
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017 1895

Improving System-Level Lifetime Reliability
of Multicore Soft Real-Time Systems

Yue Ma, Student Member, IEEE, Thidapat Chantem, Member, IEEE, Robert P. Dick, Member, IEEE,
and Xiaobo Sharon Hu, Fellow, IEEE

Abstract— This paper studies the problem of maximizing
multicore system lifetime reliability, an important design con-
sideration for many real-time embedded systems. Existing work
has investigated the problem, but has neglected important failure
mechanisms. Furthermore, most existing algorithms are too slow
for online use, and thus cannot address runtime workload and
environment variations. This paper presents an online framework
that maximizes system lifetime reliability through reliability-
aware utilization control. It focuses on homogeneous multicore
soft real-time systems. It selectively employs a comprehensive
reliability estimation tool to deal with a variety of failure mech-
anisms at the system level. A model-predictive controller adjusts
utilization by manipulating core frequencies, thereby reducing
temperature, and an online heuristic adjusts the controller sam-
pling window length to decrease the reliability effects of thermal
cycling. Experiments with a real quad-core ARM processor and
a simulator demonstrate that the proposed approach improves
system mean time to failure by 50% on average and 141% in
the best case, compared with existing techniques.

Index Terms— Dynamic voltage and frequency scaling (DVFS),
online control, real-time embedded system, system-level reliability
optimization.

I. INTRODUCTION

MULTICORE systems offer good performance with
reasonable power consumption and are widely used in

many real-time applications such as automotive electronics,
industrial automation, and avionics. Ongoing increases
in device densities and operating frequencies increase
microprocessor power density and temperature. This increased
chip temperature accelerates the aging of devices, resulting
in permanent faults and reducing operating lifespans. Many
embedded systems, e.g., automotive infotainment, operate in
environments with varying temperatures, as well as varying
task execution times and task periods. Online reliability
optimization approaches have advantages for such systems.

System reliability is related to the reliability of each tran-
sistor, the number of transistors, the distribution of permanent
failures, and the mechanisms of failure propagation [1]. For a

Manuscript received August 29, 2016; revised December 8, 2016; accepted
January 22, 2017. Date of publication March 10, 2017; date of current
version May 22, 2017. This work was supported in part by NSF under
Award CNS-1319904, Award CNS-1319718, and Award CNS-1319784 and
in part by the Sandia National Laboratory.

Y. Ma and X. S. Hu are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
yma1@nd.edu; shu@nd.edu).

T. Chantem is with the Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Arlington, VA 22203 USA
(e-mail: tchantem@vt.edu).

R. P. Dick is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: dickrp@umich.edu).

Digital Object Identifier 10.1109/TVLSI.2017.2669144

given transistor, lifetime is temperature dependent. In general,
a higher temperature increases the effects of the gradual dis-
placement and mass transportation of the atoms in metal wires,
and the deterioration of the gate dielectric layer. Changes in
temperature over time also influence reliability. When inte-
grated circuit (IC) materials with differing thermal expansion
coefficients abut, thermal fluctuation produces mechanical
stress, which leads to failures [2]. Reliability modeling and
optimization techniques should consider these divergent wear
processes.

Most existing work on temperature management focuses
on improving lifetime reliability by minimizing chip’s peak
temperature [3]–[6] or increasing the quality of service
given a temperature constraint [7]–[10]. However, minimiz-
ing peak temperature sometimes implies increasing thermal
cycling (TC), so it may, or may not, have a net positive
impact on reliability [11]. The lifetime reliability maximization
problem has its own unique characteristics and requires an in-
depth analysis of the temporal temperature profile, including
its peaks and valleys.

There exist several efforts that directly address increasing
lifetime reliability, measured by mean time to failure (MTTF),
via task mapping, scheduling [12]–[15], and dynamic voltage
and frequency scaling (DVFS) [16], [17]. However, the
complexity of the reliability and thermal models (often
based on Monte Carlo simulations [1], [18]–[20]) results
in high execution overheads, making them impractical for
online use. In order to reduce overhead, a common strategy
is to use device-level MTTF model to directly replace the
system-level model [12]–[15], [21]. This, however, is a
potentially inaccurate approximation as the temporal fault
distributions of individual devices and million-device systems
differ greatly. Only system-level models can accurately
determine system-level MTTF.

In this paper, we introduce an online framework called
reliability-aware utilization control (RUC) to improve the
lifetime reliability in the presence of wear caused by failure
mechanisms that strongly depend on temperature and tempera-
ture variation, such as electromigration (EM), time-dependent
dielectric breakdown (TDDB), stress migration (SM), and
TC. We pay special attention to reducing the complexity of
reliability control and lifetime reliability estimation, enabling
online in-system reliability estimation. Our main contributions
are as follows.

1) Based on the observation that increasing utilization via
decreasing core frequencies reduces core temperature,
we designed a model-predictive controller (MPC) that

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

1896 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

keeps system utilization at a desired value called the
utilization set point. Our MPC algorithm incorporates
various design considerations including real-time con-
straints and MTTF dependency on peak temperature and
load balancing.

2) We developed a heuristic algorithm to dynamically
adjust the sampling window length of the MPC, thereby
influencing: a) system reliability via peak temperature
and TC and b) the MPC computational overhead. Our
heuristic algorithm adjusts sampling window length to
balance these considerations.

3) We implemented our online framework both in a simu-
lation environment and on a hardware board (NVidia’s
Jetson TK1 board containing a Tegra K1 (TK1)
processor with four Cortex-A15 ARM cores [22]).
The simulator’s parameters are calibrated based on the
measurement from TK1 board.

We conducted a large set of experiments on the hardware board
and the simulator to validate our approach and compared it
with two existing control methods: temperature-aware (TA)
and utilization control (UC). For ten MiBench bench-
marks [23], RUC improves MTTF by 50% on average and by
up to 141% for processors with high power density. Improve-
ments are small for very low power density processors.

The rest of this paper is organized as follows. We review
related work in Section II. Section III introduces hardware
and software models and describes the system-level reliability
model. Section IV formulates the problem and provides an
overview of the RUC framework. Section V describes RUC
in detail. Sections VI and VII describe our experimental setup
and results. Section VIII concludes this paper.

