
Published as a conference paper at ICLR 2021

A GRADIENT FLOW FRAMEWORK FOR ANALYZING

NETWORK PRUNING

Ekdeep Singh Lubana & Robert P. Dick
EECS Department
University of Michigan
Ann Arbor, MI 48105, USA
{eslubana, dickrp}@umich.edu

ABSTRACT

Recent network pruning methods focus on pruning models early-on in training.
To estimate the impact of removing a parameter, these methods use importance
measures that were originally designed to prune trained models. Despite lacking
justification for their use early-on in training, such measures result in surprisingly
low accuracy loss. To better explain this behavior, we develop a general gradient
flow based framework that unifies state-of-the-art importance measures through the
norm of model parameters. We use this framework to determine the relationship
between pruning measures and evolution of model parameters, establishing several
results related to pruning models early-on in training: (i) magnitude-based pruning
removes parameters that contribute least to reduction in loss, resulting in models
that converge faster than magnitude-agnostic methods; (ii) loss-preservation based
pruning preserves first-order model evolution dynamics and is therefore appropriate
for pruning minimally trained models; and (iii) gradient-norm based pruning affects
second-order model evolution dynamics, such that increasing gradient norm via
pruning can produce poorly performing models. We validate our claims on several
VGG-13, MobileNet-V1, and ResNet-56 models trained on CIFAR-10/CIFAR-100.

1 INTRODUCTION

The use of Deep Neural Networks (DNNs) in intelligent edge systems has been enabled by extensive
research on model compression. “Pruning” techniques are commonly used to remove “unimportant”
filters to either preserve or promote specific, desirable model properties. Most pruning methods
were originally designed to compress trained models, with the goal of reducing inference costs
only. For example, Li et al. (2017); He et al. (2018) proposed to remove filters with small ℓ1/ℓ2
norm, thus ensuring minimal change in model output. Molchanov et al. (2017; 2019); Theis et al.
(2018) proposed to preserve the loss of a model, generally using Taylor expansions around a filter’s
parameters to estimate change in loss as a function of its removal.

Recent works focus on pruning models at initialization (Lee et al. (2019; 2020)) or after minimal
training (You et al. (2020)), thus enabling reduction in both inference and training costs. To estimate
the impact of removing a parameter, these methods use the same importance measures as designed
for pruning trained models. Since such measures focus on preserving model outputs or loss, Wang
et al. (2020) argue they are not well-motivated for pruning models early-on in training. However, in
this paper, we demonstrate that if the relationship between importance measures used for pruning
trained models and the evolution of model parameters is established, their use early-on in training
can be better justified.

In particular, we employ gradient flow1 to develop a general framework that relates state-of-the-
art importance measures used in network pruning through the norm of model parameters. This
framework establishes the relationship between regularly used importance measures and the evolution
of a model’s parameters, thus demonstrating why measures designed to prune trained models also
perform well early-on in training. More generally, our framework enables better understanding of

1gradient flow refers to gradient descent with infinitesimal learning rate; see Equation 6 for a short primer.

1

Published as a conference paper at ICLR 2021

what properties make a parameter dispensable according to a particular importance measure. Our
findings follow. (i) Magnitude-based pruning measures remove parameters that contribute least to
reduction in loss. This enables magnitude-based pruned models to achieve faster convergence than
magnitude-agnostic measures. (ii) Loss-preservation based measures remove parameters with the
least tendency to change, thus preserving first-order model evolution dynamics. This shows that
loss-preservation is appropriate for pruning models early-on in training as well. (iii) Gradient-norm
based pruning is linearly related to second-order model evolution dynamics. Increasing gradient norm
via pruning for even slightly trained models can permanently damage earlier layers, producing poorly
performing architectures. This behavior is a result of aggressively pruning filters that maximally
increase model loss. We validate our claims on several VGG-13, MobileNet-V1, and ResNet-56
models trained on CIFAR-10 and CIFAR-100.

2 RELATED WORK

Several pruning frameworks define importance measures to estimate the impact of removing a
parameter. Most popular importance measures are based on parameter magnitude (Li et al. (2017); He
et al. (2018); Liu et al. (2017)) or loss preservation (Molchanov et al. (2019; 2017); Theis et al. (2018);
Gao et al. (2019)). Recent works show that using these measures, models pruned at initialization (Lee
et al. (2019); Wang et al. (2020); Hayou et al. (2021)) or after minimal training (You et al. (2020))
achieve final performance similar to the original networks. Since measures for pruning trained models
are motivated by output or loss preservation, Wang et al. (2020) argue they may not be well suited for
pruning models early-on in training. They thus propose GraSP, a measure that promotes preservation
of parameters that increase the gradient norm. Since loss preservation and gradient-norm based
measures are designed using first-order Taylor series approximations, they are exactly applicable
under gradient flow only. This suggests using gradient flow to analyze the evolution of a model can
provide useful insights into regularly used importance measures for network pruning.

Despite its success, the foundations of network pruning are not well understood. Recent work has
shown that good “subnetworks” that achieve similar performance to the original network exist within
both trained (Ye et al. (2020)) and untrained models (Frankle & Carbin (2019); Malach et al. (2020)).
These works thus prove networks can be pruned without loss in performance, but do not indicate how
a network should be pruned, i.e, which importance measures are preferable. In fact, Liu et al. (2019)
show reinitializing pruned models before retraining rarely affects their performance, indicating the
consequential differences among importance measures are in the properties of architectures they
produce. Since different importance measures perform differently (see Appendix E), analyzing
popular measures to determine which model properties they tend to preserve reveal which measures
can result in better-performing architectures.

