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A utomated vehicles (AVs) 
hold great promise for 
improving safety, effi-
ciency, and sustainabil-

ity. However, commercially viable 
AVs will depend on reliable, high- 
performance, compact vehicle-based 
computing systems. Such comput-
ing systems face new challenges dis-
tinct from those in supercomputers 
and data centers due to the low-la-
tency, fail-operational, and long-life 
span requirements of AVs. The com-
putational requirements for sensing, 
inference, planning, control, and 
verification must be met continu-
ously, with low latency. AV computer 
systems must tolerate wide tempera-

ture ranges and severe weather con-
ditions while staying within vehi-
cle energy budgets to maximize the 
range between charges or refuelings. 
Computational power consumption 
must also be managed to enable sim-
pler and more economical thermal 
management solutions. AVs must 
also remain in service for a life span 
of 15 years or more. These character-
istics of AVs demand greater recon-
figurability, upgradeability, energy 
efficiency, and tolerance to extreme 
conditions than conventional com-
puting systems such as servers and 
desktop computers.

BACKGROUND ON AVs  
In contrast to examining the broader 
energy consumption implications  
of AVs (for example, the possi-
ble increases in energy use due to 
increased demand for more convenient 
transportation and decreases due to 
improved route planning and traffic 
management), we describe the on-ve-
hicle energy demands of the sensing, 
signal processing, and inference sys-
tems needed to make AVs practical. 
Existing approaches to capturing 
large amounts of data and using them 
to make complex, time-constrained, 
and safety-critical decisions would 
impose difficult-to-tolerate energy 
demands on AVs.

To meet both energy efficiency and 
computational performance goals, tar-
geted R&D is needed to satisfy the size, 
weight, power, and thermal constraints 
of AVs. This article describes the find-
ings of a team of researchers from a 
national lab, academia, and industry 
(microelectronics and automotive) on 
the challenges and promising direc-
tions for the advancement of energy-ef-
ficient computing in AVs (EECAV), with 
a focus on retail vehicles. The team 
focused on in-vehicle solutions for 
retail vehicles because this captures the 
most widespread ownership, service, 
and support scenarios. Fleet vehicles 

are typically geo-fenced or limited to 
certain routes that may be equipped 
with infrastructure to assist driving, 
whereas retail vehicles often visit loca-
tions where there is no infrastructure to 
communicate with or rely on.

Conventional CMOS digital com-
puting technology is fast approaching 
the end of Moore’s Law scaling. Pro-
jected process scaling trends alone are 
unlikely to meet the demands of highly 
automated, energy-efficient AVs in the 
next two decades. A paradigm shift 
toward integrated research (that is, 
“co-design”) on devices, architectures, 
algorithms, and sensors is needed for 
rapid advances in the energy efficiency 
of AV computing.

The energy problem is readily appar-
ent. Consider an average, light-duty, 
gasoline-powered vehicle with 10 gal-
lons of gasoline. With a gasoline lower 
heating value of 126.1 megajoules (MJ)/
gallon,1 the fuel load contains 1,261 MJ 
of energy. However, all energy on the 
vehicle is derived from the internal 
combustion engine (ICE). Assuming 
an ICE thermal efficiency of 30%,2 the 
total energy available to the vehicle for 
propulsion and auxiliary systems is 
378.3 MJ. Let’s assume that vehicle has 
a range of 400 mi. Traveling at 65 mi/h 
gives a trip duration of 6.15 h. Thus, the 
average power available to the vehicle 
during that time is 378.3 MJ/6.15 h = 
61.51 MJ/h, or 17.1 kW.

