
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 615

REFERENCES

[1] R. Kastner and M. Sarrafzadeh. (1999) Labyrinth: A Global Router and
Development Tool. [Online]. Available: URL:http://www.cs.ucla.edu/
kastner/labyrinth/

[2] F. K. Hwang, D. S. Richards, and P. Winter, “The Steiner tree problem,”
in Annals of Discrete Mathematics. Amsterdam, The Netherlands:
North-Holland, 1992, vol. 53, pp. 203–282.

[3] C. Albrecht, “Provably good global routing by a new approximation
algorithm for multicommodity flow,” inProc. ACM/SIGDA Int. Symp.
Physical Design, Apr. 2000, pp. 19–25.

[4] R. C. Carden IV, J. M. Li, and C. k. Cheng, “A global router with a the-
oretical bound on the optimal solution,”IEEE Trans. Computer-Aided
Design, vol. 15, pp. 208–216, Feb. 1996.

[5] C. Chiang, C. K. Wong, and M. Sarrafzadeh, “A weighted Steiner trees-
based global router with simultaneous length and density minimiza-
tion,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 1461–1469,
Dec. 1994.

[6] X. Hong, T. Xue, E. S. Kuh, C. K. Cheng, and J. Huang, “Performance-
driven Steiner tree algorithm for global routing,” inProc. ACM/IEEE
Design Automation Conf., 1993, pp. 177–181.

[7] E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, “Creating and ex-
ploiting flexibility in Steiner trees,” inProc. ACM/IEEE Design Automa-
tion Conf., June 2001, pp. 195–198.

[8] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern routing: Use
and theory for increasing predictability and avoiding coupling,”IEEE
Trans. Computer-Aided Design, vol. 21, pp. 777–791, July 2002.

[9] A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisection alone
produce routable placements?,” inProc. 37th ACM/IEEE Design Au-
tomation Conf., June 2000, pp. 477–482.

[10] J. Hu and S. Sapatnekar, “A timing-constrained algorithm for simulta-
neous global routing of multiple nets,” inProc. ACM/IEEE Int. Conf.
Computer-Aided Design, Nov. 2000, pp. 99–103.

[11] A. Jagannathan, S.-W. Hur, and J. Lillis, “A fast algorithm for context-
aware buffer insertion,” inProc. 37th ACM/IEEE Design Automation
Conf., June 2000, pp. 368–373.

[12] C. Alpert, “The ISPD98 circuit benchmark suite,” inProc. Int. Symp.
Physical Design, Apr. 1998, pp. 80–85.

[13] E. F. Moore,The Shortest Path Through a Maze, 1959, pt. II, vol. 30,
Annals of the Harvard Computation Laboratory.

[14] M. Garey and D. Johnson, “The rectilinear Steiner tree problem is
NP-complete,”SIAM J. Appl. Math., pp. 826–834.

[15] J. Cong and X. Yuan, “Routing tree construction under fixed buffer loca-
tions,” in Proc. 37th ACM/IEEE Design Automation Conf., June 2000,
pp. 379–384.

[16] J. Ho, G. Vijayan, and C. K. Wong, “A new approach to the rectilinear
Steiner tree problem,” inProc. ACM/IEEE Design Automation Conf.,
June 1989, pp. 161–166.

[17] K. Kozminski, “Benchmarks for layout synthesis – Evolution and cur-
rent status,” inProc. ACM/IEEE Design Automation Conf., June 1991,
pp. 265–270.

[18] M. Lai and D. F. Wong, “Maze routing with buffer insertion and wire
sizing,” in Proc. ACM/IEEE Design Automation Conf., June 2000, pp.
374–378.

[19] M. Sarrafzadeh and C. K. Wong,An Introduction to VLSI Physical De-
sign. New York: McGraw–Hill, 1996.

[20] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON: Fast standard-cell
placement for large circuits,” inProc. IEEE Int. Conf. Computer-Aided
Design, Nov. 2000, pp. 260–263.

[21] W. J. Sun and C. Sechen, “Efficient and effective placement for very
large circuits,” inProc. Int. Conf. Computer-Aided Design, Nov. 1993,
pp. 170–177.

Analysis of Power Dissipation in Embedded Systems
Using Real-Time Operating Systems

Robert P. Dick, Ganesh Lakshminarayana, Anand Raghunathan, and
Niraj K. Jha

Abstract—The increasing complexity and software content of embedded
systems has led to the frequent use of system software to help applications
access hardware resources easily and efficiently. In this paper, we present a
method for detailed analysis of real-time operating system (RTOS) power
consumption. RTOSs form an important component of the system software
layer. Despite the widespread use of, and significant role played by, RTOSs
in mobile and low-power embedded systems, little is known about their
power-consumption effects. This paper presents a method of producing a
hierarchical energy-consumption profile for applications as they interact
with an RTOS. As a proof-of-concept, we use our infrastructure to pro-
duce the power profiles for a commercial RTOS, /OS-II, running sev-
eral applications on an embedded system based on the Fujitsu SPARClite
processor. These examples demonstrate that an RTOS can have a signifi-
cant impact on power consumption. We discuss ways in which application
software can be designed to use an RTOS in a power-efficient manner. We
believe that this is a first step toward establishing a systematic approach to
power optimization of embedded systems containing RTOSs.

Index Terms—Embedded system, energy consumption, low-power, oper-
ating system, power consumption, real-time, simulation.

I. INTRODUCTION

Embedded systems often contain programmable processors and pe-
ripherals in addition to application-specific hardware. The complexity
of applications and underlying hardware, tight performance and power
budgets, as well as aggressive development schedules, require appli-
cation developers to use runtime support software. This support usu-
ally takes the form of a real-time operating system (RTOS), runtime
libraries, and device drivers [1]–[7]. RTOSs are used in embedded sys-
tems with soft real-time constraints, as well as formal real-time systems
with hard real-time constraints. In the interest of brevity, we will use the
term RTOS to refer to all operating systems targeting time-constrained
embedded systems.

An RTOS provides a number of services to an embedded system de-
signer. It serves as an interface between application software and hard-
ware. For example, the RTOS provides the designer with timer man-
agement routines that may be used without detailed knowledge about
the timer hardware in the embedded system. In addition to simplifying
the use of hardware, the interrupt service routines (ISRs) provided by
an RTOS allow hardware to signal an application. The device driver and
memory management portions of an RTOS simplify embedded system
design by providing the designer with routines to ease the management
of hardware resources. An RTOS manages the execution of, and inter-
action between, tasks in an application. It handles the scheduling of

Manuscript received June 26, 2000; revised April 19, 2002. This work was
supported in part by a grant from NEC C&C Research Labs and in part by the
George Van Ness Lothrop Fellowship in Engineering. This paper was recom-
mended by Associate Editor Rajesh Gupta.