From an implementation standpoint, pruning approaches can be placed in two categories. The first,
structured pruning (Li et al. (2017); He et al. (2018); Liu et al. (2017); Molchanov et al. (2019; 2017);
Gao et al. (2019)), removes entire filters, thus preserving structural regularity and directly improving
execution efficiency on commodity hardware platforms. The second, unstructured pruning (Han et al.
(2016b); LeCun et al. (1990); Hassibi & Stork (1993)), is more fine-grained, operating at the level
of individual parameters instead of filters. Unstructured pruning has recently been used to reduce
computational complexity as well, but requires specially designed hardware (Han et al. (2016a)) or
software (Elsen et al. (2020)) that are capable of accelerating sparse operations. By clarifying benefits
and pitfalls of popular importance measures, our work aims to ensure practitioners are better able to
make informed choices for reducing DNN training/inference expenditure via network pruning. Thus,
while results in this paper are applicable in both structured and unstructured settings, our experimental
evaluation primarily focuses on structured pruning early-on in training.

3 PRELIMINARIES: CLASSES OF STANDARD IMPORTANCE MEASURES

In this section, we review the most successful classes of importance measures for network pruning.
These measures will be our focus in subsequent sections. We use bold symbols to denote vectors and
italicize scalar variables. Consider a model that is parameterized as Θ(t) at time t. We denote the
gradient of the loss with respect to model parameters at time t as g(Θ(t)), the Hessian as H(Θ(t)),

2

Published as a conference paper at ICLR 2021

and the model loss as L(Θ(t)). A general model parameter is denoted as θ(t). The importance of a
set of parameters Θp(t) is denoted as I(Θp(t)).

Magnitude-based measures: Both ℓ1 norm (Li et al. (2017)) and ℓ2 norm (He et al. (2018)) have
been successfully used as magnitude-focused importance measures and generally perform equally
well. Due to its differentiability, ℓ2 norm can be analyzed using gradient flow and will be our focus
in the following sections.

I(Θp(t)) = ‖Θp(t)‖
2

2
=

∑

θi∈Θp

(θi(t))
2. (1)

Loss-preservation based measures: These measures determine the impact removing a set of param-
eters has on model loss, generally using a first-order Taylor decomposition. Most recent methods
(Molchanov et al. (2019; 2017); Ding et al. (2019); Theis et al. (2018)) for pruning trained models
are variants of this method, often using additional heuristics to improve their performance.

L (Θ(t)−Θp(t))− L (Θ(t)) ≈ −ΘT
p (t)g(Θ(t)). (2)

The equation above implies that the loss of a pruned model is higher (lower) than the original model
if parameters with a negative (positive) value for ΘT

p (t)g(Θ(t)) are removed. Thus, for preserving
model loss, the following importance score should be used.

I(Θp(t)) =
∣

∣ΘT
p (t)g(Θ(t))

∣

∣ . (3)

Increase in gradient-norm based measures: Wang et al. (2020) argue loss-preservation based
methods are not well-motivated for pruning models early-on in training. They thus propose GraSP,
an importance measure that prunes parameters whose removal increases the gradient norm and can
enable fast convergence for a pruned model.

‖g (Θ(t)−Θp(t))‖
2

2
− ‖g (Θ(t))‖

2

2
≈ −2ΘT

p (t)H(Θ(t))g(Θ(t)). (4)

The above equation implies that the gradient norm of a pruned model is higher than the original
model if parameters with a negative value for ΘT

p (t)H(Θ(t))g(Θ(t)) are removed. This results in
the following importance score.

I(Θp(t)) = ΘT
p (t)H(Θ(t))g(Θ(t)). (5)

As mentioned before, these importance measures were introduced for pruning trained models (except
for GraSP), but are also used for pruning models early-on in training. In the following sections, we
revisit the original goals for these measures, establish their relationship with evolution of model
parameters over time, and provide clear justifications for their use early-on in training.

4 GRADIENT FLOW AND NETWORK PRUNING

Gradient flow, or gradient descent with infinitesimal learning rate, is a continuous-time version of
gradient descent. The evolution over time of model parameters, gradient, and loss under gradient
flow can be described as follows.

(Parameters over time)
∂Θ(t)

∂t
= −g(Θ(t));

(Gradient over time)
∂g(Θ(t))

∂t
= −H(Θ(t))g(Θ(t));

(Loss over time)
∂L(t)

∂t
= −‖g(Θ(t))‖

2

2
.

(6)

Recall that standard importance measures based on loss-preservation (Equation 3) or increase in
gradient-norm (Equation 5) are derived using a first-order Taylor series approximation, making them
exactly valid under the continuous scenario of gradient flow. This indicates analyzing the evolution
of model parameters via gradient flow can provide useful insights into the relationships between
different importance measures. To this end, we use gradient flow to develop a general framework
that relates different classes of importance measures through the norm of model parameters. As
we develop this framework, we explain the reasons why importance measures defined for pruning
trained models are also highly effective when used for pruning early-on in training. In Appendix B,
we further extend this framework to models trained using stochastic gradient descent, showing that
up to a first-order approximation, the observations developed here are valid under SGD training too.

