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Abstract

Federated learning is generally used in tasks

where labels are readily available (e.g., next word

prediction). Relaxing this constraint requires de-

sign of unsupervised learning techniques that can

support desirable properties for federated train-

ing: robustness to statistical/systems heterogene-

ity, scalability with number of participants, and

communication efficiency. Prior work on this

topic has focused on directly extending central-

ized self-supervised learning techniques, which

are not designed to have the properties listed

above. To address this situation, we propose Or-

chestra, a novel unsupervised federated learning

technique that exploits the federation’s hierarchy

to orchestrate a distributed clustering task and en-

force a globally consistent partitioning of clients’

data into discriminable clusters. We show the al-

gorithmic pipeline in Orchestra guarantees good

generalization performance under a linear probe,

allowing it to outperform alternative techniques

in a broad range of conditions, including variation

in heterogeneity, number of clients, participation

ratio, and local epochs.

1. Introduction

Federated Learning (FL) (McMahan et al., 2017) enables

collaborative training of machine learning models while

avoiding transfer of raw data from clients to server. As

remarked by Li et al. (2019), recent work on this topic fo-

cuses on addressing the issues of statistical and systems

heterogeneity (Li et al., 2020a; Karimireddy et al., 2020;

Hsu et al., 2019; Zhao et al., 2018; Hsieh et al., 2020);

achieving scalability, privacy, and fairness for participating
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Figure 1. Robustness to Heterogeneity. We use CIFAR-10 and

100 clients to compare our proposed method (Orchestra) against

federated versions of centralized SSL techniques (Chen et al.,

2020; Chen & He, 2021; HaoChen et al., 2021; Grill et al., 2020).

Under the linear probe protocol (Chen et al., 2020), we see that

these direct extension methods are sensitive to heterogeneity, while

Orchestra remains robust and achieves better absolute accuracy.

clients (Charles et al., 2021; Bonawitz et al., 2017; Li et al.,

2020b; 2021b; Smith et al., 2017); and improving commu-

nication efficiency (Acar et al., 2021; Konečný et al., 2016;

Reddi et al., 2021; Lai et al., 2021). However, existing FL al-

gorithms generally assume a participating client holds high

quality labels that can be used for gradient-based local train-

ing (McMahan et al., 2017). In cross-silo settings, where

large organizations collaborate to train a model (Kairouz

et al., 2021), one can expect each client has an expert to

locally label their data. However, in the more constrained

scenario of cross-device FL (Kairouz et al., 2021), clients

are generally edge devices and users need to actively interact

with the device to label their data locally. This interaction

can be hard to arrange beyond specific applications (e.g.,

next word prediction), thereby hindering FL’s adoption with

more complex modalities such as vision.

One possible solution to address this problem is use of

unsupervised representation learning algorithms alongside

federated training. Some prior works have tried this route

by developing direct extensions of self-supervised learning

(SSL) techniques from centralized settings, such as Sim-

CLR (Chen et al., 2020), BYOL (Grill et al., 2020), and

SimSiam (Chen & He, 2021). However, by using stateful

clients (Zhuang et al., 2021; 2022), requiring large batch-

sizes (He et al., 2021), or sharing representations across
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Orchestrating Self-Supervised Federated Learning

clients (Wu et al., 2021; Zhang et al., 2020), these meth-

ods are either only applicable in the cross-silo setting or

undermine clients’ privacy by enabling inversion of repre-

sentations (Dosovitskiy & Brox, 2016; Nash et al., 2019)

(see also Appendix, Tab. 3). If one addresses these limita-

tions by removing state-based operations and constraining

training to local data, these methods become mere applica-

tions of centralized SSL objectives with federated training.

Since centralized SSL techniques are known to be sensitive

to heavy-tailed gradient distributions (Tian et al., 2021b) and

require large batch-sizes (Chen et al., 2020), it is unlikely

their direct extensions will function well in the high hetero-

geneity and resource constrained setting of cross-device FL.

We demonstrate this behavior in Figure 1, where we show

direct extension methods lose noticeable performance with

increased heterogeneity in a cross-device FL setting.

To resolve the limitations noted above and tackle the lack

of labelled data in FL, we argue an unsupervised learning

framework needs to be developed that is mindful of the chal-

lenges seen in federated training. We thus propose Orches-

tra, a novel clustering-based SSL technique that exploits the

federation’s hierarchy to orchestrate a global partitioning of

data distributed across participating clients. Our clustering

based perspective arises out of a generalization analysis of

models capable of clustering distributed client data into dis-

criminable, low-similarity partitions. As we show, such a

model necessarily has a small test error and its performance

generally improves with increase in heterogeneity (e.g., see

Figure 1). To exploit this result, we propose to use the server

to compute centroids capable of partitioning clients’ data

into a predefined number of clusters, subsequently asking

the participating clients to use these centroids and locally

train a model that enforces a sample’s cluster assignments on

its augmentations. Experiments show that Orchestra scales

well with number of clients, achieves strong communication-

efficiency, and thrives under heterogeneity. While our focus

in this work is resource-constrained, cross-device FL set-

tings, we find Orchestra also outperforms prior works in

cross-silo settings. Our primary contributions follow.

• Orchestrating Unsupervised FL: We propose Orchestra,

an unsupervised learning technique that addresses the lack

of labelled data in FL. The theoretical results motivating

our method are discussed in §3 and its practical implemen-

tation is provided in §4.

• Unsupervised Hyperparameter Tuning: Since FL al-

gorithms can be sensitive to training hyperparame-

ters (Karimireddy et al., 2020; Khodak et al., 2021), we

propose a tuning method for self-supervised FL techniques

in §5. Our method relies on unlabelled data and finds con-

figurations that yield high (low) representational similarity

for related (unrelated) samples.

• Extensive Empirical Analysis (§6): We extensively com-

pare Orchestra with several federated versions of central-

ized SSL techniques. We show, unlike Orchestra, direct

extension techniques are often sensitive to several impor-

tant FL parameters (e.g., participation ratio, local epochs).

2. Preliminaries

Self-Supervised Learning: SSL is a recent paradigm in un-

supervised learning wherein either an application-relevant

signal is promoted by predicting properties of the data or an

application-irrelevant signal is discarded by discriminating

perturbed data (Tsai et al., 2021). In vision, examples of

predictive tasks include colorization (Vondrick et al., 2018),

rotation prediction (Gidaris et al., 2018), or predicting patch

permutations (Noroozi & Favaro, 2016). Due to high re-

dundancy in visual data, defining task-relevant signal can

be difficult and hence predictive tasks rarely yield good

results (Doersch et al., 2015; LeCun, 2019). In contrast,

discriminative SSL tasks have revolutionized visual pre-

training. Such tasks train the model to enforce invariances

to artificial transformations defined using data augmenta-

tions, enabling good performance if these transformations

encode task-relevant priors (Wen & Li, 2021; Tian et al.,

2020). Popular techniques are based on contrastive learn-

ing (Chen et al., 2020; He et al., 2020; HaoChen et al.,

2021), similarity-promotion (Grill et al., 2020; Chen & He,

2021)), redundancy reduction (Zbontar et al., 2021), and

clustering (Asano et al., 2020; Caron et al., 2020).

As mentioned in §1, several FL papers directly extend the

centralized SSL techniques listed above, but their methods

are either only applicable in cross-silo settings due to use of

stateful clients and large batch sizes, or undermine clients’

privacy by sharing representations across clients (see also

Table 3). We highlight a notable recent exception by Lu et

al. (2022), who assume the server has knowledge of client-

level class priors, allowing it to retrieve the exact labels

by solving a classic label proportions problem (Quadrianto

et al., 2008). This strong assumption may be justifiable in

cross-silo settings if participating clients actively agree to

share information about expected class priors, but cannot be

met in the cross-device setting, where clients are passive.

Clustering and Representation Learning: Prior work has

studied the task of clustering a predefined set of vectors dis-

tributed across a federated network (Dennis et al., 2021)

or clustering clients for designing better client selection

strategies (Ghosh et al., 2020). In contrast, our work ad-

dresses the problem of learning clustering-friendly repre-

sentations (Yang et al., 2017). This problem is known to be

difficult even in the centralized setting due to the existence

of degenerate solutions, requiring either several expensive

reassignment steps (Caron et al., 2018; 2019), degeneracy

regularization with autoencoders (Dizaji et al., 2017; Fard

et al., 2018), or partition constraints on large prototype mem-

ories (Huang et al., 2020; Zhan et al., 2020).
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For the reasons listed above, we highlight that clustering-

based centralized SSL methods like SeLa (Asano et al.,

2020) or SwAV (Caron et al., 2020) are not directly appli-

cable to federated settings because they avoid degenerate

solutions using periodic cluster re-assignments every few

training steps on a large memory module with 4K–1M sam-

ples, while also assuming a uniform class prior on the data.

Since communication is expensive in FL, each client has

only a few samples, and class priors are highly non-uniform.

Such requirements make SeLa and SwAV infeasible for

federated learning. We note that Orchestra avoids prob-

lems noted above by exploiting the federation’s hierarchy.

Specifically, Orchestra uses the server in a federated man-

ner to find centroids that can partition the clients’ data into

discriminable clusters. The clients then locally solve an

unsupervised clustering problem alongside a predictive SSL

task to avoid degenerate solutions. Together, these steps

allow Orchestra to learn “clusterable” representations.

Theory of SSL: Recently, substantial advances have been

made towards demystifying SSL methods from the perspec-

tives of learning theory (Arora et al., 2019), information

theory (Tsai et al., 2021), causality (Kugelgen et al., 2021),

and dynamical systems (Tian et al., 2021a). We use tools

proposed in these works to motivate principles behind Or-

chestra. Specifically, our analysis in §3 is based on recent

works by HaoChen et al. (2021) and Wei et al. (2021), who

derive a holistic framework that allows analysis of general-

ization error of an unsupervised model. To derive this result,

the authors assume there exists a classifier that is able to

predict the label of an augmented sample, given the original

sample, up to a small error. By being able to predict the la-

bels of both an augmented sample and an original sample (a

no-transform augmentation), this assumption implies there

exists a latent space where related samples are sufficiently

similar and underlying classes are sufficiently dissimilar.

