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Abstract Mobile devices are quickly becoming a primary

medium for personal information gathering, management,

and sharing. Managing personal image data on mobile

platforms is a challenging problem due to large data set

size, content and context diversity, heterogeneous indi-

vidual usage patterns, and resource constraints. This article

presents a user-centric system, called iScope, for personal

image management and sharing on mobile devices. iScope

uses multi-modality clustering of both content and context

information for efficient image management and search,

and online learning techniques for predicting images of

interest. It also supports distributed image search among

networked devices while maintaining the same intuitive

interface, enabling efficient information sharing among

people. We have implemented iScope and conducted

infield experiments using networked Nokia N810 portable

Internet tablets. Energy efficiency was a primary design

focus during the design and implementation of the iScope

search algorithms. Experimental results demonstrate that

iScope improves search time and search energy by

4.19 and 3.89 on average, relative to browsing.

Keywords Retrieval models � Management � Energy �
Performance

1 Introduction

Personal, portable communication, and computation devi-

ces are now part of hundreds of millions of lives, often in

the form of smartphones. Emerging mobile applications

and services are the main driving forces of the prevalence

of personal mobile systems. From Daniel Henderson’s

1993 prototype, intellect, which can receive and display

images and video media [1], to the first photograph taken

by Philippe Kahn in 1997 using a camera phone, the

functionality and adoption of personal portable devices

have continuously increased. Today’s personal portable

devices, such as the iPhone from Apple, Blackberry from

RIM, and Android phone from Google, have integrated a

variety of system functions, such as global positioning

system (GPS), cameras, sensors, large touch screens, and

easy-to-use interface. Global mobile phone subscriptions

have reached 5.9 billion in 2011 [2]. Users are able to

capture information anywhere and anytime. Mobile devices

are heavily used for information sharing and social

interaction.

Mobile devices are the first-level interface for capturing

and sharing multimedia data such as images. They are

therefore a natural image data management platform.

Managing image data on mobile devices, however, is a

challenging problem. A picture may be worth a thousand
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words, but without knowing the words, search can be very

difficult. Manual image annotation is tedious and time

consuming. Content-based image retrieval (CBIR), which

automatically extracts representative features from the raw

data and uses the extracted features to locate content of

interest, largely automates managing and exploring image

data [3]. Albeit recent progress in CBIR, managing image

data on personal mobile systems is challenging due to large

data set size, content diversity, heterogeneous usage pat-

terns, and resource constraints.

• Energy-induced constraints: Energy consumption is a

foremost design concern in battery-powered mobile

systems. Scarce energy resources largely limit the

performance and functionality of software applications

running on portable devices. Existing CBIR techniques

have high computation complexity and storage require-

ments. User interaction and communication bring high

time and energy cost during personal image search.

Energy-induced design constraints introduce serious

challenges to the design and implementation of image

management systems on personal mobile devices.

• User-specific search scenarios: Unlike general-pur-

pose search techniques developed for the World Wide

Web, image management on personal mobile devices is

a highly personal, user-centric task. Typically, a mobile

device has one owner; the data captured and stored on a

device depend on its owner’s interests. Search patterns

are also user specific. It is essential to adapt to users’

unique data interests and search patterns to improve

search performance and energy efficiency.

• Distributed data sharing: Supporting data sharing in

distributed mobile environments requires efficient,

distributed data management, and search techniques.

Communication-induced energy overhead is of great

importance in distributed mobile environments. We

investigate the time and energy overhead of remote

image retrieval and propose collaborative search and

metadata caching techniques to allow efficient image

sharing and retrieval in distributed mobile

environments.

In this work, we describe iScope, a personal content

management platform. iScope is a user-centric design tar-

geting energy-constrained distributed mobile environ-

ments. It leverages both personal context information and

efficient content search techniques, as well as online

learning techniques, to deliver personalized, energy-effi-

cient content search services. It provides a collaborative

search environment, enabling distributed image search on

mobile devices, thus facilitating information discovery and

social interaction. We have implemented a prototype of

iScope and conducted infield experiments using Nokia

N810 portable Internet tablet devices.

A preliminary version of this work was previously

published [4]. This article makes further improvements by

incorporating incremental hierarchical clustering for mutli-

modality clustering with significant speedup and high

quality. What is more, this article analyzes and identifies an

inherent retrieval pattern with regard to users’ memory,

which is particularly appealing for daily information

retrieval tasks performed by individual users. We discuss

the impact of the pattern and how it can benefit users with

large amounts of information to manage.

The rest of this article is organized as follows. Section 2

gives an overview of the iScope system architecture. Sec-

tion 3 presents multi-modality image data management.

Section 4 conducts resource characterization of portable

platform and investigates the resource usage of image

search process. Sections 5 and 6 describe the designs and

benefits of personalized and collaborative image search.

Sections 7, 8, and 9 describe the experimental results with

the iScope prototype, survey related work, and conclude.

2 iScope: overview of system architecture

This section presents an overview of iScope’s system

architecture. As illustrated in Fig. 1, iScope consists of the

following key components.

• Multi-modality data management: Personal image data

contain a rich set of content information (e.g., color,

texture, and shape) and user-specific context informa-

tion (e.g., location, time, and ownership). In iScope, the

context and content information of personal image data

are used in unison to enable efficient image manage-

ment. Images are partitioned based on content features

and context metadata. The proposed incremental hier-

archical clustering-based multi-modality data manage-

ment design allows efficient traversal of the data set

across different feature dimensions and resolutions,

enabling efficient management of personal data sets and

run-time user queries (Sect. 3).

• User-centric adaptive image search: iScope offers

personalized image search by leveraging both con-

tent-based search algorithms and user-specific context

information. Users differ from each other on image

interests and performance expectations. iScope incor-

porates run-time learning techniques for online predic-

tion and adaptation of the search process based on

implicit user feedback, improving search quality and

minimizing search costs, e.g., energy consumption

(Sect. 5).

• Distributed collaborative search: iScope supports

remote image search and metadata caching among

distributed image data sets spanning multiple mobile
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devices, which enable efficient information sharing and

effective social interaction in mobile social networks

(Sect. 6).

iScope supports iterative personal image search on

mobile devices. Personal images are organized using the

hierarchical clustering structures of content and context on

a local mobile device or multiple distributed devices. At

each retrieval step, given a user’s feedback, e.g., a query

image or specific context information, iScope traverses

through the hierarchical multi-modality data clusters stored

either locally or remotely, predicts and identifies a potential

match, and returns the candidate thumbnail images of the

matched cluster back to the user. The search process con-

tinues until the target image(s) are found. Figure 2 illus-

trates the interactive search process. A user looks for a

photograph taken during a hiking trip. Starting with a

photograph of his recent paintball trip, the user conducts

three context search and one content search operations. The

first two photographs belong to the paintball trip (similar

location); the last three photographs belong to the hiking

trip (similar location, content); and the paintball trip

occurred a week after the hiking trip (temporally similar).

