of electrical
and computer engineering with Virginia Tech,
Blacksburg, VA, USA. Her current research interests
include real-time embedded systems, energy-aware
and thermal-aware system-level design, cyber-
physical system design, and intelligent transportation
systems.

Robert P. Dick (S’95–M’02) received the B.S.
degree from Clarkson University, Potsdam, NY,
USA, in 1996 and the Ph.D. degree from Princeton
University, Princeton, NJ, USA, in 2002.

He is an Associate Professor of electrical engi-
neering and computer science with the University
of Michigan, Ann Arbor, MI, USA. He was a
Visiting Professor with the Department of Electronic
Engineering, Tsinghua University, Beijing, China,
in 2002; a Visiting Researcher with NEC Labs
America, Irving, TX, USA, in 1999; and was on

the faculty with Northwestern University, Evanston, IL, USA, from 2003 to
2008. He was also the CEO of the Stryd, Inc., Boulder, CO, USA, which
produces wearable electronics for athletes.

Dr. Dick was a recipient of the NSF CAREER Award and his department’s
Best Teacher of the Year Award in 2004. In 2007, his technology won a
Computerworld Horizon Award and his paper was selected as one of the 30
in a special collection of DATE papers appearing during the past 10 years.
His 2010 research has won a Best Paper Award at DATE. He served as the
Technical Program Committee Co-Chair of the 2011 International Conference
on Hardware/Software Codesign and System Synthesis, as an Associate
Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS, and as a Guest Editor for the ACM Transactions on
Embedded Computing Systems and IEEE DESIGN & TEST OF COMPUTERS.

Shige Wang (S’02–M’05–SM’11) received the
Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2004.

He is a Staff Research Scientist with General
Motors Research and Development, Warren, MI,
USA. His current research interests include system
modeling and analysis, software architecture for par-
allel processing in automated driving systems, and
embedded real-time control systems.

Xiaobo Sharon Hu (S’85–M’89–SM’02–F’16)
received the B.S. degree from Tianjin University,
Tianjin, China, the M.S. degree from the Polytechnic
Institute of New York, New York, NY, USA,
and the Ph.D. degree from Purdue University,
West Lafayette, IN, USA.

She is Professor with the Department of Computer
Science and Engineering, University of Notre Dame,
Notre Dame, IN, USA. Her current research interests
include real-time embedded systems, low-power
system design, and computing with emerging tech-

nologies. She has published over 250 papers in the above areas.
Prof. Hu was a recipient of the NSF CAREER Award in 1997, the Best

Paper Award from Design Automation Conference, in 2001, and the IEEE
Symposium on Nanoscale Architectures, in 2009. She served as an Associate
Editor for the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS, the ACM Transactions on Design Automation of Electronic
Systems, and the ACM Transactions on Embedded Computing. She is the
Program Chair of 2016 Design Automation Conference (DAC) and the TPC
Co-Chair of 2014 and 2015 DAC.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 23:46:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

