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Abstract Mobile devices are quickly becoming a primary
medium for personal information gathering, management,
and sharing. Managing personal image data on mobile
platforms is a challenging problem due to large data set
size, content and context diversity, heterogeneous indi-
vidual usage patterns, and resource constraints. This article
presents a user-centric system, called iScope, for personal
image management and sharing on mobile devices. iScope
uses multi-modality clustering of both content and context
information for efficient image management and search,
and online learning techniques for predicting images of
interest. It also supports distributed image search among
networked devices while maintaining the same intuitive
interface, enabling efficient information sharing among
people. We have implemented iScope and conducted
infield experiments using networked Nokia N810 portable
Internet tablets. Energy efficiency was a primary design
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focus during the design and implementation of the iScope
search algorithms. Experimental results demonstrate that
iScope improves search time and search energy by
4.1x and 3.8x on average, relative to browsing.
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1 Introduction

Personal, portable communication, and computation devi-
ces are now part of hundreds of millions of lives, often in
the form of smartphones. Emerging mobile applications
and services are the main driving forces of the prevalence
of personal mobile systems. From Daniel Henderson’s
1993 prototype, intellect, which can receive and display
images and video media [1], to the first photograph taken
by Philippe Kahn in 1997 using a camera phone, the
functionality and adoption of personal portable devices
have continuously increased. Today’s personal portable
devices, such as the iPhone from Apple, Blackberry from
RIM, and Android phone from Google, have integrated a
variety of system functions, such as global positioning
system (GPS), cameras, sensors, large touch screens, and
easy-to-use interface. Global mobile phone subscriptions
have reached 5.9 billion in 2011 [2]. Users are able to
capture information anywhere and anytime. Mobile devices
are heavily used for information sharing and social
interaction.

Mobile devices are the first-level interface for capturing
and sharing multimedia data such as images. They are
therefore a natural image data management platform.
Managing image data on mobile devices, however, is a
challenging problem. A picture may be worth a thousand
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words, but without knowing the words, search can be very
difficult. Manual image annotation is tedious and time
consuming. Content-based image retrieval (CBIR), which
automatically extracts representative features from the raw
data and uses the extracted features to locate content of
interest, largely automates managing and exploring image
data [3]. Albeit recent progress in CBIR, managing image
data on personal mobile systems is challenging due to large
data set size, content diversity, heterogeneous usage pat-
terns, and resource constraints.

e Energy-induced constraints: Energy consumption is a
foremost design concern in battery-powered mobile
systems. Scarce energy resources largely limit the
performance and functionality of software applications
running on portable devices. Existing CBIR techniques
have high computation complexity and storage require-
ments. User interaction and communication bring high
time and energy cost during personal image search.
Energy-induced design constraints introduce serious
challenges to the design and implementation of image
management systems on personal mobile devices.

e User-specific search scenarios: Unlike general-pur-
pose search techniques developed for the World Wide
Web, image management on personal mobile devices is
a highly personal, user-centric task. Typically, a mobile
device has one owner; the data captured and stored on a
device depend on its owner’s interests. Search patterns
are also user specific. It is essential to adapt to users’
unique data interests and search patterns to improve
search performance and energy efficiency.

¢ Distributed data sharing: Supporting data sharing in
distributed mobile environments requires efficient,
distributed data management, and search techniques.
Communication-induced energy overhead is of great
importance in distributed mobile environments. We
investigate the time and energy overhead of remote
image retrieval and propose collaborative search and
metadata caching techniques to allow efficient image
sharing and retrieval in distributed mobile
environments.

In this work, we describe iScope, a personal content
management platform. iScope is a user-centric design tar-
geting energy-constrained distributed mobile environ-
ments. It leverages both personal context information and
efficient content search techniques, as well as online
learning techniques, to deliver personalized, energy-effi-
cient content search services. It provides a collaborative
search environment, enabling distributed image search on
mobile devices, thus facilitating information discovery and
social interaction. We have implemented a prototype of
iScope and conducted infield experiments using Nokia
N810 portable Internet tablet devices.

@ Springer

A preliminary version of this work was previously
published [4]. This article makes further improvements by
incorporating incremental hierarchical clustering for mutli-
modality clustering with significant speedup and high
quality. What is more, this article analyzes and identifies an
inherent retrieval pattern with regard to users’ memory,
which is particularly appealing for daily information
retrieval tasks performed by individual users. We discuss
the impact of the pattern and how it can benefit users with
large amounts of information to manage.

The rest of this article is organized as follows. Section 2
gives an overview of the iScope system architecture. Sec-
tion 3 presents multi-modality image data management.
Section 4 conducts resource characterization of portable
platform and investigates the resource usage of image
search process. Sections 5 and 6 describe the designs and
benefits of personalized and collaborative image search.
Sections 7, 8, and 9 describe the experimental results with
the iScope prototype, survey related work, and conclude.

2 iScope: overview of system architecture

This section presents an overview of iScope’s system
architecture. As illustrated in Fig. 1, iScope consists of the
following key components.

e  Multi-modality data management: Personal image data
contain a rich set of content information (e.g., color,
texture, and shape) and user-specific context informa-
tion (e.g., location, time, and ownership). In iScope, the
context and content information of personal image data
are used in unison to enable efficient image manage-
ment. Images are partitioned based on content features
and context metadata. The proposed incremental hier-
archical clustering-based multi-modality data manage-
ment design allows efficient traversal of the data set
across different feature dimensions and resolutions,
enabling efficient management of personal data sets and
run-time user queries (Sect. 3).

e User-centric adaptive image search: iScope offers
personalized image search by leveraging both con-
tent-based search algorithms and user-specific context
information. Users differ from each other on image
interests and performance expectations. iScope incor-
porates run-time learning techniques for online predic-
tion and adaptation of the search process based on
implicit user feedback, improving search quality and
minimizing search costs, e.g., energy consumption
(Sect. 5).

e Distributed collaborative search: iScope supports
remote image search and metadata caching among
distributed image data sets spanning multiple mobile
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Fig. 1 System architecture overview of iScope: personalized multi-modality image search for mobile devices

devices, which enable efficient information sharing and
effective social interaction in mobile social networks
(Sect. 6).

iScope supports iterative personal image search on
mobile devices. Personal images are organized using the
hierarchical clustering structures of content and context on
a local mobile device or multiple distributed devices. At
each retrieval step, given a user’s feedback, e.g., a query
image or specific context information, iScope traverses
through the hierarchical multi-modality data clusters stored
either locally or remotely, predicts and identifies a potential
match, and returns the candidate thumbnail images of the
matched cluster back to the user. The search process con-
tinues until the target image(s) are found. Figure 2 illus-
trates the interactive search process. A user looks for a
photograph taken during a hiking trip. Starting with a
photograph of his recent paintball trip, the user conducts
three context search and one content search operations. The
first two photographs belong to the paintball trip (similar
location); the last three photographs belong to the hiking
trip (similar location, content); and the paintball trip
occurred a week after the hiking trip (temporally similar).