3 Multi-modality data management

iScope uses a novel multi-modality image management

scheme that supports both content and context (e.g., time,

location, and ownership) information associated with

images. This section explains how these data are obtained

and used in multi-dimensional, multi-scale image cluster-

ing in oder to support efficient browsing and run-time user

queries.

3.1 Incremental hierarchical clustering

iScope organizes multi-modality data using incremental

hierarchical clustering [5], which supports order insensitive

and efficient traversal of a data set across different

dimensions and resolutions. Hierarchical clustering is an

effective method in data analysis and interactive informa-

tion retrieval. It yields a hierarchical clustering tree struc-

ture with multiple levels of resolution instead of a single-

layer clustering structure. As such, it enables compact data

management and efficient search. However, traditional

hierarchical clustering techniques have a major shortcom-

ing when dealing with incremental data growth. As users

continue to add new images (newly captured, from friends,

or from the Web) to their personal mobile devices or

modify/remove certain images, periodical re-clustering

may be needed—each time a complete hierarchical clus-

tering process is performed on all images currently in a

data set—introducing significant computation overhead

and energy consumption to personal mobile platforms.

The inefficiency mentioned above is the result of

neglecting previously constructed hierarchical clustering

trees in traditional approaches and reconstructing a

Content-based clustering

Personal indoor and outdoor environmentPersonal portable 
device

Context-based clustering

Data management

Retrieval

Learning and 
prediction

Content-based 
search 

Context-based 
search

User interface

Information gathering User interaction

GPS Collaborative search

context information

Images

Fig. 1 System architecture overview of iScope: personalized multi-modality image search for mobile devices

context search
location
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time

context search
location

content search
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Fig. 2 Image search example using context and content in iScope. Paintball trip (first 2 images) and hiking trip (last 3 images)
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clustering tree from scratch each time. In the incremental

hierarchical clustering approach used by iScope, two intrinsic

properties of a clustering tree structure are considered:

homogeneity and monotonicity. Each cluster can be repre-

sented by its density, a triple X = {D, l, r}, where

D = {di|di [ <} is a population of nearest distances between

data items in the cluster, and l and r are the mean and the

standard deviation of D, respectively. Given a lower bound

L = l - r and an upper bound U = l ? r , a cluster is

homogeneous if and only if L B di B U, V di [ D. For a

homogeneous cluster of images, all the images have similar

nearest neighbor distance. A cluster that violates homoge-

neity needs to be restructured. A cluster satisfies the mono-

tonicity property if its density is always higher (i.e., images

are more similar) than the density of its parent cluster.

In iScope, the clustering operations can be divided into

two major procedures: tree construction and tree mainte-

nance. Figure 3 illustrates the key steps when a new image

is added. In the tree construction stage, the new image is

added into the clustering hierarchy in a bottom-up fashion.

Our algorithm first finds the nearest (most similar) image at

the bottom level and recursively checks whether the parent

cluster can host the new image with minimal density

changes and minimal disruption to the hierarchy monoto-

nicity. If cluster homogeneity is not violated, the new

image is added to the cluster. Otherwise, the new image is

added to a sub-cluster or a higher-level cluster depending

on whether the lower bound or the upper bound is excee-

ded. Note that in this stage, only the regions affected by the

addition of the new image will be restructured if necessary.

In the tree maintenance stage, all affected clusters will be

checked iteratively for homogeneity violations and

restructured until all nearest distances of a cluster are

within its lower and upper bounds.

Compared with traditional approaches, incremental

hierarchical clustering avoids global data re-clustering and

updates data much more efficiently. In addition, for small

clusters with few images each, our clustering algorithm

recursively merges two closest clusters if the merged

cluster has at most M images, where M is the number of

thumbnail images that can be displayed on the screen of a

portable device (M is set to 24 in our study). Therefore, our

incremental hierarchical clustering results are stable,

insensitive to the order of data changes, and highly similar

to the clustering results of traditional approaches (0.96

similarity on average, with 0.03 standard deviation for our

data sets). Evaluation results of incremental hierarchical

clustering will be elaborated in Sect. 7.

3.2 Content and context-based clustering

Given the raw content of an image, various types of image

features may be extracted. We compared a number of

features and chose to use a region-based feature called

region-abc, which is similar to the feature used previously

[6]. Here, each image is segmented into multiple coherent

regions, and a 14-dimensional feature vector (9-dimen-

sional color moments and 5-dimensional bounding box) is

extracted from each region. The distance between two

region feature vectors is defined as the sum of the best-

matched distances for each individual region.

Using the region-abc image features, we apply the

incremental hierarchical clustering algorithm to yield

multiple clusters. On top of these clusters, we also con-

struct a content-based cluster relationship graph in which

each node represents a content cluster and each edge rep-

resents the distance between the centroids of two clusters.

Using this graph, we can quickly identify other clusters that

are likely to contain images with similar content to those in

a given cluster, thus permitting efficient content-based

image browsing and retrieval.

In addition to image content information, our system

also uses various types of context metadata to improve

image data management quality and efficiency.

Geographical location information of images can be

captured by mobile devices equipped with GPS receivers,

permitting easy computation of the spatial correlation

among images. Figure 4 shows an example geographical

distribution of a user’s image data set. Unlike the content-

based clustering technique described above (which

Find the most 
similar image to 

new image  

Add the new 
image into 
the cluster

Cluster 
maintainence

Cluster 
homogeneity 

violation?

Exceed the lower 
or upper bound? 

Yes

No

Exceed 
the 

lower 
bound

Exceed the 
upper bound

Identify the 
corresponding 

cluster

Move to the parent 
cluster and check 

cluster homogeneity

Incorporate 
the new image 

into a new 
subcluster

Fig. 3 Incremental hierarchical clustering: flow chart shows the key steps when a new image is inserted
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maintains a set of flat clusters), context-based clustering

maintains the entire cluster hierarchy.

Similarly, hierarchical time clusters can be constructed,

each containing images captured within a certain time

period. Temporal correlation between images has been

observed in many scenarios and can help identify images of

certain activities (e.g., wedding) or images taken at a cer-

tain time (e.g., Macy’s Thanksgiving Day Parade). In this

work, distance in the time domain is measured as the

absolute time difference between pairs of images. For

distributed image sharing, ownership information also

plays an important role. A user may obtain images from

other users, and through the ownership information, iden-

tify other users with similar interest (e.g., classic cars). This

can be used to restrict image browsing or searching to a

specific set of friends, enabling more efficient image search

and effective social interaction.