R. P. Dick is with the Department of Electrical and Computer En-
gineering, Northwestern University, Evanston, IL 60208 USA (e-mail:
dickrp@ee.princeton.edu).

G. Lakshminarayana is with the Alphion Corporation, Eatontown, NJ 07724
USA.

A. Raghunathan is with C&C Research Labs, NEC USA, Princeton, NJ 08540
USA.

N. K. Jha is with the Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA.

Digital Object Identifier 10.1109/TCAD.2003.810745

0278-0070/03$17.00 © 2003 IEEE

616 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

different tasks in an application, ensuring that the highest-priority task
has access to an embedded system’s hardware resources at any given
time. It also provides for communication and synchronization among
tasks. In short, it manages the details of task interaction and provides a
simplified interface to hardware resources.

Unlike general-purpose operating systems, RTOSs often sacrifice
some functionality for the sake of compactness, predictability, and
speed. A number of services typically provided by general-purpose
operating systems are not useful in most embedded applications, e.g.,
support for multiple users or complex file-systems. By omitting such
features, the size of an RTOS may be reduced, decreasing memory
requirements and, therefore, embedded system cost. General-purpose
operating systems usually try to complete their duties quickly.
However, they typically do not provide a hard guarantee that a task
will complete by a certain time. RTOSs differ from general-purpose
operating systems by making hard real-time guarantees about the time
requirements of the critical services they provide.

Typical applications involve significant use of RTOS primitives, the
complex interactions among which are hidden from the application
software developer. Although abstracting away the detailed behavior
of RTOS services allows embedded system designers to more easily
manage complexity, tight performance and power constraints some-
times demand more detailed analysis. The way an RTOS is used has
a significant impact on embedded system performance and power con-
sumption. Therefore, designers need to be aware of the impact of RTOS
on these design characteristics. Therefore, designers need to be aware
of the potential performance and power impact of RTOS use. Commer-
cial RTOS manuals and data sheets typically include estimates of the
execution time for various parts of the RTOS for specific hardware con-
figurations. However, vendors do not provide information about RTOS
power-consumption characteristics. In addition, state-of-the-art tech-
niques in embedded software power analysis do not clearly separate
and analyze power consumed in RTOS components. We propose and
demonstrate a method of conducting a detailed hierarchical analysis of
the power consumption and execution time of embedded system appli-
cations running on a multitasking RTOS. In addition, our work is a first
step toward analyzing and characterizing power consumptions of dif-
ferent RTOS components as well as the indirect impact of RTOS usage
upon embedded system power consumption.

The rest of the paper is organized as follows. Section II introduces
related research and summarizes our contributions. Section III demon-
strates the potential impact of an RTOS on embedded system energy
consumption, using various illustrative examples. It also describes how
insights into RTOS effects on energy can be used to optimize software
to reduce energy consumption. Section IV describes our energy anal-
ysis infrastructure, and presents an overview of the�C/OS-II RTOS.
Section V presents quantitative experimental results on several example
embedded software systems, on which we base our analysis of RTOS
energy effects. Section VI concludes and makes recommendations to
designers of low-power embedded systems that use RTOSs.

II. RELATED WORK AND CONTRIBUTIONS

The importance of reducing power consumption in embedded sys-
tems has now been widely recognized, and a large body of work has
focused on estimating, managing, and reducing power consumption
in various system components. For hardware design, techniques have
been developed to estimate and optimize power consumption starting
from the algorithm and architectural design phases, down to the circuit
design and technology optimization steps [8]–[12]. Application, semi-
conductor technology, cost, and time-to-market trends are causing a
shift toward increased software content in embedded systems and sys-
tems-on-chip. As a result, designers and users of embedded software

must be increasingly aware of power issues. While power dissipation is
inherently a property of the underlying system hardware, a knowledge
of the embedded software that runs on the hardware is useful in order to
analyze and improve the system’s power-consumption characteristics.

Recognizing the important role played by embedded software in de-
termining system power consumption, researchers have started to in-
vestigate techniques for software power analysis and power-efficient
software design. Power analysis techniques have been proposed for
embedded software based on instruction-level characterization [13],
and simulation of the underlying hardware [14]. Techniques to im-
prove the efficiency of software power analysis through statistical pro-
filing have been proposed in [15]. The system-on-chip design para-
digm, which enables integration of processors, peripherals, busses, and
complex user-defined logic blocks, has fueled research in hardware-
and software power-consumption estimation [16]–[21]. Reducing em-
bedded software power consumption through compiler optimizations
[22], source-level transformations [18], [23], customized memory man-
agement schemes [24], power management schemes [8], [25], device
driver and operating system policies [26], and variable-voltage pro-
cessors [27]–[30] has been investigated. Researchers have also begun
investigating methods of using operating systems to dynamically dis-
able peripherals in order to save power [31]. Others have advocated
redesigning page allocation and communication policies in order to de-
crease energy consumption [32].

Our work focuses on understanding and characterizing the power
effects of RTOS and application software. Our goal is to provide de-
signers with a method of determining the system-specific changes to
the interaction between application software and RTOS that will most
effectively reduce system power consumption. The steps required to
reduce system power consumption are necessarily dependent on the
specific RTOS and processor being used. We applied this method to the
�C/OS-II RTOS [3] and applications running on the Fujitsu SPARClite
processor. However, our method of hierarchically analyzing RTOS and
application software power consumption [33] can be applied to dif-
ferent processors and RTOSs, e.g., an ARM processor running Linux
[34]. Others have subsequently used a simulation-based approach to
analyze RTOS power consumption [35]. We modeled the SPARClite
processor’s sleep mode. It was observed that, in applications making
heavy use of RTOS services, the RTOS, itself, can consume a sig-
nificant amount of power. However, in general, the impact of RTOS
usage upon application software consumption is more significant than
power directly consumed by the RTOS. We present quantitative results
for energy and time consumed by different operating system tasks,
such as context switching, scheduling, interprocess communication,
and timer management. In addition, we present concrete examples of
the ways in which information derived from RTOS power analysis
can be used to optimize embedded software power consumption. Our
method of RTOS power analysis can be used for research on high-level
power-modeling of different RTOS components. These models can be
incorporated into power-aware system-level design tools.