3 Multi-modality data management

iScope uses a novel multi-modality image management
scheme that supports both content and context (e.g., time,

query image
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context search

context search

context search

location, and ownership) information associated with
images. This section explains how these data are obtained
and used in multi-dimensional, multi-scale image cluster-
ing in oder to support efficient browsing and run-time user
queries.

3.1 Incremental hierarchical clustering

iScope organizes multi-modality data using incremental
hierarchical clustering [5], which supports order insensitive
and efficient traversal of a data set across different
dimensions and resolutions. Hierarchical clustering is an
effective method in data analysis and interactive informa-
tion retrieval. It yields a hierarchical clustering tree struc-
ture with multiple levels of resolution instead of a single-
layer clustering structure. As such, it enables compact data
management and efficient search. However, traditional
hierarchical clustering techniques have a major shortcom-
ing when dealing with incremental data growth. As users
continue to add new images (newly captured, from friends,
or from the Web) to their personal mobile devices or
modify/remove certain images, periodical re-clustering
may be needed—each time a complete hierarchical clus-
tering process is performed on all images currently in a
data set—introducing significant computation overhead
and energy consumption to personal mobile platforms.
The inefficiency mentioned above is the result of
neglecting previously constructed hierarchical clustering
trees in traditional approaches and reconstructing a
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Fig. 2 Image search example using context and content in iScope. Paintball trip (first 2 images) and hiking trip (last 3 images)
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Fig. 3 Incremental hierarchical clustering: flow chart shows the key steps when a new image is inserted

clustering tree from scratch each time. In the incremental
hierarchical clustering approach used by iScope, two intrinsic
properties of a clustering tree structure are considered:
homogeneity and monotonicity. Each cluster can be repre-
sented by its density, a triple X = {D, u, g}, where
D = {d|d; € R} isapopulation of nearest distances between
data items in the cluster, and u and ¢ are the mean and the
standard deviation of D, respectively. Given a lower bound
L =y — o and an upper bound U = p + ¢, a cluster is
homogeneous if and only if L < d; < U,V d; e D. For a
homogeneous cluster of images, all the images have similar
nearest neighbor distance. A cluster that violates homoge-
neity needs to be restructured. A cluster satisfies the mono-
tonicity property if its density is always higher (i.e., images
are more similar) than the density of its parent cluster.

In iScope, the clustering operations can be divided into
two major procedures: tree construction and tree mainte-
nance. Figure 3 illustrates the key steps when a new image
is added. In the tree construction stage, the new image is
added into the clustering hierarchy in a bottom-up fashion.
Our algorithm first finds the nearest (most similar) image at
the bottom level and recursively checks whether the parent
cluster can host the new image with minimal density
changes and minimal disruption to the hierarchy monoto-
nicity. If cluster homogeneity is not violated, the new
image is added to the cluster. Otherwise, the new image is
added to a sub-cluster or a higher-level cluster depending
on whether the lower bound or the upper bound is excee-
ded. Note that in this stage, only the regions affected by the
addition of the new image will be restructured if necessary.
In the tree maintenance stage, all affected clusters will be
checked iteratively for homogeneity violations and
restructured until all nearest distances of a cluster are
within its lower and upper bounds.

Compared with traditional approaches, incremental
hierarchical clustering avoids global data re-clustering and
updates data much more efficiently. In addition, for small
clusters with few images each, our clustering algorithm
recursively merges two closest clusters if the merged
cluster has at most M images, where M is the number of
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thumbnail images that can be displayed on the screen of a
portable device (M is set to 24 in our study). Therefore, our
incremental hierarchical clustering results are stable,
insensitive to the order of data changes, and highly similar
to the clustering results of traditional approaches (0.96
similarity on average, with 0.03 standard deviation for our
data sets). Evaluation results of incremental hierarchical
clustering will be elaborated in Sect. 7.

3.2 Content and context-based clustering

Given the raw content of an image, various types of image
features may be extracted. We compared a number of
features and chose to use a region-based feature called
region-abc, which is similar to the feature used previously
[6]. Here, each image is segmented into multiple coherent
regions, and a 14-dimensional feature vector (9-dimen-
sional color moments and 5-dimensional bounding box) is
extracted from each region. The distance between two
region feature vectors is defined as the sum of the best-
matched distances for each individual region.

Using the region-abc image features, we apply the
incremental hierarchical clustering algorithm to yield
multiple clusters. On top of these clusters, we also con-
struct a content-based cluster relationship graph in which
each node represents a content cluster and each edge rep-
resents the distance between the centroids of two clusters.
Using this graph, we can quickly identify other clusters that
are likely to contain images with similar content to those in
a given cluster, thus permitting efficient content-based
image browsing and retrieval.

In addition to image content information, our system
also uses various types of context metadata to improve
image data management quality and efficiency.

Geographical location information of images can be
captured by mobile devices equipped with GPS receivers,
permitting easy computation of the spatial correlation
among images. Figure 4 shows an example geographical
distribution of a user’s image data set. Unlike the content-
based clustering technique described above (which
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Fig. 4 Geographical distribution of a user’s images

maintains a set of flat clusters), context-based clustering
maintains the entire cluster hierarchy.

Similarly, hierarchical time clusters can be constructed,
each containing images captured within a certain time
period. Temporal correlation between images has been
observed in many scenarios and can help identify images of
certain activities (e.g., wedding) or images taken at a cer-
tain time (e.g., Macy’s Thanksgiving Day Parade). In this
work, distance in the time domain is measured as the
absolute time difference between pairs of images. For
distributed image sharing, ownership information also
plays an important role. A user may obtain images from
other users, and through the ownership information, iden-
tify other users with similar interest (e.g., classic cars). This
can be used to restrict image browsing or searching to a
specific set of friends, enabling more efficient image search
and effective social interaction.