3.3 Interactions of multi-modality clusters

Figure 5 illustrates the iScope multi-modality image clus-

tering method, using metadata information such as content,

location, and time. At the bottom of the figure, images are

clustered based on their content similarity. There are also

links between content clusters indicating the closeness of

cluster centroids. At the top of this figure, hierarchical

geographical clusters (solid-line ellipses) and time clusters

(dotted-line ellipses) are maintained at different resolu-

tions, reflecting spatial or temporal correlations between

images. Images belonging to the same content cluster may

reside in different geographical or time clusters, and vice

versa. For instance, a user may take a set of similar (or

dissimilar) pictures at the same location during a certain

period of time. Or, a user may have taken a lot of pictures

of her dog at various time and locations. As a result, using

inter-connected multi-modality clusters makes it easier to

capture higher-level image semantics. A user can quickly

navigate these clusters by following different types of

correlations (similar content, location, time, or ownership)

in order to locate the images of interest. In addition,

through adaptive user prediction (Sect. 5), iScope may

automatically determine the most promising correlation

without explicit user specification.

Clustering large amounts of image data using different

types of metadata can be time consuming and memory

intensive. To improve efficiency, a hybrid approach is used

in which expensive clustering computation is performed on

wall-powered server machines when a mobile device syn-

chronizes with a server, and incrementally updated clusters

are stored on mobile devices for efficient personalized

image management and search.

4 Mobile platform characterization

In this section, we characterize the performance and energy

use of image search in personal mobile systems.

4.1 Measurement setup

The measurement platform includes a Nokia N810 portable

Internet tablet, HP Harrison 6201B direct current power

supply, NI-PC-6034E acquisition card, and hosting work-

station. iScope has been prototyped on Nokia N810, which

is representative of modern personal mobile networked

multimedia embedded systems. In particular, N810’s 4.3 in

LCD touch screen allows the design and evaluation of user-

interactive search techniques for personal mobile devices.

To measure energy and power consumption, we replace the

battery of the mobile platform under test with an HP

Harrison 6201B direct current power supply. Current is

computed by measuring the voltage across a 5 W, 250 mX,

Ohmite Lo-Mite 15FR025 molded silicone wire element

resistor in series with the power supply. This resistor was

Fig. 4 Geographical distribution of a user’s images

Context-based 
clustering

Content-based 
clustering

Fig. 5 Interactions of content and context-based image clusters
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designed for current sensing applications. High-frequency

voltage samples are taken using a National Instruments

6034E data acquisition board attached to the PCI bus of a

host workstation. The board has a maximum sampling rate

of 200,000 samples per second, allowing for high-resolu-

tion power and energy analysis of the mobile system.

4.2 Hardware power characterization

Next, we measure the power consumptions of the major

components of the Nokia N810, including the TI OMAP

embedded microprocessor, LCD touch screen, and Wi-Fi

interface. The power consumptions of individual compo-

nents are measured independently from others using spe-

cifically designed testing programs, and the testing

environment is carefully controlled, so that interference

from other components is eliminated. For instance, the

screen is turned off when the processor is tested. The

results are shown in Table 1. The peak (idle) power con-

sumption of the microprocessor is 0.80 W (0.01 W), where

peak power is measured when the microprocessor is doing

intensive computation, such as image feature calculation.

The power consumption of the touch screen is 1.04 and

0.47 W with and without being touched, respectively. The

send (receive) power consumption of the wireless interface

is 2.00 W (1.76 W). This study shows that the power

consumption of the display is comparable to that of the

microprocessor and wireless interface. This observation is

critical in a user-interactive search process, in which the

search system iteratively refines its search results based on

user feedback until a satisfactory image is found. During

the interactive search process, the energy consumption of

human–machine interface components, e.g., the LCD touch

screen, can be significant. In addition, the energy con-

sumption of the wireless interface must be carefully con-

sidered during distributed collaborative image search and

sharing among multiple mobile devices.

4.3 Image retrieval characterization

We now characterize the performance and energy con-

sumption of the image search process. This study helps

clarify the time breakdown and energy consumption dis-

tribution among the various steps of the image search

process. Given an initial query image, users look for a

target image using content-based search algorithms

through an interactive search process. Image data set

includes approximately 2,000 images taken on Nokia N810

portable Internet tablets.

Tables 2 and 3 show the time breakdown and energy

consumption distribution of the search process, which has

the following components: (1) the initialization stage,

including user interface initialization and query image

selection; (2) online processing of the content-based search

algorithm, including inter-image similarity calculation; and

(3) user exploration, including browsing, thinking, and

selection. The measured time and energy breakdown

among these three components are 10.5–18.7–70.9 and

8.0–36.6–55.4 %, respectively. Note that, in this study,

image similarity is calculated at run time, which can also

be conducted offline. Therefore, the user exploration stage

dominates in both latency and energy consumption. This

study demonstrates that personal image management and

search should focus on minimizing the latency and there-

fore energy consumed in the user exploration stage. To this

end, iScope employs multi-modality data management and

user-centric adaptive search algorithms, which are

explained in Sects. 5 and 6.

5 User-centric adaptive image search

This section describes the proposed user-centric image

search techniques which leverage content and context

Table 1 Power consumption (W)

Processor Processor Display Display Wireless

active idle w/o touch w/ touch send/receive

0.80 0.01 0.47 1.04 2.00/1.76

Table 2 Time distribution of one image search process

Seconds

Total time 80.4

Query dialog 8.4

Query idle 8.0

Query click 0.4

Algorithm computing 15.0

User exploration 57.0

Screen idle 53.3

Screen click 3.7

Table 3 Power distribution of one image search process

Joule

Total energy 52.2

Query dialog 4.2

Query idle 3.8

Query click 0.4

Algorithm computing 19.1

User exploration 28.9

Screen idle 25.0

Screen click 3.9
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information, as well as online adaptive user prediction

during image search.

5.1 User interface

One of the main difficulties standing in the way of greater

benefit from any intelligent search algorithm is difficulty of

use. Most existing browsing-based user interfaces,

although inefficient, are straightforward to use. iScope

aims to make mobile image search accessible to large

population of mobile system users spanning different age

groups with different interests and technical backgrounds:

an easy-to-use interface is essential.

We have designed a user interface that is accessible to

people with no technical background. It supports queries

via a straightforward search process. Figure 6 shows the

prototype user interface implemented on a Nokia N810

device. The figure on the left shows the starting page,

which shows the list of the social group members and the

geographical distribution of the image data set. Two types

of navigation are supported: (1) navigation across differ-

ent dimensions, e.g., time, location, content, and owner-

ship, corresponding to the search algorithm’s traversal

across different dimensions of metadata clustering and (2)

zooming in/out along a particular dimension, corre-

sponding to search traversal along a cluster hierarchy.