II. RELATED WORK

Researchers have modeled system lifetime reliability in
several ways. An architecture-level model was designed to
calculate a processor’s lifetime due to EM, SM, TDDB, and
TC [24]. The model was used to analyze the effects of
CMOS technology scaling on system lifetime [2]. A statistical
model and simulation methodology were used to determine
multicore system-on-chip reliability [25]. System lifetime has
also been estimated in the presence of simulated sequences of
failures [18]. A fast and accurate Monte Carlo-based modeling
framework that integrates device-, component-, and system-
level models was proposed in [1].

Several papers have described using the above models
and hardware to improve lifetime reliability through offline
optimization strategies. For periodic tasks running on a
multiprocessor system on chip (MPSoC), Huang et al. [12]
proposed an analytical model to estimate the lifetime
reliability of MPSoCs and a task mapping and scheduling
algorithm to guard against aging effects. Based on the same
model, Das et al. [14], [15] extended the work to improve
the lifetime of network on chips and also solve the energy–
reliability tradeoff problem for multimedia MPSoCs. Based
on a system-level lifetime reliability model, Zhou et al. [20]
presented a unified metric combining system-level lifetime
reliability and soft-error reliability, and maximized the
soft-error reliability under the lifetime reliability constraint.

These approaches can improve lifetime reliability but require
that tasks and their timing and power characteristics be
known at design time, and remain static. Our work supports
tasks with characteristics that are unknown at design time and
change during system operation, using DVFS as a mechanism.

Several dynamic reliability management approaches have
been developed. Hartman and Thomas [19] describe a runtime
task mapping technology to maximize system-level lifetime
reliability by utilizing wear sensors. However, wear sensors are
very frequently unavailable or inaccessible to system software.
Bolchini et al. [26] dynamically determined the most effective
mapping of tasks to minimize network-on-chip energy con-
sumption and maximize the lifetime. Mandelli et al. [27] pro-
posed a runtime distributed energy-aware mapping technique
that balances thermal distribution and improves reliability.
Bolchini et al. [28] analyzed how load distribution strategies
influence system lifetime reliability. Das et al. [21] proposed
a machine learning-based algorithm to handle inter- and intra-
application variations and reduce peak temperature and TC.
All the above work improves lifetime reliability and captures
variations in workload and runtime environments. However,
none of them use a system-level reliability model, potentially
undermining accuracy and fidelity. In this paper, we control
a core’s frequency and dynamically determine the length of
the control period to improve the system-level reliability of
real-time multicore systems.

III. MODELS

In this section, we present the hardware platform as well as
the task and reliability models used in the RUC framework.

A. Hardware Platform

We focus on homogeneous multicore systems in this paper.
Let M = {ρ1, ρ2, ..., ρm} denote the set of m cores in a given
system. Power consumption is the fundamental cause of rising
temperature and hence system failure. A core dissipates idle
power when it is idle and consumes additional active power
when it performs operations [6]. Both active and idle powers
are related to the core’s frequency. Let the utilization of a core
in a given time interval �t be U = (�ta/�t), where �ta is the
amount of time that the core executes operations [6]. Runtime
temperature can be estimated using an RC thermal modeling
tool or measured by thermal sensors. We use both thermal
sensors and Hotspot [29], an IC thermal modeling tool, in
experimental evaluations.

B. Task Model

We consider independent real-time tasks with soft deadlines.
A task that misses its deadline is immediately terminated.
Tasks are periodic and follow partitioned scheduling, i.e., they
are mapped to cores statically and no migration is allowed.
Furthermore, tasks can be arbitrarily preempted. Such an
execution model is prevalent in real-time systems since it
incurs low development cost and runtime overhead. Tasks on
each core are scheduled according to a real-time schedul-
ing policy such as earliest deadline first or rate monotonic
scheduling [30].

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING SYSTEM-LEVEL LIFETIME RELIABILITY OF MULTICORE SOFT REAL-TIME SYSTEMS 1897

Fig. 1. System MTTF dependence on thermal cycle (a) amplitude, (b) period,
and (c) peak temperature, and on (d) temperature without thermal cycles.

We use τi to denote the i th task. Since all the jobs of the
i th task have the same properties, τi also denotes the jobs of
the i th task. τi is associated with a tuple {ei , di}, where ei is
the execution time and di is the relative deadline, as well as the
period. For a given duration, hereafter referred to as sampling
window k (SWk), if core ρi ’s frequency is fixed at fi (k), its
utilization can be calculated as

Ui (k) =
∑

τ j ∈�(k)

e j

d j
=

∑

τ j ∈�(k)

e∗
j + e′

j/ f (k)

d j
(1)

where e′
j reflects the portion of job execution that is dependent

on the core’s frequency and e∗
j is the independent portion.

�(k) is the set of jobs executed in SWk .

C. System-Level Reliability

We consider four main IC failure mechanisms in this paper:
EM, TDDB, SM, and TC [24]. EM is the dislocation of metal
atoms, and TDDB is the deterioration of the gate oxide layer.
SM is caused by directionally biased motion of atoms in metal
wires. Wear due to EM, SM, and TDDB is strongly dependent
on temperature. TC refers to IC fatigue failures caused by
thermal mismatch deformation. We focus on short-term TC
in this paper, as it dramatically decreases reliability [11] and
accelerates system failure [31]. In this paper, we propose a
framework to improve system-level reliability by reducing the
effects of both temperature and TC. System-level reliability is
calculated by a system-level Monte Carlo reliability modeling
tool [1].

Wear due to EM, SM, and TDDB is exponentially dependent
on temperature. However, the wear due to TC depends on the
amplitude (e.g., the difference between the peak and valley
temperature), period, and maximum temperature of thermal
cycles. Fig. 1 summarize some system MTTF data obtained
from the system-level reliability tool with default settings [1].
Fig. 1(a)–(c) depicts the MTTF of an example system as
a function of the amplitude, period, and peak temperature
of thermal cycles, respectively. As a comparison, Fig. 1(d)
shows the system MTTF due to temperature alone without
thermal cycles. As can be seen from Fig. 1, system MTTF
generally increases at lower temperatures and with smaller
thermal cycles, but the precise relationship is complicated.

Fig. 2. Percentage error and overhead due to Monte Carlo trials.