3

Published as a conference paper at ICLR 2021

Table 1: Accuracy of pruned models on CIFAR-10/CIFAR-100 (over 3 seeds; base model accuracies
are reported in parentheses; std. dev. < 0.3 for all experiments; best results are in bold, second best
are underlined). Magnitude-based pruning (Mag.) and the proposed extension to loss preservation
(Proposed:

∑

θi∈Θp
|θi(t)||θi(t)g (θi(t)) |) consistently outperform plain loss-preservation based

pruning (Loss). With more rounds, the proposed measure outperforms Magnitude-based pruning too.

Pruning Rounds 1 round 5 rounds 25 rounds

CIFAR-10 % pruned Mag. Loss Proposed Mag. Loss Proposed Mag. Loss Proposed

VGG-13 (93.1) 75% 92.05 92.01 92.13 92.32 91.43 92.29 92.06 91.53 92.45

MobileNet (92.3) 75% 91.71 91.17 91.73 91.76 90.99 91.89 91.52 90.96 91.77

ResNet-56 (93.1) 60% 91.41 91.09 91.54 91.80 91.39 91.88 91.95 91.47 92.17

CIFAR-100 % pruned Mag. Loss Proposed Mag. Loss Proposed Mag. Loss Proposed

VGG-13 (69.6) 65% 67.89 68.61 69.01 69.31 67.88 68.25 68.31 68.11 68.93

MobileNet (69.1) 65% 68.01 67.16 68.52 68.33 67.21 68.41 67.58 67.31 68.35

ResNet-56 (71.0) 50% 66.92 66.88 67.10 68.04 67.11 67.70 68.75 67.74 68.62

randomly initialized models and uses a prune-and-train framework, where each round of pruning
involves an epoch of training followed by pruning. A target amount of pruning (e.g., 75% filters)
is divided evenly over a given number of pruning rounds. Throughout training, we use a small
temperature value (= 5) to ensure smooth changes to model parameters. We provide results for 1, 5,
and 25 rounds for all models and datasets. The results after 1 round, where pruning is single-shot,
demonstrate that our claims are general and not an artifact of allowing the model to compensate for
its lost parameters; the results after 5 and 25 rounds, where pruning is distributed over a number of
rounds, demonstrate that our claims also hold when models compensate for lost parameters.

The results are shown in Table 1. Magnitude-based pruning consistently performs better than loss-
preservation based pruning. Furthermore, train/test convergence for magnitude-based pruned models
is faster than that for loss-preservation based pruned models, as shown in Figure 1. These results
validate our claim that magnitude-based pruning results in faster converging, better-performing
models when pruning early-on in training.

Extending existing importance measures: A fundamental understanding of existing importance
measures can be exploited to extend and design new measures for pruning models early-on in training.
For example, we modify loss-preservation based pruning to remove small-magnitude parameters that
do not affect model loss using the following importance measure:

∑

θi∈Θp
|θi(t)||θi(t)g (θi(t)) |.

Using |θi(t)g (θi(t)) | to preserve loss, this measure retains training progress up to the current in-
stant; using |θi(t)|, this measure is biased towards removing small-magnitude parameters and should
produce a model that converges faster than loss-preservation alone, thus improving accuracy. These
expected properties are demonstrated in Table 1 and Figure 1: the proposed measure consistently
outperforms loss-preservation based pruning and often outperforms magnitude-based pruning, es-
pecially when more rounds are used (see Table 1); train/test convergence rate for models pruned
using this measure are better than those for loss-preservation pruning, and competitive to those of
magnitude-based pruning (see Figure 1).

4.2 GRADIENT FLOW AND LOSS-PRESERVATION BASED PRUNING

Loss-preservation based pruning methods use first-order Taylor decomposition to determine the
impact of pruning on model loss (see Equation 3). We now show that magnitude-based and loss-
preservation based pruning measures are related by an order of time-derivative.

∂ ‖Θ(t)‖
2

2

∂t
= 2ΘT (t)

∂Θ(t)

∂t
(a)
= −2ΘT (t)g(Θ(t)),

(9)

where (a) follows from Equation 6. This implies that
∣

∣

∣

∣

∣

∂ ‖Θ(t)‖
2

2

∂t

∣

∣

∣

∣

∣

= 2
∣

∣ΘT (t)g(Θ(t))
∣

∣ . (10)

Based on Equation 10, the following observations can be made.

5

Published as a conference paper at ICLR 2021

Table 2: Accuracy of models pruned using different variants of gradient-norm based pruning on
CIFAR-10/CIFAR-100 (over 3 seeds; base model accuracies are reported in parentheses; std. dev.
< 0.3 for all models, except for GraSP (T=1) with 5/25 rounds (std. dev. < 2.1); best results are in
bold, second best are underlined). Gradient-norm preservation (|GraSP (T=1)|) outperforms both
GraSP with large temperature (T=200) and without temperature (T=1).