As shown in Figure 1, AVs tested by 
leading developers around 2020 gen-
erally expended about 3 kW for com-
putation (that is, converting input data 
to higher-level knowledge, enabling 
control of the vehicle), with similar 
numbers noted for more recent sys-
tems.3–5 However, in our ICE vehicle 
example, this 3 kW of power must be 
supplied by an alternator with typi-
cally limited (~60%) efficiency.6 Thus, 

TO MEET BOTH ENERGY EFFICIENCY 
AND COMPUTATIONAL PERFORMANCE 
GOALS, TARGETED R&D IS NEEDED TO 

SATISFY THE SIZE, WEIGHT, POWER, AND 
THERMAL CONSTRAINTS OF AVs.
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the real power demand relevant to 
total vehicle fuel energy is 5 kW, or 
~29% of the total fuel energy available 
on the vehicle. Were the energy sup-
plied by batteries, efficiency would be 
higher, but this would be more than 
offset by the reduced energy storage 
density of batteries compared to gas-
oline-fueled ICEs.

This computational energy expen-
diture represents a burdensome frac-
tion of the available onboard energy, 
particularly because many of the com-
putational electronics required for 
automated driving must be constantly 
on and impose an extra burden in 
addition to the other energy-intensive 
systems, such as propulsion, heating, 
air conditioning (AC), and lighting. 
As indicated in Figure 1, we anticipate 
that eventually a 300-W “all-in” tar-
get for onboard AV computation and 
associated support equipment will be 
required to meet vehicle energy con-
straints as well as the onboard ther-
mal design constraints without major 
changes to thermal management strat-
egies. A power consumption of 300 W 
would bring the AV computation elec-
trical load in line with other auxiliary 
systems, such as the heater (~360 W),7 
AC (~1 kW),7,8 and lights (~130 W).8

How can this 10× improvement in 
computation power be achieved? As 
shown in Figure 1, IEEE International 
Roadmap for Devices and Systems 
(IRDS) projections9 suggest that future 
process scaling is likely to bring a 2.5× 
improvement by 2040. A further 1.6× 
improvement in device technology pro-
duces a 4× total improvement. An 1.6× 
improvement in computer architec-
tures would produce a combined 6.3× 
improvement in required AV compu-
tation power. However, improvements 
in scaling, devices, architecture, and 
algorithms (with a 1.6× improvement) 

would produce a 10× total improve-
ment. A full-stack effort is likely the 
surest route to the goal. We note here 
that revolutionary approaches beyond 
CMOS would offer an alternative, 
high-potential track to the paths indi-
cated in Figure 1, but it is uncertain 
whether such revolutionary changes 
will be practical for large-scale com-
mercial use in the near future.

Exploring the implications for the 
300-W target in Figure 1 a bit further, 
Figure 2 shows that the relative con-
tributions of compute and propul-
sion energy consumption to driving 

depend strongly on the type of driv-
ing. The table in Figure 2(a) gives spe-
cific results for examples of 10 mi/h 
of urban traffic driving and 65 mi/h 
freeway driving, both assuming 3 kW 
of compute power. Figure 2(b) displays 
a plot showing how the percentage of 
total energy devoted to computation 
varies with changes in average vehi-
cle speed and different assumptions 
(300–6,000 W) for compute power. 
These two examples consider the same 
vehicle on a hypothetical 10-mi trip at 
freeway speeds (65 mi/h) and urban 
speeds (10 mi/h) for the same distance 

FIGURE 1. The existing (3-kW) computational power consumption for prototype AVs 
and possible routes to reducing the electrical power devoted to AV computation down 
to 300 W via the following: blue: improvements through process scaling alone (2.5×); 
red: improvements in both process scaling (2.5×) and devices (1.6×) for a total of 4× 
improvement; green: improvements in scaling, devices, and architecture (1.6×) for a total 
of 6.3× improvement; purple: combined improvements in scaling, devices, architectures, 
and algorithms (1.6×) for a total of 10× improvement. 
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traveled (10 mi). In this simplified 
example, which considers only propul-
sion and computation at the current 
3-kW power expenditures, it is evident 
that the relative amounts of propul-
sion and compute energies depend on 
“what the car is doing.” 