We used a Monte Carlo simulation-based modeling tool [1]
to calculate system-level reliability [11], [32]. In Monte Carlo
simulation, numerous trials allow high accuracy but increase
computation overhead (i.e., the execution time to complete
MTTF calculation). Hence, analyzing the accuracy–overhead
tradeoff is necessary. We use the tool [1] to calculate the sys-
tem MTTF with default settings and show how the number of
Monte Carlo trials affects overhead and accuracy (see Fig. 2).
We set the total number of cycles to failure to 106, the
default of this tool, as the baseline for comparison. The
metric, percentage error, is used to quantify the accuracy.
Increasing trial count decreases speed and increases accuracy.
However, the accuracy saturates. The values in Fig. 2 are chip
dependent, but the accuracy–overhead tradeoff is more general.
Fig. 2 helps to find the most appropriate number of trials. For
example, 100 is a good choice if 0.5% error is acceptable.
Note that other techniques, e.g., importance sampling, may
be used to improve the computational efficiency of reliability
modeling if supported by the modeling tool in use.

IV. RUC FRAMEWORK

In this section, we first formulate the design problem, and
then briefly introduce how RUC solves this problem.

A. Problem Formulation

A system’s lifetime reliability is determined by its operating
temperature and thermal cycles. Given that lower frequencies
and voltages lead to higher utilizations [see (1)] but lower
temperatures, UC in a DVFS-enabled system can be used to
manage temperature. Based on this observation, we propose
to indirectly improve the system MTTF by directly controlling
system utilization.

Our goal is to minimize the deviation of the cores’ utiliza-
tion from a set point in each time interval, referred to as SW .
This concept has previously been used in controller-based

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

1898 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

resource management [33] and TA control strategies [34].
The length of SW is chosen such that a core’s temperature
can be considered constant within a sampling window. Before
formulating the UC problem, we introduce the following
notation.

• Ui (k) is the utilization of core ρi during the kth sampling
window, SWk .

• Us is the utilization set point.
• Umax is the upper bound on the utilization to ensure

schedulability.
• fi (k) is the frequency of core ρi during SWk .
• fmin and fmax are the lowest and highest core’s frequen-

cies allowed, respectively.
• f̄ (k) is the average frequency over all cores during SWk .

We aim to solve the following problem:
min

∑

ρi ∈M

(Us − Ui (k))2. (2)

The solution to (2) must satisfy these constraints

Ui (k) ≤ Umax for ρi ∈ M, (3)

− fth ≤ fi (k) − f̄ (k) ≤ fth for ρi ∈ M, and (4)

fmin ≤ fi (k) ≤ fmax for ρi ∈ M. (5)

The first constraint ensures that no cores exceed the
schedulability bound. Based on the discussion in Section III-C,
the second constraint is introduced to bound the differences
in the core frequencies, which in turn bounds the core
temperature differences. This constraint requires the
differences between each core’s frequency and the average
frequency of all cores, f̄ (k), to be smaller than a threshold fth.
The third constraint limits core frequencies.

Solving the above problem by controlling a core’s frequency
reduces operating temperature under the real-time constraints.
A shorter sampling window results in a lower temperature, but
frequently altering a core’s frequency causes more fluctuation
in operating temperature and increases the effects of TC.
We tune the length of the sampling window to balance peak
temperature and TC-dependent wear.

B. Overview of Reliability-Aware Utilization Control

Real computing systems (and especially embedded systems)
frequently operate in environments with ambient temperature
and task execution time variations that cannot be predicted
at design time, motivating us to develop an online reliability
optimization framework. This framework improves system
MTTF by solving the optimization problem defined in (2)–(5)
and dynamically tuning the length of the sampling window.

The framework, RUC, consists of two main components:
a global utilization controller (GUC) and a sampling win-
dow controller (SWC) (see Fig. 3). The GUC reduces the
peak temperature by dynamically adjusting core frequencies
to adhere to the utilization set point. The SWC minimizes
TC wear by dynamically adjusting the length of the sampling
window. We assume that each core has a utilization monitor
and a temperature sensor (TS).

At the end of the kth sampling window SWk , the utilization
and temperature of each core are measured and sent to the

Fig. 3. High-level overview of RUC.

GUC and SWC (see the solid lines in Fig. 3), respectively.
Based on the utilization, the GUC solves the optimization
problem defined in (2)–(5). The solution sets core frequencies
for the next sampling window, which are sent (see the dashed
lines in Fig. 3) to each core before the start of SWk+1. Unlike
the GUC, the SWC stores temperature history. Specifically,
the temperatures measured in the most recent s sampling
windows are saved. We refer to the s sampling windows as
one profiling window. At the end of each profiling window,
a temperature profile is generated. SWC then analyzes this
temperature profile and determines whether to increase or
reduce the sampling window length for the next profiling
window.

V. RESOURCE UTILIZATION CONTROLLER DETAILS

This section presents the detailed design of the GUC and
SWC. We introduce a new utilization model describing how a
core’s utilization changes with frequency. Based on this model,
we discuss how the GUC solves the problem defined in (2)–(5)
using a controller. Finally, we elaborate on how the heuristic
used in the SWC adjusts the length of the sampling window
dynamically at runtime to improve system MTTF.

A. Dynamic Utilization Model

In order to control utilization, we must first model it. We
use a dynamic model to determine utilization as a function of
core frequency. We first rewrite the nonlinear utilization model
in 1) in linear form

u j (k) =
∑

τi ∈�(k)

e∗
i

di
+

∑

τi ∈�(k)

e′
i

di
× Fj (k) (6)

where Fj (k) = 1/ f j (k) is the clock period, which we refer to
as the manipulated variable. The dependence of utilization on
frequency can be modeled as

u j (k + 1) = u j (k) + g j (k) × �Fj (k) (7)

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING SYSTEM-LEVEL LIFETIME RELIABILITY OF MULTICORE SOFT REAL-TIME SYSTEMS 1899

where g j (k) = ∑
τi ∈�(k)(e

′
i/di) and �Fj (k) = Fj (k + 1) −

Fj (k). Since we have m cores, we use a matrix to describe
the dynamic utilization model as

U(k + 1) = U(k) + G(k) × �F(k). (8)

G(k) is a diagonal matrix and G(k)i,i = gi(k). �F(k) =
[�F1(k), . . . ,�Fm(k)]T and U(k) = [u1(k), . . . , um(k)]T .

Although (8) indicates the behavior of utilization as a
function of the manipulated variable, it cannot be used directly
because G(k) is only known at runtime. According to feedback
control theory, if stable control can be achieved, the value
of G(k) does not affect the final result [33]. Therefore, assum-
ing that the system is stable, we can set G(k) to constant G
and rewrite (8) as

U(k + 1) = U(k) + G × �F(k). (9)

B. Global Utilization Controller Design

We solve the constrained optimization problem defined
in (2)–(5) using an MPC. The basic idea behind any MPC
is to optimize a cost function. Hence, we first find similar-
ities between the constrained optimization problem defined
in (2)–(5) and an MPC cost function optimization problem.
After this, we transform the MPC cost function optimization
problem to a standard quadratic programming problem and
solve it using existing solvers.