Using this interface, an end user can conduct image

search through an interactive navigation process. For

instance, using a query image of a person running in

Boulder, a user can search for a stadium in Toronto. First,

content-based search is used to look for photographs with

people running. Then, location-based search is used by

selecting Toronto on the map to reduce the candidate data

set. Manual browsing is then used to find one candidate

image containing running people in a stadium. Finally,

content-based search is used to search for stadiums in

Toronto.

5.2 Search process

To search for an image, a user starts with an existing query

image, related context information, or browses in an initial

cluster to identify a specific query image. The user then

selects a search domain (e.g., content, location, or time) and

issues a query. Given the initial query, iScope quickly locates

the corresponding cluster that contains the query image in that

domain. As described in Sect. 3, images assigned to the same

cluster are similar in a particular domain. Promising images

can be easily identified by returning other images residing in

the query image’s cluster. These temporary results are pre-

sented to the user, who checks the images’ context informa-

tion and provides feedback on whether they are relevant. The

user can then continue the interactive search in two different

ways. The user may stay in the same search domain, and

check the upper-level cluster (for geographical or time clus-

tering) or the neighboring clusters (for content-based clus-

tering). Alternatively, the user may pick one of the positive

examples as the new query image and start another query,

switching to another search domain if needed. This iterative

search process continues until the desired image is located.

All the search steps and user feedback are recorded by

iScope and used to tune the automatically generated clus-

tering structures as follows: (a) if an image is selected as

the target image or an intermediate target image, it is

merged into the same cluster as the query image; (b) if a

cluster contains more images than that can be displayed on

the touch screen, the most irrelevant images will be iden-

tified and removed from the original cluster and form a new

cluster; and (c) an empty cluster will be removed from the

clustering structure.

5.3 Adaptive user prediction

In addition to explicit user feedback on relevant or irrele-

vant images, other types of implicit user feedback may also

Fig. 6 User interface running on Nokia N810. The figure on the left shows the start page, and the figure on the right shows search results. Last

row in search results is based on adaptive prediction
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be captured, such as the overall search and navigation path,

backtracking operations. This information can be used to

guide the run-time learning techniques and provide adap-

tive user prediction to optimize the user search process.

Specifically, iScope makes user-specific prediction based

on previous search history, current query image, and

intermediate search results, in order to return images that

are likely to be of interest.

Our method works as follows. After each round of

search, the system records the trace ðq; h1; h2; . . .; hx; pÞ; in

which q is the initial query image, h1; h2; . . .; hx are the

intermediate images, and p is the final target image. This

image-level trace is then converted to a cluster-level trace,

i.e., each image is converted to its corresponding cluster

and search domain. Cluster-level traces, instead of image-

level traces, are used for prediction because users are

unlikely to search for the same image repeatedly, but are

likely to search for different images in a cluster (e.g., a

specific event or a trip). Given a set of cluster-level traces,

at runtime, iScope uses the images selected by the user so

far in this round of search as a basis for prediction. Let

(i1i2i3) be the corresponding clusters. Using Bayes’ theo-

rem, we calculate the conditional probability of each can-

didate cluster C containing the target image:

PðCji1i2i3Þ ¼
Pði1i2i3jCÞPðCÞ

Pðiii2i3Þ
ð1Þ

Since P(i1i2i3) is the same for all candidate clusters C, we

only need to compute P(i1i2i3 | C)P(C). Again, using

Bayes’ theorem, we have

Pði1i2i3jCÞ ¼ Pði1jCÞPði2ji1CÞPði3ji1i2CÞ ð2Þ

Using the naive Bayes probabilistic model, i.e., i1i2i3 are

conditionally independent of each other, we have

Pði1i2i3jCÞ ¼ Pði1jCÞPði2jCÞPði3jCÞ ð3Þ

We first locate all the cluster-level traces that contain

C, then check how many times i1, i2, and i3 have co-

occurred with C in these traces. To compute P(C), we

count the number of occurrences of C in all the cluster-

level traces OC, and the total number of cluster occurrences

in the traces O. Thus,

PðCÞ ¼ OC=O ð4Þ

Using the formulas above, we can compute the probability

of each candidate cluster containing the target image.

6 Collaborative image search

iScope supports collaborative image search targeting dis-

tributed mobile environments. The proposed design allows

individual users to share their image data sets within their

social groups, e.g., friends and family members. It thus

allows each member to search a much larger data set than a

single mobile device can hold, thereby facilitating infor-

mation sharing and stimulating social interaction. Previous

work has shown that collaborative search utilizing social

networks (e.g., friends or social groups) can improve

search efficiency and generate more relevant search results

[7–9]. While previous work focused mostly on keyword-

based search of Web data, iScope focuses on collaborative

content- and context-based search in distributed mobile

systems. Privacy and security are key issues in data shar-

ing. iScope can leverage existing infrastructures for

authentication and privacy/data protection [10, 11].

The collaborative search technique conducts parallel

search among the socially associated mobile devices. A

search query may be processed by multiple mobile devices,

each of which hosts a different image data set manually shared

by its owner or automatically cached by the device itself. Each

member of a social group shares a subset of her image data set

with the whole group. The shared data set is initially stored on

her own device and organized separately from the rest of her

personal data. More specifically, the metadata management

using the multi-modality clustering method is separated from

the rest of the owner’s personal data for better privacy and

security protection. This approach yields smaller data set,

potentially allowing more efficient image search. The dis-

tributed shared data sets are ready to support collaborative

image search within a social group. After a group member

issues a query, her local device conducts local search within

her own data set. In the meantime, the query is broadcasted to

other devices within the social group. Each remote device will

collaboratively conduct local search within its shared data set

and return the results, e.g., metadata and/or the raw images,

back to the querying device. The user interface for distributed

search is identical to that of local search; the remote search

process is transparent to the end user. Figure 7 demonstrates

the flow of collaborative search.

In this work, we descrive an online metadata caching

method to minimize the communication overhead of col-

laborative search. We observed that individual users tend to

show more interest in specific subsets of the shared data,

and the subsets of interest vary between users. For instance,

Alice and her friend Bob took a hiking trip to the Green-

man Summit. Alice may be more interested in the photo-

graphs taken by Bob during the trip than Bob’s other

shared data. The proposed caching method leverages the

‘‘data locality’’ property and caches the metadata received

remotely at run time, merging the metadata into the user’s

own data set for future usage. In addition, to support col-

laborative search, image ownership is introduced as a

dimension in the multi-modality data clustering method.

When local search requires access to a remote image, it

first checks metadata referencing remote storage and then
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issues a fetch request to the corresponding device. If that

device is currently available in the network, it returns the

raw image requested.