In general,  freeway driving allows 
the computer to be on less of the time 
and have a smaller relative energy 
contribution. However, the onboard 
computer system must be sized for 
the worst-case (most computationally 
intensive) scenario of urban driving: 
hence the 300-W target in Figure 1. 
Depending on the specifics of a trip or 
vehicle mission, the computation elec-
trical power target may have differ-
ent estimates.10 Fortunately, although 

many aspects of automobiles have 
already been optimized for energy effi-
ciency, in-vehicle computation has not 
been well optimized, and there is room 
for improvement by pursuing the R&D 
challenges indicated in this article. 
This article represents a summary of 
an EECAV R&D “Roadmap Outline,” 
which is available for download.11 
The Roadmap Outline was vetted with 
members of the AV technical commu-
nity via an online workshop held 11–12 
May 2021.11

In our work, we have assumed that 
all (nonlearning) sensing and compu-
tation occurs on-vehicle. In reality, it 
may be possible to offload some tasks 
to servers in data centers, distributed 
in the transportation infrastructure, 

and in other vehicles. However, in the 
foreseeable future, wireless commu-
nication links will experience inter-
mittent outages, there will be gaps in 
access to intelligent infrastructure, 
and it will be necessary to operate in 
environments with legacy non-AVs. 
Therefore, it is reasonable to assume 
that AVs must support all latency- and 
safety-critical tasks, for example, the 
sensing and inference necessary to 
make time-critical driving decisions. 
This leaves open the possibility of off-
loading tasks that are either latency 
insensitive (for example, long-term 
learning, route preplanning, or main-
tenance planning) or not safety criti-
cal (for example, decisions related to 
entertainment). 

FIGURE 2. (a) and (b) The variation of the percentage of total energy (propulsion + compute) used by compute for varying average 
vehicle speeds and varying computational power. (a) The table shows the results for one choice of urban traffic driving at 10 mi/h and 
one choice of freeway driving at 65 mi/h, both for an assumed compute power of 3 kW. (b) The green dots on the 3-kW curve show the 
results for 10 and 65 mi/h described by the table.
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It will also be possible to reduce 
average on-vehicle computational 
demands by (partially) off loading 
safety-critical and latency-sensitive 
tasks when appropriate communica-
tion and computation resources hap-
pen to be available. However, this will 
be challenging because energy-in-
tensive tasks such as inference based 
on camera and lidar data will often 
require large amounts of communica-
tion to fully off-load. This may lead to 
solutions in which inference is divided 
among on-vehicle and off-vehicle sys-
tems to improve vehicular energy effi-
ciency without overwhelming com-
munication resources.

SCOPE AND TIMELINES
We considered several “boundary con-
ditions” to guide our analysis of tech-
nical problems and relevant research 
areas. We assumed that all of the 
computational capacity resides on 
the vehicle as retail AVs would have 
to be “self-sufficient” for entry into 
the automotive market, particularly 
since any intelligent infrastructure, 
if developed, would initially be sparse 
and therefore have intermittent avail-
ability. Second, we adopted an “all-in” 
computational power target of 300 W 
for the electrical power consumed by 
the onboard computers, sensors, and 
any supporting peripherals to enable 
the automated driving functions. 
Regarding the AV development time-
line, we assumed three concurrent 
timelines: computation-related R&D 
topics spanning 2025–2035, enabling 
commercial-ready chips in the 2030–
2040 time frame, and implementa-
tion in commercial vehicles from 
2035 to 2045.

We identified R&D problems dis-
tributed across the following four gen-
eral technical areas.

Technical Area I: Chips: 
Materials, Devices, and Circuits
Technical Area I (TA-I) focuses on the 
materials, devices, and circuits that 
are the building blocks of computer 
chips operating in the demanding 
automotive environment and within 
the power budget allotted for com-
putation. Those working in this area 
strive to provide more capable and 
energy-efficient technology at the chip 
level, in the context of AV application 
requirements. We identified the fol-
lowing main challenges in TA-I.  