Inside the kth sampling window, MPC minimizes the cost
function

J (k) =
N1∑

i=1

δi [U(k + i) − ξ(k + i)]2

+
N2∑

j=1

λ j

[
1

� f (k + j − 1)

]2

(10)

where N1 is the prediction horizon and N2 is the control
horizon. δi is the tracking error weight and λ j is the
control penalty error [6]. The user-specified reference
trajectory ξ(k + i) defines the ideal trajectory along which
the utilization should converge to the set point.

Although this standard cost function in (10) is not our
proposed optimization function in (2), the solution of the
cost function is also the solution of (2). The first term in
the cost function (10) is a variation of the function in (2).
The second term in (10) minimizes the changes in the
manipulated variable and does not affect the final result of the
optimization problem. It only helps to make the control more
stable. Hence, minimizing the cost function (10) under the
constraints in (3)–(5) would also lead to an optimal solution
to the problem defined in (2)–(5).

We propose using a quadratic programming solver to solve
the optimization problem. A standard quadratic programming
problem can be written as

min
ε

{1

2
εT
ε + ζ T ε}, s.t .

⎧
⎪⎨

⎪⎩

A0 × ε ≤ b0

A1 × ε = b1

bl ≤ ε ≤ bu

(11)

where
, A0, and A1 are matrices. ζ , b0, b1, bl , and bu are
vectors, and ε denotes the change in a core’s frequency.

Since this standard quadratic programming problem can
be directly solved by existing tools, the key point in MPC
design is to transform the cost function defined in (10) and
the constraints defined in (3)–(5) to (11). Based on ε and the
core’s frequency inside SWk , the core’s frequency at SWk+1
can be directly calculated. Because the solution to (10) is
also the solution to (2), the optimal solution to the quadratic
programming problem is also the optimal solution to the
proposed optimization problem defined in (2)–(5).

We first transform the MPC cost function in (10) to the
target function in standard quadratic problem. Suppose we
have h = max{N1, N2}, then the cost function can be rewritten
as

J (k) = [Y ′(k) − �(k)]T
[Y ′(k) − �(k)] + εT �ε (12)

where Y ′(k) = [U(k + 1), . . . , U(k + h)]T and � =
[ξ(k +1), . . . , ξ(k +h)]T .
 and � are two diagonal matrices
where
i,i = δi and �i,i = λi . Based on (9)

Y ′(k) = Y (k) + � × ε (13)

where Y (k) = [U(k), . . . , U(k)]T . � is a low triangular matrix
and �i, j = G if i ≥ j and 0 otherwise. Therefore, (10) can
be simplified as

J (k) = εT (�T
� + �)ε+2(Y (k)T
�−�(k)T
�)ε+H.

(14)

H is independent of the manipulated variable ε. The cost
function is successfully transformed to the objective function
in a standard quadratic programming problem in (11), where

 = 2(�T
� + �) and ζ = 2[Y (k)T
� − �(k)T
�]T .

The next step is to transform the constraints to the standard
form. The first constraint in (3) can be described as

� × ε ≤ U∗ − Y (k) (15)

where U∗ = [Umax, . . . , Umax]T . This is a standard form
where � and U∗ − Y (k) correspond to A0 and b0 in (11),
respectively.

The second constraint in (4) enforces the even distribution of
core frequencies. The constraint on core frequencies constrains
core clock periods

−Fth ≤ Fi (k) − F̄(k) ≤ Fth (16)

where the Fth is the threshold related to fth. The clock period
of core ρi at the (k + h)th sampling window, Fi (k + h), is

�0 = �2 + �1 × ε (17)

where �1 is a block matrix where the element �1(i, j)
is a unit matrix if j ≤ i , and 0 otherwise. �0 =
[F1(k + 1), . . . , Fm(k + 1), . . . , F1(k + h), . . . , Fm (k + h)]T

and �2 = [F1(k), . . . , Fm(k), . . . , F1(k), . . . , Fm(k)]T . Based
on (16) and (17), the second constraint can be expressed as

(�3�1 − �3�5�1)ε ≤ �4 − �3�2 + �3�5�2 (18)

where �4 = [Fth, . . . , Fth,−Fth, . . . ,−Fth]T and
�3 = [E,−E]T . �5 is diagonal matrix and �5i,i = �6,
where �6 is a matrix where all elements are equal to 1/m.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

1900 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

The last constraint in (5) sets the upper and lower bounds
on core frequencies. Based on (17), it can be expressed as

�3�1ε ≤ �7 − �3�2 (19)

where �7 = [Fmax, . . . , Fmax,−Fmin, . . . ,−Fmin]T , Fmax =
(1/ fmax), and Fmin = (1/ fmin).

After the above transformations, the problem in (2)–(5) is a
standard quadratic programming problem and can be directly
solved using standard solvers, e.g., COPL_QP [35] or Python’s
package CVXOPT [36].

GUC aims to reduce the peak and average temperature
for the entire multicore chip and to balance the temperatures
across cores. Although a lower temperature tends to increase
the system MTTF, the latter also depends on the amplitudes,
periods, and peak and valley temperature of thermal cycles.
Hence, we propose an SWC to reduce the aging effect of TC.

C. Sampling Window Controller Design

We design SWC to minimize the aging effect of TC by
dynamically changing the length of the sampling window, Lsw.
Since a core’s frequency can change from one sampling
window to the next, the length of sampling window directly
impacts TC. In general, a shorter sampling window means
scaling core’s frequency more frequently, and helps to reduce
the peak temperature and amplitude of thermal cycles, but may
increase the frequency of thermal cycles.

It is difficult to precisely model how the sampling window
affects the system reliability, and the complicated reliability
model also increases the overhead of searching for the best
sampling period. Hence, to balance the impact of peak tem-
perature against that of thermal cycles on the system MTTF,
we design an efficient online heuristic based on binary search
to adjust Lsw at runtime.

