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Towards an Understanding of Stepwise Inference in Transformers:
A Synthetic Graph Navigation Model

Anonymous Authors1

Abstract
Stepwise inference, such as scratchpads and chain-
of-thought (CoT), is an important capability of
large language models, where a model decom-
poses a complex task into a sequence of manage-
able subproblems. However, despite the signifi-
cant gain in performance, the underlying mech-
anisms of stepwise inference have remained elu-
sive. To address this gap, we propose to study
auto-regressive Transformer models solving a
graph navigation problem, where a model is
tasked with traversing a path from a start to a goal
node on a synthetically generated graph. Through
this simple, controllable, and interpretable frame-
work of graph navigation, we empirically repro-
duce and analyze several phenomena observed at
scale: (i) the stepwise inference reasoning gap,
the cause of which we find in the structure of the
training data; (ii) a diversity-accuracy tradeoff as
sampling temperature varies; (iii) a simplicity bias
in the model’s output; and (iv) combinatorial gen-
eralization, failure on length generalization and a
primacy bias with in-context exemplars. Overall,
this work introduces a grounded synthetic frame-
work for studying stepwise inference and offers
mechanistic hypotheses that lay the foundation
for a deeper understanding of this phenomenon.

Stepwise inference, such as scratchpad and chain-of-thought
(CoT), is an important capability of large language mod-
els, where a model decomposes a complex task into a steps
of manageable subproblems. However, despite significant
improvements in performance, the underlying mechanisms
of these processes have remained elusive. Here, we pro-
pose a novel perspective by framing the tasks that benefit
most from stepwise inference as graph navigation problems.
Specifically, we introduce a graph navigation task, where
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"Consider a Tower 
of Hanoi problem 
with three rods. At 
start, Rod A has two 
disks with radius 3
and 1; Rod B has a 
disk of radius 2. 
The goal is to move
all disks to rod C.
Think step-by-step."

(a) (b)

Figure 1. Examples of stepwise inference protocols and how
they can be cast as a graph navigation problem. (a) Zero-shot
chain-of-thought (Kojima et al., 2022) involves asking a model to
produce intermediate outputs to perform complex multi-step com-
putations, such as solving the Tower of Hanoi problem. Casting the
configurations of the rods in Tower of Hanoi as nodes of a graph,
we can see that the problem is essentially traversal over states
describing different configurations of the setup to reach the desired
configuration (the goal state). (b) Scratchpad (Nye et al., 2021) im-
proves LLMs’ ability to perform complex multi-step computations,
such as arithmetic, when they write intermediate computation steps
to a buffer called a scratchpad.

a transformer model trained from predicts the connectivity
between two nodes within a well-defined graph. Despite
its simplicity, we demonstrate that this simple setup allows
us to not only replicate, but also elucidate behaviors asso-
ciated with stepwise inference, including the influence of
the underlying graph’s structure on model behavior, and
the trade-off between diversity and accuracy. In addition,
we investigate the ’simplicity bias’ observed in stepwise
inference, where models exhibit a preference for the short-
est path between two points. Our investigation extends to
the controllability of these models through in-context exem-
plars. By developing a grounded synthetic framework, this
work contributes to the understanding of stepwise inference
and provides mechanistic hypotheses that pave the way for
a more comprehensive understanding of these phenomena
in large-scale language models.

1. Introduction
Transformers, the backbone of large language models
(LLMs), have revolutionized several domains of machine
learning (OpenAI, 2023; Anil et al., 2023; Gemini et al.,
2023; Touvron et al., 2023). An intriguing capability that
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Understanding Stepwise Inference in Transformers

emerges with training of Transformers on large-scale lan-
guage modeling datasets is the ability to perform stepwise
inference, such as zero-shot chain-of-thought (CoT) (Ko-
jima et al., 2022), use of scratchpads (Nye et al., 2021),
few-shot CoT (Wei et al., 2022), and variants of these
protocols (Creswell et al., 2022; Yao et al., 2023; Besta
et al., 2023; Creswell & Shanahan, 2022; Press et al.,
2022). Specifically, in stepwise inference, the model is
asked to or shown exemplars describing how to decompose
a broader problem into multiple sub-problems. Solving
these sub-problems in a step-by-step manner simplifies the
overall task and significantly improves performance (see
Fig. 1). Arguably, stepwise inference protocols are the
workhorse behind the “sparks” of intelligence demonstrated
by LLMs (Bubeck et al., 2023)—yet, their inner workings
are poorly understood.

Motivated by the above, we aim to design and study an
abstraction which enables a precise understanding of step-
wise inference in Transformers. Specifically, we argue that
tasks which see maximum benefit from stepwise inference
can be cast as a graph navigation problem: given an input
describing the data to operate on and a goal to be achieved,
a sequence of primitive skills (e.g., ability to perform arith-
metic operations) is chained such that each skill acts on
the previous skill’s output, ultimately to achieve the given
goal. If the input data, the final goal, and the sequence of
intermediate outputs are represented as a sequence of nodes
of a graph, along with primitive skills as edges connecting
these nodes, the overall task can be re-imagined as navigat-
ing nodes of the graph via the execution of primitive skills.
Several logical reasoning problems come under the purview
of this abstraction (LaValle, 2006; Cormen et al., 2022; Mo-
mennejad et al., 2023; Dziri et al., 2023; Saparov & He,
2023): e.g., in Fig. 1a, we show how the problem of Tower
of Hanoi can be decomposed into simpler sub-problems.
See also Appendix A for several more examples.

This work. We design a graph navigation task wherein a
Transformer is trained from scratch to predict whether two
nodes from a well-defined graph can be connected via a
path. A special prefix indicates to the model whether it can
generate intermediate outputs to solve the task, i.e., if it can
generate a sequence of nodes to infer a path connecting the
two nodes; alternatively, exemplars demonstrating naviga-
tion to “regions” of the graph are provided. Our framework
assumes the model has perfect skills, i.e, any failures in
the task are a consequence of incorrect plans for navigating
the graph. This is justified because a skill-based failure is
the most trivial mechanism via which stepwise inference
protocols can fail; in contrast, inability to plan is an inde-
pendent and underexplored axis for understanding stepwise
inference. Overall, we make the following contributions.

• A Framework for Investigating Stepwise Inference.

We propose a synthetic graph navigation task as an ab-
straction of scenarios where stepwise inference protocols
help Transformers improve performance, showing that
we can replicate and explain behaviors seen with use of
stepwise inference in prior work. For instance, the struc-
ture of the data generating process (the graph) impacts
whether stepwise inference will yield any benefits (Prys-
tawski & Goodman, 2023). We identify further novel
behaviors of stepwise inference as well, such as the exis-
tence of a tradeoff between diversity of outputs generated
by the model and its accuracy with respect to inference
hyperparameters (e.g., sampling temperature).

• Demonstrating a Simplicity Bias in Stepwise Infer-
ence. When multiple solutions are possible for an input,
we demonstrate the existence of a simplicity bias: the
model prefers to follow the shortest path connecting two
nodes. We assess this result mechanistically by iden-
tifying the underlying algorithm learned by the model
to solve the task, showing the bias is likely a conse-
quence of a “pattern matching” behavior that has been
hypothesized to cause LLMs to fail in complex reasoning
problems (Dziri et al., 2023).