Discovering new or improved mate-
rials and processing techniques for 
increased thermal/mechanical/
radiation robustness for automotive 

environments for the life of a vehi-
cle (~15 years). With computation 
needing to occur on the AV itself, 
there arise significant challenges in 
the robustness needed for the chip 
technology. This includes chip sur-
vivability in thermally cycling con-
ditions (constantly changing hot 
and cold environments); shock and 
vibration resistance; and stability 
under cosmic ray bombardment 
during high-altitude driving. These 
are all challenging environmental 
concerns needing to be solved in the 
near term if AVs are to enjoy wide-
spread deployment.

Developing low-latency and low-power 
(<300 W) onboard computing circuits, 
such as “in-memory” computing hard-
ware, where memory and logic/com-
puting are integrated. For safety-crit-
ical and low-computational-latency 
operation, fast in-vehicle sensing and 
decision making are essential. Some 
published estimates suggest that 
slower than 150 ms from sensing to 
actuation is unacceptable for AVs 
from a safety standpoint.12 Poten-
tial research areas within this R&D 
challenge area include enabling non-
von Neumann architectures (remov-
ing the separation between data stor-
age and compute), which can lead to 
significant energy and latency sav-
ings by minimizing the on-chip data 

movement that dominates these met-
rics. It is also important to develop 
memory technologies (for example, 
flash, ferroelectric-based, or resistance 
based) that are automotive compati-
ble (for example, the ability to with-
stand harsh weather and wide tem-
perature variations).

Creating computing devices and cir-
cuits that offer reconfigurability (for 
example, in response to a new algo-
rithm or learning from road condi-
tions). Hardware reconfigurability 
is important because the hardware 
needs to be compatible with advanced 

THE TEAM FOCUSED ON IN-VEHICLE 
SOLUTIONS FOR RETAIL VEHICLES 

BECAUSE THIS CAPTURES THE MOST 
WIDESPREAD OWNERSHIP, SERVICE, AND 

SUPPORT SCENARIOS. 
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and developing algorithms (for exam-
ple, computer vision) and efficient 
computing models that can enable 
software-level generality while main-
taining the best possible performance 
of the underlying hardware.13

Integrating novel materials, devices, 
and circuits into existing manu-
facturing technologies and tools. 
Improving energy efficiency in com-
puting is of interest across many indus-
tries, and longer-term R&D is needed 
as efficiency improvements through 
scaling down transistors become 
decreasingly effective.14 Thus, there 
is interest in new materials, devices, 
and circuits for “beyond Moore” and 
“beyond CMOS” technologies.

Figure 3 lists the TA-I R&D prob-
lems in a simplified two-axis format 
to convey the timing (near term or 
long term) associated with solving 

these R&D problems and likely impact 
(high impact or very high impact) of 
the solutions on realizing widespread 
highly automated AVs. For these two-
axis plots, “near-term” investment 
means in the time frame 2025–2030; 
“longer-term” investment means in 
the time frame 2030–2035. The impact 
scale is somewhat subjective. “High 
impact” conveys very important R&D 
that is needed for AV development. 
“Very high impact” conveys R&D that 
can substantially change the direction 
of AV technical development.

Technical Area II: Chips: 
Architecture, Safety, and Security
Technical Area II (TA-II) relates to the 
aspects of computer architecture that 
are most relevant to AV operation, 
including data throughput, mem-
ory, high computational accuracy 
(demanded by functional safety), and 

the security of the computational activ-
ity during vehicle operation. The R&D 
challenges identified in TA-II follow. 

Exploring the optimized use of dis-
tributed, heterogeneous multiproces-
sor systems, including CPUs, GPUs, 
neural processing units (NPUs), and 
other application-specific hardware, 
to support the algorithms needed 
for EECAV. Future AVs will require 
distributed computing systems con-
sisting of smart sensors that process 
incoming data locally as well as more 
centralized vehicle computers that 
perform data fusion, perception, and 
navigation. These systems will need 
to support advanced autonomy algo-
rithms for AVs and will connect a 
variety of different processors, includ-
ing CPUs, GPUs, NPUs, and other spe-
cial-purpose accelerators. Research is 
needed to better define, develop, and 
optimize these heterogeneous system 
architectures while meeting all of the 
AV system constraints. Such research 
will need to build on existing designs15 
and extend them to improve capability, 
power, and performance.