Our heuristic algorithm in the SWC uses the concept of
a profiling window to adjust the Lsw. A profiling window is
composed of s equal-length sampling windows. In each profil-
ing window, the s temperature points make up a temperature
profile. At the end of the profiling window, we calculate the
system MTTF from the temporal temperature profile using
a reliability modeling tool [1]. Since this tool assumes the
input temperature profile is repeated until the chip fails, the
established temperature profile must have enough temperature
points. Although a larger s makes the calculation of system
MTTF more precise, it increases the overhead of the reliability
modeling tool. In our experimental evaluations, we find that
setting s = 50 achieves an accurate system MTTF with an
acceptable overhead. We store the history of the system MTTF
for the various length of the sampling window and rely on
binary search to find the most appropriate Lsw for the sampling
windows in the next profiling window.

To perform binary search, we need to determine the
lower and upper bounds of Lsw. We set the lower bound
of Lsw (L lb

sw) to 1 s. Since the quadratic programming solver
executes at the end of each sampling window, and the exe-
cution time of a typical solver, e.g., COPL_QP [35], is less
than 10 ms on our platform (with ARMv7 1.23 GHz), setting
L lb

sw to 1 s keeps the overhead due to the GUC under 1% of

Algorithm 1 SWC (L lb
sw,Lub

sw)

the sampling window length. To determine the upper bound
of the Lub

sw, we consider two factors. Since the GUC expects
a constant temperature in a given sampling window, the
sampling window length must be smaller than some constant,
say CHW. CHW is dependent on the hardware platform. A low
power density chip leads to a large CHW and vice versa. As
for the other factor, since thermal cycles can essentially be
avoided if the Lsw equals the hyperperiod of the periodic
task set, any length larger than the hyperperiod increases
temperature and TC. Hence, we need to consider only lengths
of the sampling window less than or equal to the hyperperiod.
As a result, we set Lub

sw = min{H P, CHW}.
The pseudocode for the SWC is given in Algorithm 1.

Lines 1 and 2 initialize the needed variables, where Lc
sw is

the length of the current sampling window. The infinite while
loop (lines 3–25) allows the algorithm to run throughout
system lifetime. At the end of each sampling window, the
temperature of each core is read from TSs (lines 5–7). At the
end of the j th profiling window (i = s), a temperature profile,
T P(j), is constructed based on the collected temperature of
the m cores in the current s sampling windows (line 10). The
corresponding MTTF, MT T Fj , is obtained using a reliability
modeling tool [1] (line 11). The Lc

sw is next determined for
the sampling windows in the upcoming profiling window
(lines 12–23). Lc

sw is set to (L lb
sw + Lub

sw)/2 at the second
sampling window (lines 12 and 13), and is then dynamically
changed based on the comparison of MTTFs (lines 15–20).
L lb

sw and Lub
sw are updated, and Lc

sw converges to the most
appropriate value. Finally, i and j are updated to indicate the
beginning of the next profiling window (line 22).

VI. EXPERIMENTAL SETUP

To evaluate the proposed RUC framework, we conducted
experiments to compare the proposed framework with two
existing approaches. In this section, we present the platforms,

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING SYSTEM-LEVEL LIFETIME RELIABILITY OF MULTICORE SOFT REAL-TIME SYSTEMS 1901

TABLE I

BENCHMARKS

benchmarks, and the existing frameworks used for comparison
in our experiments.

A. Benchmarks

A total of ten benchmarks were chosen from Mibench [23],
which include different tasks from automotive, network,
office, security, telecommunication, and consumer applica-
tions. We measured the execution times of the benchmarks on
a quad-core ARM Cortex-A15 chip, Nvidia TK1 [22], when
a core’s frequency is 1.24 GHz, and then assigned them to
appropriate cores (see Table I). Note that core 0 is reserved
for the operating system. Based on the execution time data, we
designed two groups of task setups. In the first group, tasks are
frame based and share the same period and deadline. We will
measure the system-level MTTFs when the deadline is 1.6,
1.8, 2.0, 2.2, and 2.4 s. In the second group, a task’s deadline
and period are random in the ranges 1.2–1.6, 1.6–2.0, 2.0–2.4,
and 2.4–2.8 s.

B. Comparison Targets

We compared our proposed RUC with two existing frame-
works: pure UC [33] and TA control [6], [9]. In contrast
with RUC, the length of sampling window in UC is fixed.
In general, it is set to 1 s [33]. In addition, since UC is
not designed for lifetime reliability, it does not bound the
differences in core frequencies. TA has a similar design to UC,
but the goal is to control the temperature to a specific set
point, which is lower than the maximum temperature allowed
by the chip. Hence, TA is an effective way to guarantee that
the operating temperature is safe.

Two metrics are considered in the comparison. Reliability
is quantified by the system MTTF, which is obtained using
the system-level reliability modeling tool [1]. Real-time per-
formance is quantified as the percentage of feasible solutions
(FSs), which is the ratio of the number of tasks satisfying their
real-time requirements to the total number of tasks.

C. Experimental Platforms

We conducted experiments on two platforms: an
ARMv7 chip and a simulator. The first experimental platform
is a quad-core Cortex-A15 ARM chip: Nvidia’s TK1 [22].
This Nvidia TK1 SoC is designed for mobile and automotive
applications. The quad-core ARM Cortex-A15 CPU and

Fig. 4. Temperature profile with four fully loaded cores running at the highest
frequency.

192 Kepler GPU cores provide high performance with low
power requirement. As a low-power chip, TK1 supports
12 different frequencies from 1.24] to 2.32 GHz, but all
cores are required to have the same frequency. Except for
the primary core (core 0), all cores can be powered on and
off dynamically. There are 11 thermal sensors to sample
the CPU, GPU, and other component temperatures every
50 ms. However, the default interface only provides one
CPU temperature for all CPU cores. TK1 is shipped with an
operating system based on Ubuntu 14.04 LTS. Hence, most of
desktop-level benchmarks can be directly executed on TK1.

In order to evaluate RUC on different platforms, we con-
structed a hardware platform simulator. We extracted the
parameters from TK1 to build power model. In the simulator,
the temperature is obtained using Hotspot, a thermal modeling
tool [29]. Our simulator is tested via a comparison with
the TK1.