• Controllability via In-Context Exemplars. We show
the model’s preferred path to navigate between two nodes
can be controlled via use of in-context exemplars. We
use this setup to evaluate the model’s ability to generalize
to paths of longer length and the influence of exemplars
which conflict with each other, i.e., that steer the model
along different paths.

2. Stepwise Inference as Graph Navigation
In this section, we define our setup for studying how step-
wise inference aids Transformers in solving complex rea-
soning problems. Specifically, we define a graph navigation
task wherein, given a start and a goal node, a Transformer
is autoregressively trained to produce a sequence of nodes
that concludes at the goal node. In our experiments, we
consider two scenarios: one where in-context exemplars are
absent (see Fig. 2a) and another where they are present (see
Fig. 2b). The former scenario emulates protocols such as
the scratchpad and zero-shot Chain of Thought (CoT) (Ko-
jima et al., 2022; Nye et al., 2021), while the latter models
few-shot CoT (Wei et al., 2022). In Section 2.1, we set up
our experiment to explore these two scenarios. In the subse-
quent sections, we explicitly analyze the benefits of stepwise
inference in both scenarios: without in-context exemplars
(Section 2.2) and with in-context exemplars (Section 2.3).
We refer the reader to a detailed related work on stepwise
inference protocols in Appendix B and further discussion
on graph navigation as a model of stepwise inference which
is in Appendix A.
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Figure 2. Data Generating Process. (a) In absence of exemplars. This figure illustrates the step-by-step process of generating a training
dataset using a single underlying graph. 1) A directed acyclic graph (DAG) is generated, which can be either hierarchically structured or
Bernoulli. 2) A start node and a goal node are selected. 3) All possible paths connecting the start and goal nodes are sampled, and one path
is randomly selected. 4) The chosen path is then represented in a task-specific format. (b) In presence of exemplars. The step-by-step
process of generating a training dataset by combining multiple subgraphs (motifs): 1. We start by building a set of Bernoulli directed
acyclic graphs (DAGs), 2. Next, we pick a subset of K of these DAGs {gi1 , gi2 , ..giK} and connect them together using "ghost edges" to
create a chain of motifs gi1 7→ gi2 7→ .. 7→ giK , 3. We then sample exemplars from every pair of motifs that have been connected by a
ghost edge to construct the context and 4. We now choose a start node Xs ∈ gi1 and a goal node Xg ∈ giK and construct a sequence
passing through the whole motif chain.

2.1. Preliminaries: Bernoulli and Hierarchical DAGs

We use directed acyclic graphs (DAGs) to define our
graph navigation tasks. DAGs are a natural mathemati-
cal abstraction to study multi-step, logical reasoning prob-
lems: e.g., as discussed in Dziri et al. (2023), the output of
any deterministic algorithm can be represented as a DAG.
Specifically, a DAG is defined as G := (N,E), where
N := {Xi}|N |

i=1 denotes the set of nodes in the graph and
E := {(Xi, Xj)}Xi,Xj∈N denotes the set of directed edges
across the nodes. The edges of a DAG are captured by its
adjacency matrix A, where Aij = 1 if (Xi, Xj) ∈ E. A
directed simple path is a sequence of distinct nodes of G
which are joined by a sequence of edges. If two nodes are
connected via a directed simple path, we call them path-
connected. The first node of a path is referred to as the start
node, which we denote as Xs, and the last node as the goal
node, which we denote as Xg .

We briefly discuss the process of construction of DAGs used
in our work and how paths are sampled from them; a more
thorough description is provided in Appendix C.1. We de-
fine a Bernoulli DAG of N nodes, whose adjacency matrix
has an upper triangular structure with Bernoulli entries with
edge density p, such that p(Aij = 1) = p. We ensure that
all nodes have at least one edge (see Fig. 2a). The resulting
DAG exhibits a bell-shaped path length distribution (see

Fig. 11 in Appendix C.1). We also define a hierarchical
DAG, wherein the nodes follow a feedforward, layered struc-
ture such that all nodes at a given layer are only connected to
nodes in the following layer (see Fig. 2a). In particular, for
every node nl in layer l and nl+1 in layer l + 1, we draw a
directed edge (nl, nl+1) with probability p, which we refer
to as edge density. On average, between any two layers
of a hierarchical DAG, there are pN2 edges and each node
in an intermediate layer has an out-degree and in-degree of
pN . The number of paths from a particular node in layer l
to layer l′ > l is exponential and given by (pN)l

′−l; this is
quantified in the path length distribution shown in Appendix
Fig. 11. For both graph structures, source nodes are nodes
that do not have any parent nodes, and the nodes that do not
have any children nodes are sink nodes.

2.2. Modeling stepwise inference without exemplars

Zero-shot CoT (Kojima et al., 2022) and scratchpads (Nye
et al., 2021) represent two examples of stepwise inference
protocols that do not rely on exemplars. For instance,
in the zero-shot CoT approach, the input of the model
is augmented with the phrase let’s think step by
step. This encourages the model to generate outputs that
elaborate on the intermediate steps required to solve the
target problem, thereby enhancing accuracy by breaking
down the target problem into several simpler problems.

3
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Understanding Stepwise Inference in Transformers

To compare the model’s performance with stepwise infer-
ence and without stepwise inference (i.e., direct inference)
in such scenarios, we create two datasets: one including
intermediate steps and the other without them. Each dataset
was subsequently used to train distinct transformers. Dur-
ing the testing phase, we presented the model with pairs
of nodes and task it to determine the existence of a path
between them. The model’s performance is assessed based
on their accuracy in classifying whether a path exists.

Fig. 2a shows how we generate the datasets above. First,
we define a DAG denoted as G. Within this graph, for each
dataset instance, we sample a start node Xs and a goal node
Xg and then identify all feasible paths between these two
nodes. From the identified paths, we select one to form a
sequence of tokens, S. This procedure is iterated for other
node pairs within the graph G to compile the complete
dataset. For the dataset with stepwise inference, we use all
the intermediate steps, including the start node Xs and the
goal node Xg, to form S. For the dataset without stepwise
inference (i.e., direct inference), we only use the start node
Xs and the goal node Xg. We introduce a binary variable
path ∈ {p1, p0} to denote whether there is a path between
the start and goal nodes. We append the ‘path’ token p1
to the end of the sequence S if there is at least one path
between the start and goal nodes; otherwise, we append the
‘no path’ token p0.

Example: For the example path in Fig. 2a, in the
dataset with stepwise inference, the sequence of tokens
S includes the intermediate steps and takes the form
goal :X2, X4, X3, X6, X2, p1. For the dataset without
stepwise inference (i.e., direct inference), the sequence
S does not contain intermediate steps and has the form
goal :X2 X4 p1.

2.3. Modeling stepwise inference with exemplars

Here we examine the influence of stepwise inference on
model performance when in-context exemplars are present.
This scenario is prominently exemplified by protocols based
on few-shot CoT (Wei et al., 2022; Creswell et al., 2022).