Determining the type of onboard net-
work/interconnect strategies that  
optimize computational energy 
efficiency. New architectures will be 
needed to connect sensors and heter-
ogenous processors. As such, it will be 
necessary to define the networks that 
will connect these chips. Research is 
needed to understand the fail-func-
tional bandwidth and latency require-
ments, including chip to chip, car to 
car, and eventually car to infrastruc-
ture, as well as protocols that might 
meet t hose requirements. Whi le 
car-to-infrastructure approaches offer 
great promise,16 the early infrastruc-
ture will be sparse.

FIGURE 3. R&D challenges for TA-I: Chips: Materials, Devices, and Circuits.

   New or augmented materials
 and processing for increased
 thermal, mechanical, and
 radiation robustness for
 automotive environments and
 long life span.

   Integration of novel
 materials, devices, and
 circuits into existing
 manufacturing technologies
 and tools.

   New computing circuits and
 devices simultaneously
 optimized for reconfigurability
 and high performance.

   Low-latency and lower-power
 devices and circuits
 for automated vehicle
 computing needs.
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Developing improved memor y 
(addressable and storage) and band-
width in support of AV and deter-
mining where these are located 
within the system. With the new het-
erogeneous computing multiproces-
sor architectures discussed previously, 
the needs for memory, bandwidth, 
and speed will change. More memory 
and storage will certainly be needed 
to support event and data recorders as 
well as larger deep neural networks, 
but their optimal distribution and 
network architecture require further 
study. Furthermore, problems such as 
the requirement of coherence across 
the system should be understood as 
these decisions directly affect com-
puting and network architectures and 
require memory, bandwidth, and speed 
requirements to be defined holistically.

Identifying when (and if ) com-
putational “demand” starts to 
require consideration of “off- 
vehicle” computation. We decided 
that having enough computational 
capacity residing on the vehicle to 
safely drive without reliance on 
infrastructure established a “bound-
ary condition” for this work. How-
ever, it will be important to under-
stand when significant “off-vehicle” 
computation is necessary and how 
it might integrate with existing or 
proposed “smart” traffic infrastruc-
ture.17 Even when infrastructure is 
present, the additional latency of 
transmitting and receiving data via 
a network for edge/cloud compu-
tation may not favor the offloading 
of real-time computations, which 
account for the majority of the work.

Figure 4 lists these TA-II R&D 
problems to convey the required 
timing and likely impact of solving 
these technical problems.

Technical Area III: Algorithms 
and Data Management
Technical Area III (TA-III) identifies 
algorithmic and software challenges 
that, if solved, would lead to reduced 
computational demand and greater 
functionality via more optimal analysis 
of data from cameras and lidar systems 
as well as other sensor data sources. The 
R&D challenges for TA-III follow. 

Efficiency optimization of algo-
rithms to improve latency and energy 
consumption. We believe that substan-
tial energy efficiency improvements 
remain to be realized via algorithmic 
improvements. Possible approaches 
include sparse sampling/processing; 
optimizing the spatial and temporal 
resolution in sensing; improvements 
in network design going beyond adjust-
ments in layer and neuron counts; and 

better understanding the relationships 
between specific training samples and 
their influence on learned parameters.

Co-optimizing algorithms and imple-
mentation platforms to improve 
efficiency, performance, and fault 
tolerance. AVs will require advances 
in both algorithms and the computa-
tional substrates supporting them. The 
majority of the computational load 
may be handled by deep learning sys-
tems, including convolutional neural 
networks, recurrent neural networks, 
multilayer perceptrons, and their deriv-
atives, and these techniques must be 
tolerant to faults. These algorithms are 
well suited for video, radar, and lidar 
processing necessary for vehicle percep-
tion and can be designed for robustness 
in the presence of noise and some classes 
of hardware faults. Advancements 

FIGURE 4. R&D challenges for TA-II: Chips: Architecture, Safety, and Security. V2X: vehi-
cle to everything; X2V: everything to vehicle.