Notations: Before continuing, we define our settings. As-

sume we have N > 2 samples X ∼ X that are distributed

across K clients. We assume a ground-truth labelling func-

tion Y (x) : X → [M ]. The ith sample x(i) ∈ X is assigned

to client k(i) ∈ [K]; client k has Nk samples denoted Xk.

We define a stochastic augmentation function T : X → X̃
that transforms its input x to the space of augmented sam-

ples by randomly selecting a transform from a large, finite

set of predefined transformation functions. The set of aug-

mented samples is denoted as X̃ := {T (x) : x ∈ X}. We

define a parametric representation function f : X → RD

and compute its error under a linear probe as E(f) :=
minW Ex∈X [argmax(WT f(x)) = y(x)]. Note this defini-

tion uses the optimal linear classifier for a distribution, mak-

ing its guarantees stronger than a linear probe derived from

training data only. The set of representations on a set χ is de-

noted as Rχ = {f(x) : x ∈ χ}. We use C(B, G) to denote

a clustering algorithm that returns G clusters with centroids

µ ∈ RD×G on its input B. µg denotes centroid of cluster g.

Cluster assignment probabilities are computed as Pf (x) :=
σ(sf (x, µ)), where σ(.) denotes the softmax function and

sf (x, µ) = µT f(x). H(., .) denotes cross-entropy between

two discrete distributions. F denotes a hypothesis class that

has a global minimizer of the following loss (HaoChen et al.,

2021): Lspec = −2Ex∈X,x̃∼T (x)[sf (x, µ)
T sf (x̃, µ)] +

Ex,y∈X [(sf (x, µ)
T sf (y, µ))

2].

3. Clusterability: Symphony Behind

Orchestra

In this section, we motivate our reasons for using clustering

as the principle behind Orchestra. We begin by analyzing an

intentionally idealized framework where clients are allowed

to share their representations with the server. Our goal is to

determine whether evaluating the “clusterability” of repre-

sentations of a federated model trained in an unsupervised

manner can provide insights into the quality of the model.

To this end, we first define the following.

Definition 3.1. (δ, Inter-Cluster Mixing) Assume we com-

pute G clusters on a dataset B. Then, inter-cluster mixing is

defined as δ := maxg∈G maxb∈{B−g}

(

µT
g b
)

.

Analogous to the concept of modularity in pairwise clus-

tering (Newman, 2008), δ is a similarity measure that can

be used for analyzing partition-based clustering algorithms,

which explicitly compute centroids and assignments. A

smaller δ denotes better separation between clusters, indi-

cating better “clusterability” of the dataset.

Proposition 3.2. Assume f ∈ F . Compute G > 4M + 2
clusters µ = C({RXk : k ∈ [K]},G) s.t. all clus-

ters are equally sized. Then, if f minimizes L :=
Ek∈[K]

[

Ex∈Xk,x̃∼T (x) [H (Pf (x), Pf (x̃))]
]

, we have

E(f) < ζX +O
(

2δ + (G− 1)δ2
)

. (1)

Here ζX is a constant that measures the similarity of la-

tent variables of two classes from distribution X , while O
hides constants that primarily depend on the dataset size

N . Cluster size constraints are employed to ensure that for

all classes in the dataset, there is at least one non-trivially

sized cluster that contains samples corresponding to that

class. If the class-priors were known beforehand, one could

enforce size constraints proportional to them, yielding a

tighter bound (Wei et al., 2021). However, in unsupervised

settings, such priors are unlikely to be known and hence

we are forced to use a uniform prior. Intuitively, Prop. 3.2

says that if the representations learned by f are sufficiently

diverse to enable computation of G “global” clusters with

small inter-cluster mixing δ, then f must have a small linear

probe error. Further, the smaller δ is (more “clusterable”

representations), the smaller f ’s error is.

Overall, Prop. 3.2 gives us a target to optimize for while

designing our unsupervised FL technique: we must design
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(a) (b) (c)

Figure 2. Global Clusters from Different Settings. Squares de-

note global clusters. Smaller/larger circles denote samples/local

clusters. Colors denote assignments from the idealized setting.

(a) Idealized setting. (b) Under low heterogeneity, samples from

different ideal clusters exist on a client and can be merged together

during local clustering. This leads to global clusters inconsistent

with the idealized setting. (c) As heterogeneity increases, samples

from fewer idealized clusters exist on each client, thereby reducing

inconsistencies and yielding global clusters similar to (a).

a method that minimizes δ and consequently learns good

representations. However, the illustrative method above is

not yet practical. In particular, requiring that representa-

tions of all data be shared with the server can lead to high

communication costs over multiple FL rounds. Further, if

the server is semi-honest (Kairouz et al., 2021), sharing

representations can undermine clients’ privacy via inversion

of representations (Dosovitskiy & Brox, 2016; Mahendran

& Vedaldi, 2015). Thus, we need to design a framework

that offers a result similar to Prop. 3.2 and is yet practical

for federated settings. To this end, we propose to perform a

local clustering operation on our clients.

Specifically, we compute L(k) local centroids from N (k)

representations at each client k, share these centroids with

the server, and run another clustering operation there to par-

tition the overall set of local centroids into G global clusters.

This scheme reduces the communication cost per client to

just L(k), which can be small if few centroids are used. Fur-

ther, it provides a general operation where, depending on a

system’s constraints, different levels of privacy can be added

locally without affecting other parts of the pipeline. E.g.,

for strong privacy guarantees at possibly high loss in utility,

locally differentially private (local-DP) clustering methods

can be used (Balcan et al., 2017; Chang et al., 2021); for

slightly weaker guarantees but higher utility, K-anonymous

clustering methods can be used (Aggarwal et al., 2010;

LeFevre et al., 2006; Byun et al., 2007). Most importantly,

we find local clustering can provide us a generalization

guarantee similar to Prop. 3.2.

Proposition 3.3. Assume f ∈ F . Denote the set of local

centroids as µL = {C(RXk , L(k)) : k ∈ [K]} and compute

new global centroids µG = C(µL, G) s.t. all clusters are

equally sized. Assume at least a fraction c samples are

“consistently” assigned, i.e., they match their assignments

from the idealized setting. Then, if f minimizes the loss

L := Ek∈[K]

[

Ex∈Xk,x̃∼T (x) [H (Pf (x), Pf (x̃))]
]

,

E(f) < ζX +O
(

γ(1− c
2) + (2δ + (G− 1)δ2)

)

. (2)

Here γ < 1.5 is a constant and the term 1 − c2 signifies

the influence of “inconsistent” assignments. In particular,

consider a case where samples from multiple idealized clus-

ters are present on a client; during local clustering, such

samples can get assigned to the same local cluster. When

the centroid of this local cluster is used for global clustering,

it inevitably forces samples with different idealized setting

assignments to the same global cluster (see Figure 2). This

increases inconsistencies with the idealized setting (smaller

c), consequently increasing the upper bound in Prop. 3.3.

Interestingly, we observe that heterogeneity in FL setups is

beneficial in addressing this challenge! As shown by Dennis

et al. (2021), if the federation has heterogeneity such that a

client’s data predominantly belongs to only a few clusters

(e.g., a smartphone may have several images of the same

location), the probability that assignments from centralized

clustering match assignments found using global cluster-

ing of local centroids approaches 1. If we consider model

representations to be a predefined set of vectors distributed

across clients, this result directly becomes applicable to our

settings: with increase in heterogeneity, c approaches 1 and

consequently the bound in Prop. 3.3 matches the bound in

Prop. 3.2. That is, local clustering can use higher hetero-

geneity to its advantage and achieve guarantees similar to

the idealized setting.

In summary, limitations discovered in the idealized setting

(i.e., sharing representations with the server) can be circum-

vented by relying on local clustering. Furthermore, this

general, modular operation exploits heterogeneity to its ben-

efit, preserving guarantees provided by the idealized setting.

Thus, our target for optimization via FL remains the same

as in Prop. 3.2: we need to develop a training process that

produces consistent representations across augmentations,

induces sufficient number of global clusters, and has low

inter-cluster mixing δ. Our insight uncovered in Prop. 3.3 is

that it is sufficient if these global clusters are computed over

local centroids, instead of client representations themselves.

4. Method: How to Conduct an Orchestra

We now detail the steps underlying our proposed unsuper-

vised FL technique, Orchestra. See appendix §C.2 for a

formal algorithm, implementation details, and github link.

Pipeline: As shown in Prop. 3.3, we must ensure δ is small.

To this end, every round, we have clients convert their data

into representations and run a clustering algorithm to parti-

tion them. The local centroids computed by the clients are

then shared with the server, which runs another clustering

algorithm on these aggregated centroids. To enforce size

constraints from Prop. 3.3 and obtain maximally dissimilar

clusters, we use Sinkhorn-Knopp based clustering (Genevay

et al., 2019). These methods rethink clustering as an op-
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Figure 3. Pipeline: 1 Orchestra first prompts its clients to compute representations (reps.) on local data. 2 Local centroids are computed

via a Sinkhorn-Knopp based clustering algorithm (Genevay et al., 2019) to constrain clusters to be equally sized. This operation is

extremely cheap (0.009% of client runtime; see §C.2) and enables a K-anonymity privacy guarantee, though local-DP also works well at

the expense of some utility (see §D.4). 3 Local centroids from all clients are aggregated at the server, which again uses Sinkhorn-Knopp

clustering (Genevay et al., 2019) to compute equally-sized global clusters. Note that Sinkhorn-Knopp is used here to satisfy constraints of

Prop. 3.3, not to anonymize the data. 4 Standard FL model averaging step. 5 The global centroids are returned to the clients, who use

them for local training. Local Training: 6 An input x is randomly sampled and transformed to x̃. x is converted to rep. fT(x) using an

EMA model to enable assignment prediction; x̃ is converted to fO(x) using the online model. Cluster assignments PfT
(x), PfO

(x̃) are

computed by matching reps. with global centroids, which are then matched using a cross-entropy loss (Equation 4). A predictive SSL task

is used to avoid degenerate solutions (Equation 3).

timal transport problem and are generally guaranteed to

obtain good approximations of maximally dissimilar clus-

ters. We then communicate the resulting global centroids

with the clients, who use them to minimize the cross-entropy

between the cluster assignments of a sample and its augmen-

tations. By using the same set of global centroids across all

clients, Orchestra’s pipeline globally moves cluster mem-

bers closer to each other, hence reducing δ every round.