3.3 Interactions of multi-modality clusters

Figure 5 illustrates the iScope multi-modality image clus-
tering method, using metadata information such as content,
location, and time. At the bottom of the figure, images are
clustered based on their content similarity. There are also
links between content clusters indicating the closeness of
cluster centroids. At the top of this figure, hierarchical
geographical clusters (solid-line ellipses) and time clusters
(dotted-line ellipses) are maintained at different resolu-
tions, reflecting spatial or temporal correlations between
images. Images belonging to the same content cluster may
reside in different geographical or time clusters, and vice
versa. For instance, a user may take a set of similar (or
dissimilar) pictures at the same location during a certain
period of time. Or, a user may have taken a lot of pictures
of her dog at various time and locations. As a result, using

Context-based

ontent-based
clustering

C

Fig. 5 Interactions of content and context-based image clusters

inter-connected multi-modality clusters makes it easier to
capture higher-level image semantics. A user can quickly
navigate these clusters by following different types of
correlations (similar content, location, time, or ownership)
in order to locate the images of interest. In addition,
through adaptive user prediction (Sect. 5), iScope may
automatically determine the most promising correlation
without explicit user specification.

Clustering large amounts of image data using different
types of metadata can be time consuming and memory
intensive. To improve efficiency, a hybrid approach is used
in which expensive clustering computation is performed on
wall-powered server machines when a mobile device syn-
chronizes with a server, and incrementally updated clusters
are stored on mobile devices for efficient personalized
image management and search.

4 Mobile platform characterization

In this section, we characterize the performance and energy
use of image search in personal mobile systems.

4.1 Measurement setup

The measurement platform includes a Nokia N810 portable
Internet tablet, HP Harrison 6201B direct current power
supply, NI-PC-6034E acquisition card, and hosting work-
station. iScope has been prototyped on Nokia N810, which
is representative of modern personal mobile networked
multimedia embedded systems. In particular, N810’s 4.3 in
LCD touch screen allows the design and evaluation of user-
interactive search techniques for personal mobile devices.
To measure energy and power consumption, we replace the
battery of the mobile platform under test with an HP
Harrison 6201B direct current power supply. Current is
computed by measuring the voltage across a 5 W, 250 mQ,
Ohmite Lo-Mite 15FR025 molded silicone wire element
resistor in series with the power supply. This resistor was
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Table 1 Power consumption (W)

Table 2 Time distribution of one image search process

Processor Processor Display Display Wireless
active idle w/o touch w/ touch send/receive
0.80 0.01 0.47 1.04 2.00/1.76

designed for current sensing applications. High-frequency
voltage samples are taken using a National Instruments
6034E data acquisition board attached to the PCI bus of a
host workstation. The board has a maximum sampling rate
of 200,000 samples per second, allowing for high-resolu-
tion power and energy analysis of the mobile system.

4.2 Hardware power characterization

Next, we measure the power consumptions of the major
components of the Nokia N810, including the TI OMAP
embedded microprocessor, LCD touch screen, and Wi-Fi
interface. The power consumptions of individual compo-
nents are measured independently from others using spe-
cifically designed testing programs, and the testing
environment is carefully controlled, so that interference
from other components is eliminated. For instance, the
screen is turned off when the processor is tested. The
results are shown in Table 1. The peak (idle) power con-
sumption of the microprocessor is 0.80 W (0.01 W), where
peak power is measured when the microprocessor is doing
intensive computation, such as image feature calculation.
The power consumption of the touch screen is 1.04 and
0.47 W with and without being touched, respectively. The
send (receive) power consumption of the wireless interface
is 2.00 W (1.76 W). This study shows that the power
consumption of the display is comparable to that of the
microprocessor and wireless interface. This observation is
critical in a user-interactive search process, in which the
search system iteratively refines its search results based on
user feedback until a satisfactory image is found. During
the interactive search process, the energy consumption of
human-machine interface components, e.g., the LCD touch
screen, can be significant. In addition, the energy con-
sumption of the wireless interface must be carefully con-
sidered during distributed collaborative image search and
sharing among multiple mobile devices.

4.3 Image retrieval characterization

We now characterize the performance and energy con-
sumption of the image search process. This study helps
clarify the time breakdown and energy consumption dis-
tribution among the various steps of the image search
process. Given an initial query image, users look for a
target image using content-based search algorithms
through an interactive search process. Image data set
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Seconds
Total time 80.4
Query dialog 8.4
Query idle 8.0
Query click 0.4
Algorithm computing 15.0
User exploration 57.0
Screen idle 533
Screen click 3.7
Table 3 Power distribution of one image search process
Joule
Total energy 52.2
Query dialog 4.2
Query idle 3.8
Query click 0.4
Algorithm computing 19.1
User exploration 28.9
Screen idle 25.0
Screen click 39

includes approximately 2,000 images taken on Nokia N810
portable Internet tablets.

Tables 2 and 3 show the time breakdown and energy
consumption distribution of the search process, which has
the following components: (1) the initialization stage,
including user interface initialization and query image
selection; (2) online processing of the content-based search
algorithm, including inter-image similarity calculation; and
(3) user exploration, including browsing, thinking, and
selection. The measured time and energy breakdown
among these three components are 10.5-18.7-70.9 and
8.0-36.6-55.4 %, respectively. Note that, in this study,
image similarity is calculated at run time, which can also
be conducted offline. Therefore, the user exploration stage
dominates in both latency and energy consumption. This
study demonstrates that personal image management and
search should focus on minimizing the latency and there-
fore energy consumed in the user exploration stage. To this
end, iScope employs multi-modality data management and
user-centric adaptive search algorithms, which are
explained in Sects. 5 and 6.

5 User-centric adaptive image search

This section describes the proposed user-centric image
search techniques which leverage content and context
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information, as well as online adaptive user prediction
during image search.

5.1 User interface

One of the main difficulties standing in the way of greater
benefit from any intelligent search algorithm is difficulty of
use. Most existing browsing-based user interfaces,
although inefficient, are straightforward to use. iScope
aims to make mobile image search accessible to large
population of mobile system users spanning different age
groups with different interests and technical backgrounds:
an easy-to-use interface is essential.