III. M OTIVATION FOR RTOS ENERGY ANALYSIS

In this section, we illustrate, with examples, the impact of RTOS
usage on system energy and time consumption. The RTOS energy anal-
ysis infrastructure described in Section IV is used to provide a quantita-
tive categorization of the energy and time consumed by different parts
of the application and RTOS. Our simulation infrastructure identifies
the key sources of energy consumption in the system. Significant sav-
ings in energy consumption are obtained by rewriting the application
software to use the RTOS in a more energy-efficient manner.

Energy-consumption information is generally more useful than
power-consumption information when optimizing an embedded

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 617

Fig. 1. Straightforward implementation of the ABS example.

system’s battery lifespan. Even in situations requiring the optimization
of power consumption, e.g., building an embedded system with
limited short-term heat dissipation, one may frequently convert an
energy-reduced system to a power-reduced system by reducing the
system’s clock rate, putting it in a reduced power consumption sleep
mode part of the time, or reducing the voltage at which some of its
components operate. Therefore, we focus on the energy consumption
of a number of simulated embedded systems in this paper. In addition,
we give time-consumption profiles for these examples. Note that the
power consumption profile follows directly from the energy and time
consumption profiles.

A. Antilock Braking Example

Our first example is based on embedded software used in an
automotive antilock braking system (ABS). The system uses a timer
wake-up signal to trigger execution of the ABS process. Consider the
flow chart shown in Fig. 1 that shows part of an ABS. The system has
been adapted from an example in a design automation manual [36]. In
the step marked, sense speed and pedal conditions, the ABS process
calls the sense brake pedal and sense speed functions. The sense brake
pedal function determines whether the brake is currently depressed.
The Sense speed function uses the wheel sensor to determine the
current angular velocity (rotation speed) of the wheel. The ABS
process then computes the current speed and acceleration of the
automobile, and uses the speed, acceleration, and brake pedal status
to decide whether to apply the brakes, pump the brakes, release the
brakes, or do nothing. This braking decision is conveyed to the actuate
brake function that clamps the brake calipers, if appropriate. The

simulated vehicle was subjected to an input trace during which its
speed and brake pedal conditions change multiple times. The energy
consumption profile is shown in the nongate bar of Fig. 2(a).

In the straightforward implementation of the ABS example, illus-
trated in Fig. 1, the processor is awakened and the ABS process exe-
cutes with every timer tick. Note that even this straightforward imple-
mentation is power-aware: it uses the processor’s sleep mode between
sensor sampling events instead of continuously leaving the processor
in its high-power active mode. However, it frequently executes without
changing the condition of the brake calipers. This unnecessary execu-
tion requires energy that might otherwise be conserved. By changing
the algorithm slightly, such that it only wakes up the processor on a
timer tick if the brake pedal is depressed [as shown in Fig. 3], the em-
bedded system’s energy consumption is reduced. As shown in the gated
energy bar of Fig. 2(a), the energy-optimized implementation of the
ABS example consumes 65.0% less energy than the straightforward
implementation. Most of the energy savings result from allowing the
SPARClite processor to remain in the sleep mode, and the dynamic
random access memory (DRAM) to remain in the self-refresh mode,
through timer ticks during which it is certain that the brake calipers
need not be clamped. As the execution time in each case was 14 s [see
Fig. 2(b)], power consumption also reduced by 65.0% in the energy-op-
timized version. In both versions of this example, operating system
and board support services accounted for approximately half of the
system’s energy consumption. In this example, floating point service
routines account for the majority of RTOS and board support energy
consumption. Although some of the functions listed in the bar chart’s
key account for little energy, we have listed all categories to keep the
keys of different figures consistent.

618 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

(a) (b)

Fig. 2. ABS example: (a) energy and (b) execution time consumption by RTOS service category.

Fig. 3. Energy-optimized implementation of the ABS example.

B. Commodity Trading Agent Example

In our second example, we consider a market composed of com-
modity trading agents. As shown in Fig. 4, each agent has money and
four different types of commodities. These quantities are randomly ini-
tialized. Randomly selected agents broadcast, to all other agents, their

desire to sell a particular commodity. Agents receiving the broadcast
respond with an offer price computed from the agent’s supply-price
curve for the commodity under consideration. The seller agent uses its
supply-price curve to determine whether the highest received offer is
higher than its internal valuation of the commodity under consideration
at the quantity it currently owns. If so, it sells one unit of the commodity

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 619

Fig. 4. Overview of the commodity trading agent example.

to the agent making the highest offer. Note that this example is not as
conventional as the antilock break and Ethernet examples described in
the preceding and following sections. However, this forward-looking
example does provide an opportunity to examine the potential impact
of hand optimization on application energy consumption.

The mail bar of Fig. 5(a) shows the energy consumption profile for
an embedded system running the commodity trading example, when
implemented using RTOS mailboxes to transmit messages between
agents. In addition, the mail version relies on the RTOS scheduler to
manage the activity of different agents. The tuned bar shows the en-
ergy consumption for code that is carefully hand-tuned to use shared
memory of message communication, and avoid the use of RTOS mail-
boxes or scheduler. In the mail version, the RTOS is responsible for
95.5% of the embedded system’s energy consumption. Interrupt han-
dling, mailbox services, and scheduling, alone, account for 27.6% of
the energy consumption. In the tuned version, the RTOS is responsible
for 92.2% of the energy consumption. Interrupt handling, mailbox ser-
vices, and scheduling account for 2.0% of the energy consumption.
Note that this example relies very heavily upon RTOS services. In many
embedded systems, RTOS energy consumption will account for less
than 10% of the total.

As shown in Fig. 5(a), there is an energy cost associated with using
the RTOS scheduler and mailboxes to allow a more versatile and main-
tainable implementation. The tuned version required only 70% of the
energy required by the mail version. However, adding new prioritized
tasks to the mail version is simple, while changing the behavior of the
tuned version is more difficult. In this case, a designer may trade off
flexibility and maintainability for energy savings.

C. Ethernet Interface Example

In our third example, we consider checksum computation and inter-
facing with an Ethernet controller that has high per-access overhead.

This action occurs at the lowest level of a TCP/IP protocol stack. In-
coming packets are processed to derive their checksums. The packets
are subsequently transmitted to the output device.