   What is the role of V2X and
 X2V communication in AVs?
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   Define and develop the
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 architectures with smart
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 to support algorithms needed
 for energy-efficient AVs.
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   Define and develop the
 network and interconnectivity
 architecture for energy-
 efficient AVs.
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in neural networks, such as cap-
sule networks and attention-based 
approaches (for example, transform-
ers and squeeze-and-excitation net-
works), will likely foster the necessary 
developments in capability, and recent 
advances in multilayer perceptrons ren-
der them competitive, especially when 
efficiency is of primary importance.

Data and training. The character of 
training data is critical for artificial 
intelligence (AI) systems. However, AV 
training faces special requirements 

for safety and trust. It is impractical 
(likely impossible) to capture all real-
world traffic dynamics in a static data 
set or simulator. Furthermore, envi-
ronmental effects, wear, and age may 
affect deployed sensors and proces-
sors. Both understanding the role and 
implications of training approaches 
and understanding training data 
selection and augmentation are criti-
cal for successful AVs.

We will need methods for quanti-
fying uncertainty in vehicle percep-
tion and estimating the completeness 
of training data. Bayesian methods, 
including stochastic or Bayesian neural 
networks, may help estimate epistemic 
uncertainty. Additionally, advances 
in computational learning theory may 
help inform when algorithms need to 
be retrained or updated, for example, 
due to a training data set distribution 

that no longer matches the current 
data distribution. Data will often not 
be independently and identically dis-
tributed. Online learning methods may 
help alleviate an initial data require-
ment by being able to learn “on the fly.” 
However, online learning methods 
introduce greater challenges for safety, 
assuredness, and validation. Computa-
tional learning theory may also be able 
to address this concern. It is currently 
not well understood how to measure 
lost performance due to neglecting 
online/continuous learning.

AVs may be able to capture data 
useful for updating AI models, partic-
ularly if the AV encounters unlikely 
“edge cases.” However, in such scenar-
ios, data privacy must be considered: 
both technical and legal challenges 
exist. Given the challenges of obtain-
ing representative data sets, simula-
tion will play a role in training AV AI 
systems. Additionally, methods such 
as surrogate tasks and contrastive 
learning may help improve generaliza-
tion, both from data set to deployment 
and from simulation to the real world.  

Managing data retention and loca-
tions for optimized performance, 
memory, communication, privacy, 
and legal constraints. Near-sensor 
signal processing to transform and 
compress data may be needed to reduce 
latency, energy consumption, and 

communication. Such system-level 
architectures will pose new constraints 
on algorithm design. It may be possible 
to eliminate standard signal process-
ing stages and hardware components, 
feeding raw data into end-to-end 
learning frameworks. Such frame-
works should account for possible 
mismatches between the testing and 
training data and be able to adapt to 
changing environments. While some 
methods exist to address this problem, 
it is not fully solved, particularly for the 
assured or trusted operation needed in 
AVs. Sensor fusion will help to identify 
unimportant data. Determining which 
data should be retained, in what form, 
and where will be a research challenge 
as there will be conflicting objectives, 
including efficiency, latency, accuracy, 
privacy, storage cost, and security.

The R&D challenges for TA-III are 
shown in Figure 5 with their impact 
and timing indicated.

Technical Area IV: Sensors 
Data Interface
Technical Area IV (TA-IV) is concerned 
with the links from the external physical 
world to AV computers and among phys-
ically distributed computers in a vehi-
cle. The computational requirements 
are intimately connected to the nature 
of the sensors and their interfaces. The 
R&D challenges for TA-IV follow.  