We have designed a user interface that is accessible to
people with no technical background. It supports queries
via a straightforward search process. Figure 6 shows the
prototype user interface implemented on a Nokia N810
device. The figure on the left shows the starting page,
which shows the list of the social group members and the
geographical distribution of the image data set. Two types
of navigation are supported: (1) navigation across differ-
ent dimensions, e.g., time, location, content, and owner-
ship, corresponding to the search algorithm’s traversal
across different dimensions of metadata clustering and (2)
zooming in/out along a particular dimension, corre-
sponding to search traversal along a cluster hierarchy.
Using this interface, an end user can conduct image
search through an interactive navigation process. For
instance, using a query image of a person running in
Boulder, a user can search for a stadium in Toronto. First,
content-based search is used to look for photographs with
people running. Then, location-based search is used by
selecting Toronto on the map to reduce the candidate data
set. Manual browsing is then used to find one candidate
image containing running people in a stadium. Finally,
content-based search is used to search for stadiums in
Toronto.

5.2 Search process

To search for an image, a user starts with an existing query
image, related context information, or browses in an initial
cluster to identify a specific query image. The user then
selects a search domain (e.g., content, location, or time) and
issues a query. Given the initial query, iScope quickly locates
the corresponding cluster that contains the query image in that
domain. As described in Sect. 3, images assigned to the same
cluster are similar in a particular domain. Promising images
can be easily identified by returning other images residing in
the query image’s cluster. These temporary results are pre-
sented to the user, who checks the images’ context informa-
tion and provides feedback on whether they are relevant. The
user can then continue the interactive search in two different
ways. The user may stay in the same search domain, and
check the upper-level cluster (for geographical or time clus-
tering) or the neighboring clusters (for content-based clus-
tering). Alternatively, the user may pick one of the positive
examples as the new query image and start another query,
switching to another search domain if needed. This iterative
search process continues until the desired image is located.

All the search steps and user feedback are recorded by
iScope and used to tune the automatically generated clus-
tering structures as follows: (a) if an image is selected as
the target image or an intermediate target image, it is
merged into the same cluster as the query image; (b) if a
cluster contains more images than that can be displayed on
the touch screen, the most irrelevant images will be iden-
tified and removed from the original cluster and form a new
cluster; and (c) an empty cluster will be removed from the
clustering structure.

5.3 Adaptive user prediction

In addition to explicit user feedback on relevant or irrele-
vant images, other types of implicit user feedback may also

EEEE] IO

h.ﬁ.ﬂ.ﬁ

Fig. 6 User interface running on Nokia N810. The figure on the /eft shows the start page, and the figure on the right shows search results. Last

row in search results is based on adaptive prediction
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be captured, such as the overall search and navigation path,
backtracking operations. This information can be used to
guide the run-time learning techniques and provide adap-
tive user prediction to optimize the user search process.
Specifically, iScope makes user-specific prediction based
on previous search history, current query image, and
intermediate search results, in order to return images that
are likely to be of interest.

Our method works as follows. After each round of
search, the system records the trace (g, hy, ha, . . ., by, p), in
which ¢ is the initial query image, hi,h,, ..., h, are the
intermediate images, and p is the final target image. This
image-level trace is then converted to a cluster-level trace,
i.e., each image is converted to its corresponding cluster
and search domain. Cluster-level traces, instead of image-
level traces, are used for prediction because users are
unlikely to search for the same image repeatedly, but are
likely to search for different images in a cluster (e.g., a
specific event or a trip). Given a set of cluster-level traces,
at runtime, iScope uses the images selected by the user so
far in this round of search as a basis for prediction. Let
(i1i5i3) be the corresponding clusters. Using Bayes’ theo-
rem, we calculate the conditional probability of each can-
didate cluster C containing the target image:

P(i1ii3|C)P(C)
P(ijizi3)
Since P(iyi»i3) is the same for all candidate clusters C, we

only need to compute P(iiri; | C)P(C). Again, using
Bayes’ theorem, we have

P(iri2i3|C) = P(i1|C)P(iz i1 C) P(i3]i112C) (2)

P(Cliyizi3) = (1)

Using the naive Bayes probabilistic model, i.e., i,i5i3 are
conditionally independent of each other, we have

P(i1izis|€) = P(ir|C)P(i2] C)P(is ) 3)

We first locate all the cluster-level traces that contain
C, then check how many times i;, i, and i3 have co-
occurred with C in these traces. To compute P(C), we
count the number of occurrences of C in all the cluster-
level traces O, and the total number of cluster occurrences
in the traces O. Thus,

P(C) = 0c/O (4)
Using the formulas above, we can compute the probability
of each candidate cluster containing the target image.

6 Collaborative image search

iScope supports collaborative image search targeting dis-

tributed mobile environments. The proposed design allows
individual users to share their image data sets within their
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social groups, e.g., friends and family members. It thus
allows each member to search a much larger data set than a
single mobile device can hold, thereby facilitating infor-
mation sharing and stimulating social interaction. Previous
work has shown that collaborative search utilizing social
networks (e.g., friends or social groups) can improve
search efficiency and generate more relevant search results
[7-9]. While previous work focused mostly on keyword-
based search of Web data, iScope focuses on collaborative
content- and context-based search in distributed mobile
systems. Privacy and security are key issues in data shar-
ing. iScope can leverage existing infrastructures for
authentication and privacy/data protection [10, 11].

The collaborative search technique conducts parallel
search among the socially associated mobile devices. A
search query may be processed by multiple mobile devices,
each of which hosts a different image data set manually shared
by its owner or automatically cached by the device itself. Each
member of a social group shares a subset of her image data set
with the whole group. The shared data set is initially stored on
her own device and organized separately from the rest of her
personal data. More specifically, the metadata management
using the multi-modality clustering method is separated from
the rest of the owner’s personal data for better privacy and
security protection. This approach yields smaller data set,
potentially allowing more efficient image search. The dis-
tributed shared data sets are ready to support collaborative
image search within a social group. After a group member
issues a query, her local device conducts local search within
her own data set. In the meantime, the query is broadcasted to
other devices within the social group. Each remote device will
collaboratively conduct local search within its shared data set
and return the results, e.g., metadata and/or the raw images,
back to the querying device. The user interface for distributed
search is identical to that of local search; the remote search
process is transparent to the end user. Figure 7 demonstrates
the flow of collaborative search.