Pruning Rounds 1 round 5 rounds 25 rounds

CIFAR-10 pruned GraSP GraSP |GraSP| GraSP GraSP |GraSP| GraSP GraSP |GraSP|
(%) (T=200) (T=1) (T=1) (T=200) (T=1) (T=1) (T=200) (T=1) (T=1)

VGG-13 (93.1) 75% 91.62 91.32 91.92 90.46 83.77 91.83 89.57 77.12 91.75

MobileNet (92.3) 75% 89.46 90.03 91.03 86.88 80.95 90.89 80.37 76.06 91.01

ResNet-56 (93.1) 60% 91.01 90.81 91.21 90.44 80.15 91.25 86.23 10.00 91.63

CIFAR-100 pruned GraSP GraSP |GraSP| GraSP GraSP |GraSP| GraSP GraSP |GraSP|
(%) (T=200) (T=1) (T=1) (T=200) (T=1) (T=1) (T=200) (T=1) (T=1)

VGG-13 (69.6) 65% 68.51 65.79 68.64 66.40 54.56 68.07 65.18 42.83 68.13

MobileNet (69.1) 65% 64.52 64.79 67.17 63.02 53.35 67.28 59.14 46.41 67.69

ResNet-56 (71.0) 50% 67.09 67.02 67.15 66.97 52.98 67.01 57.55 1.00 68.02

model. This indicates ΘT
p (t)H(Θ(t))g(Θ(t)) may in fact increase the gradient norm by removing

parameters that maximally increase model loss.

To test this claim, we plot ΘT
p (t)H(Θ(t))g(Θ(t)) alongside ΘT

p (t)g(Θ(t)) for filters of VGG-13,
MobileNet-V1, and ResNet-56 models trained on CIFAR-100 at various points in training and
consistently find them to be highly correlated (see Figure 3). This strong correlation confirms that
using ΘT

p (t)H(Θ(t))g(Θ(t)) as an importance measure for network pruning increases gradient
norm by removing parameters that maximally increase model loss.

Wang et al. (2020) remark in their work that it is possible that GraSP may increase the gradient-norm
by increasing model loss. We provide evidence and rationale illuminating this remark: we show why
preserving loss and increasing gradient-norm are antithetical. To mitigate this behavior, Wang et al.
propose to use a large temperature value (200) before calculating the Hessian-gradient product. We
now demonstrate the pitfalls of this solution and propose a more robust approach.

Observation 5: Preserving gradient-norm maintains second-order model evolution dynamics and
results in better-performing models than increasing gradient-norm.

Equation 12 shows the measure ΘT
p (t)H(Θ(t))g(Θ(t)) affects a model’s second-order evolution dy-

namics. The analysis in Observation 4 shows ΘT
p (t)H(Θ(t))g(Θ(t)) and ΘT

p (t)g(Θ(t)) are highly

correlated. These results together imply that preserving gradient-norm
(∣

∣ΘT
p (t)H(Θ(t))g(Θ(t))

∣

∣

)

should preserve both second-order model evolution dynamics and model loss. Since the correlation
with loss-preservation based importance is not perfect, this strategy is only an approximation of
loss-preservation. However, it is capable of reducing increase in model loss due to pruning.

To demonstrate the efficacy of gradient-norm preservation and the effects of increase in model loss
on GraSP, we prune VGG-13, MobileNet-V1, and ResNet-56 models trained on CIFAR-10 and
CIFAR-100. The results are shown in Table 2 and lead to the following conclusions. (i) When a single
round of pruning is performed, the accuracy of GraSP is essentially independent of temperature.
This implies that using temperature may be unnecessary if the model is close to initialization. (ii)
In a few epochs of training, when reduction in loss can be attributed to training of earlier layers
(Raghu et al. (2017)), GraSP without large temperature chooses to prune earlier layers aggressively
(see Section G.2 for layer-wise pruning ratios). This permanently damages the model and thus
the accuracy of low-temperature GraSP decreases substantially with increasing training epochs.
(iii) At high temperatures, the performance of pruned models is more robust to the number of
rounds and pruning of earlier layers is reduced. However, reduction in accuracy is still significant.
(iv) These behaviors are mitigated by using the proposed alternative: gradient-norm preservation
(∣

∣ΘT
p (t)H(Θ(t))g(Θ(t))

∣

∣

)

. Since this measure preserves the gradient-norm and is correlated to
loss-preservation, it focuses on ensuring the model’s second-order training dynamics and loss remain
the same, consistently resulting in the best performance.

8

Published as a conference paper at ICLR 2021

5 CONCLUSION

In this paper, we revisit importance measures designed for pruning trained models to better justify their
use early-on in training. Developing a general framework that relates these measures through the norm
of model parameters, we analyze what properties of a parameter make it more dispensable according
to each measure. This enables us to show that from the lens of model evolution, use of magnitude-
and loss-preservation based measures is well-justified early-on in training. More specifically, by
preserving parameters that enable fast convergence, magnitude-based pruning generally outperforms
magnitude-agnostic methods. By removing parameters that have the least tendency to change, loss-
preservation based pruning preserves first-order model evolution dynamics and is well-justified
for pruning models early-on in training. We also explore implications of the intimate relationship
between magnitude-based pruning and loss-preservation based pruning, demonstrating that one can
evolve into the other as training proceeds. Finally, we analyze gradient-norm based pruning and show
that it is linearly related to second-order model evolution dynamics. Due to this relationship, we
find that increasing gradient-norm via pruning corresponds to removing parameters that maximally
increase model loss. Since such parameters are concentrated in the initial layers early-on in training,
this method can permanently damage a model’s initial layers and undermine its ability to learn from
later training. To mitigate this problem, we show the most robust approach is to prune parameters that
preserve gradient norm, thus preserving a model’s second-order evolution dynamics while pruning. In
conclusion, our work shows the use of an importance measure for pruning models early-on in training
is difficult to justify unless the measure’s relationship with the evolution of a model’s parameters over
time is established. More generally, we believe new importance measures that specifically focus on
pruning early-on should be directly motivated by a model’s evolution dynamics.