The most straightforward implementation of this algorithm, shown
in Fig. 6(a), processes each packet as soon as it is available. However,
in this example, preparing the Ethernet controller to receive a packet,
represented by the Procure Ethernet controller operation in Fig. 6(a), is
costly. The nonbuf bar in Fig. 5(b) shows the energy consumed by this
straightforward implementation, broken down by RTOS service and
application categories.

It is possible to amortize the cost of Procure Ethernet controller over
the transmission of multiple packets by decoupling packet generation
from transmission to the Ethernet controller. In this energy-optimized
implementation, the application is broken into three tasks, as shown
in Fig. 6(b). The Checksum computation task communicates packets
to the Buffer management task via shared memory. When the Buffer
management task has enqueued a number of packets, it transfers them
simultaneously to the Output task that procures the Ethernet controller
and transmits all the packets in its queue.

The buf energy bar in Fig. 5(b) shows the energy consumed by the
energy-optimized version of the Ethernet interface example. Although
some energy or time is consumed by functions in each of the classi-
fications listed in the key, some of these classifications account for
very little energy or time consumption, and are barely visible in the
bar charts.

Energy optimization of the Ethernet interface example results in a
23.1% overall decrease in energy consumption, with most of the sav-
ings resulting from reduced reliance on hardware access synchroniza-
tion and initialization services. Power consumption reduced by 0.1%,
i.e., the energy savings resulted from a reduction in execution time,
not average power consumption. The energy saved in the hardware ac-
cess synchronization and initialization services was sufficient to more
than offset a 2.9% increase in energy resulting from the increased com-

620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

(a) (b)

Fig. 5. (a) Commodity trading agent example energy and (b) Ethernet interface example energy by RTOS service category.

(a) (b)

Fig. 6. (a) Straightforward implementation and (b) multiprocess implementation of the Ethernet interface example.

plexity of the multiple-task implementation. One could easily convert
some of these energy savings into power savings by putting the pro-
cessor and memory into sleep mode for the amount of time saved in

the buffered version. In this example, the RTOS consumed only 1.2%
of the overall energy in the version that was not energy-optimized, and
a similar percentage of overall energy in the energy-optimized version.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 621

Fig. 7. Energy analysis framework.

However, in a number of other examples shown in Section V, the RTOS
consumes a larger portion of the embedded system’s energy.

The examples presented in this section demonstrate that the manner
in which an RTOS power analysis infrastructure may be used to deter-
mine promising areas for power optimization and evaluate the tradeoffs
between power and other costs. Understanding the effects of RTOS use
on time and energy allows a designer to better optimize the these en-
ergy embedded system attributes.

IV. ENERGY ANALYSIS INFRASTRUCTURE

In this section, we present our RTOS energy analysis framework. We
first describe the inputs and outputs of our framework. Next, we present
a high-level view of its building blocks, and the manner in which they
interact to analyze the system energy consumption. We then present
some details of individual building blocks.

A. Inputs and Outputs

Our framework can be used to analyze the energy consumption of
an application, consisting of multiple tasks, executing under a multi-
tasking operating system. These tasks interact with each other, as well
as with peripheral devices such as universal asynchronous receivers and
transmitters (UARTs), brake sensors, and other hardware components.
The embedded system is simulated to obtain a detailed report of the
energy consumed by different application/RTOS functions.

Fig. 7 depicts our energy analysis framework. The application, which
consists of multiple processes, is compiled and linked together with the
�C/OS-II RTOS and Fujitsu’s SPARClite runtime libraries. In addi-
tion, a model of the system’s environment or external stimuli is pro-
vided to our framework.

The outputs of our software, shown at the right of Fig. 7, include
call-trees for each task and the RTOS. Each call-tree node corresponds
to a function call, and has a child node for each function call instance
that occurs within it. An edge from function foo to function bar indi-
cates that foo calls bar. The nodes of the call-tree are annotated with the
functions they represent, and the energy and time consumed by each in-
vocation of the function. The contributing sources of energy consump-
tion within the function, e.g., instruction execution, stalls, DRAM re-
freshing, are recorded. Note that if a functionh is called from two func-
tionsf andg, we create separate nodes in the call-tree corresponding

to these two scenarios. This ensures that the energy consumption sta-
tistics of a function are separated by caller. Each call instance’s en-
ergy information can be examined separately or the call-instances may
be combined in order to find the total energy consumed by all of the
instances of a function located at a given position in the call-tree. At
each position in the call-tree, detailed information is reported about the
sources of energy consumption within the function. In addition, a total
hierarchical energy consumption, equal to the sum of the total energy
consumptions of a node’s children, is given.

Table I shows a portion of the automatically formatted output of the
system when analyzing a semaphore example. In this example, con-
current tasks are synchronized through the use of RTOS services. We
present this table in order to give the reader a concrete idea of the sort of
output the embedded system power analysis tool produces. Note that
each context, e.g., realstart and Task1, is a separate start node in the
call-tree hierarchy. The same function may appear more than once in
the call-tree, if it is called from different locations, e.g., the window un-
derflow trap service routine win_unf_trap in Task1. Although only en-
ergy per invocation, percentage of total energy, total time, and number
of calls are displayed in this table, the analyzer also produces more
detailed reports on embedded system attributes, e.g., it can separate
energy consumption into sleep energy, stall energy, cache stall energy,
memory access energy, memory idle energy, and instruction processing
energy.

For the sake of brevity, the call-tree has been pruned to limit its depth
and breadth. It truncates the call-tree at a depth of three and omits the
Task2 context. For example, the table shows information about the re-
alstart and Task1 contexts. Task1 calls OSSemPend that in turn calls
a number of other functions, including OSSched. Although OSSched
calls other functions, they are omitted from the table for brevity. OS-
SemPend consumed 104.59 mJ, including the energy consumed by all
of the other functions it calls. OSSched consumed 66.44 mJ per invo-
cation and it is invoked 999 times at this position in the call-tree. In-
cluding the energy of the other functions it calls, it consumes 6.35% of
the total system energy and executes for a total of 51.95 ms. Note that
the figure produced by multiplying the energy consumption of each one
of the functions OSSemPend calls by the number of times the function
is called is slightly lower than OSSemPend’s total energy consumption.
The difference between these figures is the amount of energy consumed
by instructions at OSSemPend’s position in the call-tree.