In this work, we descrive an online metadata caching
method to minimize the communication overhead of col-
laborative search. We observed that individual users tend to
show more interest in specific subsets of the shared data,
and the subsets of interest vary between users. For instance,
Alice and her friend Bob took a hiking trip to the Green-
man Summit. Alice may be more interested in the photo-
graphs taken by Bob during the trip than Bob’s other
shared data. The proposed caching method leverages the
“data locality” property and caches the metadata received
remotely at run time, merging the metadata into the user’s
own data set for future usage. In addition, to support col-
laborative search, image ownership is introduced as a
dimension in the multi-modality data clustering method.
When local search requires access to a remote image, it
first checks metadata referencing remote storage and then
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issues a fetch request to the corresponding device. If that
device is currently available in the network, it returns the
raw image requested.

As described in the previous section, metadata cluster-
ing is hierarchical. The proposed metadata caching method
follows a bottom-up approach, i.e., when all the sub-clus-
ters of a remote cluster have been cached locally, the
remote cluster itself is then cached. In addition, each
cached remote metadata item and the corresponding cluster
also maintain an access history, which tracks how many
times, and the most recent time at which, the corresponding
image(s) have been accessed. This information is used to
determine the caching policy for the raw images, which are
much larger than metadata. When a device has insufficient
storage, the raw images with low accesses counts, or long
durations since their most recent access, are deleted.

7 Experimental evaluation

In this section, we evaluate iScope, the personalized image
management and search system. Section 7.1 summarizes
the implementation of our prototype and describes the
image data sets used in the experiments. Section 7.2
evaluates multi-modality data clustering algorithm. Section
7.3 evaluates personalized image search on an individual
device. Section 7.4 further analyzes users’ search patterns
and importance of cue images in online prediction. Section
7.5 evaluates collaborative search in a distributed mobile
environment.

7.1 Implementation and image data sets
iScope has been implemented on a Nokia N810 device.

The multi-modality image data management method, as
well as content-based and context-based search techniques

are implemented in C and Python. The GTK+- library was
used to develop the graphical user interface. The imple-
mentation consists of 23,925 lines of C code and 669 lines
of Python code.

Sets of images captured using personal portable devices,
such as camera phones, are significantly different from
general-purpose image data sets. We have constructed an
image data set with 7,923 Flickr images captured by six
different camera phone users. The Flickr data set is used in
the evaluation of content-based search techniques in Sect.
7.2, because it is more comprehensive (requiring that user
study participants gather 8,000 images each would be
costly), and this evaluation does not require any context
information. However, these Flickr images lack personal
context information, such as location and time stamps. In
order to evaluate the impact of this context metadata, it was
necessary to gather our own image data sets. We developed
a software tool for Nokia N810 portable Internet tablets
that allows users to manually or automatically take pho-
tographs using the built-in camera. The software uses the
built-in GPS device and clock to tag photographs with
location tags and timestamps. Ten volunteers took photo-
graphs during their daily activities. In total, they gathered
more than 9,000 images during a period of four months.
The images were taken in seven cities of three different
countries: Canada (Kingston, Ottawa, and Toronto), the
United States (Evanston, Boulder, and San Jose), and the
United Kingdom (London). The gathered image data sets,
along with the location, time, and ownership information,
are stored on N810 devices. They are used to evaluate the
impact of distance measurement on content and context
clustering quality, as shown in Sect. 7.2 and in the user
study shown in Sects. 7.3 and 7.5.

7.2 Multi-modality data management

iScope combines both content-based image features and
context metadata to support efficient image data manage-
ment. We first compare the efficiency of incremental
hierarchical clustering (IHC) and traditional hierarchical
clustering (THC). We select three subsets containing 100,
1,000, and 5,000 images, respectively. Table 4 shows the
total clustering time by each algorithm as images are
continuously added to the system. According to the results,

Table 4 Clustering time comparison of traditional (THC) and
incremental hierarchical clustering (IHC)

Number of images 100 1,000 5,000
THC 0.341 s 366.5 s 43965.6 s
HC 0.006 s 0.924 s 33.0s
Ratio 62.0 396.9 1,334.2
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the incremental approach outperforms the traditional
approach by orders of magnitude, and the improvement
becomes more substantial as the number of images
increases.

Next, we compare the quality of IHC and THC. This
evaluation is conducted on the data set containing 5000
images, since smaller data sets result in fewer clusters and
do not reflect the overall quality. In THC, there are three
distance measures by which sub-clusters are merged. We
experimented with all of them: min, max, and avg, which
measure the minimum, maximum, and average distances of
objects belonging to two different clusters, respectively. A
good clustering algorithm should generate clusters that are
compact (small intra-cluster distance) and have good sep-
aration (large inter-cluster distance). Given a set of k
clusters X;,Xp,...,Xx, we define the average intra- and
inter-cluster distances as follows:

1 1 _
IntraDist = Y ==Y dist(x, X)) |, (5)
klgigk | i|x€Xi
2 —
InterDist = —— dist(X;, X;) (6)
k(k_l)lggjgc '

where X; is the centroid of cluster X; and dist() measures
the distance between two objects. Table 7 shows the
quality of different clustering algorithms. A higher Inter-
Dist to IntraDist ratio indicates better separation and
compactness, i.e., better clustering quality. According to
the ratio, the incremental approach results in slightly worse
results. This small gap is acceptable given the much higher
efficiency of IHC. We have chosen to use IHC for clus-
tering content- and context-based information for mobile
data management, due to its high clustering efficiency and
good clustering quality.

7.3 Personalized image search

Here, we evaluate the personalized local image search system
on the Nokia N810 platform via user studies. Ten volunteers
from Queen’s University and University of Colorado par-
ticipated in the studies. All ten participants are graduate
students aged between 20 and 28 years. Two of them are
female. Most of the participants use mobile devices daily and
have at least basic computer skills. We compare the perfor-
mance of different image search algorithms under two dif-
ferent scenarios: (1) search within individual users’ own
image data sets and (2) search within a large combined image
data set. Specifically, we performed two user studies, each
with five participants. The amount of time spent by each
participant ranged from 4 to 8 hours.