6 ACKNOWLEDGEMENTS

We thank Puja Trivedi, Daniel Kunin, Hidenori Tanaka, and Chaoqi Wang for several helpful
discussions during the course of this project. We also thank Puja Trivedi and Karan Desai for
providing useful comments in the drafting of this paper.

REFERENCES

X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu. Global Sparse Momentum SGD for Pruning
Very Deep Neural Networks. In Proc. Adv. in Neural Information Processing Systems, 2019.

E. Elsen, M. Dukhan, T. Gale, and K. Simonyan. Fast Sparse ConvNets. In Proc. Int. Conf. on
Computer Vision and Pattern Recognition, 2020.

J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks.
In Proc. Int. Conf. on Learning Representations, 2019.

W. Gao, Y. Liu, C. Wang, and S. Oh. Rate Distortion For Model Compression: From Theory To
Practice. In Proc. Int. Conf. on Machine Learning, 2019.

X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedforward Neural
Networks. In Proc. Int. Conf. on Artificial Intelligence and Statistics, 2010.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. J. Dally. EIE: Efficient Inference
Engine on Compressed Deep Neural Network. In Proc. Int. Symp. on Computer Architecture,
2016a.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning Both Weights and Connections For Efficient
Neural Networks. In Proc. Adv. in Neural Information Processing Systems, 2016b.

B. Hassibi and D. G. Stork. Second Order Derivatives For Network Pruning: Optimal Brain Surgeon.
In Proc. Adv. in Neural Information Processing Systems, 1993.

S. Hayou, J. Ton, A. Doucet, and Y. W. Teh. Robust Pruning at Initialization. In Proc. Int. Conf. on
Learning Representations, 2021.

9

Published as a conference paper at ICLR 2021

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. In Proc. Int. Conf. on Computer Vision, 2015.

Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft Filter Pruning For Accelerating Deep Convolutional
Neural Networks. In Proc. Int. Joint Conf. on Artificial Intelligence, 2018.

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. In NeurIPS Deep
Learning and Representation Learning Workshop, 2015.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal Brain Damage. In Proc. Adv. in Neural Information
Processing Systems, 1990.

N. Lee, T. Ajanthan, and P. Torr. SNIP: Single-Shot Network Pruning Based on Connection Sensitivity.
In Proc. Int. Conf. on Learning Representations, 2019.

N. Lee, T. Ajanthan, S. Gould, and P. Torr. A Signal Propagation Perspective For Pruning Neural
Networks at Initialization. In Proc. Int. Conf. on Learning Representations, 2020.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning Filters For Efficient ConvNets. In
Proc. Int. Conf. on Learning Representations, 2017.

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Efficient Convolutional Networks
Through Network Slimming. In Proc. Int. Conf. on Computer Vision, 2017.

Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the Value of Network Pruning. In
Proc. Int. Conf. on Learning Representations, 2019.

E. Malach, G. Yehudai, S. Shalev-shwartz, and O. Shamir. Proving the Lottery Ticket Hypothesis:
Pruning is All You Need. In Proc. Int. Conf. on Machine Learning, 2020.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional Neural Networks For
Resource Efficient Inference. In Proc. Int. Conf. on Learning Representations, 2017.

P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance Estimation For Neural
Network Pruning. In Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2019.

V. Nagarajan and Z. Kolter. Generalization in Deep Networks: The Role of Distance from Initializa-
tion. In Workshop on Deep Learning: Bridging Theory and Practice, 2017.

M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. SVCCA: Singular Vector Canonical
Correlation Analysis For Deep Learning Dynamics and Interpretability. In Proc. Adv. in Neural
Information Processing Systems, 2017.

H. Tanaka, D. Kunin, D. Yamins, and S. Ganguli. Pruning Neural Networks Without Any Data by
Iteratively Conserving Synaptic Flow. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2020.

L. Theis, I. Korshunova, A. Tejani, and F. Huszár. Faster Gaze Prediction with Dense Networks and
Fisher Pruning. In Proc. Euro. Conf. on Computer Vision, 2018.

C. Wang, G. Zhang, and R. Grosse. Picking Winning Tickets Before Training by Preserving Gradient
Flow. In Proc. Int. Conf. on Learning Representations, 2020.

M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good Subnetworks Provably Exist: Pruning
via Greedy Forward Selection. In Proc. Int. Conf. on Machine Learning, 2020.

H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G. Baraniuk, Z. Wang, and Y. Lin. Drawing
Early-Bird Tickets: Towards More Efficient Training of Deep Networks. In Proc. Int. Conf. on
Learning Representations, 2020.

10

Published as a conference paper at ICLR 2021

A ORGANIZATION

The appendix is organized as follows:

• Appendix B: Extends our gradient flow framework towards SGD based training.

• Appendix C: Details the setup for training base models.

• Appendix D: Details the setup for training pruned models.

• Appendix E: Random/Uniform pruning results on CIFAR-100.

• Appendix F: Train/Test curves for magnitude-based and loss-preservation based pruned
models.

• Appendix G: More Results on Gradient-norm Based Pruning.

Section G.1: Scatter plots demonstrating correlation between ΘT
p (t)H(Θ(t))g(Θ(t))

and ΘT
p (t)g(Θ(t)).

Section G.2: Provides layer-wise pruning ratios for models pruned using gradient-norm
based pruning variants.

Section G.3: Train/Test curves for gradient-norm based variants used in the main paper.

• Appendix H: Provides empirical verification for observations 2–4 in an unstructured pruning
setup.