More details of the pipeline are provided in Figure 3.

Local Training: As noted by prior works in the centralized

setting (Dizaji et al., 2017; Caron et al., 2018), the unsta-

ble training dynamics of clustering-based representation

learning often yields degenerate solutions. This problem

can arise during local training and disallows reduction of δ
beyond a point. We now address this problem to complete

the design of Orchestra (see Figure 3).

1. Preventing Degenerate Solutions: During local train-

ing, we minimize the KL-divergence between assignments

of a sample and its augmentations. Early in the training

process, the cluster centroids inevitably correspond to ran-

dom features and therefore cannot yet yield a sufficiently

discriminative signal for training, resulting in degenerate so-

lutions. Centralized methods avoid this problem by adding

a degeneracy regularizer in the form of a predictive SSL

task that prevents the model from outputting a constant

representation. These works primarily use denoising au-

toencoders (Xie et al., 2016; Chang et al., 2017; Yang et al.,

2017) for this purpose, but other predictive SSL tasks can

also be used, e.g., Rotation Prediction (Gidaris et al., 2018),

Colorization (Vondrick et al., 2018), Jigsaw (Noroozi &

Favaro, 2016), or Context Prediction (Doersch et al., 2015).

However, except for rotation prediction, predictive SSL

tasks can have high resource requirements because they

require larger models (autoencoders, colorization) or com-

putation of representations from several patches of an input

(Jigsaw, Context Prediction). Rotation Prediction is best

suited to our federated settings because it adds only an extra

forward/backward pass and a linear layer worth of memory

cost. Thus, every training step, we rotate each sample x
in a batch to R(x, θ) by sampling an angle θ from the set

α = {0◦, 90◦, 180◦, 270◦} via uniform distribution U4. A

linear layer Wr ∈ R
D×4 is then trained to predict the sam-

ple’s rotation from its representation. Specifically, if Wr,i

and αi index Wr and α, we get the following objective.

L
(k)

deg
= Ex∈Xk,i∈U4

[

argmax
(

W
T
r,if(R(x, αi))

)

= i
]

(3)

2. Predicting Assignments: After training for a few itera-

tions, the model representations change; possibly changing a

sample’s cluster assignment. This pushes the model to learn

varying assignments for the same sample over time, forcing

it to predict uniform assignments for all samples (Zhan et al.,

2020). Prior works in centralized settings have proposed

to solve this problem by calculating assignments alongside

clusters and keeping them fixed until the next clustering op-

eration, which happens every few iterations. In our setting,

this solution would require more frequent communication

between the server and the clients, which will be expensive.

Instead, we propose to use two models: an online model that

is trained using gradient descent and another model whose

parameters are an exponential moving average (EMA) of

the online model: Tt = mTt−1 + (1 −m)O, where m is

a scalar close to 1, T denotes parameters of EMA model,

and O denotes parameters of the online model. While cen-

tralized SSL works also use such EMA models (Grill et al.,

2020; Caron et al., 2021), our primary motivation for this

design choice is that its representations evolve slowly over

time and hence its assignments remain consistent with the
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Figure 4. Hyperparameter tuning. We find linear combination of

similarity scores (Equation 5) is highly predictive of kNN accuracy

across all methods. Here, x-axis denotes Align + 0.2 * Unif and

τ is set to 0.2, based on Wang and Isola (2020). For all methods,

ResNet-18 models are trained on CIFAR-10 using different settings

of learning rates (0.3, 0.01, 0.003, 0.001), heterogeneity (10 or

∼3.5 classes per client), and number of clients (10 or 100).

original ones. This yields the following loss function for

promoting clusterability of representations:

L
(k)

cluster
= Ex∈Xk,x̃∼T (x) [H (PfT

(x), PfO
(x̃))] . (4)

Notice that asymptotically, the target model and online

model will share the exact same parameters. Our results

in Prop. 3.2 and 3.3 are primarily designed for this regime,

hence they continue to hold for Eq. 4.

5. Hyperparameters: Tuning our Instruments

Properly tuning hyperparmeters is of paramount importance

in FL (Khodak et al., 2021). However, due to lack of labelled

data, this can be particularly hard for unsupervised FL and

can lead to conflicting results. E.g., we note that while

Zhuang et al. (2021) find BYOL outperforms its competitors

in federated settings, He et al. (2021) claim it collapses to

degenerate solutions. This discrepancy likely stems from

the use of a different EMA in the two works (0.99 vs. 0.9).

To avoid such inconsistencies and ensure fair comparisons,

we propose to tune the hyperparameters of all methods

in an unsupervised manner. Specifically, we compute the

following two similarity scores:

Align(f) = Ek∈[K]

[

Ex∈Xk,x̃∼T (x) [s(x, x̃)]
]

, and

Unif(f, τ) = −Ek∈[K]

[

Ex∈Xk

[

logEy∈Xk

[

e
s(x,y)/τ

]]]

,
(5)

where s(x, y) = f(x)T f(y)/‖f(x)‖‖f(y)‖ denotes cosine sim-

ilarity of representations and τ is a vMF distribution pa-

rameter (Banerjee et al., 2005). Proposed by Wang and

Isola (2020), the two scores are respectively large if the rep-

resentations are similar for augmentations of a sample (high

alignment) and dissimilar across samples (high uniformity).

Different versions of these scores show up in generaliza-

tion bounds of SSL methods, under the assumption of task-

relevant augmentations (Sanushi et al., 2022; Arora et al.,

2019; Wei et al., 2021; Huang et al., 2021; HaoChen et al.,

2021). Given this intricate relationship, we argue these

scores are likely to be predictive of the quality of model

representations. We verify this claim by plotting the kNN

accuracy (k = 200) achieved by different methods in differ-

ent settings as a function of a linear combination of the two

scores. As shown in Figure 4, across all methods, the simi-

larity scores are highly predictive of achieved accuracy (R =

0.87, on average). Thus, for all methods in our experiments,

we propose to choose hyperparameters that maximize the

linear combination of the similarity scores above.

6. Experiments: The Concert

This section compares Orchestra with federated versions of

several discriminative SSL methods: SimCLR (Chen et al.,

2020), SpecLoss (HaoChen et al., 2021), SimSiam (Chen

& He, 2021), and BYOL (Grill et al., 2020). Results on

rotation prediction (RotPred) (Gidaris et al., 2018) and su-

pervised FedAvg (McMahan et al., 2017) are also provided.

For cross-silo experiments, we use implementation tricks

by recent self-supervised FL (Zhuang et al., 2021) papers to

make our baselines even more competitive.

Setup. We use CIFAR-10/-100 datasets. To partition data

across K clients, we sample class priors from a Dirichlet dis-

tribution (Hsu et al., 2019). A smaller Dirichlet parameter

α yields more heterogeneous splits. All methods are imple-

mented using PyTorch and the Flower framework (Beutel

et al., 2020). We use ResNet-18 as the backbone archi-

tecture; Projector/Predictor architectures follow original

papers. Orchestra uses a 2-layer Projector, but no Predictor.

We compute 64/128 global clusters and 8/16 local clusters

for CIFAR-10/-100. All results are averaged over 3 seeds.

Standard deviations are shown in figures, but omitted from

tables and deferred to the appendix due to space constraints.

Learning rate is tuned for all SSL methods as per §5; for

FedAvg, we borrow values from Charles et al. (2021). We

tune the EMA value m for BYOL. Batch-size is set to 16

(256) for cross-device (cross-silo) settings. Unless stated

otherwise, we set α to 0.1, number of local epochs E to 10,

communication rounds C to 100, and participation ratio R
to 0.5 (1.0) for cross-device (cross-silo) experiments. Please

refer to §C for more details on the experiment setup.

Evaluation Protocol. We primarily use the standard linear

probe protocol, where the model is frozen and a linear clas-

sifier is learned on top of the backbone (Chen et al., 2020).

When comparing communication efficiency, we use a kNN

accuracy probe (Chen & He, 2021). For semi-supervised

evaluation, we fine-tune the entire model using limited la-

belled data (1% or 10% labels).

6.1. Linear and Semi-Supervised Evaluation

We first assess the accuracies of different methods using

both a linear probe protocol and semi-supervised evaluation.

Though our primary motivation in designing Orchestra is

cross-device FL, for this experiment, we evaluate its per-
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Table 1. Accuracy (%) in non-IID (α=0.1) cross-device (100 clients) and cross-silo (10 clients) settings on CIFAR datasets. For cross-

device settings, due to a lack of baselines, we use FL-extensions of several centralized techniques; for cross-silo settings, we follow

implementations of these techniques proposed by recent works that use stateful clients and divergence-aware predictor updates (Zhuang

et al., 2021). We evaluate models using the popular linear probe technique and semi-supervised fine-tuning with 1%/10% labelled data.

Consistent with prior work (Zhuang et al., 2021), we note that linear probe can outperform semi-supervised evaluation on CIFAR-10.