622 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

TABLE I
HIERARCHICAL CALL -TREE FOR THESEMAPHOREEXAMPLE

Fig. 8. Modeled architecture.

B. System Overview

We now describe the operation of our energy analysis framework.
The simulated embedded system consists of a processor interacting
with a set of application-specific integrated circuits (ASICs) and
other peripherals. As shown in Fig. 8, our energy analysis infra-
structure models a Fujitsu SPARClite processor, connected to two
fast page-mode DRAMs, a timer, a UART, and a number of other
peripherals. Cycle-accurate simulators have a reputation for being
slow. However, this approach is sufficiently fast to handle substantial
applications; a similar simulation infrastructure subsequently built by
colleagues booted Linux in less than 5 min on a Pentium III processor
running at 667 MHz [34].

In order to analyze the energy consumption of the system, we need
functional models and energy models of its constituent parts. Instruc-
tion-level power models for the Fujitsu SPARClite processor and in-
ternal cache can be found in the literature [13]. The internal operation
of the SPARClite processor is simulated using an instruction set simu-
lator (ISS) [18] that we have modified so that it handles interaction with
other components in the modeled embedded system. We have imple-
mented an easy-to-use, object-oriented, inheritance-based method of
adding new hardware to the simulated system, e.g., the brake sensors
used in the ABS example. Application-specific devices may interrupt
the operation of the processor. We use interrupt routines based on those
found in the Fujitsu MB86832 evaluation kit, and�C/OS-II. Applica-
tions run under�C/OS-II. The addition of hardware interrupts to the
embedded system simulator required significant changes to maintain
correct simulation. In particular, it is not possible to use offline hard-
ware models in the presence of coprocessor generated interrupts.

The ISS simulates the cycle-by-cycle execution of the processor,
i.e., it accounts for effects such as branch delays, pipeline flushes,
control-flow mispredictions, etc. We have enhanced this ISS in a
number of ways. In order to account for the effects of cache misses,
we added an online cache simulator designed specifically to model the
SPARClite processor’s cache. It is necessary to use an online cache
simulator in order to know, during execution, whether or not a cache
miss has occurred. An offline cache simulator would not allow the
correct simulation of an embedded system because, due to races with
interrupts generated by other peripherals, the presence or absence of a
miss penalty may change the flow of execution. The cache simulator
accounts for the cache and memory behavior. We model a number of
SPARClite-specific features. Among these, low-power sleep mode
is particularly important. In addition, we model external memory.
Specifically, we simulate the cache and on-board bus interface unit
of a Fujitsu MB86832 [37], [38], as well as the operation of two
IBM0118160PT3–60 low-power fast page-mode DRAMs [39].
Memory-energy consumption is derived from the manufacturer’s
data-sheet, and depends on the DRAM’s mode of operation. We
consider the energy required to drive the processor-memory bus.
Our power model is built from datasheets [39] and published current

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 623

measurements [13]. If the hardware implementation of an additional
device a designer wants to integrate into the system is known, its
energy consumption can be computed using known energy analysis
techniques [8], [9], [12].

As mentioned earlier, our energy analysis framework organizes en-
ergy-consumption data by function. Therefore, in addition to evaluating
the energy consumed by the system in a cycle, our energy analyzer
needs to keep track of the function and process that are currently being
executed. In general, the manner in which the context is determined is
specific to the operating system, and the processor being considered.
�C/OS-II performs scheduling and context switch occurs through the
function OSSched. Our framework uses this information to keep track
of context switches. Function calls are performed using the jmpl in-
struction from the SPARC assembly language. The name of the func-
tion to which control flow is transferred is determined from the symbol
table that associates an address with each function and global variable.
The problem of tracking returns from function calls is complex and
requires information specific to the instruction set architecture of the
processor being used, the manner in which the compiler translates dif-
ferent control-flow constructs in the high-level programming language
into assembly code, and information specific to the RTOS code that
performs context switching.

Our energy analysis technique is nonintrusive. This differs with many
well-known software debugging and performance analysis techniques
that augment the program to be analyzed with monitoring code in order
toenhanceobservabilityof theprogramstateand internals.While thead-
dition of monitoring code eases analysis, it results in a loss of accuracy
because the monitoring code modifies the parameters that needs to be
measured: execution time and energy. Additionally, this extra code may
change the order in which tasks execute in an embedded system con-
taining multiple hardware devices. The need to perform cycle-accurate
performance analysis is heightened in the presence of external devices
that communicate with the processor. Inaccuracies in timing can cause
a change in the functionality of the system being implemented, leading
to inaccurate control-flow and energy results. Since we use cycle-accu-
rate processor and cache energy models, our framework does not suffer
fromthisproblem.Whenrunona336-MHzUltraSPARC-IIwith4Gbof
memory, the simulator takes approximately 40 min to simulate the 14-s
original version (i.e., nongate) of the ABS example and approximately
12 min to simulate the 2.5-s original version (i.e., nonbuf) of theEthernet
interface example.

There is one caveat regarding the power model used for the SPAR-
Clite processor. We selected the Fujitsu SPARClite MB86832 for simu-
lation because an evaluation kit for this processor is currently available
from Fujitsu, allowing us to use their development tool’s electrically
programmable read-only memory (EPROM) code to facilitate the sim-
ulation of a concrete embedded system. However, we do not currently
have a power model for the MB86832. We used the instruction-level
power model for the Fujitsu SPARClite MB86934 [13]. The core clock
frequency for the modeled processor is 80 MHz, while the core clock
frequency used to build the power model is 20 MHz. The input–output
(I/O) clock frequency for the modeled processor is 26.7 MHz, while the
core clock frequency used to build the power model is 10 MHz. It was
necessary to scale the current values in the power model in order to ac-
count for the increased clock frequencies. According to the MB86832
data-sheet, this processor’s current scales linearly with clock frequency
[38]. This behavior is to be expected for conventional, low-leakage
CMOS processes. The instruction-level power model for the MB86934
does not separate the power consumed in the processor core from the
power consumed in the I/O circuits. Therefore, we used the 20-MHz
core and 10-MHz I/O MB86934 datasheet to determine the relative
power contributions of the processor core and I/O circuits. We then,
under the assumption of a linear relationship between clock frequency

and power consumption, determined the contribution of processor core
and I/O power consumption for the 80-MHz core and 26.7-MHz I/O
MB86832.

C. System Details

In this section, we describe the operation of two key components of
our target system architecture: the processor and the operating system.
We first present an overview of the processor, and then briefly describe
the�C/OS-II RTOS.