Specifically, we extend the setup with a single DAG de-
scribed in Section 2.2 by incorporating a set of DAGs, which
we call motifs. The data generation process is shown in
Fig. 2b. First, we generate a set of n Bernoulli DAGs de-
noted by ĝ = {gi}ni=1 and randomly select a subset of
K motifs from this set: {gj1 , gj2 , . . . , gjK}. Second, we
add edges between the sink node of each motif gjk and
the source node of the subsequent motif gjk+1

, forming a
chain of motifs gi1 7→ gi2 7→ · · · 7→ giK . These intercon-
necting edges are termed ghost edges. Third, we sample
paths from each pair of motifs linked by a ghost edge to
establish the context. We then select a start node from the
sink nodes of one motif, Xs ∈ g, and a goal node from the

source nodes of a different motif, Xg ∈ g′, then sample a
path between them, denoted as egg′ . This procedure gener-
ates a sequence of nodes spanning across motifs, g → g′,
including exactly one ghost edge. We refer to this as an
exemplar sequence and use them as in-context samples.
Exemplars to model few-shot CoT are represented as egg′

and denote a exemplar sequence from the motif g → g′.
Finally, we choose a start node Xs ∈ gi1 and a goal node
Xg ∈ giK . We then prompt the model either directly to
output a path that connects the pair of nodes or exemplars
demonstrating a traversal between motifs of the graph G can
be provided in context (see Fig. 2b). Since a graph is defined
via combinations of motifs, we intentionally leave out 20%
combinations from the training data. Every time a new input
is to be designed, we will randomly select motifs from the
remaining combinations from ĝ to design a graph G, sam-
pling sequences showing how to travel between two nodes
from this graph. Though a model can learn the structure
of the motifs themselves and how some of these motifs are
connected, the graphs at test time will involve combinations
of motifs that were never seen in training. Correspondingly,
the model must use the context to infer the structure of the
overall graphs. In essence, an exemplar tells the model
which motifs are connected via ghost edges and hence can
be navigated between.

Example: We directly study the path of navigation out-
putted by the model in this setup, i.e., no special tokens are
used. A sample is constructed by selecting motifs to define
in-context exemplars, say gi1 , gi2 , gi3 . For every succes-
sive pair of motifs, we construct an exemplar and put them
together to create the context. To do this, we select two
(start, goal) pairs: Xs1 ∈ gi1 , Xg1 ∈ gi2 and Xs2 ∈ gi2 ,
Xg2 ∈ gi3 . We sample exemplar sequences starting and
ending at these node pairs: one sequence from gi1 to gi2 ,
goal :Xg1Xs1X1 . . . Xk1Xg1 , and another from gi2 to gi3 ,
goal :Xg2Xs2X

′
1 . . . X

′
k2
Xg2 . These sequences act as ex-

emplars to be provided in context to the model when it is
shown an input. The number of exemplars can vary from 2
to 4, which correspond to chains of motifs of length 3 to 5.
The input itself is defined by choosing a goal node Xg ∈ gi3 ,
a start node Xs ∈ gi1 , and a path through an intermediate
node Xinter ∈ gi2 : goal :XgXsX

′′
1 . . . Xinter . . . X

′′
k1
Xg3 .

Here, XsX
′′
1 . . . Xinter is a path between motifs gi1 and gi2 ,

while Xinter . . . X
′′
kXg3 is a path between motifs gi2 and gi3 .

When exemplars are not provided, the model must rely on
its internalized knowledge to infer whether there exist two
connected motifs that can be used to move from the start to
goal node. The context exemplars simplify the problem by
telling the model the motifs above are connected.
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Figure 3. Advantage of stepwise inference in graph navigation
tasks and stitching: (a) In the Bernoulli DAG, stepwise infer-
ence demonstrates an advantage over direct inference in predicting
whether given node pairs are connected. (b) This advantage is
further pronounced in hierarchical DAGs, where the distances be-
tween nodes are greater than in Bernoulli DAGs. (c) The stepwise
inference gap arises when the training set contains paths that are
shorter than the paths required to connect nodes at test time. (d)
The stepwise inference is beneficial when the model must connect
paths seen during training: The red, green, and blue paths represent
subsets of paths seen during training; we ask the model to produce
paths that combine these paths during the test phase.

3. Results: Stepwise Navigation
In this section, we discuss findings on how stepwise in-
ference affects the model’s ability to solve problems. We
investigate two scenarios: in the absence of in-context ex-
emplars (Section 3.1) and in the presence of them (Section
3.2). For all experiments, unless stated otherwise, we use a
2-layer Transformer defined by Karpathy (2021) to mimic
the GPT architecture (Brown et al., 2020). For more details
on the experimental setup, please refer to Appendix C.3 for
model architecture details and Appendix D for training data
generation and test/train split.

3.1. Navigation without exemplars

3.1.1. STEPWISE INFERENCE GAP

We assess the performance of the model by evaluating its
ability to classify whether there is a path given a pair of
nodes during the test phase. Specifically, we randomly sam-
ple pairs of start and goal nodes that were not seen in the
training data and observe whether the model outputs either
the ‘path’ token p1 or the ‘no path’ token p0. Fig. 3 shows
the accuracy of classifying ‘path’ or ‘no path’ for two dif-
ferent types of graphs: a random graph and a hierarchical
graph. We observe that for both types of graphs, the use
of stepwise inference significantly improves the model’s
performance compared to direct inference, with more pro-
nounced improvements noted for the hierarchical graph.
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Figure 4. Diversity vs. accuracy trade-off for different sampling
temperatures of the transformer model: As the sampling tem-
perature increases, the diversity of paths generated by the model
also increases, while the accuracy decreases. This tradeoff is cap-
tured by measuring the number of unique valid paths (top panel),
indicating that there is an optimal temperature for sampling. The
dashed line represents the ground truth path diversity.

Following Prystawski & Goodman (2023), we refer to the
improvement in performance observed between stepwise
inference and direct inference as the “stepwise inference
gap”. To simulate the effect of noisy real-world labels, we
introduced random corruption into the tokens and found that
these results hold, as detailed in Appendix Fig. 13.

To further probe these results, we control for path lengths in
the hierarchical graph. Specifically, to set the maximum path
length in the training data to ∆, we choose a starting layer l
and a goal layer l′ such that l′ − l < ∆. Then, we sample
starting nodes from layer l and goal nodes from layer l′. For
the test data, we select node pairs with l′ − l ≥ ∆. Results
are shown in Fig. 3(c). We plot the classification accuracy
across various values of ∆ and observe that the smaller the
value of ∆, the greater the stepwise inference gap becomes.
We hypothesize this happens because when the training
data only includes short paths, the model needs to more
effectively ‘stitch’ the paths observed during training, which,
as a recursive task, is more feasible via stepwise inference.