• Appendix I: Provides empirical verification for observations 2–4 on Tiny-ImageNet.

B EXTENDING THE FRAMEWORK TO SGD TRAINING

The main paper focuses on using gradient flow to establish the relationship between frequently used
importance measures for network pruning and evolution of model parameters. In practice, however,
deep neural networks are trained using SGD (stochastic gradient descent) or its variants (e.g., SGD
with momentum). This section serves to demonstrate that up to a first order approximation, our
observations based upon gradient flow are theoretically valid for SGD training too. Our analysis
is based on the fact that when an importance measure is employed, most pruning frameworks stop
model training and use several mini-batches of training data to determine an approximation for
gradient/Hessian. This enables us to use an expectation operation over mini-batches of data, making
a theoretical analysis tractable.

B.1 NOTATIONS AND SGD UPDATES

Notations: We first establish new notations for this section. For completeness, notations used in the
main paper are recapped as well:
Θ(t) denotes model parameters at time t. η denotes the learning rate at which stochastic gradient
descent trains a model. d(Θ(t);Xi) denotes the estimate of gradient of loss and H(Θ(t);Xi)
denotes the estimate of Hessian of loss with respect to model parameters at time t, as calculated
using the ith mini-batch (Xi). g(Θ(t)) denotes the full-batch gradient of loss and H(Θ(t)) denotes
Hessian of loss with respect to model parameters at time t.

SGD Update: Under stochastic gradient descent, a random mini-batch of data is sampled amongst
all mini-batches without replacement. For example, if mini-batch Xi is sampled, a gradient approxi-
mation based on its data elements will be used to update model parameters at the current iteration.
Therefore, the model parameters evolve as follows:

Θ(t) → Θ(t)− ηd(Θ(t);Xi). (13)

11

Published as a conference paper at ICLR 2021

B.2 CHANGE IN NORM OF MODEL PARAMETERS: ∆ ‖Θ(t)‖
2

2

We first use SGD to analyze change in norm of model parameters, denoted as ∆ ‖Θ(t)‖
2

2
. Assume

mini-batch Xi is used to update model parameters at the current iteration.

∆ ‖Θ(t)‖
2

2
= ‖Θ(t)− ηd(Θ(t);Xi)‖

2

2
− ‖Θ(t)‖

2

2

=✘
✘
✘
✘

‖Θ(t)‖
2

2
− 2ηΘ(t)Td(Θ(t);Xi) + η2 ‖d(Θ(t);Xi)‖

2

2
−✘

✘
✘
✘

‖Θ(t)‖
2

2

= −2ηΘ(t)Td(Θ(t);Xi) +O(η2)

≈ −2ηΘ(t)Td(Θ(t);Xi),

(14)

where we ignored terms with higher order products of learning rate η. Smaller the learning rate, the
better this approximation will be.

As mentioned before, to compute importance estimates for network pruning, most pruning frameworks
stop the training process and compute estimates for gradient/Hessian using several mini-batches of
data. To account for this, we can take expectation over the mini-batch sampling process. For example,
if input data is denoted as X , under expectation, Equation 14 changes as follows:

EXi∼X

[

∆ ‖Θ(t)‖
2

2

]

= EXi∼X

[

−2ηΘ(t)Td(Θ(t);Xi)
]

= −2ηΘ(t)TEXi∼X [d(Θ(t);Xi)]

= −2ηΘ(t)Tg(Θ(t)).

=⇒ EXi∼X

[

∆ ‖Θ(t)‖
2

2

η

]

= −2Θ(t)Tg(Θ(t)).

(15)

As the main paper shows (see Equation 9), under gradient flow, the norm of model parameters evolves
as follows:

∂ ‖Θ(t)‖
2

2

∂t
= −2Θ(t)Tg(Θ(t)).

(16)

Therefore, using Equation 15 and Equation 16, it can be evidently seen that up to a first-order
approximation, the expected rate at which norm of model parameters evolves under SGD is exactly
the same as that under gradient flow. In the main paper, we use this relationship to conclude
Observations 2 and 3. Thus, our analysis in this section indicates Observations 2, 3 are in fact valid
approximations under SGD training as well.

B.3 CHANGE IN CHANGE OF NORM OF MODEL PARAMETERS: ∆2 ‖Θ(t)‖
2

2

We now determine the expected rate at which change in norm of model parameters itself changes

under SGD. To this end, we will calculate ∆2 ‖Θ(t)‖
2

2
= ∆(∆ ‖Θ(t)‖

2

2
).

Equation 14 shows that when mini-batch Xi is used to take an optimization step, up to a first-order

approximation, the change in norm of model parameters (∆ ‖Θ(t)‖
2

2
) is as follows:

∆ ‖Θ(t)‖
2

2
= −2ηΘ(t)Td(Θ(t);Xi). (17)

After the optimization step based on mini-batch Xi has been completed, the model parameters change
from Θ(t) to Θ(t) − ηd(Θ(t);Xi). Assume that a new mini-batch Xj is sampled for the next
optimization step–i.e., the next gradient estimate is d (Θ(t)− ηd (Θ(t);Xi) ;Xj). To relate this
new gradient estimate with the previous one, we use a first-order Taylor approximation for model
gradient based on mini-batch Xj :

d (Θ(t)− ηd (Θ(t);Xi) ;Xj) = d (Θ(t);Xj)− ηH(Θ(t);Xj)d (Θ(t);Xi) . (18)