We first obtained the parameter values for Hotspot. Since
TK1 reports only one temperature for all cores, we made
an assumption that all cores have the same thermal capac-
itance, C , and thermal resistance R. We used no fan when
measuring the temperature. The temperature profile for four
fully loaded core running at the highest frequency is shown in
Fig. 4. Note that due to power variation and other uncontrol-
lable parameters, e.g., small changes in ambient temperature,
the obtained temperature profile fluctuated slightly. In this
configuration, the chip’s power is 6.98 W [37], so R can
be estimated as 10.24 °C/W. For the same reasons, we esti-
mated C to be in the range of 2.34–7.34J/°C. The capacitance
used in Hotspot is randomly generated in this range.

Based on R and C , we determined the power model for
the simulator. Let Pact(f) be the core’s active power at fre-
quency f . Poth(f) is the power independent of core utilization
but related to core frequency. Poth(f) includes the core’s idle
power and other components’ power, e.g., GPU and memory.
The average power (P̄) can be calculated as

P̄ = U × Pact(f) + Poth(f). (20)

The values of Pact(f) and Poth(f) are extracted from the
measurement of TK1. It is difficult to measure TK1 power con-
sumption directly. Instead, we used steady-state temperatures
to determine values of Poth(f) and Pact(f). Fig. 5(a) shows the
steady-state temperature with different numbers of fully loaded
cores running at different frequencies. Fig. 5(b) depicts the

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

1902 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Fig. 5. Steady-state temperature with (a) different numbers of fully loaded
cores running at different frequencies and (b) one core running at different
frequencies and utilizations.

TABLE II

PARAMETERS IN POWER MODEL

Fig. 6. Temperature readings from thermal sensors and estimated by Hotspot
for various core frequencies.

steady-state temperatures for one core running at different fre-
quencies and utilizations. Note that since the resolution of the
thermal sensors is 0.5 °C, manipulating a core’s frequency may
not change the measured steady-state temperature, especially
when the workload is light. Based on these measurements, the
power values are derived and summarized in Table II.

In order to validate this power model, we compared the
temperature readings from the thermal sensors with those
estimated by Hotspot (see Fig. 6). As can be seen from Fig. 6,
the parameter values that we have obtained resulted in accurate
temperature estimation. The average temperature difference

Fig. 7. Normalized MTTFs with TK1 and constructed simulator with
(a) frame-based tasks and (b) tasks with random periods.

between TK1 and the simulator is less than 2 °C, and Fig. 7
shows that this small difference does not impact the system-
level MTTF. The data in Fig. 7 indicate that RUC has a similar
performance on both TK1 and the simulator. The maximum
difference is about 2%, and the average is less than 1%. These
experiments demonstrated that the parameter values that we
have obtained indeed lead to reliable accuracy of the simulator.

VII. RESOURCE UTILIZATION CONTROL EVALUATION

In this section, we examine the performance of the proposed
RUC compared with the UC and TA control approaches.

A. Experiments on the Tegra Chip

We compared the proposed RUC with UC and TA to
determine whether RUC can improve lifetime reliability with-
out sacrificing real-time performance. For RUC and UC, the
utilization set point is close to the schedulability boundary,
which was set to 70%. We used a temperature set point
of 70 °C in TA, which is lower than the peak operating
temperature.

We first studied the overhead of the solver to the
optimization problem defined in (2)–(5). If four cores are
required to have the same frequency, such as TK1 [22], a
brute-force search solver consumes less than 1 ms to find
the optimal solution. This overhead is tolerable in our RUC.
However, if cores can run at different frequencies, the
overhead of brute-force search increases to 74 ms. In this
case, brute-force search is impractical. The overhead can be
reduced if we use standard solvers, e.g., COPL_QP [35] or
CVXOPT [36]. The overhead of COPL_QP is about 4 ms
and CVXOPT is about 25 ms. Both their overheads are small,
and we can choose one of them offline.

Fig. 8 shows the experimental results when tasks are frame
based. RUC achieves a higher MTTF than UC and TA in all
the cases. Thanks to the proposed sampling window control,
when compared with UC, RUC improves the MTTF by 9.4%
on average, and up to 32%. TA keeps the runtime temperature
at 70 °C, and the corresponding MTTF is much smaller
than RUC and UC when the workload is light. RUC doubles
the MTTF when compared with TA. In terms of real-time
performance, all the tested frameworks have a large and similar
percentage of FSs. Since RUC may increase the length of the
sampling window and reduce the DVFS frequency, it may lead
to more tasks missing their deadlines. However, its percentage
of FS is only 2% smaller than TA, and also close to 100%.
In most soft real-time systems, this is tolerable [33].

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING SYSTEM-LEVEL LIFETIME RELIABILITY OF MULTICORE SOFT REAL-TIME SYSTEMS 1903

Fig. 8. Normalized MTTF and percentage of FS when tasks are frame based
and running on TK1.

Fig. 9. Normalized MTTF and percentage of FS when tasks’ periods are
random and running on TK1.

In Fig. 9, each task has the same deadline and period, which
is randomly generated in different ranges for different tasks.
The average MTTF improvement of RUC over UC is 6.4%,
and up to 9.5%. Compared with TA, this improvement
increases to over 100%. For real-time performance, RUC does
not have the highest percentage of FS, but the small loss in
number of FS does not limit its application in many soft real-
time systems.

B. Simulation Results

Leveraging the simulator, we conducted two sets of
experiments to further assess the pros and cons of RUC in
a more general setting. Tasks have been assigned to appro-
priate cores, and each task’s execution time is the average of
measured execution time on TK1 (see Table I). We extended
the simulator so that different cores can operate at different
frequencies on this simulator. In the first set of experiments,
we assumed that the chip has the same low power density
as TK1. We increased the power density in the second set of
experiments. We used the CVXOPT [36] Python package, to
solve the quadratic programming problem.

Figs. 10 and 11 depict the results of the first set of experi-
ments. Fig. 10 shows the MTTF and percentage of FS when
tasks are frame based, and Fig. 11 shows the results when
tasks’ period is randomly generated. Compared with UC, the
average improvement of RUC is 5.9% when tasks are frame
based and 6.5% when task periods are randomly generated.
As in the experiment on TK1, RUC also doubles the MTTF
when compared with TA. All three frameworks allow almost
the same number of deadlines to be met. Note that the absolute
value of the MTTF and percentages of FS could be different in
the experiments on TK1 and on the simulator. This is because
the estimated temperature and tasks’ execution times may

Fig. 10. Normalized MTTF and percentage of FS when tasks are frame
based and running on a TK1-based simulator.

Fig. 11. Normalized MTTF and percentage of FS when tasks’ periods are
random and running on a TK1-based simulator.