In the first study, users search for images within their
own image data sets (Sect. 7.1). These data sets contain

@ Springer

1,079, 1,235, 1,497, 1,542, and 2,100 images, respectively.
The data sets differ in size as different users collect images
at different rates and under different scenarios. Although
the data sets are different, all the five participants follow
the same search protocol. In the second study, we use a
larger image data set containing 4,389 images, which are
drawn from three participants’ data sets in the first study.
Users are asked to familiarize themselves with other users’
images in this data set, to minimize any affect caused by
unfamiliarity of a user to the data set.

For each participant, 30 query images are randomly
selected from the corresponding image data set, and the 30
target images corresponding to the query images, respec-
tively, are then manually specified. Although it is possible
to select multiple target images for each query image, using
query-target image pairs provide a simple and more
deterministic evaluation process. Figure 8 shows the clus-
ters (based on content, location, and time) that the query
images belong to in one of the image data sets. We see that
the query images are distributed evenly and sparsely in
different clusters in the three dimensions, thus ensuring that
the user study results are not biased.

To evaluate the effectiveness of the design, we consider
the following search scenarios:

e Browsing-based search: To date, browsing is the most
commonly used search method for personal image
collections stored on commercial mobile platforms. In
this experiment, images are sorted by time. Given a
query image, the user searches for the target image by
browsing through the image data set.

e Clustering-based search: This approach leverages the
multi-modality clustering data structures, content- and
context-based search techniques. The described adap-
tive user prediction technique is disabled in this setting.
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Fig. 8 Distribution of query images over the content, location, and
time clusters. The x axis represents the individual leaf clusters in the
content, location, and time hierarchical clustering trees, and the points
show the clusters that the query images belong to
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Table 5 Time usage of browsing-based search

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10
Computation time (s) 0.4 0.4 0.4 0.4 04 0.4 0.4 0.4 0.4 0.4
User time (s) 130.5 51.3 41.0 120.9 125.2 449.4 137.1 141.1 595.7 219.0
Overall time (s) 130.8 51.7 41.3 121.3 125.6 449.8 137.5 141.5 596.0 2194
Avg. steps per query 314 40.1 20.2 18.8 86.9 104.7 101.7 111.7 112.7 107.7
Table 6 Energy usage of browsing-based search

User 1 User 2 User 3 User User 5 User 6 User 7 User 8 User 9 User 10

Computation energy (J) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
User energy (J) 68.7 26.3 20.8 58.1 63.6 216.2 69.4 70.9 292.9 1144
Overall energy (J) 69.1 26.7 21.2 58.5 64.0 216.6 69.9 71.3 293.4 114.9

o Clustering+Prediction-based search: This is the
method used in iScope. In addition to clustering-based
search, it also leverages implicit user feedback infor-
mation from previous search history for user-specific
prediction.

In this study, the system is configured to display 24
(4 x 6) thumbnail images at a time on the N810 touch
screen. With adaptive prediction, the two images most
frequently used in the image-level traces are selected from
each of the top three clusters. These six suggested images
are presented as the bottom row in the search results (see
Fig. 6).

Tables 5 and 6 show the overall performance and energy
consumption, as well as the time and energy usage
breakdown, of browsing-based search. As described in
Sect. 4, the time and energy usage of an image search
process can be divided into two components: algorithm
processing (Computation) and user operation (User). Using
manual browsing, the time and energy overhead of the
search algorithm (image index computation) is negligible.
User operations dominate the search process. On average,
more than 99 % of the time and energy is consumed by
user operation (manual browsing). Table 5 also shows the
average number of steps required by each user per image
search. The manual browsing-based search process is
tedious and slow (on average >100 steps per image for
each of the five large image sets), resulting in significant
time and energy overhead. We conclude that in the image
search process, user interaction is the most time and energy
consuming stage. Therefore, minimizing the number of
required search steps has the greatest potential to minimize
the time and energy usage (Table 7).

Figures 9 and 10 compare the time and energy usage of
the browsing-based method, clustering-based method, and
clustering+prediction (iScope). Compared to the brows-
ing-based method, clustering-based search reduces search

Table 7 Clustering quality comparison of traditional (THC) and
incremental hierarchical clustering (IHC)

THC IHC
Min Max Average
InterDist 7203 x 10° 549.8 x 10° 750.7 x 10° 11.57 x 10°
IntraDist 81 100 67 7.18
Ratio 8.89 x 10° 550 x 10° 11.20 x 10° 1.61 x 10°
600 ' ' ' ' érowéing b'ased'-
Clustering based &
@ 500 Clustering+Prediction (iScope) &8
(0]
£ 400}
T 300
k)
2 2007
o
100
0

Fig. 9 Time comparison of search techniques

time and energy usage by 48.3 and 46.2 % (on average),
9.3 and 10.3 % (minimum), and 90.5 and 90.0 % (maxi-
mum). Leveraging the proposed adaptive user prediction
technique, iScope further reduces the search time and
energy usage by another 22.1 and 21.6 % on average,
compared to the clustering-based approach. Overall, com-
pared to the browsing-based approach, iScope achieves
performance improvements of 4.1x (on average),
1.3x (minimum), and 11.1x (maximum). It reduces
energy consumption by 3.8x (on average), 1.3x (mini-
mum), and 10.4x (maximum). These experiments also
suggest that the benefits of iScope increase when it is used
on larger data sets. It enabled 1.9x latency reduction and
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Fig. 10 Energy comparison of search techniques

2.0x energy reduction when used for a 1,079 image data
set, and 11.1x latency reduction and 10.4x energy
reduction when used for a 4,389 image data set. Note that
the user studies were conducted on different volunteers,
and the content of different image data sets also varies
significantly.

Figures 11 and 12 show the required number of search
steps and the average duration of each search step for the
three search techniques. In order to evaluate how different
query images affect the user search process, we calculate
the standard deviation of number of search steps for each
user’s 30 query images, which ranges from 10.5 to 83.9.
The performance improvements and energy savings of
iScope are primarily due to the significant reduction in the
required number of steps for each image search query. In
order to estimate the statistical confidence in our hypoth-
eses about the impact of search algorithm on time and
energy, we use the two-tailed Student’s ¢ test. The results of
this analysis imply that the mean times for iScope and
browsing mode differ with 97.3 % probability and that the
mean energy consumptions differ with 97.0 % probability.
Note that the 7 test requires some assumptions, e.g., that the
variances of the two populations are equal.