3.1.2. DIVERSITY-ACCURACY TRADEOFF WITH HIGHER
SAMPLING TEMPERATURES

Here, we investigate how the sampling temperature of the
autoregressive transformer affects the diversity of the gener-
ations produced by the model and its accuracy. To this end,
we fixed the start and goal nodes and prompted the model
3,000 times, varying the sampling temperatures from 0.0 to
3.0. We define accuracy as the probability that a generated
path consists of valid edges and correctly terminates at the
designated goal node. Diversity is defined as the number
of unique paths generated. As shown in Fig. 4, there is a
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Figure 5. Model outputs are biased toward shorter paths. We
compared the average lengths of ground-truth paths for a specific
set of node pairs and the paths produced by the model for these
same pairs in the Bernoulli DAG. We observe that the model tends
to generate shorter paths than the actual ones. This observation
points to a bias in the trained model towards favoring shorter over
potentially more accurate or realistic paths.

clear trade-off between the diversity of the paths generated
by the model and their accuracy. We term this phenomenon
the diversity-accuracy tradeoff : at lower sampling temper-
atures, the model generates fewer but more accurate and
valid paths; in constrast, higher sampling temperatures re-
sult in greater path diversity but reduced accuracy. Our
result provides the first explicit demonstration of a trade-off
between the accuracy and diversity of transformer outputs.
To the best of our knowledge, this phenomena has not been
quantitatively studied before.

3.1.3. PREFERENCE FOR SHORTER PATHS

As mentioned before, there are multiple possible paths the
model can choose from in the pursuit of inferring a path
that connects a start and goal node. We showed that by
increasing the sampling temperature, a diverse set of paths
can be generated; however, by default, which paths does the
model prefer? To evaluate this, we compare the actual path
lengths between nodes in the test data with those generated
by our trained model in the Bernoulli graph setup. In Fig. 5a,
we observe that the model consistently produces paths that
are shorter, on average, than the paths in the ground truth
DAG. This observation suggests that the model exhibits a
simplicity bias, tending to find the quickest path to solve
the target problem. Such simplicity biases can lead to the
oversimplification of problems (Shah et al., 2020; Lubana
et al., 2023).

3.1.4. EVOLUTION OF FAILURES IN STEPWISE
INFERENCE OVER TRAINING

In the above discussion, we evaluated how stepwise infer-
ence assists a model in successfully completing a complex,
multi-step task. We now assess how it fails. Specifically,

1- P(misstep)
1- P(planning failure)

optimization step

ac
cu

ra
cy

Figure 6. Learning dynamics for two failure modes: misstep
and planning failure. We measure the probability of missteps
and planning failures in the model’s outputs. A misstep refers to an
instance where the model generates an edge that is not present in
the DAG G, while a planning failure means that the model outputs
a path that fails to reach the intended goal node. Initially, the model
learns to avoid missteps. Subsequently, around the optimization
step of 200, it begins to effectively learn planning. The accuracy
curves are averaged over three models, each trained with a distinct
random seed.

assume that for a given graph G, the model produces a
sequence of nodes XsX1 . . . Xk . . . Xt starting at the start
node Xs. Following (Saparov & He, 2023; Momennejad
et al., 2023), we define two categories of potential failures.

• Misstep (Xk, Xk+1) /∈ G: An edge produced by the
model does not exist in the DAG, commonly referred to
as “hallucinations”.

• Planning failure Xt ̸= Xg: The model produces a path
that does not terminate at the goal node.

In Fig. 6, we examine the learning dynamics for each failure
mode. The figure indicates that the model initially acquires
the skill to circumvent missteps (the blue line). Subse-
quently, it develops the ability to plan effectively, which is
shown by a decrease in planning failures (the red line). By
integrating these abilities—avoiding missteps and minimiz-
ing planning failures—the model is finally able to generate
accurate paths for node pairs not seen during training.

3.1.5. MECHANISTIC BASIS OF THE LEARNED GRAPH
NAVIGATION ALGORITHM

Our results above elicit several intriguing behaviors at-
tributable to stepwise inference. We next take a more mech-
anistic lens to explain why these behaviors possibly occur.
We hypothesize that the model learns embeddings for the
nodes of the graph that enable easy computation of an ap-
proximate distance measure. This suggests that to move
closer to the goal node, one can simply transition to the
node that exhibits the least distance from the goal node. For
the detailed intuition guiding our analysis, see Appendix F.

To verify this, we first strip the model down to a single-head,
self-attention layer. We visualize the attention scores for this

6
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Figure 7. Mechanistic analysis of the graph navigation algorithm: Emergent linear representation. (a) Attention maps from the
1-layer, attention-only transformer, highlighting the model’s attention on the goal token Xg and the current token Xcurrent. (b) Steps of our
simplified algorithm that emulates the 1-layer, attention-only transformer: 1. We extract value embeddings for Xg and Xcurrent, ignoring
other tokens for simplicity. 2. Next, we compute the value embeddings of the goal vg and current vcurrent nodes and add them together
v = vg + vcurrent. 3. We then compute the token embedding with the highest inner product with v, approximating the token that receives
the highest logit score after the single forward pass. (c) Comparison of the model’s accuracy on a set of 500 held-out node pairs (Xs, Xg)
using our simplified algorithm (99.8%) versus the full trained model (99.6%). (d) The paths generated by the simplified algorithm almost
exactly match the paths generated by the full trained model. Path similarity on 2000 held-out node pairs was compared by measuring the
Levenshtein edit distance (Navarro, 2001) between paths generated by the full trained model and the simplified algorithm for the same
(Xs, Xg) pairs. (e) The short path bias can be attributed to the inner products between the token embedding of the next chosen token
Xnext and the value embedding of Xg and vg . We observe that nodes Xnext further away from Xg have a lower inner product, indicating
that the model’s embedding of nodes reflects the underlying graph topology. The red line denotes the best least squares fit and has a slope
of −0.106.

minimal model in Fig. 7a, observing that the attention scores
are concentrated on the goal node and the current node. This
suggests that the model utilizes only the embedding values
of the goal Xg and the current nodes Xcurrent to select the
next token. Inspired by this observation, we develop a
simplified algorithm that mimics the behavior of the model,
as outlined in detail in Fig. 7b.

In Fig. 7c, we demonstrate this simplified algorithm matches
the accuracy of the full trained model (i.e., the single-head,
self-attention layer transformer). Further, in Fig. 7d, we
find that the paths generated by our simplified algorithm
and those produced by the full trained model are nearly
identical. We use a string edit distance metric (Navarro,
2001) to quantify the similarity between the two sets of
paths and find that over 75% of paths are identical.

Given that accuracy is computed over test nodes not seen
in the training data, it is likely that the model encodes a
notion of distance between two nodes on the graph in its
embedding, as we hypothesized. Indeed, in Fig. 7e, we
find that the inner product of the embedding of vg with the
token embeddings of Xnext is negatively correlated with the
distance between these two nodes in the ground truth DAG.
Here, we used the average path length as a distance measure

over the graph. Since potential nodes with shorter paths to
the goal node have a higher logit value, this implies they
will be more likely to be predicted, thus showing the origin
of the short path bias we observed in Sec. 3.1.3. This is a
mechanistic explanation of the pattern-matching behavior
of Dziri et al. (2023) in the context of our task.