12

Published as a conference paper at ICLR 2021

Note that in the above equation, the Hessian estimate is based on mini-batch Xj only. Using this
relationship, the change in norm of model parameters can be approximated as follows:

∆ ‖Θ(t)− ηd(Θ(t);Xi)‖
2

2
= −2η (Θ(t)− ηd (Θ(t);Xi))

T
d (Θ(t)− ηd (Θ(t);Xi) ;Xj)

= −2η (Θ(t)− ηd (Θ(t);Xi))
T
(d (Θ(t);Xj)− ηH(Θ(t);Xj)d (Θ(t);Xi))

=− 2ηΘ(t)Td (Θ(t);Xj) + 2η2 Θ(t)TH(Θ(t);Xj)d (Θ(t);Xi)

+ 2η2 d (Θ(t);Xi)
T
d (Θ(t);Xj) +O(η3)

≈− 2ηΘ(t)Td (Θ(t);Xj) + 2η2 Θ(t)TH(Θ(t);Xj)d (Θ(t);Xi)

+ 2η2 d (Θ(t);Xi)
T
d (Θ(t);Xj) ,

(19)

where we ignore terms of the order of O(η3). This above result can now be used to calculate

∆2 ‖Θ(t)‖
2

2
, our desired quantity.

∆2 ‖Θ(t)‖
2

2
= ∆ ‖Θ(t)− ηd(Θ(t);Xi)‖

2

2
−∆ ‖Θ(t)‖

2

2

=[−2ηΘ(t)Td (Θ(t);Xj) + 2η2 Θ(t)TH(Θ(t);Xj)d (Θ(t);Xi)

+ 2η2 d (Θ(t);Xi)
T
d (Θ(t);Xj)]− [−2ηΘ(t)Td (Θ(t);Xi)]

=− 2ηΘ(t)T (d (Θ(t);Xj)− d (Θ(t);Xi)) + 2η2 Θ(t)TH(Θ(t);Xj)d (Θ(t);Xi)

+ 2η2 d (Θ(t);Xi)
T
d (Θ(t);Xj) .

(20)

We again use the fact that importance estimates for network pruning are estimated by stopping
model training and computing gradient/Hessian estimates over several mini-batches of data. We
denote this through an expectation over input data X , where our random variables are the mini-
batches Xi and Xj . As mini-batches are sampled independently, we use the result that expectation
of product of their functions can be independently evaluated: i.e., EXi,Xj∼X [f(Xi)g(Xj)] =
EXi∼X [f(Xi)]EXj∼X [g(Xj)].

=⇒ EXi,Xj∼X

[

∆2 ‖Θ(t)‖
2

2

]

= −2η EXi,Xj∼X

[

Θ(t)T (d (Θ(t);Xj)− d (Θ(t);Xi))
]

+ 2η2 EXi,Xj∼X

[

Θ(t)TH(Θ(t);Xj)d (Θ(t);Xi)
]

+ 2η2 EXi,Xj∼X

[

d (Θ(t);Xi)
T
d (Θ(t);Xj)

]

= −2ηΘ(t)T
(

EXj∼X [(d (Θ(t);Xj)]− EXi∼X [d (Θ(t);Xi))]
)

+ 2η2 Θ(t)TEXj∼X [H(Θ(t);Xj)]EXi∼X [d (Θ(t);Xi)]

+ 2η2 EXi∼X [d (Θ(t);Xi)]
T
EXj∼X [d (Θ(t);Xj)]

= −2ηΘ(t)T (
✘
✘

✘
✘

g(Θ(t))−
✘
✘
✘
✘

g(Θ(t))) + 2η2 Θ(t)TH(Θ(t))g(Θ(t))

+ 2η2 g(Θ(t))Tg(Θ(t))

= 2η2
(

‖g(Θ(t))‖
2
+Θ(t)TH(Θ(t))g(Θ(t))

)

.

(21)

=⇒ EXi,Xj∼X

[

∆2 ‖Θ(t)‖
2

2

η2

]

= 2
(

‖g(Θ(t))‖
2
+Θ(t)TH(Θ(t))g(Θ(t))

)

. (22)

As shown in the main paper (see Equation 12), under gradient flow, the rate at which change in norm
of model parameters changes is as follows:

=⇒
∂2 ‖Θ(t)‖

2

2

∂t2
= 2

(

‖g(Θ(t))‖
2
+Θ(t)TH(Θ(t))g(Θ(t))

)

. (23)

As can be evidently seen in Equation 22 and Equation 23, up to a first-order approximation, the
expected rate at which change of norm of model parameters changes under SGD is exactly the same

13

Published as a conference paper at ICLR 2021

as that under gradient flow. In the main paper, we use this relationship to conclude Observations 4
and 5. Thus, our analysis in this section indicates Observations 4, 5 are in fact valid approximations
under SGD training as well.

Overall, in this section, we showed that the relationships between commonly used measures for
network pruning and their expected impact on model parameters is the same for both SGD training
and gradient flow, up to a first-order approximation.

C TRAINING BASE MODELS

We analyze models trained on CIFAR-10 and CIFAR-100 datasets. All models are trained with the
exact same setup. In all our experiments, we average results across 3 seeds.