Our system is built around a Fujitsu SPARClite MB86832, a 32-bit
RISC processor, operating at 80 MHz, with an external bus speed of
26.7 MHz. It implements a superset of the SPARC v8 instruction set
architecture. Its integer unit has a five-stage pipeline that can handle
data interlocks and a branch handler to perform control-flow transfers
efficiently. The bus interface unit is capable of providing single-cycle
access to the on-chip cache. The processor has 136 registers, orga-
nized into eight overlapping register windows, and 8-KB instruction
and data caches. Multiply and divide operations are supported by ded-
icated, on-chip hardware that can complete 32-bit multiplications in
five cycles. The processor also has a power-down mode that can be
employed to reduce energy consumption.

We have taken care to simulate the context-dependent
IBM0118160PT3–60 memory and MB86832 bus interface unit
timing in sufficient detail to ensure that memory accesses require the
number of cycles implied by the timing diagrams in the specifications.
In addition, we simulate stalls resulting from periodic distributed
DRAM refreshes.
�C/OS-II is Jean Labrosse’s portable real-time kernel for micro-

processors and micro-controllers. We use the version Brad Denniston
ported to the MB86832 processor.�C/OS-II has been used in many
commercial applications, and its performance is comparable to that of
other commercial RTOSs.�C/OS-II supports multitasking, and can
handle up to 63 concurrent processes. The kernel is fully preemptive.
The RTOS is designed to be scalable, i.e., designers who do not re-
quire some of its features may save memory by easily building a light-
weight version of�C/OS-II. The RTOS provides a number of ser-
vices such as scheduling, task management, interprocess communica-
tion, memory management, interrupt handling, and timer-related ser-
vices. We chose�C/OS-II for our experiments because it is modular,
well-designed, and well-documented; its source code is readily avail-
able. Further information on�C/OS-II can be found on the Internet at
http://www.uCOS-II.com, or in Labrosse’s book [3].

D. Extending Our Approach to Other Embedded Systems

Our approach for analyzing RTOS and application software power
consumption can be extended to other processors and operating sys-
tems. However, there are system-dependent components in this ap-
proach.

It is necessary to have ISSs for the processors used in the target em-
bedded system. There must be a method for tracing the status of the
simulated processor cycle by cycle, in order to record energy consump-
tion, detect context switches, and simulate interaction with other hard-
ware in the embedded system. Although it is conceivable for an ISS to
provide a runtime interface meeting these requirements, it is our belief
that, in practice, the ISS source code will be required. ISSs are avail-
able for a number of popular architectures. Vendors sometimes provide
simulators for more exotic processors. A designer who wants to use our
power analysis method on complex processors for which ISSs are not
available will face a substantial burden. Fortunately, getting access to
simulation modules for system-specific ASICs is likely to be straight-
forward, as the in-house simulators used to design and debug the ASICs
are likely to be available.

624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

Fig. 9. Energy consumption profiles.

Unless power consumption was a primary consideration in RTOS
design, minor changes to an RTOS can significantly improve its power
consumption characteristics. A feature of�C/OS-II provides support
for this observation. When no user-defined processes are running,
an idle task executes. Normally, this task repeatedly increments a
variable. By comparing the actual number of increments in a given
time-span with the maximum number of increments possible in that
time-span,�C/OS-II keeps track of the percentage of time spent idle.
This behavior is beneficial, as long as one is not trying to minimize
power consumption. There are sophisticated approaches one could use
to dramatically reduce idle-power consumption. However, even the
straightforward expedient of preventing the variable from being incre-
mented eliminates numerous writes to the processor’s write-through
cache, thereby reducing memory power consumption. The ability to
make changes to the source code of an RTOS increases the designer’s
flexibility in optimizing embedded system power consumption.
However, even if the source code is not available, our approach allows
a designer to modify an application’s use of RTOS services in order
to reduce power consumption. Note that, even if an RTOS’s source
code is not available, as long as its method of switching contexts can
be determined, the approach presented in this paper can be used.

Finally, it is necessary to have power models for the embedded
system devices that consume a significant amount of power. It is our
hope that, in the future, hardware vendors will see the competitive
advantage of providing customers with detailed power information
about their products. Until this practice becomes common, designers
who want to apply our approach will be forced to rely on power models
and analysis techniques found in the literature [8], [9], [12], [13],
internally developed power models, or the limited power information
found in conventional data-books. Note that, for some processors,
this power information is sufficient to allow a reasonable estimate of
power consumption.

V. RESULTS AND CASE STUDIES

We analyzed the energy consumption of�C/OS-II RTOS when run-
ning several embedded applications. In all cases, we targeted the Fu-

jitsu SPARClite processor-based embedded system presented in Sec-
tion IV-B. Some examples are portions of real embedded system ap-
plication software, some were designed to illustrate design alternatives,
and others were included with the RTOS distribution as illustrative ex-
ample. Overall, care was taken to ensure that key RTOS functions and
services were used by the chosen applications.

For each example, we categorized energy consumption by RTOS,
board support package, and application service type, as explained in
the following list.

• Application : Non-RTOS functions;
• Floating-point: Integer operations to simulate floating point

mathematics;
• Initialization : Embedded system initialization functions. This is

typically executed only once during an application’s run;
• Input/output : Input and output formatting and communication

with the system’s UART channels;
• Interrupt : Interrupt service routines;
• Mailbox : Code to handle task communication with mailboxes;
• Memory: Memory initialization, allocation, and copying func-

tions;
• Misc.: Functions not in other categories;
• Scheduling: Task scheduling;
• Semaphore: Semaphore-based task synchronization code;
• Sleep: Sleep mode;
• Synchronization: Nonsemaphore-based task synchronization

code;
• Task control: Task management, e.g., task creation.

Fig. 9 shows the energy consumed by different RTOS, board sup-
port, and application services. Each vertical bar represents a distinct
example. Vertical bars are divided to indicate functions. For instance,
in the mailbox example, I/O primitives used by the RTOS account for
a larger portion of the energy consumption than any other function cat-
egory. Fig. 10 presents a similarly formatted characterization of time
consumption by RTOS service and function category.