3.2. Navigation with exemplars

The single graph setting let us explore zero-shot navigation
and stepwise reasoning, where the model relied on knowl-
edge internalized over pretraining for stepwise navigation
towards a goal. Next, we study how context can influence
the model generated paths, how subgoals that are provided
in-context can guide the model’s navigation, and how the
content of the exemplars affects the navigation path chosen
by the model. Our results shed some light on and create
hypotheses for (1) compositional generalization, (2) length
generalization, and (3) impact of conflicting, long context.

3.2.1. COMPOSITIONAL GENERALIZATION

We find that the model can successfully follow the chain
defined by the in-context exemplars. An example output
produced by the model is in Fig.2(b), highlighting the path
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Figure 8. In-context steerability and length generalization. We
vary the number of intermediate motifs ginter in a chain of motifs
constructed for the particular context gi1 → {ginter →}n → giK .
The path generated by the model follows the path described by the
chain in context until n = 4, which is the maximum chain length
in the training data.

the model takes through the chain of motifs g3 → g4 →
g2 → g9. We also find that the model generalizes to arbi-
trary orders of motifs strung out, including those that did
not occur consecutively in the training data, up to the length
in the training data (see Fig. 8). In other words, in-context
control is capable of eliciting compositional generaliza-
tion (Li et al., 2023), if appropriately trained. Further, we
see that the attentional patterns used by the model suggest
that while navigating across motifs, the model treats nodes
across ghost edges as subgoals (see Appendix Fig. 17).

3.2.2. NUMBER OF INTERMEDIATE MOTIFS

In Fig. 8, we vary the number of exemplars provided to
the model. This is equivalent to stringing together a longer
chain of exemplar sequences across motifs to navigate over.
We define successful steering as the product of indicators
that the path ended at the specified goal: IXt==Xg

and
that each ghost edge, and thus the intermediate motif, was
present in the path: Iginter . We computed the probability
by averaging over distinct source nodes ∈ gi1 and sink
nodes ∈ giK . We find that the model can generalize well to
unseen orders of motifs up to the maximum number chained
together in the training data, after which the model fails to
navigate. We hypothesize that even when using stepwise
inference methods at scale, the model will fail to generalize
to reasoning chains longer than those present in its training
data.

3.2.3. BIAS TOWARDS THE FIRST EXEMPLAR IN THE
CASE OF CONFLICT

In many scenarios, language models are prompted with sev-
eral examples and has to choose between them based on
information in-context, for example in a multiple choice
Q&A tasks (Hendrycks et al., 2020; Pal et al., 2022; Srivas-
tava et al., 2022). Here, we systematically and quantitatively

First motif Second motif

Fr
ac
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First motif

Second motif

Figure 9. How does the model handle conflicting exemplars? To
construct the context, we selected an initial motif gi1 , a terminal
motif giT and two intermediate motifs ginter and g′inter. We string
them together so that the motif has two possible paths: gi1 →
ginter → giT and gi1 → g′inter → giT . In this case of 2 conflicting
chains in-context, the model has a bias to pick the chain that
appears first in context.

study the behavior of the model when two contexts are pro-
vided but are in conflict. In Fig. 9, to model scenarios with
conflicting exemplars, we study a case where two chains of
motifs are provided, starting from the same set of initial and
terminal motifs gi1 and giT , but with distinct intermediate
motifs ginter and g′inter. The model is then prompted with
Xs ∈ gi1 and Xg ∈ giT , after in-context exemplars in or-
der: egi1 ,ginter , eginter,giT

, egi2 ,g′
inter

, eg′
inter,giT

. We find that the
model does navigate to the goal, thus following the prompt,
but has a strong bias toward choosing a path defined by the
first chain over the second, i.e., gi1 → ginter → giT (see
Fig. 9). This result is similar to what happens at scale with
large context windows, where content in the middle of a
long context window is ignored (Liu et al., 2023).

4. Conclusion
In this work, we introduced a synthetic graph navigation
task to investigate the behavior, training dynamics and mech-
anisms of transformers under stepwise inference protocols.
Despite its simplicity, our synthetic setup has provided key
insights into the role of the structural properties of the data,
the diversity-accuracy tradeoff in sampling, and the sim-
plicity bias of transformer optimization. In addition, we
explored the model’s navigation preferences and their con-
trollability through in-context exemplars, modeled length
generalization, and responses to longer contexts with con-
flicting exemplars. Like all papers that rely on synthetic
abstractions, our goal was to develop such hypotheses to
explain an interesting phenomena seen in practical scenarios.
A promising future direction for our work thus is to test the
hypotheses we have formulated in large language models,
as well as generalize and test the mechanistic interpretation
of the learned transformer algorithm in practical scenarios.
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Impact Statement
This paper provides a comprehensive scientific analysis of
a Transformer model that solves a small-scale synthetic
task. We believe that the scientific findings presented in
this paper will lay the groundwork for the development of
more reliable and interpretable AI systems for the benefit of
society.
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Figure 10. Examples of stepwise inference as graph navigation in LLM evaluations: [Figures taken from respective papers] (a) An
example graph created for a prompt (left) from the ProntoQ&A dataset (Saparov & He, 2023) (b) (Dziri et al., 2023) studies how simple
algorithms such as multiplication of digits can be represented as a graph (c) CogEval (Momennejad et al., 2023) studies many large scale
LLMs such as ChatGPT-4 and Claude2 on planning and navigation tasks. (d) Mathematical expression evaluation in the case of additionof
two numbers can be visualized as a series of steps of a digit-wise addition algorithm.

A. Why graph navigation?
In this section we will elaborate on our paradigm of graph navigation to study stepwise inference. We first describe examples
of various computational tasks that can be cast as graph navigation.

• First order logic: Saparov & He (2023) study simple DAGs as models of first order logical reasoning. They construct
ontologies (see Fig. 10a) and prompt LLMs to do analogical reasoning.

• Mathematical expression evaluation: Dziri et al. (2023) study mathematical expression evaluation in large scale
LLMs as DAG navigation (see Fig. 10b). Any mathematical expression can be decomposed into elementary computa-
tions which are chained together.

• Planning and spatial navigation: Momennejad et al. (2023) evaluates many large scale LLMs such as ChatGPT-4
and Claude2 on synthetically designed planning and navigation tasks (see Fig. 10c).

• Formal grammars and natural language: Allen-Zhu & Li (2023) studies transformers trained on context-free
grammars (CFGs) which are DAGs. Another motivation for the study of graph navigation comes from linguistics and
natural language syntax (Chomsky, 2002). Every sentence in a language can broken down into its syntactic or parse
tree, a special case of a directed acyclic graph. For example, the sentence ‘I drive a car to my college’ can be parsed
as the following graph: (‘I’: Noun phrase, ‘drive a car to my college’: Verb Phrase)→ (‘drive’: Verb, ‘a car’: Noun
Phrase, ‘to my college’: Prepositional Phrase)→ (‘a’: Determiner, ‘car’: Noun), (‘to’: Preposition, ‘my college’: Noun
Phrase)→ (‘my’: Determiner, ‘college’: Noun).