Fig. 12. Normalized MTTF and percentage of FS when running on a
simulator with high power density chips with (a) frame-based tasks and (b)
tasks with random periods.

differ from those on the TK1. Both of these experiments show
that RUC improves the system MTTF and also guarantees that
almost all task deadlines are met.

All the above experiments demonstrate that RUC has a
better system reliability performance. However, for a low-
power chip, different core frequencies do not lead to significant
power changes, which weakens the effect of DVFS and also
the sampling window control. For this kind of chip, the MTTF
improvement of RUC over UC is less than 32%.

In order to study the effectiveness of RUC on a high
power density chip, we used the same simulator as in the
previous experiments, but increased the chip’s power density
by 3×1 the power density. We assumed that the Connectland
1504002 heatsink [38] was used. With this heatsink, the
thermal resistance is estimated to be 7.02 J/°C, and the thermal
capacitance is in the range of 1.92–25.87 watt/°C. For RUC
and UC, we used the same CVXOPT [36] to solve the
quadratic programming problem.

The experimental results are shown in Fig. 12. In all
cases, the average improvement in MTTF by RUC is 39.5%
for frame-based tasks and 54.9% when tasks’ periods are

1Increasing the power density by 3× guarantees that the maximum operating
temperature still remains below the temperature bound.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

1904 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

random. At higher power density, reducing core frequency
dramatically reduces runtime temperature. At the same time,
frequent changes in DVFS settings introduce more temperature
fluctuations, which increases aging from TC. Hence, sampling
window control in RUC benefits lifetime reliability. RUC can
achieve a more stable temperature profile than UC, which
is one of the most important factors that positively impact
the system-level MTTF. The behaviors of RUC and UC
have similar real-time performance to that in the previous
experiments. The percentage of FS is close to 100%. RUC
allows most tasks complete before their deadlines even when
the workload is heavy.

VIII. CONCLUSION

We proposed an RUC framework to maximize the life-
time of multicore systems under soft real-time constraints.
Based on analysis of the influence of operating temperature
on TC and system-level lifetime reliability, we designed an
online framework that lowers peak temperature, balances the
temperature differences among cores, and reduces TC. Our
framework uses an MPC to reduce peak temperature by
adjusting core frequencies and voltages within each sampling
window. A heuristic was developed to dynamically adapt the
sampling window length to reduce TC and improve reliability.
We conducted experiments with different types of tasks on
multiple platforms, including a quad-core ARM chip and a
simulator, and considered chips with different power densities.
The results revealed that, on all the platforms and with a vari-
ety of task setups, our approach was effective in increasing the
lifetime of soft real-time systems compared with existing TA
and utilization control approaches.

REFERENCES

[1] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-
level reliability modeling for MPSoCs,” in Proc. 8th IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Synth., Oct. 2010, pp. 297–306.

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of
technology scaling on lifetime reliability,” in Proc. Int. Conf. Dependable
Syst. Netw., Jun. 2004, pp. 177–186.

[3] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” in Proc. 15th IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2009, pp. 131–140.

[4] H. Huang and G. Quan, “Leakage aware energy minimization for real-
time systems under the maximum temperature constraint,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2011, pp. 1–6.

[5] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware schedul-
ing and assignment for hard real-time applications on MPSoCs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10,
pp. 1884–1897, Oct. 2011.

[6] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback thermal
control of real-time systems on multicore processors,” in Proc. 10th ACM
Int. Conf. Embedded Softw., Oct. 2012, pp. 113–122.

[7] T. Chantem, X. S. Hu, and R. P. Dick, “Online work maximization
under a peak temperature constraint,” in Proc. ACM/IEEE Int. Symp.
Low Power Electron. Design, Aug. 2009, pp. 105–110.

[8] G. Quan and V. Chaturvedi, “Feasibility analysis for temperature-
constraint hard real-time periodic tasks,” IEEE Trans. Ind. Informat.,
vol. 6, no. 3, pp. 329–339, Aug. 2010.

[9] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, “Throughput
maximization for periodic real-time systems under the maximal temper-
ature constraint,” in Proc. Design, Autom. Conf., Jun. 2011, pp. 363–368.

[10] O. Sahin, P. T. Varghese, and A. K. Coskun, “Just enough is
more: Achieving sustainable performance in mobile devices under
thermal limitations,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2015, pp. 839–846.

[11] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing multicore
reliability through wear compensation in online assignment and schedul-
ing,” in Proc. Conf. Design, Autom. Test Eur., Mar. 2013, pp. 1373–1378.

[12] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation
and scheduling for MPSoC platforms,” in Proc. Design, Autom. Test Eur.
Conf. Exhibit. (DATE), Mar. 2009, pp. 51–56.

[13] L. Huang, F. Yuan, and Q. Xu, “On task allocation and scheduling
for lifetime extension of platform-based MPSoC designs,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 12, pp. 2088–2099, Dec. 2011.

[14] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task mapping
for lifetime extension of networks-on-chip based multiprocessor sys-
tems,” in Proc. Conf. Design, Autom. Test Eur., Mar. 2013, pp. 689–694.

[15] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained applications
on multimedia MPSoCs,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Mar. 2014, pp. 1–6.

[16] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini,
“A Linux-governor based dynamic reliability manager for Android
mobile devices,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Mar. 2014, pp. 1–4.

[17] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined
DVFS and mapping exploration for lifetime and soft-error susceptibility
improvement in MPSoCs,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Mar. 2014, pp. 1–6.

[18] A. S. Hartman, D. E. Thomas, and B. H. Meyer, “A case for
lifetime-aware task mapping in embedded chip multiprocessors,”
in Proc. IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Oct. 2010, pp. 145–154.

[19] A. S. Hartman and D. E. Thomas, “Lifetime improvement through
runtime wear-based task mapping,” in Proc. 8th IEEE/ACM/IFIP Int.
Conf. Hardw./Softw. Codesign Syst. Synth., Oct. 2012, pp. 13–22.

[20] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-
error reliability to improve system availability,” in Proc. 21st Asia South
Pacific Design Autom. Conf. (ASP-DAC), Jan. 2016, pp. 685–690.

[21] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and
B. Veeravalli, “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems,” in
Proc. 51st Annu. Design Autom. Conf., Jun. 2015, pp. 1–6.