The ABS, Agent, and Ethernet examples are described in Section III.
The ratio of processor energy consumption to DRAM energy consump-
tion varied from 2.71 (the energy-optimized version of the Ethernet

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 625

Fig. 10. Time consumption profiles.

interface example) to 2.94 (the energy-optimized version of the ABS
example). The results in this section, and in Section III, indicate that
an embedded system’s RTOS and board support routines may be di-
rectly responsible for a significant portion of the embedded system’s
energy consumption. The percentage of system energy directly con-
sumed by the RTOS and board support routines may vary dramatically
from approximately 1% (the energy-optimized version of the Ethernet
interface example) to 99% (the mailbox example), depending on how
heavily the software relies on RTOS services. Even when the RTOS
does not directly consume a significant percentage of the system’s en-
ergy, one can significantly reduce overall energy consumption by more
wisely using RTOS services, as demonstrated by the different versions
of the ABS example.

The mailbox example illustrates the use of mailboxes for inter-
process communication. It consists of three application tasks that
communicate via the shared memory mailbox communication service
provided by�C/OS-II. The tasks also perform writes to the UART.
Fig. 9 shows that, in this example, the main sources of energy
consumption are input/output primitives, interrupt service routines,
task scheduling, as well as RTOS and processor initialization code.
Mailbox management services also consume a small but significant
fraction of the system’s energy. Formatting and transmitting data to
the UART can be energy-intensive, and should be sparingly used
in an energy-constrained implementation. The application code
relies heavily on RTOS and board support routines. As a result, the
application code only consumes 1.0% of the total system energy, with
RTOS and board support services consuming the other 99.0%.

In the semaphore example, concurrent tasks are synchronized
through the use of RTOS services. RTOS primitives that post and
release semaphores account for a small but significant portion of the
system’s energy consumption. The application code consumed 1.2%
of the total system energy, with RTOS and processor support services
consuming the other 98.8%.

From the results presented above, one can observe that the em-
bedded system consumed significantly less power during sleep mode
(14.2–18.0 mW depending on example) than when running in other
modes. As described in Section IV, a call-tree node holds the total

time and energy of all function calls located at a given position in
the call-tree. The average power consumption of call-tree nodes,
i.e., context-dependent function execution, varied from 769 mW
(OSEnableInt) to 1,047 mW (uart_delay). However, the differences
among the power consumption of RTOS service classes were smaller.
Average RTOS service class power consumption varied from 842 (for
interrupt service routines) to 976 mW (for floating-point routines).
While there was a strong correlation between execution time and
energy consumption for the examples in which sleep mode was
not used, it would be unwise to generalize this observation to all
embedded systems. In embedded systems containing peripheral
processors that consume a substantial amount of energy, and whose
control is relegated to a subset of the RTOS service classes, there
would be substantial differences between the power consumptions of
different RTOS service and function categories.

Table II shows the minimum and maximum energy per invocation
for each RTOS service, board support package routine, and standard
library routine used in our examples. These routines might consume
less energy than the minimum in the table, or more energy than the
maximum in the table, if they are used in a manner not encountered in
any of our examples. However, for applications similar to our examples,
these values provide a reasonable range for the energy costs of RTOS
services and other support routines.

VI. CONCLUSION AND RECOMMENDATIONS

In this paper, we have described the design and implementation of an
RTOS power analysis infrastructure. Examples were presented to illus-
trate the use of this infrastructure. By analyzing a commercial RTOS,
�C/OS-II, running several applications, we have demonstrated that the
manner in which the RTOS is used has a significant impact on an em-
bedded system’s power consumption. Insights derived from such RTOS
power analysis may be used to optimize embedded software power
consumption and drive research on high-level power modeling of dif-
ferent RTOS components. Furthermore, this work enables power-ef-
ficient RTOS and application design, and may be incorporated into
power-aware system-level design tools.

626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

TABLE II
RTOS SERVICE ENERGY PERINVOCATION

Based upon our observations, we have found a few general guide-
lines that designers should follow in order to use an RTOS in a power-
efficient way. However, before presenting these guidelines, we must
first make a few caveats. The most power-efficient implementation of
embedded system software is processor-dependent and RTOS-depen-
dent. We strongly suggest implementing or simulating a prototype be-
fore expending heroic efforts on low-level power optimization. One
should start trading off code flexibility and maintainability for power
efficiency only after it is clear, e.g., via the type of energy profiling
described in this paper, which portion of the RTOS, board support
package, or application code is unnecessarily consuming power. The
guidelines we present, here, are no substitute for using a detailed power
analysis infrastructure, of the sort presented in this paper, during the de-
sign of an embedded system.

A number of energy reduction options are available to an embedded
system designer with access to an RTOS, as follows.

• Rewrite high energy consumption portions of an application to
avoid unnecessary use of the RTOS scheduler.

• When synchronization between tasks is implicitly carried out, do
not use RTOS services to do (redundant) synchronization. This
may be easier said than done because redundant synchronization
can make code more robust.

• Take advantage of RTOS primitives, e.g., process support,
to allow easy implementation of multiprocess schemes that
amortize the costs of high-overhead operations.

• If power analysis indicates that memory management consumes
a substantial proportion of embedded system power, consider

custom, e.g., uniform block, memory management for commonly
allocated and deallocated data types.

• Concentrate on special modes available in the processor. Most
designers already pay some attention to code execution time
and, in the absence of special processor modes, there is a strong
correlation between execution time and energy for general-pur-
pose processors. However, using special processor modes, e.g.,
sleep mode, can dramatically reduce power consumption. One
can leverage an RTOS to easily retrofit an existing application
for power reduction, e.g., one may use a low-priority task that
puts a processor into sleep mode.

We emphasize that the above recommendations are not exhaustive;
they will not be beneficial for every embedded system. Our strongest
suggestion is to examine an embedded system’s RTOS/application en-
ergy profile before attempting to power-optimize code.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. French, from NEC C&C Re-
search Labs, for helpful discussions on real-time operating systems and
his assistance with the Ethernet interface example.

REFERENCES

[1] S. Heath, Embedded Systems Design. Boston, MA: Butter-
worth–Heinemann, 1997.

[2] J. J. Labrosse,Embedded Systems Building Blocks. Lawrence, KS: R
& D Books, 1997.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 627

[3] , MicroC/OS-II. Lawrence, KS: R & D Books, 1998.
[4] P. A. Laplante,Real-Time Systems Design and Analysis: An Engineers

Handbook. Piscataway, NJ: IEEE Press, 1993.
[5] R. Sharma, “Distributed application development with inferno,” inProc.