Effective stepwise reasoning consists of several elementary logical steps put together in a goal-directed path that terminates
at a precise state (LaValle, 2006). We argue that graph navigation problems provide such a fundamental framework for
studying stepwise inference. Graphs provide a universal language for modeling and solving complex problems across
various domains. Whether it is optimizing network traffic, analyzing social networks, sequencing genetic data, or solving
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puzzles like the Travelling Salesman Problem, the underlying structure can often be mapped onto a graph (Cormen et al.,
2022; Momennejad et al., 2023; Dziri et al., 2023; Saparov & He, 2023).

B. Detailed Related Work
Large language models (LLMs) have been shown to possess sophisticated and human-like reasoning and problem-solving
abilities (Srivastava et al., 2022). Chain-of-thought or scratchpad reasoning refers to many similar and related phenomena
involving multiple intermediate steps of reasoning generated internally and autoregressively by the language model. First
described by Nye et al. (2021); Kojima et al. (2022), adding prompts such as ‘think step by step’ allows the LLM
to autonomously generate intermediate steps of reasoning and computation, improving accuracy and quality of its responses.
This is referred to as zero-shot chain-of-thought. A related set of phenomena, few-shot chain-of-thought prompting (Wei
et al., 2022) occurs when the language model is shown exemplars of reasoning before being prompted with a reasoning
task. The model follows the structure of logic in these exemplars, solving the task with higher accuracy. Further, there have
been several prompting strategies developed, all of which rely on sampling intermediate steps: tree-of-thoughts (Yao et al.,
2023), graph-of-thoughts (Besta et al., 2023), program-of-thoughts (Chen et al., 2022), self-ask (Press et al., 2022) and
methods which use more than 1 LLM: such as STaR (Zelikman et al., 2022), RAP (Hao et al., 2023), Selection-Inference
(SI) (Creswell et al., 2022; Creswell & Shanahan, 2022). Dziri et al. (2023) study how LLMs solve multi-step reasoning
tasks and argue that models likely fail because they reduce most multi-step reasoning tasks to linearized sub-graph matching,
essentially learning ‘shortcut solutions’ (Liu et al., 2022). Momennejad et al. (2023) study in-context graph navigation in
LLMs, finding that they fail to do precise planning. Recently, a few works have used theoretical approaches to characterize
and explain stepwise inference. Li et al. (2023) study in-context learning of random MLPs and finds that a transformer
that outputs the values of intermediate hidden layers achieves better generalization, Feng et al. (2023) shows that with
stepwise reasoning, transformers can solve dynamic programming problems, and Prystawski & Goodman (2023) studies
reasoning traces in transformers trained to learn the conditionals of a Bayes network. There are several puzzling phenomena
in the prompts used to elicit few-shot chain-of-thought reasoning: chain-of-thought can be improved by sampling methods
such as self-consistency (Wang et al., 2022b), prompts might not reflect the true reasoning process used by the language
model, as identified by Turpin et al. (2023), and the accuracy of the model can be sensitive to the order in which prompts
are provided (Lu et al., 2021). Saparov & He (2023) introduce a synthetic dataset called PrOntoQA to systematically
study the failure modes of chain of thought in the GPT3 family fine-tuned on the dataset and find that misleading steps
of reasoning are a common cause of failure in the best-performing models. Chen et al. (2023) find that chain-of-thought
fails at compositional generalization and counterfactual reasoning. Wang et al. (2022a); Schaeffer et al. (2023) find that
the content of the exemplars is less relevant to accuracy than their syntactic structure. Razeghi et al. (2022) find that the
accuracy of reasoning is correlated with the frequencies of occurrence in the pretraining dataset.

C. Setup and construction of graph and model
C.1. Graph structures

Here we describe the properties of the DAGs we use, the training setup, model architecture and hyperparameters.

We use two DAG structures, hierarchical and Bernoulli (Fig. 11). Bernoulli DAGs are constructed by randomly generating
an upper-triangular matrix where each entry has probability p of existing. Hierarchical DAGs are generated by predefining L
sets of nodes and drawing an edge between a node nl in layer l and nl+1 in layer l + 1 with probability p. Lastly, we ensure
that the graph is connected. These lead to different path diversity and path length distributions, which affect the efficacy of
stepwise inference, as shown in our results. Below, we provide algorithms to generate our graph structures.
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Figure 11. Construction and properties of Hierarchical and Bernoulli DAGs: (top) Schematic of hierarchical and Bernoulli graphs.
Hierarchical graphs are organized into layers with connections only between nodes of successive layers but Bernoulli graphs have no
such structure. (middle) Path diversity is defined as the number of paths between any 2 path connected nodes. (bottom) Path length
distributions: Owing to the hierarchical nature, the path length distribution is exponential in hierarchical graphs whereas it is more
Gaussian-like for Bernoulli graphs.

Algorithm 1 Generate Bernoulli connected DAG

Require: numNodes > 0, probability p for edges
1: nodeNames← [‘X’ + str(i) for i in range(numNodes)]
2: Function CreateUpperTriangularMask(n, p)
3: matrix← random binary matrix with size n× n and probability p for 1s
4: upperTriangular← extract upper triangular part of matrix
5: return upperTriangular
6: repeat
7: adjMatrix← CreateUpperTriangularMask(numNodes, p)
8: dag← create directed graph in NetworkX from adjMatrix and nodeNames
9: until dag is connected

13
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Algorithm 2 Generate Hierarchical Connected DAG

1: p← [probability of connection between layers]
2: nodesPerLayer← [number of nodes in each layer]
3: numLayers← [total number of layers]
4: numNodes← nodesPerLayer× numLayers
5: Function CreateLayeredDAG(nodesPerLayer, numLayers, p)
6: Initialize an empty directed graph G in NetworkX
7: for currentLayer← 1 to numLayers− 1 do
8: for each node j in currentLayer do
9: for each node k in currentLayer+ 1 do

10: if random number ≤ p then
11: Add edge from node Xj to node Xk in G
12: end if
13: end for
14: end for
15: end for
16: return G
17: End Function
18: repeat
19: dag← CreateLayeredDAG(nodesPerLayer, numLayers, p)
20: until dag is connected

C.2. Motif construction

In the multi-graph scenario, we first construct a set of n graphs (in our experiments, we use Bernoulli DAGs with n = 10)
denoted by G = {g1, g2, ..., gn}. To construct the train data, we first create all pairwise motif orders {(gi → gj)} and leave
some of them for evaluation. For our experiments, we held out 10 out of 45 motif orders.