Dataset CIFAR-10 CIFAR-100

Setting Cross-Device (K = 100) Cross-Silo (K=10) Cross-Device (K = 100) Cross-Silo (K=10)

Linear 1% 10% Linear 1% 10% Linear 1% 10% Linear 1% 10%

f-SimCLR 58.36 41.95 44.64 69.29 57.76 68.27 34.52 45.47 51.88 44.33 57.61 67.84

f-SimSiam 61.61 49.99 56.43 75.12 64.04 72.25 34.96 47.17 55.13 43.16 53.38 63.19

f-SpecLoss 66.51 55.66 62.09 80.71 70.88 77.96 37.60 47.11 50.91 56.59 62.15 72.09

f-BYOL 65.85 56.05 64.15 76.08 65.55 73.18 38.47 52.89 58.56 49.64 57.34 66.13

Orchestra 71.58 60.33 66.20 82.14 71.30 79.51 40.37 54.01 59.07 55.89 63.73 73.06

RotPred (pred) 44.44 34.71 46.15 55.68 45.84 51.32 16.85 15.79 19.52 25.0 27.64 28.81

FedAvg (sup) 80.85 82.76 80.34 79.22 86.81 87.12 58.71 59.07 64.01 65.59 62.48 71.59
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Figure 5. Sensitivity to Statistical Heterogeneity on CIFAR-10

(left) and CIFAR-100 (right). Except for Orchestra, we find all

methods lose performance with increased heterogeneity.
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Figure 6. Scalability with number of clients on CIFAR-10 (left)

and CIFAR-100 (right). Orchestra outperforms other methods and

is generally robust to number of clients in the federation.

formance in cross-silo settings as well. Our cross-device

setting has 100 clients, while the cross-silo setting has 10

clients. α is set to 0.1. Results are shown in Table 1.

We make several observations. (i) Orchestra often outper-

forms alternative techniques by a large margin under the

linear probe protocol, where primarily the quality of learned

representations is evaluated. (ii) Under semi-supervised

settings, the gap reduces, but remains high when only 1%

labels are used. (iii) Even though Orchestra was designed

with cross-device settings in mind, we find that it also out-

performs its competitors in cross-silo settings. We expect

Orchestra’s performance can be improved further with state-

ful operations and other enhancements allowed in cross-silo

settings. This is left to future work.
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Figure 7. Sensitivity to participation ratio on CIFAR-10 (left)

and CIFAR-100 (right). While the accuracies of alternative tech-

niques decrease at smaller participation ratios, we find Orchestra

suffers minimal degradation.
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Figure 8. Robustness to local epochs on CIFAR-10 (left) and

CIFAR-100 (right). We find Orchestra achieves similar accuracy

to other methods in half the number of local epochs.

6.2. Attributes of Federated Learning

Statistical Heterogeneity. We use 100 clients and analyze

three levels of heterogeneity by setting α to 105 (none/IID),

10-1 (moderate), and 10-3 (high). Results are provided in

Figure 5. We see that FL-extensions of centralized SSL

methods are often sensitive to heterogeneity, especially on

CIFAR-10. In contrast, Orchestra is robust and its perfor-

mance generally improves with increase in heterogeneity.

This observation matches our expectation from Prop. 3.3,

where we showed Orchestra’s theoretical guarantees im-

prove under increased heterogeneity. We also note that

since CIFAR-100 has fewer samples per class, increase in

heterogeneity appears to enable greater gains via reduction

in inconsistent assignments.
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Figure 9. Communication efficiency on CIFAR-10 (left) and

CIFAR-100 (right). We plot kNN accuracy w.r.t. comm. rounds.

Orchestra has the fastest round-to-accuracy response for moderate

to high accuracies; SimCLR performs well on smaller accuracies.

Number of Clients. We next consider the effects of chang-

ing the number of clients. Following prior work (Zhuang

et al., 2021), we linearly scale the number of local epochs

to ensure that the total number of training iterations remains

constant across all settings. Results are shown in Figure 6.

We find that unlike other methods, which suffer from fluc-

tuations in performance depending on number of clients,

Orchestra achieves similar performance for all settings.

Participation Ratio. Since only a fraction of participants

can be expected to be connected to the server at a given time,

participation ratio is an important attribute of cross-device

FL. As shown in Figure 7, all methods except Orchestra

suffer large decreases in accuracy when participation ratio

is decreased. In contrast, Orchestra maintains accuracy even

for the smallest participation ratios.

Local Epochs. Resource constraints may force one to limit

local training to few epochs, making robustness to limited

epochs a valuable attribute. Figure 8 shows that reducing

local epochs causes all methods to lose accuracy, but Or-

chestra is the most resistant to this loss. For example, on

CIFAR-10, Orchestra with 5 local epochs matches the per-

formance of other methods with 10 local epochs, i.e., using

Orchestra the training cost halves.

Communication Efficiency. Client-server communication

is one of the major bottlenecks for FL in cross-device set-

tings. Hence, it is ideal if an FL technique converges in

fewer rounds. We measure the kNN accuracy of different

methods during training and plot it as a function of the num-

ber of rounds. As shown in Figure 9, Orchestra takes the

fewest rounds to achieve moderate to high accuracy; mean-

while, for smaller values, SimCLR is often the fastest to

converge, but achieves poor ultimate accuracy.

6.3. Attributes Specific to Orchestra

Effect of Heterogeneity on Communication Efficiency.

Our theoretical result indicates and empirical results corrob-

orate the expectation that Orchestra thrives under hetero-

geneity. We provide another demonstration of this result in

Figure 10, where we show the progress of kNN accuracy as

a model is trained using Orchestra. We find that not only

does heterogeneity help Orchestra improve performance, it

can also improve its speed of optimization.
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Figure 10. Heterogeneity improves communication efficiency

for Orchestra on CIFAR-10 (left) and CIFAR-100 (right), i.e., Or-

chestra thoroughly exploits heterogeneity to maximize efficiency.

Table 2. Sensitivity to number of global (G) and local (L) clus-

ters. We change G and L one-by-one, keeping the other fixed.

Base values are reported in parentheses. “Reps” denotes the ideal-

ized setting, where representations are shared without local clus-

tering. As shown, Orchestra has minimal sensitivity to both, the

number of global and local clusters. Further, the performance is

generally very close to the idealized setting.

CIFAR-10 (G=32, L=8) CIFAR-100 (G=256, L=16)

G 8 16 64 128 64 128 256 512

Acc 70.25 71.05 71.04 71.38 39.89 40.27 40.37 40.29

L 2 4 16 Reps 8 16 64 Reps

Acc 70.41 71.06 71.28 71.95 40.09 40.37 40.25 41.19

Number of Clusters. Orchestra’s underlying principles

are rooted in Prop. 3.2 and 3.3, which provide the goal of

finding discriminable clusters. However, another important

attribute in those bounds is the number of global clusters G.

If the G is smaller than the number of classes, generalization

can suffer. Similarly, having few local clusters L can lead to

inconsistent assignments (larger c) and hurt generalization.

More local clusters can help avoid this, but if the number

approaches the size of the local dataset, privacy (anonymity)

is lost because all clusters will contain only one datapoint.

We thus study sensitivity of Orchestra to G and L. Table 2

shows that Orchestra is robust to the number of global clus-

ters as long as it even slightly exceeds the number of classes,

achieving similar performance in all settings. We similarly

see that Orchestra is essentially robust to the number of lo-

cal centroids, but can see minimal performance loss if very

few clusters are used. Finally, these results also indicate

the values of G and L need not be precisely tuned, as most

settings yield good performance.

7. Conclusion

To enable wider adoption of federated learning (FL) for

complex modalities such as vision, we need to reduce its

reliance on labeled data. Towards this goal, we presented

Orchestra, an unsupervised FL technique that orchestrates a

distributed clustering task and enforces a globally consistent

partitioning of clients’ data, while remaining mindful of the

core challenges seen in FL setups. Built on strong theo-

retical foundations, Orchestra is scalable, achieves strong

communication-efficiency, thrives under heterogeneity, and

remains robust to various FL parameters.
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Appendix

In this appendix, we provide more description about the federated learning settings studied in this paper (§A), and

contextualize prior works based on FL properties studied in them (§B). Thereafter, we provide the formal algorithm for

Orchestra and elaborate on our experiment, training, and evaluation setups (§C). Next, §D contains T-SNE visualizations,

ablation results, and shows the performance of Orchestra under a state-of-the-art differentially private local clustering

technique (Chang et al., 2021). The appendix ends by providing a recap of the key notations used in the paper and proofs for

Propositions 3.2 and 3.3.

A. Properties of Cross-Silo and Cross-Device FL

Federated learning setups vary across different applications and circumstances. In general, they can be categorized into two

main settings: Cross-silo and Cross-device, as described in a recent federated learning survey by (Kairouz et al., 2021).

The cross-silo setting shares several properties of datacenter distributed learning, where the number of clients is often limited,

and the clients have a large amount of data and high-level of computational resources, are stateful, almost always available

with few failures. However, these requirements often are not applicable to many real-life FL setups, and the cross-silo

setting is more relevant when large organizations collaborate.

On the other hand, the cross-device setting has much fewer requirements on the clients: they can be any number of mobile or

IoT devices which have limited computational resources, be stateless, unavailable at any time, and unreliable. The relaxation

on the requirement of clients make it more applicable to real-world FL setups, but any proposed solution must tackle the

challenges that this setting brings.

Many existing centralized unsupervised representation learning algorithms are relatively straight-forward to be adapted to

work in a cross-silo setup, where the clients are often computationally powerful and can be assumed as stateful. However,

clients in the cross-device setting often have much less resources, and this brings many challenges in adapting centralized

algorithms. For example, the requirement of large batch-sizes (He et al., 2021) is difficult to meet in the cross-device setting

as mobile or IoT devices have limited runtime memory. Similarly, sharing representations across clients as done in (Wu

et al., 2021; Zhang et al., 2020) is disallowed due to user privacy concerns. Hence, designing a method which scales to

hundreds of participating clients, is stateless, works with small batch sizes and uneven distribution of data, and preserves

user privacy is crucial to the success of cross-device unsupervised representation learning. This was the primary motivation

behind the design of Orchestra.