As described in the previous section, metadata cluster-

ing is hierarchical. The proposed metadata caching method

follows a bottom-up approach, i.e., when all the sub-clus-

ters of a remote cluster have been cached locally, the

remote cluster itself is then cached. In addition, each

cached remote metadata item and the corresponding cluster

also maintain an access history, which tracks how many

times, and the most recent time at which, the corresponding

image(s) have been accessed. This information is used to

determine the caching policy for the raw images, which are

much larger than metadata. When a device has insufficient

storage, the raw images with low accesses counts, or long

durations since their most recent access, are deleted.

7 Experimental evaluation

In this section, we evaluate iScope, the personalized image

management and search system. Section 7.1 summarizes

the implementation of our prototype and describes the

image data sets used in the experiments. Section 7.2

evaluates multi-modality data clustering algorithm. Section

7.3 evaluates personalized image search on an individual

device. Section 7.4 further analyzes users’ search patterns

and importance of cue images in online prediction. Section

7.5 evaluates collaborative search in a distributed mobile

environment.

7.1 Implementation and image data sets

iScope has been implemented on a Nokia N810 device.

The multi-modality image data management method, as

well as content-based and context-based search techniques

are implemented in C and Python. The GTK? library was

used to develop the graphical user interface. The imple-

mentation consists of 23,925 lines of C code and 669 lines

of Python code.

Sets of images captured using personal portable devices,

such as camera phones, are significantly different from

general-purpose image data sets. We have constructed an

image data set with 7,923 Flickr images captured by six

different camera phone users. The Flickr data set is used in

the evaluation of content-based search techniques in Sect.

7.2, because it is more comprehensive (requiring that user

study participants gather 8,000 images each would be

costly), and this evaluation does not require any context

information. However, these Flickr images lack personal

context information, such as location and time stamps. In

order to evaluate the impact of this context metadata, it was

necessary to gather our own image data sets. We developed

a software tool for Nokia N810 portable Internet tablets

that allows users to manually or automatically take pho-

tographs using the built-in camera. The software uses the

built-in GPS device and clock to tag photographs with

location tags and timestamps. Ten volunteers took photo-

graphs during their daily activities. In total, they gathered

more than 9,000 images during a period of four months.

The images were taken in seven cities of three different

countries: Canada (Kingston, Ottawa, and Toronto), the

United States (Evanston, Boulder, and San Jose), and the

United Kingdom (London). The gathered image data sets,

along with the location, time, and ownership information,

are stored on N810 devices. They are used to evaluate the

impact of distance measurement on content and context

clustering quality, as shown in Sect. 7.2 and in the user

study shown in Sects. 7.3 and 7.5.

7.2 Multi-modality data management

iScope combines both content-based image features and

context metadata to support efficient image data manage-

ment. We first compare the efficiency of incremental

hierarchical clustering (IHC) and traditional hierarchical

clustering (THC). We select three subsets containing 100,

1,000, and 5,000 images, respectively. Table 4 shows the

total clustering time by each algorithm as images are

continuously added to the system. According to the results,

Metadata 
retrieval

Retrieval 
continues? 

Metadata 
caching, keeps 

owner 
information

Yes

User issues 
a query

Remote 
device search

Local device 
search

Remote

Fetch the raw image from 
corresponding device

Result image 
belongs to 

current user?
Display

Metadata hit

Yes

No

Local

No

Fig. 7 Collaborative search flow chart

Table 4 Clustering time comparison of traditional (THC) and

incremental hierarchical clustering (IHC)

Number of images 100 1,000 5,000

THC 0.341 s 366.5 s 43965.6 s

IHC 0.006 s 0.924 s 33.0 s

Ratio 62.0 396.9 1,334.2
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the incremental approach outperforms the traditional

approach by orders of magnitude, and the improvement

becomes more substantial as the number of images

increases.

Next, we compare the quality of IHC and THC. This

evaluation is conducted on the data set containing 5000

images, since smaller data sets result in fewer clusters and

do not reflect the overall quality. In THC, there are three

distance measures by which sub-clusters are merged. We

experimented with all of them: min, max, and avg, which

measure the minimum, maximum, and average distances of

objects belonging to two different clusters, respectively. A

good clustering algorithm should generate clusters that are

compact (small intra-cluster distance) and have good sep-

aration (large inter-cluster distance). Given a set of k

clusters X1;X2; . . .;Xk; we define the average intra- and

inter-cluster distances as follows:

IntraDist ¼ 1

k

X

1� i� k

1

jXij
X

x2Xi

distðx;XiÞ
 !

; ð5Þ

InterDist ¼ 2

kðk � 1Þ
X

1� i� j� k

distðXi;XjÞ ð6Þ

where Xi is the centroid of cluster Xi and distðÞ measures

the distance between two objects. Table 7 shows the

quality of different clustering algorithms. A higher Inter-

Dist to IntraDist ratio indicates better separation and

compactness, i.e., better clustering quality. According to

the ratio, the incremental approach results in slightly worse

results. This small gap is acceptable given the much higher

efficiency of IHC. We have chosen to use IHC for clus-

tering content- and context-based information for mobile

data management, due to its high clustering efficiency and

good clustering quality.

7.3 Personalized image search

Here, we evaluate the personalized local image search system

on the Nokia N810 platform via user studies. Ten volunteers

from Queen’s University and University of Colorado par-

ticipated in the studies. All ten participants are graduate

students aged between 20 and 28 years. Two of them are

female. Most of the participants use mobile devices daily and

have at least basic computer skills. We compare the perfor-

mance of different image search algorithms under two dif-

ferent scenarios: (1) search within individual users’ own

image data sets and (2) search within a large combined image

data set. Specifically, we performed two user studies, each

with five participants. The amount of time spent by each

participant ranged from 4 to 8 hours.

In the first study, users search for images within their

own image data sets (Sect. 7.1). These data sets contain

1,079, 1,235, 1,497, 1,542, and 2,100 images, respectively.

The data sets differ in size as different users collect images

at different rates and under different scenarios. Although

the data sets are different, all the five participants follow

the same search protocol. In the second study, we use a

larger image data set containing 4,389 images, which are

drawn from three participants’ data sets in the first study.

Users are asked to familiarize themselves with other users’

images in this data set, to minimize any affect caused by

unfamiliarity of a user to the data set.

For each participant, 30 query images are randomly

selected from the corresponding image data set, and the 30

target images corresponding to the query images, respec-

tively, are then manually specified. Although it is possible

to select multiple target images for each query image, using

query–target image pairs provide a simple and more

deterministic evaluation process. Figure 8 shows the clus-

ters (based on content, location, and time) that the query

images belong to in one of the image data sets. We see that

the query images are distributed evenly and sparsely in

different clusters in the three dimensions, thus ensuring that

the user study results are not biased.

To evaluate the effectiveness of the design, we consider

the following search scenarios:

• Browsing-based search: To date, browsing is the most

commonly used search method for personal image

collections stored on commercial mobile platforms. In

this experiment, images are sorted by time. Given a

query image, the user searches for the target image by

browsing through the image data set.