The proposed multi-modality clustering and adaptive
content and context-based searching techniques allow
iScope users to use the implicit connections between the
query and target images, thereby improving search quality
and time. Consider the search processes shown in Fig. 13.
In this case, the query image shows User 3’s apartment in
Kingston, and the target image (in User 3’s image set)
shows User 5’s apartment in Boulder. Starting from the
query image, through context (location), content, and
context (location) search operations, User 3 reached an
image containing a business building in Boulder. At this
point, one context (location) search followed by a predic-
tive content search (done automatically by iScope) was
sufficient to reach the desired image. Note that, in this case,
even though the query image and the target image contain
similar “content,” i.e., apartment, using only content-based
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search would result in an excessively long search process
due to the two images’ significant differences in color
scheme and background content.

This study raises an interesting research question. Many
times, we have heard people complaining, “I have seen this
somewhere, but just cannot remember where.” Recent
studies, such as the SenseCam project [12], have shown
that using image recording to enable review of one’s daily
life can ameliorate human memory loss symptoms. iScope
explicitly leverages underlying connections among images.
Its use may therefore have the potential to help people
strengthen these connections. Currently, we are in the
process of evaluating the possibility of applying iScope to
related medical applications.

7.4 Further analysis of adaptive prediction

We further analyze the search traces of all users to
understand the specific scenarios when iScope’s cluster-
ing+prediction method improves or worsens the search
performance. When personalized adaptive prediction is
used, iScope dynamically predicts and displays a set of
images that are likely to be the target image. The user may
or may not choose a predicted image, and the overall
search performance may be better or worse, compared with
the performance when no prediction is used. Specifically,
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Fig. 13 An image search example using content- and context-based search and adaptive user prediction
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Fig. 14 Distribution of different cases of adaptive prediction

we consider the following four scenarios: (1)-(3) if a
predicted image is picked by the user, overall it may lead to
better, the same, or worse search performance; and (4) if no
predicted image is picked, the prediction’s impact on the
search performance is unknown, referred to as the random
case. Figure 14 shows the distribution of the four scenarios
in all users’ search traces. Figures 17 and 18 show the
corresponding changes (decrease or increase) of the num-
ber of search steps and search duration needed for the
better, worse, or random cases.

From these figures, we can see that for most participants,
using active prediction results in better search performance.
For instance, better cases account for 58 % of all search
traces, and these cases can reduce search duration by
thousands of seconds and save hundreds of search steps.

Why does our personalized active prediction method
work well in users’ image search tasks? A careful analysis
of users’ search traces revealed an important property in
users’ image browsing activities: although many images
exist in each user’s data set and multiple candidate images
are displayed in each search step, users tend to choose only
a small portion of these images and use them repeatedly in
their searches. For the 10 users, we have studied, on
average, only 6 % of the images were actually chosen by
our users (Fig. 15). Intuitively, this means that a user is
often familiar with a small number of “hub” or “cue”
images and use these images to make “jumps” in order to
locate other related images. This is particularly true in
personal image data sets.

Based on this observation, images used by a user in past
searches have a greater chance to be used again in future
searches, and these images that a user has revisited over
and over again in the history should rank higher in the list
of predicted images. In particular, iScope’s personalized

@ Chosen
@ Not chosen

Fig. 15 Only 6 % of all images were chosen by users in their
searches

@ Predicted
@ Not predicted

Fig. 16 Twenty-nine percentage of images chosen by users were
predicted by iScope in the searches

active prediction aims to extract such implicit information,
as introduced in Sect. 5.3. Predictions are made based on
previous search history, only those images used most fre-
quently in the image-level traces will be selected and
presented in the predicted image list. Figure 16 shows that
29 % of all images chosen by the participants were images
predicted by iScope. Note that a random prediction method
would only be able to predict 6 % of the images that were
chosen (Fig. 15). Figure 19 presents the number of occur-
rences of images being chosen and being predicted. As we
can see, the more frequently an image has been chosen, the
more frequently this image appears in the predicted image
list, thus the better prediction accuracy and better search
performance (Figs. 17, 18).

The underlying reason for the success of iScope’s per-
sonalized active prediction method is its close relationship
with the way human memory works—when faced with a
large amount of data, people tend to remember a few
characteristic data items and use them to associate with
other data items with similar features. In the case of per-
sonal image data management, users make use of a small
number of “cue” images to facilitate browsing and
searching of much larger image repositories. By organizing
image data sets in multiple dimensions (e.g., content, time,
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location), actively learning, and predicting personalized
search traces, iScope makes it possible to manage, search,
and share large amounts personal image data in distributed
mobile platforms with high efficiency.

7.5 Collaborative image search

The distributed, collaborative image search technique
described in Sect. 6 was also evaluated. Communication
latency and energy overhead are of primary concern in
collaborative search. The caching technique aims to mini-
mize these overheads by limiting remote access during
collaborative search.

The following experiments consider N810 devices
connected via a campus 802.11b network. The user studies
described in the previous section were extended to the
distributed environment. Detailed image search traces were
gathered during the preceding local search experiments.

These traces contain detailed timing information for the
interactive image search processes, e.g., the number of
search steps of each image query, the time usage of each
search step and the breakdown between algorithm pro-
cessing time and user time. The traces were replayed in the
distributed, networked system composed of N810 devices.
This technique has the benefits of eliminating ordering
effects and random variation between the two studies. It
also allows a more direct comparison of local search with
distributed collaborative search than would be possible by
repeating the study with a new set of users. Timing and
system state information was gathered at run time. For
instance, networking latency and energy consumption are
gathered when remote device accesses are invoked. The
power consumption of the N810 in each system state (e.g.,
receiving data via the 802.11b interface, running a search
algorithm, and waiting for user input) was measured using
the equipment described in Sect. 4. These system state-
dependent power consumption values were used in com-
bination with the timing and system state values measured
during trace execution to determine the energy consump-
tion during distributed collaborative search.