Properties

Methods Stateless Privacy Supports small # Clients Cross-silo Cross-Device

Preserving Batch Size

FedCA (Zhang et al., 2020) X × × (128) 5 X ×
FedU (Zhuang et al., 2021) × X × (128) 5 X ×

FedEMA (Zhuang et al., 2022) × X × (128) 5 X ×
SSFL (He et al., 2021) X X × (256) 10 X ×

FCL (Wu et al., 2022) X
Using an additional

encryption module
× (128) 5-10 X ×

Orchestra X X X (16) 10-400 X X

Table 3. Comparison of Orchestra with prior federated unsupervised learning approaches. Orchestra is unique in its capability to learn

from unlabeled data in a small batch size regime without requiring any stateful operations or sharing local representations with the

server. Moreover, unlike prior approaches which were evaluated only in small scale setups with 5-10 clients, Orchestra can easily scale to

large-scale cross-device settings with hundreds of participating clients.

B. More Related Work

In Table 3, we list various unsupervised FL approaches proposed in the recent literature and compare their properties with

Orchestra. As evident, Orchestra is unique in its capability to learn from unlabeled data in a small batch size regime without

requiring any stateful operations or sharing local representations with the server. Moreover, unlike prior approaches which
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were evaluated only in small scale setups with 5-10 clients, Orchestra can easily scale to large-scale settings with hundreds

of participating clients, making it particularly apt for cross-device FL.

Self-Supervised Learning: SSL techniques are a recent paradigm in centralized unsupervised learning, wherein a task-

relevant signal is extracted from the data itself and used to guide the training of a model. In vision, specifically, this

task-relevance prior is encoded by designing pretext tasks. Earlier examples of such tasks include predictive tasks, such

as rotation prediction (Gidaris et al., 2018) or predicting the patch order in a shuffled image (Noroozi & Favaro, 2016).

Recently, though, the task of instance discrimination has revolutionized unsupervised visual training (Wu et al., 2018).

Herein, task-relevant information in encoded by enforcing invariances to a set of data augmentations (Purushwalkam &

Gupta, 2020; Wen & Li, 2021; Kugelgen et al., 2021). Popular methods include contrastive techniques (SimCLR (Chen

et al., 2020), MoCo (He et al., 2020), SpecLoss (HaoChen et al., 2021)); similarity-based techniques (BYOL (Grill et al.,

2020), SimSiam (Chen & He, 2021), DINO (Caron et al., 2021)); redundancy reduction methods (Barlow Twins (Zbontar

et al., 2021), VICReg (Bardes et al., 2021)); and clustering based methods (SeLa (Asano et al., 2020), SwAV (Caron et al.,

2020), PCL (Li et al., 2021a)).

C. Experimental Details

C.1. Data

Datasets. Our experiments focus on the widely-used CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009).

Both datasets consist of 60,000 images, divided into two partitions: 50,000 for training and 10,000 for testing. CIFAR-10

consists of 10 object classes whereas CIFAR-100 have 100 object classes; with training samples equally distributed across

all classes. For federated training, we partitioned both the datasets across K clients. To this end, we sample class priors

from a Dirichlet distribution (Hsu et al., 2019) controlled by the Dirichlet parameter α. A smaller value of α yields more

non-IID splits across clients. More specifically, we experimented with three different levels of heterogeneity by setting α to

105 (IID), 10-1 (moderately non-IID), and 10-3 (highly non-IID). To quantify the level of heterogeneity, we provide average

number of classes in Table 4. We consider two definitions for a class to be present on a client: if at least 1 sample from the

class is present on the client and if at least 1% samples belong to the class. ∼ denotes an experiment that was not conducted.

Transformations. During the local training stage shown in Figure 3, we need to generate an augmentation of each input

sample. We use the same set of augmentations proposed by Grill et al. (2020). For the baseline SSL methods, we follow the

augmentations proposed in their original papers.

Table 4. Average number of classes per client. We use three values of α: 105 (IID), 10-1 (moderately non-IID), and 10-3 (highly

non-IID). We define a class to be present on a client in two ways: (i) at least 1 sample from the class is present on the client; (ii) at least

1% samples on the client belong to the class. ∼ denotes an experiment that was not conducted.

CIFAR-10 CIFAR-100

α 10−3 10−1 105 10−3 10−1 105

Heterogeneity High Moderate None High Moderate None

Cross-Device

(100 clients)

1 sample 1.08 4.69 10 3.56 29.3 100

1 % 1.05 3.13 10 2.13 17.92 100

Cross-Silo

(10 clients)

1 sample ∼ 6.25 10 ∼ 48.63 100

1 % ∼ 4.87 10 ∼ 35.5 100

C.2. Algorithm, Implementation, and Training Details

Algorithm: Below we provide a detailed algorithm of our pipeline, as described in §4 and outlined in Figure 3. Orchestra

involves federation and communication between clients and the server, and Algorithm 1 describes local training happening

on the clients, while Algorithm 2 outlines the computation happening on the server. We refer to the backbone and projector

models jointly as the ‘feature encoder’. Broadly, each client trains its feature encoders locally with both clustering and

degeneracy losses, and returns the local clusters. The server aggregates the feature encoders from all clients using any

federated averaging algorithm (e.g., FedAvg), and performs further clustering on the local centroids returned by all the

clients to obtain global centroids. The global centroids are then passed back to the clients for another round of local training.
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When Orchestra starts, the server has to initialize the global centroids to be used for training (Line 2 of Algorithm 2).

However, as the server does not have any prior data about the clients, the initial global centroids are initialized with a small

federation step with the clients: the initialized feature encoder fG
T is passed to the clients, and the clients compute the

representations by passing the local data through the encoder (similar to Line 5 of Algorithm 1). These representations are

then clustered (Line 18 of Algorithm 1) and the centroids are sent to the server, where a further clustering is performed

(Line 8 of Algorithm 2), forming the initial global centroids µG.

The clustering algorithm C used in both the local and global clustering processes is based on the Sinkhorn-knopp algo-

rithm (Genevay et al., 2019). We run local clustering on a memory module that stores 128 most recent representations

computed during local training, i.e., representations computed during last 8 iterations. This allow us to avoid the cost

of computing model representations for local clustering again. Since we use the target model for clustering purposes,

these representations can be expected to be essentially the same as the representations that the model with latest param-

eters would compute. Combined, this trick makes local clustering very efficient, with no extra inference/memory costs.
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Figure 11. Client runtime per round, relative to

Orchestra.

In fact, we demonstrate this in Figure 11 by successfully deploying Orchestra

on three NVIDIA Jetson embedded devices (with RAM as low as 4GB). We

plot time consumed by a client running other methods, relative to when it

runs Orchestra, and percent time consumed by local clustering in a round of

Orchestra. As can be seen, Orchestra’s latency per round is similar to other

methods, and clustering accounts for≤ 0.009% of the training cost, confirming

Orchestra’s practicality for cross-device FL.

Implementation and Code: Orchestra is implemented using PyTorch and

the Flower federated learning framework (Beutel et al., 2020). Our primary

results in cross-device FL settings are presented for K = 100 clients, which

we simulate on 8 NVIDIA V100 GPUs using Flower’s Virtual Client Engine.

Consistent with the paradigm of cross-device FL, we use a small batch size of

16 on each client, set the number of local epochs E to 10, communication rounds to 100, and participation ratio to 0.5. For

cross-silo experiments, a batch size of 256 and participation ratio of 1.0 is employed. While evaluating the scalability and

communication efficiency of Orchestra in cross-device settings (§6.2), we also show results for different values of K and E.

A working source code of Orchestra is provided available at following github link.

Algorithm 1 Orchestra - Local Training

1: Require: Data Xk on client k, global centroids µG, batch size N , exponential update rate m, target encoder fT, online

encoder fO, stochastic augmentation function T , rotation functionR, clustering function with size constraints C
2: for sampled minibatch {x}Ni=1 ⊂ Xk do

3: for i ∈ {1, . . . , N} do

4: Compute transformed sample: x̃i ← T (xi)
5: Compute representations: fT(xi) and fO(x̃i)
6: Compute cluster assignment according to global centroids: PfT

(xi) and PfO
(x̃i)

7: Select an random rotation angle index: ai ∼ U4
8: Convert to one hot encoding: Ri ← onehot(ai)
9: Rotate sample: x̂i ← R(xi, αai)

10: Compute representation: fO(x̂i)
11: Predict rotation: R̂i ← softmax

(

WT
r fO(x̂i)

)

12: end for

13: Compute clustering loss: Lcluster = −
1
N

∑N
i=1(H (PfT

(xi), PfO
(x̃i)))

14: Compute degeneracy loss: Ldeg = − 1
N

∑N
i=1(H(Ri, R̂i))

15: Update fO to minimize L = Lcluster + Ldeg

16: Update fT ← mfT + (1−m)fO

17: end for

18: Cluster µL
k ← C({fT(x)|x ∈ Xk}, L(k))

19: return trained encoders fT, fO, local clusters µL
k

https://github.com/akhilmathurs/orchestra
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Algorithm 2 Orchestra - Server Federation

1: Require: Number of rounds N , Number of global centroids G, clustering function with size constraints C
2: Initialize global target encoder fG

T , global online encoder fG
O , global centroids µG

3: for round i ∈ {1, . . . , N} do

4: Orchestrate local training with fG
T , fG

O , µG

5: Collect results: {(fk
T , fk

O , µ
L
k )|k ∈ [K]}

6: Aggregate encoders: fG
T ←

1
K

∑K
i=1 f

k
T and fG

O ←
1
K

∑K
i=1 f

k
O

7: Aggregate centroids: µL ← {µ|k ∈ [K], µ ∈ µL
k }

8: Update global centroids by clustering: µG ← C(µL, G)
9: end for

10: return trained encoder fG
T

C.3. Network Architectures

Orchestra uses ResNet-18 as the network architecture for the Backbone, and a 2-layer multi-layer perceptron (MLP) with

512 units in each layer for the Projector, following SimCLR (Chen et al., 2020). No Predictor network is used. For all the

baselines, we use ResNet-18 as the Backbone, while Projector and Predictor architectures are borrowed from their respective

papers.