• Clustering-based search: This approach leverages the

multi-modality clustering data structures, content- and

context-based search techniques. The described adap-

tive user prediction technique is disabled in this setting.

 0  50  100  150  200  250  300  350  400  450

Clusters(based on content)

 0  50  100  150  200  250
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Fig. 8 Distribution of query images over the content, location, and

time clusters. The x axis represents the individual leaf clusters in the

content, location, and time hierarchical clustering trees, and the points

show the clusters that the query images belong to
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• Clustering?Prediction-based search: This is the

method used in iScope. In addition to clustering-based

search, it also leverages implicit user feedback infor-

mation from previous search history for user-specific

prediction.

In this study, the system is configured to display 24

(4 9 6) thumbnail images at a time on the N810 touch

screen. With adaptive prediction, the two images most

frequently used in the image-level traces are selected from

each of the top three clusters. These six suggested images

are presented as the bottom row in the search results (see

Fig. 6).

Tables 5 and 6 show the overall performance and energy

consumption, as well as the time and energy usage

breakdown, of browsing-based search. As described in

Sect. 4, the time and energy usage of an image search

process can be divided into two components: algorithm

processing (Computation) and user operation (User). Using

manual browsing, the time and energy overhead of the

search algorithm (image index computation) is negligible.

User operations dominate the search process. On average,

more than 99 % of the time and energy is consumed by

user operation (manual browsing). Table 5 also shows the

average number of steps required by each user per image

search. The manual browsing-based search process is

tedious and slow (on average [100 steps per image for

each of the five large image sets), resulting in significant

time and energy overhead. We conclude that in the image

search process, user interaction is the most time and energy

consuming stage. Therefore, minimizing the number of

required search steps has the greatest potential to minimize

the time and energy usage (Table 7).

Figures 9 and 10 compare the time and energy usage of

the browsing-based method, clustering-based method, and

clustering?prediction (iScope). Compared to the brows-

ing-based method, clustering-based search reduces search

time and energy usage by 48.3 and 46.2 % (on average),

9.3 and 10.3 % (minimum), and 90.5 and 90.0 % (maxi-

mum). Leveraging the proposed adaptive user prediction

technique, iScope further reduces the search time and

energy usage by another 22.1 and 21.6 % on average,

compared to the clustering-based approach. Overall, com-

pared to the browsing-based approach, iScope achieves

performance improvements of 4.19 (on average),

1.39 (minimum), and 11.19 (maximum). It reduces

energy consumption by 3.89 (on average), 1.39 (mini-

mum), and 10.49 (maximum). These experiments also

suggest that the benefits of iScope increase when it is used

on larger data sets. It enabled 1.99 latency reduction and

Table 5 Time usage of browsing-based search

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

Computation time (s) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

User time (s) 130.5 51.3 41.0 120.9 125.2 449.4 137.1 141.1 595.7 219.0

Overall time (s) 130.8 51.7 41.3 121.3 125.6 449.8 137.5 141.5 596.0 219.4

Avg. steps per query 31.4 40.1 20.2 18.8 86.9 104.7 101.7 111.7 112.7 107.7

Table 6 Energy usage of browsing-based search

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

Computation energy (J) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

User energy (J) 68.7 26.3 20.8 58.1 63.6 216.2 69.4 70.9 292.9 114.4

Overall energy (J) 69.1 26.7 21.2 58.5 64.0 216.6 69.9 71.3 293.4 114.9

Table 7 Clustering quality comparison of traditional (THC) and

incremental hierarchical clustering (IHC)

THC IHC

Min Max Average

InterDist 720.3 9 106 549.8 9 106 750.7 9 106 11.57 9 106

IntraDist 81 100 67 7.18

Ratio 8.89 9 106 5.50 9 106 11.20 9 106 1.61 9 106
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2.09 energy reduction when used for a 1,079 image data

set, and 11.19 latency reduction and 10.49 energy

reduction when used for a 4,389 image data set. Note that

the user studies were conducted on different volunteers,

and the content of different image data sets also varies

significantly.

Figures 11 and 12 show the required number of search

steps and the average duration of each search step for the

three search techniques. In order to evaluate how different

query images affect the user search process, we calculate

the standard deviation of number of search steps for each

user’s 30 query images, which ranges from 10.5 to 83.9.

The performance improvements and energy savings of

iScope are primarily due to the significant reduction in the

required number of steps for each image search query. In

order to estimate the statistical confidence in our hypoth-

eses about the impact of search algorithm on time and

energy, we use the two-tailed Student’s t test. The results of

this analysis imply that the mean times for iScope and

browsing mode differ with 97.3 % probability and that the

mean energy consumptions differ with 97.0 % probability.

Note that the t test requires some assumptions, e.g., that the

variances of the two populations are equal.

The proposed multi-modality clustering and adaptive

content and context-based searching techniques allow

iScope users to use the implicit connections between the

query and target images, thereby improving search quality

and time. Consider the search processes shown in Fig. 13.

In this case, the query image shows User 3’s apartment in

Kingston, and the target image (in User 3’s image set)

shows User 5’s apartment in Boulder. Starting from the

query image, through context (location), content, and

context (location) search operations, User 3 reached an

image containing a business building in Boulder. At this

point, one context (location) search followed by a predic-

tive content search (done automatically by iScope) was

sufficient to reach the desired image. Note that, in this case,

even though the query image and the target image contain

similar ‘‘content,’’ i.e., apartment, using only content-based

search would result in an excessively long search process

due to the two images’ significant differences in color

scheme and background content.

This study raises an interesting research question. Many

times, we have heard people complaining, ‘‘I have seen this

somewhere, but just cannot remember where.’’ Recent

studies, such as the SenseCam project [12], have shown

that using image recording to enable review of one’s daily

life can ameliorate human memory loss symptoms. iScope

explicitly leverages underlying connections among images.

Its use may therefore have the potential to help people

strengthen these connections. Currently, we are in the

process of evaluating the possibility of applying iScope to

related medical applications.

7.4 Further analysis of adaptive prediction

We further analyze the search traces of all users to

understand the specific scenarios when iScope’s cluster-

ing?prediction method improves or worsens the search

performance. When personalized adaptive prediction is

used, iScope dynamically predicts and displays a set of

images that are likely to be the target image. The user may

or may not choose a predicted image, and the overall

search performance may be better or worse, compared with

the performance when no prediction is used. Specifically,
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we consider the following four scenarios: (1)–(3) if a

predicted image is picked by the user, overall it may lead to

better, the same, or worse search performance; and (4) if no

predicted image is picked, the prediction’s impact on the

search performance is unknown, referred to as the random

case. Figure 14 shows the distribution of the four scenarios

in all users’ search traces. Figures 17 and 18 show the

corresponding changes (decrease or increase) of the num-

ber of search steps and search duration needed for the

better, worse, or random cases.