Since pruning has a highly practical motivation, we argue analyzing a variety of models that capture
different architecture classes is important. To this end, we use VGG-13 (a vanilla CNN), MobileNet-
V1 (a low-redundancy CNN designed specifically for efficient computation), and ResNet-56 (a
residual model to analyze effects of pruning under skip connections). The final setup is as follows:

• Optimizer: SGD,

• Momentum: 0.9,

• Weight decay: 0.0001,

• Learning rate schedule: (0.1, 0.01, 0.001),

• Number of epochs for each learning rate: (80, 40, 40),

• Batch Size: 128.

D TRAINING PRUNED MODELS

The general setup for training pruned models is the same as that for training base models. However,
for a fair comparison, if the prune-and-train framework takes n rounds, we subtract n epochs from the
number of epochs alloted to the highest learning rate. This ensures same amount of training budget
for all models and pruning strategies. Note that even if this subtraction is not performed, the results
do not vary much, as the model already converges (see Appendix F for train/test curves). The final
setup is as follows.

• Optimizer: SGD,

• Momentum: 0.9,

• Weight decay: 0.0001,

• Learning rate schedule: (0.1, 0.01, 0.001),

• Number of epochs for each learning rate: (80− number of pruning rounds, 40, 40),

• Batch size: 128.

Since we prune models in a structured manner, our target pruning ratios are chosen in terms of the
number of filters to be pruned. A rough translation in terms of parameters follows:

• VGG-13: 75% filters (∼94% parameters) for CIFAR-10; 65% filters (∼89% parameters)
for CIFAR-100,

• MobileNet-V1: 75% filters (∼94% parameters) for CIFAR-10; 65% filters (∼89% parame-
ters) for CIFAR-100,

• ResNet-56: 60% filters (∼88% parameters) for CIFAR-10; 50% filters (∼83% parameters)
for CIFAR-100.

The percentage of pruned parameters is much larger than the percentage of pruned filters because
generally filters from deeper layers are pruned more heavily. These filters form the bulk of a model’s
parameters, thus resulting in high parameter percentages.

14

Published as a conference paper at ICLR 2021

E RANDOM/UNIFORM PRUNING

In this section, we compare various pruning measures with random and uniform pruning under the
same experimental setup as used in the main paper (see Appendix D). For random pruning, we assign
a random score between 0–1, with equal probability, to each filter. For uniform pruning, we decide a
target amount of percentage pruning and remove that much percentage filters from all layers. For
example, if 50% of the model is to be pruned, we remove half the filters from each layer randomly.

If which importance measure is used for pruning a model in structured pruning settings is not an
important choice, both random and uniform pruning schemes should perform competitively with
standardly used importance measures for network pruning. However, as we show in Table 3, random
and uniform pruning perform much worse than the standardly used metrics for pruning.

Table 3: Reduction in test accuracy for CIFAR-100 models pruned randomly, uniformly, and using
the importance measures analyzed in the main paper. Test accuracies of base models are reported in
the table. †When pruning is distributed over several rounds, it often leads to small amounts of pruning
in a given round. Since only integer number of filters can be pruned, a small ratio will result in no
pruning at a layer with small number of filters and other layers will be pruned more to compensate
for the same. While this issue does not arise in VGG-13 and MobileNet-V1 models, for ResNet-56,
which has several layers with only 16 filters per layer, often very minimal amounts of pruning takes
place. Due to this, later layers are pruned more aggressively than earlier layers, resulting in poor
performance in both 5 and 25 rounds of random/uniform pruning for ResNet-56.

VGG-13 Base Random Uniform Mag. Loss Proposed GraSP GraSP |GraSP|

(65% pruned) Model Based Based Extension (T=200) (T=1) (T=1)

1 round 69.62 -5.71 -5.60 -1.73 -1.01 -0.61 -1.11 -3.83 -0.96

5 rounds -5.49 -4.57 -0.31 -1.74 -1.37 -3.22 -15.06 -1.53

25 rounds -4.55 -3.19 -1.31 -0.51 -0.69 -4.44 -26.79 -1.48

MobileNet-V1 Base Random Uniform Mag. Loss Proposed GraSP GraSP |GraSP|

(65% pruned) Model Based Based Extension (T=200) (T=1) (T=1)

1 round 69.10 -6.54 -9.71 -1.09 -1.94 -0.58 -4.58 -4.31 -1.93

5 rounds -6.55 -4.66 -0.77 -1.89 -0.69 -6.08 -15.35 -1.82

25 rounds -5.59 -3.56 -1.52 -1.79 -0.75 -9.96 -22.61 -1.41

ResNet-56 Base Random Uniform Mag. Loss Proposed GraSP GraSP |GraSP|

(50% pruned) Model Based Based Extension (T=200) (T=1) (T=1)

1 round 71.01 -4.00 -3.42 -4.09 -4.13 -3.91 -3.92 -3.99 -3.86

5 rounds -9.05† -7.58† -2.97 -3.90 -3.31 -4.04 -18.03 -4.00

25 rounds -27.54† -70.01† -2.26 -3.27 -2.39 -13.46 -70.01 -2.99

F TRAIN/TEST PLOTS

This section further demonstrates that magnitude based pruned models converge faster than loss-
preservation based pruned models. For magnitude-based pruning, the importance is defined as ℓ2
norm of a filter; for loss-preservation, the importance is defined as a variant of SNIP (Lee et al. (2019))
applied to entire filter. The plots show train/test curves for VGG-13, MobileNet-V1, and ResNet-56
models for 1, 5, and 25 pruning rounds each. Also plotted are train/test curves for the proposed
extension to loss-preservation which intentionally biases loss-preservation towards removing small
magnitude parameters (see Section 4.1 for more details).

15