C.2.1. CONSTRUCTION OF EXEMPLAR SEQUENCES

To provide examples in-context, we create exemplar sequences connecting motifs, say gi1 and gi2 . In our construction,
we select Xs to be source node in gi1 and Xg to be a sink node in gi2 . Further, we choose a sink of gi1 , Xsink(gi1) and
a source of gi2 , Xsource(gi2) and connect them via a ghost edge: (Xsink(gi1), Xsource(gi2)). These intermediate nodes are
subgoals for the path that the model has to produce. Finally putting everything together, the exemplar sequence has the
following form: goal: Xg Xs . . . Xsink (gi1)Xsource(gi2) . . . Xg. Here, Xs . . . Xsink is a path from a source to a sink in gi1
and Xsource(gi2) . . . Xg is a path from a source to a sink in gi2 . To be precise, we summarize this process into the algorithm
below:

Algorithm 3 Generate In-context Exemplars

Require: {gi1 , gi2}, 2 motifs across which a ghost edge will be placed.
1: Xs← Sample sources(gi1 )
2: Xg ← Sample sinks(gi2 )
3: (Xghost edge

pre , Xghost edge
post )← (Sample sinks(gi1),Sample sources(gi2))

4: (Xs . . . X
ghost edge
pre )← Sample path gi1

5: (Xghost edge
post . . . Xg)← Sample path gi2

6: return egi1 ,gi2 ← Xs . . . X
ghost edge
pre Xghost edge

post . . . Xg

Further, after providing a set of exemplar sequences in-context, we chain them together to create a longer sequence. To
be precise, given a set of K motifs {gi1 , gi2 , gi3 , . . . giK}, we have the set of K-1 ghost edges, one for each exemplar:
{(Xsink(gi1), Xsource(gi2)), (Xsink(gi2), Xsource(gi3)), . . . (Xsink(giK−1

), Xsource(giK ))}. To create the final path, we choose
goal Xg ∈ gi1 and start Xs ∈ giK . This path has every ghost edge from the list present in it.
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C.3. Architecture details and loss function

LOSS FUNCTION

For training, we tokenize every node and we use the standard language modeling objective, next-token prediction with a
cross entropy loss. Here targetn is the 1-shifted version of the training sequence and xn are the logit outputs of the model at
the nth timestep.

L(xn, target n) = − log
( exp(βxn, target n)∑#tokens

v=0 exp(βxn,v)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)
(1)

Hyperparameter Value
learning rate 10−4

Batch size 64
Context length 32
Optimizer Adam
Momentum 0.9, 0.95
Activation function GeLU
Number of blocks 2
Embedding dimension 64

Table 1. Hyperparameters of the transformer models used for all experiments except mechanistic analyses

For model architecture, we use a GPT based decode-only transformer with a causal self-attention mask. Our implementation
is based on the nanoGPT repository1.

The transformer architecture consists of repeated blocks of pre-LayerNorm, causal multi-head self-attention, post-LayerNorm,
and an MLP with skip connections (see Fig. 12). The MLP contains two fully-connected layers with a GELU non-

1available at https://github.com/karpathy/nanoGPT

Inputs

+

Learnable 
Position Encoding

Causal Attention

Layer Norm

MLP + GeLU

N layersLayer Norm

+

+

Embedding

Softmax

Embedding

Figure 12. The architecture of GPT-style (Radford et al., 2019) decode-only transformers. Note the presence of both pre and
post-LayerNorm in each transformer block. Figure from methods section of Ramesh et al. (2023).
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linearity (Hendrycks & Gimpel, 2016). The dimensionality of the hidden layer of the MLP is 4x the embedding dimension-
ality. We do not include any dropout in the model or biases in the linear layers. We use weight-tying (Press & Wolf, 2016)
in the embedding and un-embedding layers.

To do the mechanistic study, we consider a 1 layer attention-only transformer without a few modifications: We remove
the MLP and post-LayerNorm and vary the embedding dimensionality from 4 to 64. This 1L transformer is described
by the following model equations. Here Xtoken ∈ Rvocab size×T denotes the tokens, WE ∈ Rnembd×vocab size is the positional
embedding matrix, Wpos ∈ Rnembd×T is the token embedding matrix and X ∈ Rnembd×T:

X = WE(Xtoken) +Wpos(Xtoken)

X = LN(X)

X = X+ softmax(XTWT
QWKX)WV X

z = softmax(WT
EX)

next token = argmaxall tokensz

D. Training protocol for experiments
For experiments in our setup without exemplars, we randomly generate either a hierarchical graph or a Bernoulli graph G
with N = 200 nodes. In the Bernoulli graph setting the probability of an edge p = 0.05, while in the hierarchical graph, the
probability of an edge between a node in layer l and layer l + 1 is p = 0.05. We choose 10 layers with 20 nodes each to
match the number of nodes in the two graph types. We convert all the nodes to tokens, along with a special goal token
which corresponds to a [BOS] token and an end token which corresponds to an [EOS] token and another token for padding,
pad.

Test-train split: To generate training data corresponding to path connected node pairs, we first put all edges (which are
paths of length 1) into the training data. This procedure was done in all experiments to ensure that full knowledge of the
graph was presented to the model. Further, we generate all simple paths between every pair of nodes in G. A variable
fraction of these paths are included in the training data, depending on experimental conditions which we outline below.

For experiments in Figs. 3a-b, we pick 20% of the path-connected nodes and put all simple paths between them into the
training data, for each graph type. We also add an equal number of non-path connected nodes to the training data.

In Fig. 3c, for each value of the path-length threshold parameter, which sets the maximum length of paths in the training
dataset, we pick paths corresponding to 20% of the allowed path-connected node pairs and put them into the training data,
while the remainder are held out evaluations. For the non-path connected pairs, we simply take all node pairs that are
not path-connected and add a fraction of these node pairs into the training data, chosen to roughly balance the number of
path-connected node pairs according to the experimental conditions. The rest are held-out for evaluation.

For the motif experiments in Fig. 8, we generate a set of 10 motifs, each with a Bernoulli graph structure of 100 nodes with
a bernoulli parameter p = 0.95. We then divide the 45 possible motif orders into a set of 35 and 10 that we put into train
and test respectively. For generating the context, we combine 3-6 motifs according to the allowed orders, and then sample
exemplars as well as the final sequence that traverses the full motif chain by choosing start and goal nodes from the set of
sources and sinks respectively.

E. Additional experimental results
Label noise in training data In Fig. 13, we mimic real-world language data, abundant in ambiguity and polysemy, by
corrupting (a) 5%, (b) 10% and (c) 20% of tokens in a single graph scenario. To achieve this, we replaced a randomly chosen
5% and 10% of the tokens in the training data with random tokens. We observe that the gap between stepwise inference and
direct inference persists in both scenarios. This finding indicates that stepwise inference remains effective in more realistic
settings with noise.

Varying edge density In Fig. 14, we swept the density of the graph from 0.08 to 0.12 on a hierarchical graph. We observe
a stepwise inference gap in all cases. The stepwise inference gap becomes smaller for larger densities. This is because
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Figure 13. Persistence of stepwise inference gap with corrupted tokens: In this experiment with setup identical to Fig. 3a-b, (a) 5%,
(b) 10% and (c) 20% of tokens were randomly corrupted to mimic real world language data. The stepwise-inference gap persists.

Figure 14. The effect of varying edge density in the single graph scenario: Here we vary p, the edge density of connectivity in the
graph, from 0.08 in the left-most plot to 0.12 in the right-most plot, in steps of 0.01. The stepwise inference gap persists in all cases.

the more likely the nodes are to be connected, the more likely it is for shortest paths to exist between nodes and thus less
“stitching" is needed (Broadbent & Hammersley, 1957).