From these figures, we can see that for most participants,

using active prediction results in better search performance.

For instance, better cases account for 58 % of all search

traces, and these cases can reduce search duration by

thousands of seconds and save hundreds of search steps.

Why does our personalized active prediction method

work well in users’ image search tasks? A careful analysis

of users’ search traces revealed an important property in

users’ image browsing activities: although many images

exist in each user’s data set and multiple candidate images

are displayed in each search step, users tend to choose only

a small portion of these images and use them repeatedly in

their searches. For the 10 users, we have studied, on

average, only 6 % of the images were actually chosen by

our users (Fig. 15). Intuitively, this means that a user is

often familiar with a small number of ‘‘hub’’ or ‘‘cue’’

images and use these images to make ‘‘jumps’’ in order to

locate other related images. This is particularly true in

personal image data sets.

Based on this observation, images used by a user in past

searches have a greater chance to be used again in future

searches, and these images that a user has revisited over

and over again in the history should rank higher in the list

of predicted images. In particular, iScope’s personalized

active prediction aims to extract such implicit information,

as introduced in Sect. 5.3. Predictions are made based on

previous search history, only those images used most fre-

quently in the image-level traces will be selected and

presented in the predicted image list. Figure 16 shows that

29 % of all images chosen by the participants were images

predicted by iScope. Note that a random prediction method

would only be able to predict 6 % of the images that were

chosen (Fig. 15). Figure 19 presents the number of occur-

rences of images being chosen and being predicted. As we

can see, the more frequently an image has been chosen, the

more frequently this image appears in the predicted image

list, thus the better prediction accuracy and better search

performance (Figs. 17, 18).

The underlying reason for the success of iScope’s per-

sonalized active prediction method is its close relationship

with the way human memory works—when faced with a

large amount of data, people tend to remember a few

characteristic data items and use them to associate with

other data items with similar features. In the case of per-

sonal image data management, users make use of a small

number of ‘‘cue’’ images to facilitate browsing and

searching of much larger image repositories. By organizing

image data sets in multiple dimensions (e.g., content, time,

context search

location

context search

location

content search context search

location

content search

query image target image

prediction

Fig. 13 An image search example using content- and context-based search and adaptive user prediction
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Fig. 14 Distribution of different cases of adaptive prediction
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Fig. 15 Only 6 % of all images were chosen by users in their

searches

71%

29%
Predicted
Not predicted

Fig. 16 Twenty-nine percentage of images chosen by users were

predicted by iScope in the searches
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location), actively learning, and predicting personalized

search traces, iScope makes it possible to manage, search,

and share large amounts personal image data in distributed

mobile platforms with high efficiency.

7.5 Collaborative image search

The distributed, collaborative image search technique

described in Sect. 6 was also evaluated. Communication

latency and energy overhead are of primary concern in

collaborative search. The caching technique aims to mini-

mize these overheads by limiting remote access during

collaborative search.

The following experiments consider N810 devices

connected via a campus 802.11b network. The user studies

described in the previous section were extended to the

distributed environment. Detailed image search traces were

gathered during the preceding local search experiments.

These traces contain detailed timing information for the

interactive image search processes, e.g., the number of

search steps of each image query, the time usage of each

search step and the breakdown between algorithm pro-

cessing time and user time. The traces were replayed in the

distributed, networked system composed of N810 devices.

This technique has the benefits of eliminating ordering

effects and random variation between the two studies. It

also allows a more direct comparison of local search with

distributed collaborative search than would be possible by

repeating the study with a new set of users. Timing and

system state information was gathered at run time. For

instance, networking latency and energy consumption are

gathered when remote device accesses are invoked. The

power consumption of the N810 in each system state (e.g.,

receiving data via the 802.11b interface, running a search

algorithm, and waiting for user input) was measured using

the equipment described in Sect. 4. These system state-

dependent power consumption values were used in com-

bination with the timing and system state values measured

during trace execution to determine the energy consump-

tion during distributed collaborative search.

We first evaluate the potential communication perfor-

mance and energy overhead introduced by remote access.

In this experiment, the image data set is placed on remote

devices and the proposed caching technique is disabled.

Therefore, every image search step requires remote device

access. Figures 20 and 21 show the energy usage and

latency breakdown of the remote search scenario. Com-

pared to image search on a local standalone device, remote

image search introduces significant latency and energy

overheads. The latency increases by 65.5 % on average

(27.1 % minimum and 96.4 % maximum) for the ten par-

ticipants in user studies. The corresponding total energy

consumption increases by 607.5 % (275.5 % minimum to

877.7 % maximum), which includes the energy consump-

tion of the querying device and the remote devices. Note

that, since all the remote devices can potentially respond to

each query, the worst-case latency and energy overhead

increases linearly with the number of mobile devices (four

devices are used in this experiment). This study illustrates

the importance of reducing the communication overhead

during distributed collaborative search.

Figures 22 and 23 compare the performance and energy

usage of collaborative search with (right bars) and without

(left bars) the metadata caching technique. These results
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demonstrate that metadata caching improves system per-

formance and energy efficiency. When both five-member

user studies are considered, the latency reduction is 34.4 %

on average (18.9 % minimum and 43.7 % maximum) and

the energy consumption reduction is 71.2 % on average

(59.2 % minimum and 78.7 % maximum). These perfor-

mance and energy consumption improvements result from

high cache hit rates during the search processes. Table 8

shows the average cache hit rates over the user studies,

which average 81 % and range from 69 to 90 %. This study

also demonstrates that the cache hit rate decreases with

increasing data set size—image search of a larger data set

tends to be more diverse, lowering the cache hit rate. Note

that the cache hit rate is affected by the query image dis-

tribution within the image data set. In practice, we believe

that personalized queries generally have content and/or

context correlation, which is reflected as data locality

during image search, enabling a high cache hit rate. In

contrast, the query images used in this experiment are

randomly selected. Therefore, we believe iScope’s caching

techniques will be even more effective in real usage sce-

narios. Figure 24 shows the cache hit rate profiles of the ten

participants in user studies; the cache hit rate increases for

each participant—initially, the local device only contains

its own data set and its cache is empty, resulting in a low

cache hit rate. As queries are processed, more metadata are

cached, improving the cache hit rate.

8 Related work

Our work draws upon research in several areas concerning

image management: content-based image retrieval, multi-

modality image management, power-aware image retrie-

val, user feedback, and distributed image sharing. In this

section, we survey work most related to ours.

Content-based image retrieval (CBIR) has been an

active research area for over a decade [3]. Several

approaches, aiming at providing a more intuitive interface

for browsing and managing image collections, have been

introduced [13, 14]. Content-based search for images taken

by mobile devices has also been investigated [15, 16]. In

this work, targeting personal image collections, we envi-

sion more active roles for portable devices and personal-

ized search.