Evaluating tradeoffs among smart 
sensors and central computing. The 
decreasing cost of computational capa-
bilities means sensors that historically 
included only a detector now often 
include computing capabilities. The 
tradeoffs and long-term implications of 
in-sensor processing are multidimen-
sional and not constrained to the sen-
sor. Making sensors “smarter” implies 
moving computation close to the sensor, 

WE DESCRIBE THE COMPUTATION 
ENERGY EFFICIENCY R&D BARRIERS 
SPANNING CHIPS, ARCHITECTURES, 

ALGORITHMS, AND SENSORS. 
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with implications for the required com-
putational and energy efficiency.18 In 
addition, current approaches to func-
tional safety require redundancy. The 
distributed nature of smart sensors may 
help support functional safety require-
ments more efficiently than fully redun-
dant modules. The extent to which this 
is possible needs research.

Data versus task migration for dynamic 
power management. Distributed 
and heterogeneous systems offer choices 
about where computation is performed 
and data are stored; data can be moved 
from distant memory to where a pro-
cess is executing, or the process can 
move to execute near to where the data 
are stored.19 Tradeoffs include the pro-
cessor types, energy, and time costs for 
moving data and tasks; bandwidth con-
sumed; types and amount of memory; 
and so forth. Dynamic task migration 
capabilities can also be used to imple-
ment functional safety, such as mov-
ing work and/or data from a failed unit 
to another device. Potential synergies 
may blur the line between load balanc-
ing and fail-operational safety without 
adding complexity.

Exploiting asymmetric bandwidth 
utilization of networks to improve 
energy efficiency. Network technolo-
gies typically provide symmetric trans-
mit and receive bandwidth, a reason-
able design when the use case for the 
network is not known in advance or the 
topology changes over time. However, 
in-vehicle computing systems have the 
benefit of changing slowly, if ever, and 
have well-defined use cases that change 
little over time. Specifically, high-res-
olution cameras primarily send data 
and only need to receive control com-
mands—bandwidth utilization may 
differ by six orders of magnitude or 

more between transmit and receive, 
creating the opportunity for significant 
savings by making the network asym-
metric. Likewise, a wheel rotation sen-
sor produces data but does not consume 
it, meaning it is overprovisioned with 
respect to received bandwidth.

Determining the R&D needed to 
anticipate advances in sensors and 
computers over a long (~15-year) 
vehicle life span to maintain forward 
and backward capability. Despite best 
efforts to maintain compatibility of 
software and hardware over time, the 
rapid rate of innovation means com-
patibility is often broken before the 
device itself breaks.20 Over the 15+-
year life span of a vehicle, technol-
ogy will evolve so that replacement 
components may be much more capa-
ble and different in nature than the 
devices they replace, moving the data 

to a processor or vice versa. Research 
is needed to develop best practices for 
future-proofing sensors, computers, 
and their interconnects. Security con-
cerns that are difficult to predict may 
also limit backward compatibility or 
prevent upgrades.

The R&D challenges for TA-IV are 
shown in Figure 6 with their impact 
and timing indicated.

This article summarizes the com-
putational research challenges 
facing the designers of compu-

tationally energy-efficient, economi-
cal, safe, and reliable automated retail 
vehicles. We describe the computation 
energy efficiency R&D barriers span-
ning chips, architectures, algorithms, 
and sensors, with the goal of paving the 
way to EECAV. In addition to the R&D 
priorities identified in Figures 3–6, the 

FIGURE 5. R&D challenges for TA-III: Algorithms and Data Management.
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following R&D activities would be par-
ticularly important to pursue: 1) devel-
oping automotive-centric metrics for 
computing performance improvement, 
2) putting on a solid technical founda-
tion “what the AV is doing,” 3) under-
standing quantitatively how improve-
ments in all four technical areas affect 
one another, and 4)  converging on a 
commonly acceptable approach to 
benchmark AV computational capacity 
and energy efficiency. 

There is an urgent need to develop 
further a full roadmap of advanced 
computing for AVs if fully automated 
commercial AVs are to be realized. 
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