C.4. Hyperparameter Tuning and Scaling Schemes

Tuning: As mentioned in section 5, we find configuration that maximize a linear combination of alignment and uniformity

scores (see Equation 5). We set τ to 0.2, similar to Figure 4. Tuning is performed by running a model for 20 communication

rounds with 10 local epochs. Other settings such as batch-size and participation ratio depend on whether we are in a

cross-silo or a cross-device setup and are defined above. In the following, we report our hyperparameter grids and the

retrieved values from tuning different methods. We denote learning rate using η and EMA value using m.

1. SimCLR: η: {0.03 (Cross-silo), 0.01, 0.003 (Cross-device), 0.001}

2. SimSiam: η: {0.03 (Cross-silo), 0.01 (Cross-device), 0.003, 0.001}

3. SpecLoss: η: {0.03 (Cross-silo), 0.01, 0.003 (Cross-device), 0.001}

4. BYOL: η: {0.03 (Cross-silo), 0.01 (Cross-device), 0.003, 0.001}; m: {0.9, 0.99 (Cross-silo), 0.996 (Cross-device)}

5. Orchestra: η: {0.03, 0.01 (Cross-silo), 0.003 (Cross-device), 0.001}; m: {0.9, 0.99 (Cross-silo), 0.996 (Cross-device)}

Scaling Schemes for number of clients and participation ratio experiments: We tune our methods for two baseline

settings: (i) Cross-device with 100 clients; (ii) Cross-silo with 10 clients. For experiments where we change other number of

clients and participation ratio, we follow previous works and scale number of local epochs or learning rate to avoid the costs

of tuning a method again. Specifically, we have the following schemes.

• Number of Clients: When varying number of clients, we follow Zhuang et al. (2021) and linearly scale number

of local epochs. Given other variables remain fixed, this ensures a constant training budget in terms of number of

iterations. For example, if L is our base learning rate for a setting with K clients, we scale the number of local epochs

for a setting with Knew clients as follows: Lnew = L · Knew

K .

• Participation Ratio: When varying participation ratio, we follow Charles et al. (2021) and quadratically scale the

learning rate. Given other variables remain fixed, this helps achieve consistent performance across a large number of

settings for number of clients. For example, if η is our base learning rate for a setting with R participation ratio, we

scale the learning rate for a setting with Rnew participation ratio as follows: ηnew = η ·
√

Rnew

R .

C.5. Evaluation Protocol

To evaluate the quality of the representations learned by Orchestra, we primarily use the standard linear probe protocol,

where the model is frozen and a linear classifier is learned on top of the backbone (Chen et al., 2020). When comparing
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Table 5. We analyze Orchestra in the cross-device and cross-silo setting on CIFAR-10/CIFAR-100 datasets. For cross-device settings, due

to a lack of baselines, we use FL-extensions of several centralized techniques; for cross-silo settings, we follow implementations of these

techniques proposed by recent works that use stateful clients and divergence-aware predictor updates (Zhuang et al., 2021). We evaluate

models using the popular linear probe technique (Chen et al., 2020) and semi-supervised fine-tuning with 1% and 10% labelled data.

Dataset CIFAR-10

Setting Cross-Device (K = 100) Cross-Silo (K=10)

Linear 1% 10% Linear 1% 10%

f-SimCLR 58.36 ± 0.19 41.95 ± 0.85 44.64 ± 0.71 69.29 ± 0.28 57.76 ± 0.33 68.27 ± 0.67
f-SimSiam 61.61 ± 0.68 49.99 ± 0.26 56.43 ± 0.52 75.12 ± 0.38 64.04 ± 0.41 72.25 ± 0.37
f-SpecLoss 66.51 ± 0.53 55.66 ± 0.80 62.09 ± 0.67 80.71 ± 0.31 70.88 ± 0.53 77.96 ± 0.55

f-BYOL 65.85 ± 0.19 56.05 ± 0.31 64.15 ± 0.30 76.08 ± 0.30 65.55 ± 0.34 73.18 ± 0.40
Orchestra 71.58 ± 0.53 60.33 ± 0.63 66.20 ± 0.71 82.14 ± 0.38 71.30 ± 0.27 79.51 ± 0.51

RotPred (pred) 44.44 ± 0.93 34.71 ± 0.69 46.15 ± 0.65 55.68 ± 0.38 45.84 ± 0.53 51.32 ± 0.55
FedAvg (sup) 80.85 ± 0.37 82.76 ± 0.71 80.34 ± 0.61 79.22 ± 0.38 86.81 ± 0.53 87.12 ± 0.77

Dataset CIFAR-100

Setting Cross-Device (K = 100) Cross-Silo (K=10)

Linear 1% 10% Linear 1% 10%

f-SimCLR 34.52 ± 0.34 45.47 ± 0.32 51.88 ± 0.56 44.33 ± 0.33 57.61 ± 0.27 67.84 ± 0.15
f-SimSiam 34.96 ± 0.43 47.17 ± 0.73 55.13 ± 0.41 43.16 ± 0.32 53.38 ± 0.66 63.19 ± 0.81
f-SpecLoss 37.60 ± 0.37 47.11 ± 0.56 50.91 ± 0.15 56.59 ± 0.45 62.15 ± 0.67 72.09 ± 0.56

f-BYOL 38.47 ± 0.34 52.89 ± 0.62 58.56 ± 0.92 49.64 ± 0.44 57.34 ± 0.45 66.13 ± 0.63
Orchestra 40.37 ± 0.30 54.01 ± 0.41 59.07 ± 0.69 55.89 ± 0.49 63.73 ± 0.28 73.06 ± 0.67

RotPred (pred) 16.85 ± 0.74 15.79 ± 0.64 19.52 ± 0.73 25.0 ± 0.39 27.64 ± 0.95 28.81 ± 0.82
FedAvg (sup) 58.71 ± 0.42 59.07 ± 0.50 64.01 ± 0.53 65.59 ± 0.38 62.48 ± 0.42 71.59 ± 0.79

rounds to accuracy, we also use kNN accuracy probe (Chen & He, 2021). Finally, during semi-supervised evaluation, we

fine-tune the entire model under limited labelled data (1% or 10% labels) where is held-out during the unsupervised training

stage.

D. Additional Results

D.1. Linear and Semi-Supervised Evaluation Results (with standard deviations)

In Table 5, we report the mean and standard deviation of accuracies obtained using linear and semi-supervised Evaluation.

Please note that this Table 5 is an extension of Table 1 presented in the main paper, with standard deviation values added to

it. Each experiment was run three times with different seeds to obtain the mean and standard deviation scores.

D.2. Ablations

To help avoid degenerate solutions and ensure performant cluster assignments, Orchestra uses two important operations in its

local training: degeneracy regularization and an EMA-based target model (see §4). We now provide ablative results for these

operations in Table 6. As can be seen, by removing either of the operations, Orchestra can lose substantial performance. As

Base Setting No Degeneracy Regularization No Target Model

CIFAR-10 71.58 56.62 68.63
CIFAR-100 40.37 28.86 36.8

Table 6. Ablation results for Orchestra’s target model and degeneracy regularization. These results show both solutions, degeneracy

regularization and use of target model are important. However, noisy assignments can be overcome with time and hence sensitivity to use

of target model is lower than the use of degeneracy regularization, which helps prevent representational collapse. Experiment settings are

the same as Table 1.
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(a) f-BYOL (b) RotPred (c) f-SimCLR

(d) f-SimSiam (e) f-SpecLoss (f) Orchestra

Figure 12. TSNE visualizations obtained on the CIFAR-10 test set with models trained using different federated unsupervised learning

approaches. No labeled data was used to fine-tune the models and the plot shows the quality of representations learned only using

unlabeled data on the clients.

expected, noisy assignments can be overcome with time and hence Orchestra is less sensitive to the use of target model. On

the other hand, degeneracy regularization is critical for Orchestra, as it helps prevent collapse of the model from the get-go.

D.3. T-SNE Visualizations

In Figure 12, we present the T-SNE visualizations obtained on the CIFAR-10 test set with models trained using different

federated unsupervised learning approaches. These plots show the quality of representations learned only using unlabeled

data on the clients. We can see that Orchestra provides better class separation than other methods.

D.4. Orchestra and Privacy

Orchestra, by design, does not share any raw data or representations between clients and the server. Only the local centroids

computed on each client are shared with the server for the purpose of global clustering. Below we discuss how the design

of Orchestra aligns well with the idea of K-anonymous clustering, and how we can further improve Orchestra’s privacy

guarantees using local differentially private clustering.

K-anonymity: We first focus on the K-anonymous clustering perspective. Formally, a K-anonymity guarantee ensures that

for any randomly selected entry in a set, there are at least K − 1 other entries with the same attributes. While in the discrete

setting quasi-identifiers can be used to attack K−anonymity guarantees, these mechanisms provably fail in the continuous

setting with high dimensional variables (Aggarwal, 2005), making them particularly useful for our settings due to their good

utility. K-anonymous clustering methods thus focus on finding clusters with at least K members, providing non-uniform

privacy to different samples. Our solution enforces an equal-size constraint on all L local clusters using the sinkhorn-knopp

based clustering algorithm (Genevay et al., 2019). This enables uniform, N/L-anonymity across all N samples present on a

client. Further, as we showed in Table 2, Orchestra is robust to the number of local clusters and can work with small values

of L, which increases the anonymity guarantees of the algorithm.