Besides the raw content of image data, researchers have

also considered other types of information in order to

augment image management and search tasks. Text
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annotations, Web links, and ontology have been considered

in previous works.

For mobile images, location information is commonly

used [17, 18]. Although these past works utilized context

information, they did not carefully consider the energy

issue, which is the primary constraint of battery-powered

systems.

A variety of energy optimization techniques have been

proposed for portable devices [19, 20].

Recently, Kumar et al. [21] proposed an adaptive fea-

ture loading scheme for mobile CBIR to save energy. This

work focused on the energy consumption of CBIR pro-

cessing. However, our study has shown that for image

search on mobile devices, power consumption is mainly

due to various components such as touch screen and GPS,

instead of processor or storage.

Relevance feedback has attracted much attention in the

information retrieval community and has been shown to

provide improved performance in many search systems

[22–24]. Most user feedback mechanisms aim at precision/

recall improvement and ignore the speed issue, which is an

important factor for performance measurement and power

consumption in mobile systems. Saha et al. presented a

human perception based similarity measure along with a

relevance feedback indexing scheme [25]. Different from

the past works, our study shows that, in many cases, the

adjacent user search steps show little correlation. There-

fore, we propose a naive Bayes’ classifier-based algorithm

for image prediction.

Distributed data sharing for mobile devices has been a

popular research topic. Several general-purpose systems

have been developed [26, 27]. A distributed image search

scheme has been proposed by Yan et al. [28] for camera

sensor networks; it does not target personal images. Other

social-oriented multimedia and sensing data sharing sys-

tems include Micro-Blog [29] and CenceMe [30]. People’s

data sharing needs on mobile devices have also been

studied [31, 32]. In our work, a metadata caching technique

is proposed to effectively minimize the communication

overhead during collaborative search.

Compared with the past works, our study shows that

user interactions and communication dominate system

energy consumption. iScope leverages both content and

context information, as well as learning techniques, for

Table 8 Average cache hit rate for collaborative image search

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Average

Cache hit rate (%) 90 85 84 86 79 69 75 81 85 76 81
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personalized, energy-efficient image management, search,

and sharing.

9 Conclusions and future work

In this work, we have described and evaluated iScope, a

user-centric system for personal image data management,

search, and sharing on mobile devices. iScope uses new

techniques for multi-modality clustering of both content

and context information for efficient image data manage-

ment, as well as user-centric search algorithms with

adaptive user prediction tailored to individual users. It also

supports distributed image sharing and search with online

metadata caching. We have implemented a prototype of

iScope on networked Nokia N810 portable Internet tablets,

and experimentally evaluated it via user studies. Our results

show that, on average, iScope improves on the search

speed and energy consumption of browsing by 4.19 and

3.89 , respectively. Also, the use of metadata caching in

distributed image search reduces search latency by 34.4 %

and reduces energy consumption by 71.2 %.

Our analysis of users’ search traces also reveals the

important relationship between the way human memory

works and people’s search patterns. Specifically, users tend

to use a very small number of ‘‘cue’’ images to facilitate

their search processes. These images contain certain char-

acteristics that can provide the implicit cues for users to

recall or recognize something easily. Identifying and uti-

lizing such images are thus critical for large-scale infor-

mation retrieval and management.

The future work includes exploration of more efficient

parallel search algorithms to further minimize the com-

munication overhead of collaborative search. In addition,

we are interested in determining whether implicit multi-

modality search techniques, such as iScope, have the

potential to improve human memory or counteract memory

loss. Finally, we will further investigate prediction algo-

rithms to incorporate the sequential dependencies of user

feedback during personal image search.

References

1. American museum. http://americanhistory.si.edu/

2. Measuring the information society (2011) International Tele-

communications Union, Sept

3. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas,

influences, and trends of the new age. ACM Comput Surv 40(2):1–60

4. Zhu C, Li K, Lv Q, Shang L, Dick RP (2009) iScope: person-

alized multi-modality image search for mobile devices. In: Mo-

biSys’09, pp 277–290

5. Widyantoro DH, Ioerger TR, Yen J (2002) An incremental

approach to building a cluster hierarchy. In: ICDM ’02:

proceedings of the 2002 IEEE international conference on data

mining

6. Lv Q, Charikar M, Li K, Kai (2004) Image similarity search with

compact data structures. In: Proc. of the 13th ACM conf. on

information and knowledge management, Nov

7. Dalal M (2007) Personalized social & real-time collaborative

search. In: Proc. of the 16th intl. conf. on World Wide Web

8. Bao S, Xue G, Wu X, Yu Y, Fei B, Su Z (2007) Optimizing web

search using social annotations. In: Proc. of the 16th intl. conf. on

World Wide Web

9. Heymann P, Koutrika G, Garcia-Molina H (2008) Can social

bookmarking improve web search? In: Proceedings of 1st ACM

international conference on web search and data mining

10. Joels A (2006) RFID security and privacy: a research survey.

IEEE J Sel Areas Commun (J-SAC) 24(2):381–395

11. Heikkila FM (2007) Encryption: security considerations for portable

media devices. Secur Priv IEEE 5(4):22–27

12. Berry E, Kapur N, Williams L, Hodges S, Watson P, Smyth G,

Srinivasan J, Smith R, Wilson B, Wood K The use of a wearable

camera, sensecam, as a pictorial diary to improve autobiograph-

ical memory in a patient with limbic encephalitis: a preliminary

report

13. Heesch D (2008) A survey of browsing models for content based

image retrieval. Multimedia Tools Appl 40:261–284

14. Ardizzone MME, La Cascia M, Vella F (2010) Three-domain

image representation for personal photo album management. In:

Proc. SPIE 7540, 75400Y

15. Jia M, Fan X, Xie X, Li M, Ma W-Y (2006) Photo-to-search:

using camera phones to inquire of the surrounding world. In:

MDM ’06: proceedings of the 7th international conference on

mobile data management, p 46

16. Ahmad I, Abdullah S, Kiranyaz S, Gabbouj M (2005) Content-

based image retrieval on mobile devices. In: Proc. of SPIE, vol

5684, Jan 2005

17. Mattias Rost HC, Holmquist L (2011) Mobile exploration of

geotagged photographs. Pers Ubiquitous Comput 16(6):665–676

18. Anguera X, Xu J, Oliver N (2008) Multimodal photo annotation

and retrieval on a mobile phone. In: Proceeding of the 1st ACM

international conference on multimedia information retrieval

19. Chakraborty S, Dong Y, Yau DKY, Lui JC (2006) On the

effectiveness of movement prediction to reduce energy con-

sumption in wireless communication. IEEE Trans Mob Comput

5(2):157–169

20. Karagiannis T, Boudec J-YL, Vojnović M (2007) Power law and
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