Short path bias Fig. 15 presents a density plot comparing the average lengths of actual paths with those generated by the
model in a Bernoulli graph. This observation verifies the model tends to produce shorter paths between a given pair of start
and goal nodes.

Effect of varying embedding dimensionality in the single graph scenario Here we consider the 1-layer Transformer
without MLP and post-LayerNorm and ask the following question: For a fixed underlying graph size and training data,
how does the model performance vary as we sweep embedding dimensionality. Intuitively, the higher the embedding
dimensionality is, the model should be able to generalize better by learning a better embedding of the node tokens. We see
that beyond a critical dimensionality (which is around 20 for a graph of size 200 nodes), the model generalizes to all held
out (start, goal) node pairs with a fairly abrupt transition, Fig. 16.

Figure 15. Model outputs are biased toward shorter paths.
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Figure 16. Varying embedding dimensionality in 1 layer models: We find that there is a critical embedding dimensionality (around 20
for a Bernoulli graph of size 200 nodes and p = 0.05) above which the model can generalize to all held-out node pairs.

F. Intuition guiding the mechanistic analysis
In this section, we present the intuition that served as the hypothesis guiding our mechanistic analysis.

Consider the optimal maximum likelihood estimator designed to solve our graph navigation task. Given a start node Xs

and an incomplete sequence of predicted nodes X1, . . . , Xk in the pursuit of navigating to the goal node Xg , the estimator
works the following way:

Xnext = argmax
X′

P (X ′|Xs;X1, . . . , Xk;Xg)

Since the task is conditionally Markovian: the choice of the next step will be independent of the history when conditioned
on Xg and Xk. Accordingly, we have:

Xnext = argmaxX′P (X ′|Xk, Xg)

= argmax
X′

P (Xg|X ′, Xk)P (X ′, Xk)

P (Xg, Xk)

This decomposition leads to interpretable terms which shed light on what algorithm the model might use:

logP (X ′|Xk, Xg) = logP (Xg|X ′, Xk) + logP (X ′, Xk)− logP (Xg, Xk)

These terms can be interpreted as follows:

1. logP (Xg, Xk) describes the prompt.

2. logP (X ′, Xk) describes the knowledge of the world model: How well does the model know the ground truth structure
of the graph?

3. logP (Xg|X ′, Xk) corresponds to goal-directed behavior: What X ′ is most likely to lead to the goal?

Let C(Xk) denote the subset of nodes in the graph that are children of the node Xk. Then, while selecting the next token
that has the highest likelihood, note that terms (1) and (2) cannot be optimized over: the former does not depend on X ′ and
the latter, for the optimal predictor, will be 1/|C(Xk)| if X ′ ∈ C(Xk) and 0 otherwise. Accordingly, the only term that can be
optimized over is the third one, i.e., the one that measures how likely the goal is if the next state is X ′. However, due to term
(2), X ′ ∈ C(Xk)—that is, the possible set of next tokens is constrained to the set C(Xk).

Now, exploiting the task’s conditional Markovian nature again, we have P (Xg|X ′, Xk) = P (Xg|X ′ : X ′ ∈ C(Xk)).
Heuristically, assume that P (Xg|X ′) ∝ e−d(Xg,X

′) · I(X ′ ∈ C(Xk)), where d(Xi, Xj) is a measure that describes the
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Goal node
ghost edge ghost edge ghost edge

Figure 17. Attention pattern after in-context exemplars: Here we visualize the portion of the attention map after prompting with 4
in-context exemplar sequences. The model generates attentional patterns that treat the ghost edges as subgoals.

distance between nodes Xi and Xj , while respecting the topology of the graph, and I is an indicator function that is 1 if its
input is True, and 0 if not. Then, we have logP (Xg|X ′, Xk) ∝ −d(Xg, X

′) · I(X ′ ∈ C(Xk)).

The intuitive argument above, though likely to be approximate, suggests that a possible solution the model can learn via
autoregressive training in our graph navigation setup is (i) compute the distance between all neighboring nodes of the current
node and the goal node, (ii) move to the node that has the least distance, and (iii) repeat. The algorithm we uncover in our
analysis in Sec. 3.1.4 in fact functions in a similar way: the model is constantly computing a inner product between the
goal token’s representation and the embeddings of all tokens; we find this inner product is highest for the neighbors of the
current token. Then, the highest inner product token is outputted and the process is repeated. Since the embeddings are not
normalized, this inner product is not exactly the Euclidean distance—we expected as much, since the topology of the graph
will have to be accounted for and learning an inner product based metric will be easier for a model (because most operations
therein are inner products).

Further, in the case of motifs, we expect that the model contructs a path through checkpoints defined by ghost edges, which
act as subgoals. To explain, given a set of K motifs strung together in-context {gi1 , gi2 , gi3 , . . . giK}, we have the set of K-1
ghost edges, one for each exemplar: {(Xsink(gi1), Xsource(gi2)), (Xsink(gi2), Xsource(gi3)), . . . (Xsink(giK−1

), Xsource(giK ))}.
Thus, we hypothesize that the model identifies all K-1 ghost edges from its context and plans sub-paths to each ghost edge
in pursuit of the goal. Preliminary analyses of attention patterns Fig. 17 provides evidence for this hypothesis.

F.1. Generalizing static word embeddings to 3-way relations

Static word embedding algorithms such as Word2vec are trained by sampling pairs of words (wi, wc) that appear in the
same context and adjusting their embeddings so that their inner product is higher than an inner product with the embedding
of word wi and a randomly sampled word from the vocabulary. The algorithm can be understood as performing a low-rank
factorization of the matrix of co-occurrence statistics. In the case of Word2vec, the matrix is factorized as P = I · C where
I contains word vectors in its rows and C contains word covectors in its columns. Therefore, every word has two types of
embeddings. One is used when the word appears in the first position in the pair (which corresponds to center words), and
the second when it appears in the second position (which corresponds to context words).
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Inspired by the interpretability results, we propose to solve the graph navigation task using a similar low-rank factorization
method but generalized to 3-way relations. In this case, the tensor T to be factorized is third-order, and for each node, we
have three types of embeddings: One, which is used when the node acts as a goal, one when it acts as the current state, and
one when it acts as the next possible state.

We do not deal with a natural corpus with different frequency of occurrence of individual nodes, and therefore we set the
numbers Tijk to be proportional to the length lijk of a path which goes through an ordered pair of neighbour nodes (i, j) to
a node k. If there is no such path, we set the length to∞. The target value Tijk can be seen as a preference for a node j
when the goal is to reach the node k from the node i and it is equal to l−1

ijk/
∑

j′ l
−1
ij′k.

Inspired by the learned algorithm, we can use low-rank tensor factorization to approximate this matrix by the following
expression Tijk ≈ T̂ijk = (si + gk) · ni where si, gk, ni are the three types of learnable embeddings. Therefore, by
interpreting the trained transformer, we can obtain a simple algorithm that can be potentially useful in setups that deal with
3-way relationships. We leave this for future work.
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