Local Differential Privacy: Differentially private (DP) algorithms (Dwork & Roth, 2014) seek to design randomized

mechanisms or algorithms with stochastic outputs by adding noise to the result of the mechanism. This guarantees that a

given result could have been generated from multiple viable datasets. Formally, let A be a randomized mechanism that takes

in a dataset D as input and whose image is denoted by the set S . Assume D1 and D2 are two neighboring datasets, i.e., their
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entries differ in only one point. Then, A is (ε, δ) differentially private if:

Pr [A(D1) ∈ S] ≤ exp(ε) · Pr [A(D2) ∈ S] + δ (6)

In the situation a dataset is distributed across multiple participants, DP algorithms assume an honest server will conduct

the algorithm by acquiring necessary information from the participants. This can be problematic in the situation where a

server is only semi-honest and may seek to leak some sensitive information. To avoid this, local-DP guarantees have been

developed. In this case, one applies the DP definition for individual participants. For example, if x1 and x2 denote two

participants, then local DP is defined as:

Pr [A(x1) ∈ S] ≤ exp(ε) · Pr [A(x2) ∈ S] + δ (7)

Recently, local DP has been used for designing private clustering algorithms for distributed settings (Balcan et al., 2017;

Stemmer, 2020; Chang et al., 2021). These algorithms follow a standard route generally: (i) find a coreset that is

representative of the dataset structure of a participant, but only approximately depends on it; (ii) use this coreset as an

approximate notion of clusters from a participant; and (iii) find centroids that partition the coresets. The caveat with this

approach is that since DP works on an aggregate scale, if a participant has few samples, the amount of noise that needs to be

added to guarantee strong privacy can be huge, as shown by Cohen et al. (2021). Thus, even though one seeks to ensure

ε < 1.0 and δ ∼ O
(

1
number of samples

)

, production systems generally use ε values of order 10.0 (Bureau, 2020).

In Table 7, we provide linear probe results on CIFAR-10 for Orchestra with local-DP based clustering using the current

state-of-the-art algorithm (Chang et al., 2021), which uses locality sensitive hashing for finding coresets in a participant’s

dataset. As can be seen, for practically useful values of ε, Orchestra witnesses only a small performance drop w.r.t.

K-anonymity and is still outperforming alternative federated unsupervised methods (see Table 1).

No Privacy K-anonymity ε=0.8 ε=1.0 ε=10.0

Accuracy 71.95 71.58 69.46 69.60 69.63

Table 7. Accuracy obtained using the linear probe evaluation technique (Chen et al., 2020) in five different privacy settings. ‘No Privacy’

represents the idealized setting when local representations are shared with the server – this setting is prone to representation inversion

attacks (Dosovitskiy & Brox, 2016; Nash et al., 2019). The K-anonymity result represents the performance of Orchestra with its

2-level clustering approach, however without any adding any DP protections. We can see that Orchestra’s performance with its built-in

K-anonymity is almost similar to the ‘No Privacy’ setting. Further, Orchestra works reasonably well with local-DP based clustering; for

practically useful values of ε, Orchestra witnesses only a small performance drop w.r.t. the K-anonymity setting, and still outperforms the

various baseline techniques shown in Table 1. For these experiments, we use δ=1e-3, Dirichlet α=0.1, 100 clients, 10 local epochs, and

100 communication rounds.

E. Deferred Proofs

We provide deferred proofs in this section. For better readability and reference, we first tabulate the notations used in the

paper in Table 8.

E.1. Orchestra’s pipeline reduces δ

In §4, we claimed that by sharing the same set of centroids across all clients, Orchestra’s pipeline reduces inter-cluster

mixing δ every round. We formalize this result below.

Proposition E.1. If the same set of global centroids µ are used across all clients, minimizing a loss that brings a sample’s

assigned centroids and its representation closer will ensure Orchestra’s pipeline reduces δ every round.

Proof. It is easy to see Orchestra’s pipeline is an Expectation-Maximization (EM) framework (McLachlan & Krishnan,

2008). Thus, a standard proof schematic for showing convergence of EM can be used. In particular, assume we compute set

of G global centroids from the local centroids µ = C({C(RXk , L(k)) : k ∈ [K]}, G). Denote the set of samples assigned to

global cluster g as πg. We overload the notation and let π(x) denote the assignment of sample x. Then, without loss of

generality, we let (gtm, nt) = argmaxgm∈[G] argmaxxn∈{X−πg} µ
T
g f(xn)

t, where the superscript denotes round t. That is,

δt = µT
gt
m
f(xn)

t. During local training, if the similarity between xn’s assigned centroid and its representation is increased,

we have µT
gt
π(xn)

f(xn)
t+1 ≥ µT

πt(xn)
f(xn)

t, and, consequently, µT
gt
m
f(xn)

t+1 ≤ µT
gt
m
f(xn)

t = δt due to the use of softmax
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Notation Definition

X ∼ X Unlabeled samples X drawn from a distribution X
K Number of clients

M Number of classes

N Number of samples

T : X → X̃ A stochastic augmentation function that transforms its input x to the space of augmented

samples by randomly selecting a transform from a set of predefined transformation

functions that is finite, but can be large.

X̃ := {T (x) : x ∈ X} The collective set of augmented samples

f : X → RD A parametric representation function

E(f) Error of f under a linear probe computed as minW Ex∈X [argmax(WT f(x)) = y(x)]
RS = {f(s) : s ∈ S} The set of representations on a set S
C(B, G) A clustering algorithm that returns G clusters on its input B.

µ ∈ RD×G Centroids returned by the clustering algorithm C(B, G).
µg The centroid of cluster g
sf (x) Cosine similarity between centroids and representations µT f(x)/‖µT f(x)‖

Pf (x) Cluster assignment probabilities computed as σ(sf (x)) where σ(.) denotes the softmax

function

H(., .) Cross-entropy between two discrete distributions

Lspec Spectral Contrastive Loss (HaoChen et al., 2021): = −2Ex∈X,x̃∼T (x)[sf (x)
T sf (x̃)] +

Ex,y 6=x∈X [(sf (x)
T sf (y))

2]
F Hypothesis class that has a global minimizer of the Lspec

Table 8. Notations used in the paper

for computing assignments. With a similar argument for the server’s clustering algorithm, we find the cluster centroids are

brought closer to model representations that belong to that cluster. That is, µT
gt+1
m

f(xn)
t+1 ≤ µT

gt
m
f(xn)

t+1 ≤ δt. Now,

if δt+1 = µT
gt+1
m

f(xn)
t+1, then we have δt+1 ≤ δt. If the sample and cluster for computing δ change, then without loss

of generality, we assume δt+1 = µT
gt+1

m′

f(xn′)t+1 ≤ µT
gt
m′
f(xn′)t+1 ≤ µT

gt
m′
f(xn′)t ≤ δ. Here, the last inequality follows

from definition of δ. Second last inequality follows from the fact that local training brings representation of f(xn′) closer to

its assigned centroid and pushes it away from other centroids including µgm′ . This is the step where we used the fact that

global centroids are the same across all clients, due to which the above statement could be made on a dataset level. The first

inequality follows from the global clustering step pushing µgm′ closer to representations of its assigned samples, which do

not include xn′ .

Note an assumption in the above argument is that all centroids are different from each other, else bringing a sample’s

representation closer to a centroid will not push it farther from the other centroids. In the case the model representations

collapse to a single vector, as often observed in centralized clustering plus representation learning methods (Yang et al.,

2017), all centroids become equivalent and hence our assumption is contradicted. Our use of a degeneracy regularization via

predictive SSL was specifically motivated to enable this assumption, as it ensures representations do not collapse to a single

vector.

The above reasoning also explains why clustering-based SSL solutions (Caron et al., 2020; 2019; 2018; Li et al., 2021a)

from centralized settings cannot be directly used in federated settings. Note that SwAV and related methods avoid degenerate

solutions via per-iteration, partition-based clustering. Consequently, using SwAV in FL would require communicating with

the server every iteration. Since communication is very expensive in FL, SwAV becomes an infeasible baseline: for even 10

clients of CIFAR10, SwAV has 3100x higher communications costs than Orchestra’s! Upon using local training only (no

per-iteration operations), we indeed found SwAV reaches degenerate solutions.

E.2. Proofs for Propositions 3.2 and 3.3

Our results are based on the analysis by HaoChen et al. (2021). Therein, the authors derive a general result that shows a

minimizer of the loss −2Ex∈X,x̃∼T (x)[f(x)
T f(x̃)] + Ex,y∈X [(f(x)T f(y))2] will necessarily have small generalization
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error under a linear probe. This result arises out of an analysis of spectral clustering algorithms. As noted in the paper,

our focus is partition-based clustering due to its straightforward application to distributed settings. Given the relationship

between spectral clustering and partition-based clustering is well established (Dhillon et al., 2004), we can use the result

by HaoChen et al. (2021) for our purposes by showing Orchestra implicitly minimizes the objective above, consequently

achieving small generalization error if it belongs to a sufficiently complex hypothesis class that can minimize SpecLoss. We

first discuss the main concepts underlying those works.