[22] Nvidia. Jetson Tegra K1, accessed on Jun. 2016. [Online]. Available:
https://developer.nvidia.com/embedded/develop/hardware

[23] Electrical Engineering and Computer Science Department, University
of Michigan. Mibench, accessed on Jun. 2016. [Online]. Available:
http://vhosts.eecs.umich.edu/mibench//

[24] J. Srinivasan et al., “The case for microarchitecture awareness of lifetime
reliability,” in Proc. Int. Symp. Comp. Arch., Jun. 2004, pp. 187–276.

[25] A. K. Coskun, T. S. Rosing, Y. Leblebici, and G. De Micheli, “A simu-
lation methodology for reliability analysis in multi-core SoCs,” in Proc.
16th ACM Great Lakes Symp. VLSI, Apr. 2006, pp. 169–180.

[26] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and
B. Veeravalli, “Run-time mapping for reliable many-cores based on
energy/performance trade-offs,” in Proc. IEEE Int. Symp. Defect Fault
Tolerance VLSI Nanotechnol. Syst. (DFT), Jun. 2013, pp. 58–64.

[27] M. Mandelli, G. Castilhos, G. Sassatelli, L. Ost, and F. G. Moraes,
“A distributed energy-aware task mapping to achieve thermal balancing
and improve reliability of many-core systems,” in Proc. 28th Symp.
Integr. Circuits Syst. Design (SBCCI), Aug. 2015, pp. 1–7.

[28] C. Bolchini, L. Cassano, and A. Miele, “Lifetime-aware load distribution
policies in multi-core systems: An in-depth analysis,” in Proc. Design,
Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2016, pp. 804–809.

[29] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 94–125, 2004.

[30] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[31] V. H. Nguyen, “Multilevel interconnect reliability on the effects of
electro-thermomechanical stresses,” Ph.D. dissertation, Inst. Nanotech-
nol., Twente Univ., The Netherlands, 2004.

[32] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick, “Improving lifetime of
multicore soft real-time systems through global utilization control,” in
Proc. 25th Ed. Great Lakes Symp. VLSI, May 2015, pp. 79–82.

[33] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilization control
in distributed real-time systems with end-to-end tasks,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 6, pp. 550–561, Jun. 2005.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

MA et al.: IMPROVING SYSTEM-LEVEL LIFETIME RELIABILITY OF MULTICORE SOFT REAL-TIME SYSTEMS 1905

[34] F. Zanini, D. Atienza, L. Benini, and G. De Micheli, “Multicore thermal
management with model predictive control,” in Proc. Eur. Conf. Circuit
Theory Design (ECCTD), Aug. 2009, pp. 711–714.

[35] Computational Optimization Laboratory. Interior-Point Convex
Quadratic Programming Solver, accessed on Jun. 2016. [Online].
Available: http://web.stanford.edu/~yyye/col.html

[36] Python Software for Convex Optimization, accessed on Jun. 2016.
[Online]. Available: http://cvxopt.org

[37] Nvidia. Technical Brief of NVIDIA Jetson TK1 Development Kit, acce-
ssed on Jun. 2016. [Online]. Available: http://developer.download.
nvidia.com

[38] ConnectLand. Connectland 1504002 Heatsink, accessed on
Jun. 2016. [Online]. Available: http://uk.connectland.eu/products/
fiche/id/360/name/chipset-heatsink

Yue Ma (S’16) received the B.S. degree from the
Chengdu University of Technology, Chengdu, China,
and the M.S. degree from the University of Elec-
tronic Science and Technology of China, Chengdu.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA.

His current research interests include real-
time embedded systems, reliable system design,
power efficiency, and temperature-aware resources
management.

Thidapat Chantem (S’05–M’11) received the bach-
elor’s degree from Iowa State University, Ames, IA,
USA, in 2005, and the master’s and Ph.D. degrees
from the University of Notre Dame, Notre Dame,
IN, USA, in 2011.

She is an Assistant Professor of Electrical and
Computer Engineering at Virginia Tech, Blacksburg,
VA, USA. Her current research interests include real-
time embedded systems, energy-aware and thermal-
aware system-level design, cyber-physical system
design, and intelligent transportation systems.

Robert P. Dick (S’95–M’02) received the B.S.
degree from Clarkson University, Potsdam, NY,
USA, in 1996, and the Ph.D. degree from Princeton
University, Princeton, NJ, USA, in 2002.

He was a Visiting Researcher at the
NEC Labs, Princeton, NJ, USA, in 1999,
a Visiting Professor at the Department of
Electronic Engineering, Tsinghua University,
Beijing, China, in 2002, and was on the faculty
of Northwestern University, Evanston, IL, USA,
from 2003 to 2008. He is currently an Associate

Professor of Electrical Engineering and Computer Science at the University
of Michigan, Ann Arbor, MI, USA.

Dr. Dick was a recipient of the NSF CAREER Award and won his
department’s Best Teacher of the Year Award in 2004. In 2007, his
technology won a Computerworld Horizon Award and his paper was selected
as one of the 30 in a special collection of DATE papers appearing during the
past 10 years. His 2010 work won the Best Paper Award at DATE. He served
as the Technical Program Committee Co-Chair of the 2011 International
Conference on Hardware/Software Codesign and System Synthesis, as an
Associate Editor of the IEEE TRANSACTION ON VLSI SYSTEMS, and as a
Guest Editor of ACM Transactions on Embedded Computing Systems. He
is also the Chief Executive Officer of the Stryd, Inc., Boulder, CO, which
produces wearable electronics for athletes.

Xiaobo Sharon Hu (S’85–M’89–SM’02–F’16)
received the B.S. degree from Tianjin University,
Tianjin, China, the M.S. degree from the New York
University Tandon School of Engineering, Brooklyn,
NY, USA, and the Ph.D. degree from Purdue
University, West Lafayette, IN, USA.

She is currently a Professor with the Department
of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN, USA. She has
authored more than 250 papers in the related areas.
Her current research interests include real-time

embedded systems, low-power system design, and computing with emerging
technologies.

Dr. Hu served as an Associate Editor of the IEEE TRANSACTIONS ON
VLSI, ACM Transactions on Design Automation of Electronic Systems, and
ACM Transactions on Embedded Computing. She is the Program Chair of
the 2016 Design Automation Conference (DAC) and the TPC Co-Chair of
the 2014 and 2015 DAC. She was a recipient of the NSF CAREER Award
in 1997, and the Best Paper Award from the Design Automation Conference
in 2001 and the IEEE Symposium on Nanoscale Architectures in 2009.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2021 at 03:49:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