We first evaluate the potential communication perfor-
mance and energy overhead introduced by remote access.
In this experiment, the image data set is placed on remote
devices and the proposed caching technique is disabled.
Therefore, every image search step requires remote device
access. Figures 20 and 21 show the energy usage and
latency breakdown of the remote search scenario. Com-
pared to image search on a local standalone device, remote
image search introduces significant latency and energy
overheads. The latency increases by 65.5 % on average
(27.1 % minimum and 96.4 % maximum) for the ten par-
ticipants in user studies. The corresponding total energy
consumption increases by 607.5 % (275.5 % minimum to
877.7 % maximum), which includes the energy consump-
tion of the querying device and the remote devices. Note
that, since all the remote devices can potentially respond to
each query, the worst-case latency and energy overhead
increases linearly with the number of mobile devices (four
devices are used in this experiment). This study illustrates
the importance of reducing the communication overhead
during distributed collaborative search.

Figures 22 and 23 compare the performance and energy
usage of collaborative search with (right bars) and without
(left bars) the metadata caching technique. These results
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demonstrate that metadata caching improves system per-
formance and energy efficiency. When both five-member
user studies are considered, the latency reduction is 34.4 %
on average (18.9 % minimum and 43.7 % maximum) and
the energy consumption reduction is 71.2 % on average
(59.2 % minimum and 78.7 % maximum). These perfor-
mance and energy consumption improvements result from
high cache hit rates during the search processes. Table 8
shows the average cache hit rates over the user studies,
which average 81 % and range from 69 to 90 %. This study
also demonstrates that the cache hit rate decreases with
increasing data set size—image search of a larger data set
tends to be more diverse, lowering the cache hit rate. Note
that the cache hit rate is affected by the query image dis-
tribution within the image data set. In practice, we believe
that personalized queries generally have content and/or
context correlation, which is reflected as data locality
during image search, enabling a high cache hit rate. In
contrast, the query images used in this experiment are
randomly selected. Therefore, we believe iScope’s caching
techniques will be even more effective in real usage sce-
narios. Figure 24 shows the cache hit rate profiles of the ten
participants in user studies; the cache hit rate increases for
each participant—initially, the local device only contains
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its own data set and its cache is empty, resulting in a low
cache hit rate. As queries are processed, more metadata are
cached, improving the cache hit rate.

8 Related work

Our work draws upon research in several areas concerning
image management: content-based image retrieval, multi-
modality image management, power-aware image retrie-
val, user feedback, and distributed image sharing. In this
section, we survey work most related to ours.

Content-based image retrieval (CBIR) has been an
active research area for over a decade [3]. Several
approaches, aiming at providing a more intuitive interface
for browsing and managing image collections, have been
introduced [13, 14]. Content-based search for images taken
by mobile devices has also been investigated [15, 16]. In
this work, targeting personal image collections, we envi-
sion more active roles for portable devices and personal-
ized search.

Besides the raw content of image data, researchers have
also considered other types of information in order to
augment image management and search tasks. Text
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Table 8 Average cache hit rate for collaborative image search

User 1 User 2 User 3 User 4 User 5 User 6  User 7 User 8 User 9 User 10 Average
Cache hit rate (%) 90 85 84 86 79 69 75 81 85 76 81
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Fig. 24 Collaborative search: Cache hit rate profile for the ten users

annotations, Web links, and ontology have been considered
in previous works.

For mobile images, location information is commonly
used [17, 18]. Although these past works utilized context
information, they did not carefully consider the energy
issue, which is the primary constraint of battery-powered
systems.

A variety of energy optimization techniques have been
proposed for portable devices [19, 20].

Recently, Kumar et al. [21] proposed an adaptive fea-
ture loading scheme for mobile CBIR to save energy. This
work focused on the energy consumption of CBIR pro-
cessing. However, our study has shown that for image
search on mobile devices, power consumption is mainly
due to various components such as touch screen and GPS,
instead of processor or storage.

Relevance feedback has attracted much attention in the
information retrieval community and has been shown to
provide improved performance in many search systems
[22-24]. Most user feedback mechanisms aim at precision/
recall improvement and ignore the speed issue, which is an
important factor for performance measurement and power
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consumption in mobile systems. Saha et al. presented a
human perception based similarity measure along with a
relevance feedback indexing scheme [25]. Different from
the past works, our study shows that, in many cases, the
adjacent user search steps show little correlation. There-
fore, we propose a naive Bayes’ classifier-based algorithm
for image prediction.

Distributed data sharing for mobile devices has been a
popular research topic. Several general-purpose systems
have been developed [26, 27]. A distributed image search
scheme has been proposed by Yan et al. [28] for camera
sensor networks; it does not target personal images. Other
social-oriented multimedia and sensing data sharing sys-
tems include Micro-Blog [29] and CenceMe [30]. People’s
data sharing needs on mobile devices have also been
studied [31, 32]. In our work, a metadata caching technique
is proposed to effectively minimize the communication
overhead during collaborative search.

Compared with the past works, our study shows that
user interactions and communication dominate system
energy consumption. iScope leverages both content and
context information, as well as learning techniques, for
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personalized, energy-efficient image management, search,
and sharing.

9 Conclusions and future work

In this work, we have described and evaluated iScope, a
user-centric system for personal image data management,
search, and sharing on mobile devices. iScope uses new
techniques for multi-modality clustering of both content
and context information for efficient image data manage-
ment, as well as user-centric search algorithms with
adaptive user prediction tailored to individual users. It also
supports distributed image sharing and search with online
metadata caching. We have implemented a prototype of
iScope on networked Nokia N810 portable Internet tablets,
and experimentally evaluated it via user studies. Our results
show that, on average, iScope improves on the search
speed and energy consumption of browsing by 4.1x and
3.8x , respectively. Also, the use of metadata caching in
distributed image search reduces search latency by 34.4 %
and reduces energy consumption by 71.2 %.

Our analysis of users’ search traces also reveals the
important relationship between the way human memory
works and people’s search patterns. Specifically, users tend
to use a very small number of “cue” images to facilitate
their search processes. These images contain certain char-
acteristics that can provide the implicit cues for users to
recall or recognize something easily. Identifying and uti-
lizing such images are thus critical for large-scale infor-
mation retrieval and management.

The future work includes exploration of more efficient
parallel search algorithms to further minimize the com-
munication overhead of collaborative search. In addition,
we are interested in determining whether implicit multi-
modality search techniques, such as iScope, have the
potential to improve human memory or counteract memory
loss. Finally, we will further investigate prediction algo-
rithms to incorporate the sequential dependencies of user
feedback during personal image search.
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