E.2.1. BACKGROUND

The works above include an important assumption called “recoverability”, which is itself related to two important concepts

called “expansion” and “separation”. The notion of expansion and separation was originally proposed for manifolds by

Balcan et al. (2004), recently verified empirically by Wei et al. (2021), and converted to “recoverability” or graph connectivity

properties by HaoChen et al. (2021). Specifically, the authors assume that there exists a latent graph instantiating the data

distribution such that the neighborhood of any low probability set of connected nodes has a higher probability than the

set itself. Here a node represents a sample and edges represent joint probability of occurrence of two samples. Under

expansion, any given community of nodes on the latent graph is guaranteed to be sufficiently well connected such that if

a node with high enough probability is assigned a label, then via a loss promoting consistency to input perturbations, the

label will propagate throughout the community. If communities are assumed to be well separated, these labels will have

higher diffusion within the same community than between different communities. This induces sets of abstract classes with

semantically related nodes (e.g., community of dogs). Using standard pairwise clustering tools, one can compute node

representations that enable discrimination between these communities and, if a sufficiently expressive parametric model (e.g.,

a neural network) is trained to match these representations, it can be guaranteed the model will have small generalization

error on unseen data. The approach outlined above was recently used by HaoChen et al. (2021) to design SpecLoss,

an SSL technique with provable generalization guarantees. However, since pairwise clustering requires computation of

representation similarity between different datapoints, it is not amenable to use in decentralized, privacy-sensitive settings.

In our work, we circumvented this issue by designing a partition-based, federated clustering framework that first computes

centroids capable of partitioning the federation’s data into discriminable clusters and then asks clients to allocate their data

into these clusters.

Assumption E.2. Recoverability. Let x̃ ∈ T (x), where x ∼ X , and assume its ground truth label is y(x̃). We assume there

exists a classifier U such that g(x) = y(x̃) with probability at least 1− φ.

Let G denote a graph whose vertices vx represent samples from distribution X and whose edges denote joint probability of

occurrence of the graph nodes, i.e., w(x, x̃) = Ex̃1,x̃2∈A(x) [Pr(x̃1, x̃2)]

Definition E.3. Sparsest m-partition. For an integer m ∈ [2, |X |], the sparsest m-partition is defined as ρm :=
minS1,S2,...,Sm

max{κG(S1), κG(S2), . . . , κG(Sm)}, where {S1, S2, . . . , Sm} denotes non-empty sets that form a partition

of X and κG(Si) :=
∑

x∈Si,x 6∈Si
w(xx′)

∑
x∈Si

w(x) denotes the Dirichlet Conductance.

Under these definitions, we have the following result.

Theorem E.4. (Theorem 4.2 from HaoChen et al. (2021)). Let Assumption E.2 hold, fpop ∈ F is the population minimizer

of Lspec, and assume G ≥ 4M + 2,. Define ζX = φ
ρG/2
· log(G). Then for an empirical minimizer function f of SpecLoss

such that Lspec(f) < Lspec(fpop) + ε, we have:

E(f) < ζX +O(ε). (8)

Here, ζX is a property of the data distribution X and O hides constants related to Rademacher complexity of the function

class. Essentially, if the classes of augmentations of a sample can be predicted from the sample, then φ and hence ζX are

small. This happens if the latent variables instantiating the data generating distribution are similar so that the label of an

augmented sample can be predicted from the original sample itself. Further, the denominator ρG/2 depends on the average

probability of a partition. If we have G < 2M , ρG/2 will be zero and hence the error can be arbitrarily large. If G > 2M ,

even though it can get larger with G, it will essentially remain constant since one starts inducing subpartitions of abstract

classes at this point.

The above theorem is our primary tool. Our idea is to show that instead of the pairwise clustering algorithm (spectral

clustering) used by HaoChen et al.(2021), one can use a partition-based clustering algorithm and exploit the result above to
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understand if good generalization is feasible in a more practical manner for federated settings. To this end, we will compute

the loss achieved by a representation function that yields consistent representations over augmentations and can partition the

set of representations into G clusters with small inter-cluster mixing.

E.2.2. PROPOSITION 3.2

We now provide proof for Proposition 3.2, restated below for convenience.

Proposition E.5. Assume f ∈ F . Compute G > 4M + 2 clusters µ = C({RXk : k ∈ [K]}, G) s.t. all clusters are equally

sized. Then, if f minimizes L := Ek∈[K]

[

Ex∈Xk,x̃∼T (x) [H (Pf (x), Pf (x̃))]
]

, we have

E(f) < ζX +O
(

2δ + (G− 2)δ2
)

. (9)

Proof. Assume the hypothesis class is expressive enough to guarantee a zero error population minimizer exists for SpecLoss.

Then, we need only bound the error of the empirical minimizer. We thus decompose Lspec = L+ +L−, where we define the

following terms L+ := − 2
N |T (x)|

∑

x∈X,x̃∈T (x)(sf (x)
T sf (x̃)) and L− := 1

N(N−1)

∑

x∈X

∑

y 6=x,y∈X(sf (x)
T sf (y))

2.

Let ∆i denote a vector whose ith term is 1 and rest of the terms are δ, the inter-cluster mixing. Then, we have the following:

L− =
1

N(N − 1)

∑

x∈X

∑

y 6=x,y∈X

(sf (x)
T sf (y))

2

≤
1

N(N − 1)

∑

x∈X

∑

y∈X

(sf (x)
T sf (y))

=
1

N(N − 1)
(N/G)

2
∑

x∈X

∑

y∈X

(

sf (x)
T sf (y)

(N/G)
2

)

=
N

G2(N − 1)

∑

gi

∑

gj

(

∑

x∈gi

sf (x)

(N/G)

)T




∑

y∈gj

sf (y)

(N/G)





=
N

G2(N − 1)

∑

gi

∑

gj

(

µTµgi

)T (
µTµgj

)

≤
N

G2(N − 1)

∑

gi

∑

gj

(∆i)
T
(∆j)

=
N

G(N − 1)

[(

1 + (G− 1)δ2
)

+ (G− 1)
(

2δ + (G− 2)δ2
)]

=
N

(N − 1)

[(

1

G

)

+

(

1−
1

G

)

(

2δ + (G− 1)δ2
)

]

= O
(

2δ + (G− 1)δ2
)

(10)

In the above, the first inequality follows from two facts: one, s(.) is always unit norm, and hence the inner products are

bound to be less than one, allowing us to ignore squares; two, self-interaction terms are positive, i.e., sf (x)
T sf (x) > 0. The

second inequality follows from the definition of inter-cluster mixing. Note that Pf (x) = Pf (x̃) for x, x̃ ∈ T (x) since f is a

minimizer of L. Correspondingly, we have sf (x) = sf (x̃) since s(.) is scale invariant and hence we have L+ = 0. Adding

L+ and L− provides us the value of ε which can be directly substituted into Equation 8 to complete the proof.

Note that we hide two constants in the final expression: a constant additive factor N
G(N−1) and a multiplicative factor

N
N−1

(

1− 1
G

)

. The former will be close to 0 and the latter close to 1 for even moderately sized values of N and G.

E.2.3. PROPOSITION 3.3

We now provide proof for Proposition 3.3, restated below for convenience.

Proposition E.6. Assume f ∈ F . Denote the set of local centroids as µL = {C(RXk , L(k)) : k ∈ [K]} and

compute new global centroids µG = C(µL, G) that are equally sized. Assume at least a fraction c samples are
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“consistently” assigned, i.e., they match their assignments from the idealized setting. Then, if f minimizes the loss

L := Ek∈[K]

[

Ex∈Xk,x̃∼T (x) [H (Pf (x), Pf (x̃))]
]

,

E(f) < ζX +O
(

γ(1− c
2) + (2δ + (G− 1)δ2)

)

. (11)

Proof. The proof follows essentially the same route as subsubsection E.2.2. The part of the argument that changes is the

computation of L−, where we now have to account for the inconsistent assignments c′ = 1− c. First, we have the following

((µG)T f(x))T ((µG)T f(y)) ≤ ∆same = 1 + (G− 1)δ2 if x and y belong to the same global cluster in the idealized setting.

Similarly, ((µG)T f(x))T ((µG)T f(y)) ≤ ∆diff = 2δ + (G− 2)δ2. We also define nG = N/G as the number of datapoints

assigned to a cluster. This implies the number of samples leaving a cluster are at least c′nG and can consider equality for

worst-case analysis. Define the term Dij as samples that were originally in global cluster i in the idealized setting but

have now been moved to global cluster j due to the use of local clustering. Note that for any global cluster g, we have
∑

i Dgi ≤ c′nG, i.e., number of samples coming from different clusters must equal the number of samples that have left the

given cluster. Again, for worst-case analysis, we can assume equality. Overall, we get the following.

L− ≤
1

N(N − 1)





∑

i∈[G]



((1− c′)nG)(c
′nG) +G

∑

j 6=i

Dij · (nG −Dij)



∆same





+
1

N(N − 1)





∑

i∈[G]



((1− c′)nG)(N − c′nG − nG) +
∑

j 6=i

Dij(N − 2 ∗ nG +Dij)



∆diff





=
1

N(N − 1)







G(1− c′)c′n2
G +Gc′n2

G − (G− 1)





∑

ij

D2
ij







∆same





+
1

N(N − 1)



G(1− c′)nG(N − (1 + c′)nG) +Gc′nG(N − 2nG) + (G− 1)





∑

ij

D2
ij



∆diff





≤
1

N(N − 1)

(

Gc′(2− c′)n2
G∆same + (NGnG(1− c′)−Gn2

G(1− c′2) + c′GnG(N − 2c′nG))∆diff

)

.

(12)

Substituting expressions for variable terms and simplifying, we get,

L− ≤
N

(N − 1)

(

1

G

(

1−
G2

N2

)

+
1

G
c′(2− c′) +

(

(

1−
c′

G

)2

−
1

G

)

(2δ + (G− 1)δ2)

)

=
N

(N − 1)

(

1

G

(

1−
G2

N2

)

+
1

G
(1− c2) +

(

(

1−
1− c

G

)2

−
1

G

)

(2δ + (G− 1)δ2)

)

= O
(

γ(1− c2) + (2δ + (G− 1)δ2)
)

(13)

Here, γ = 1
(G−1−c)2−G is a constant that is < 1 for G > 2. Again adding and substituting L+ and L− in Equation 8

finishes the proof.