Design Automation Conf., June 1999, pp. 146–150.
[6] D. Stepner, N. Rajan, and D. Hui, “Embedded application design using

a real-time OS,” inProc. Design Automation Conf., June 1999, pp.
151–156.

[7] W. Warner, “Non-pre-emptive multithreading performs embedded soft-
ware’s juggling act,”Electron. Design News, vol. 44, pp. 117–126, July
8, 1999.

[8] L. Benini and G. De Micheli,Dynamic Power Management: Design
Techniques and CAD Tools. Norwell, MA: Kluwer, 1997.

[9] A. R. Chandrakasan and R. W. Brodersen,Low Power Digital CMOS
Design. Norwell, MA: Kluwer, 1995.

[10] G. Yeap,Practical Low Power Digital VLSI Design. Norwell, MA:
Kluwer, 1998.

[11] J. Monteiro and S. Devadas,Computer-Aided Design Techniques for
Low Power Sequential Logic Circuits. Norwell, MA: Kluwer, 1996.

[12] J. Rabaey and M. P., Eds.,Low Power Design Methodologies. Norwell,
MA: Kluwer, 1996.

[13] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: A first step toward software power minimization,”IEEE Trans.
VLSI Syst., vol. 2, pp. 437–445, Dec. 1994.

[14] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of archi-
tecture-level power estimation for CMOS RISC processors,” inProc.
Symp. Low Power Electron., Oct. 1995, pp. 44–45.

[15] C. T. Hsieh, M. Pedram, G. Mehta, and F. Rastgar, “Profile-driven pro-
gram synthesis for evaluation of system power dissipation,” inProc. De-
sign Automation Conf., June 1997, pp. 576–581.

[16] L. Benini and G. De Micheli, “System-level power optimization: Tech-
niques and tools,” inProc. Int. Symp. Low Power Electron. Design, Aug.
1999, pp. 288–293.

[17] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-soft-
ware co-synthesis of embedded systems,” inProc. Design Automation
Conf., June 1997, pp. 703–708.

[18] Y. Li and J. Henkel, “A framework for estimating and minimizing energy
dissipation of embedded HW/SW systems,” inProc. Design Automation
Conf., June 1998, pp. 188–193.

[19] T. Simunic, L. Benini, and G. De Micheli, “Cycle-accurate simulation of
energy consumption in embedded systems,” inProc. Design Automation
Conf., June 1999, pp. 867–872.

[20] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-
Vincentelli, “Efficient power estimation techniques for HW/SW sys-
tems,” inProc. Alessandro Volta Memorial Wkshp. on Low Power De-
sign, Mar. 1999, pp. 191–199.

[21] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M.
Kandemir, T. Li, and L. K. John, “Using complete machine simulation
for software power estimation: The softwatt approach,” inProc.
Int. Symp. High-Performance Comput. Architecture, Feb. 2002, pp.
141–150.

[22] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low en-
ergy: An overview,” inProc. Symp. Low Power Electronics, Oct. 1994,
pp. 38–39.

[23] T. Simunic, G. De Micheli, and L. Benini, “Energy-efficient design of
battery-powered embedded systems,” inProc. Int. Symp. Low Power
Electron. Design, Aug. 1999, pp. 212–217.

[24] J. L. da Silva, F. Catthoor, D. Verkest, and H. De Man, “Power explo-
ration for dynamic data types through virtual memory management re-
finement,” inProc. Int. Symp. Low Power Electron. Design, Aug. 1998,
pp. 311–316.

[25] Q. Qiu, Q. Wu, and M. Pedram, “Stochastic modeling of a power-man-
aged system: Construction and optimization,” inProc. Int. Symp. Low
Power Electron. Design, Aug. 1999, pp. 194–199.

[26] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring
system activity for OS-directed dynamic power management,” inProc.
Int. Symp. Low Power Electron. Design, Aug. 1998, pp. 185–190.

[27] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power
optimization of variable voltage core-based systems,” inProc. Design
Automation Conf., June 1998, pp. 176–181.

[28] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” inProc. Int. Symp. Low Power Elec-
tron. Design, Aug. 1998, pp. 197–202.

[29] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” inProc. Int. Symp. Low Power
Electron. Design, Aug. 1998, pp. 76–81.

[30] N. K. Jha, “Low power system scheduling and synthesis,” inProc. Int.
Conf. Computer-Aided Design, Nov. 2001, pp. 259–263.

[31] Proc. Workshop Compilers Oper. Syst. Low Power, L. Benini, M. Kemir,
and J. Ramanujam, Eds., Sept. 2002.

[32] A. Vahdat, A. R. Lebeck, and C. S. Ellis, “Every Joule is precious: A case
for revisiting operating system design for energy efficiency,” inProc.
ACM SIGOPS Eur. Workshop, Sept. 2000, pp. 31–36.

[33] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha, “Power
analysis of embedded operating systems,” inProc. Design Automation
Conf., June 2000, pp. 312–315.

[34] T. K. Tan, A. Raghunathan, and N. K. Jha, “EMSIM: An energy simula-
tion framework for an embedded operating system,” inProc. Int. Symp.
Circuits Syst., May 2002, pp. 464–467.

[35] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T.
Zhang, and B. Jacob, “The performance and energy consumption of
three embedded real-time operating systems,” inProc. Int. Conf. Com-
pilers Architecture Synthesis Embedded Syst., Nov. 2001, pp. 203–210.

[36] N2C Training Manual, CoWare, San Jose, CA, 1999.
[37] MB8683x User’s Guide, Fujitsu Microelectronics, Inc., Tokyo, Japan.
[38] SPARClite Series 32-Bit RISC Embedded Processor MB86832 Data-

book, Fujitsu Microelectronics, Inc., Tokyo, Japan, 1998.
[39] 1995 DRAM Databook, IBM, White Plains, NY, 1994.

Accurate Crosstalk Noise Modeling for Early
Signal Integrity Analysis

Li Ding, David Blaauw, and Pinaki Mazumder

Abstract—In this paper, we propose an accurate and fast method to
estimate the crosstalk noise in the presence of multiple aggressor nets for
use in physical design automation tools. Since noise estimation is often part
of the inner loop of optimization algorithms, very efficient closed-form
solutions are needed. Previous approaches model aggressor nets one at a
time, assuming that the coupling capacitance to all quiet aggressor nets
are grounded. They also model the load from interconnect branches as a
lumped capacitor, the value of which is the sum of interconnect and load
capacitances of the branch. Finally, previous works typically use simple
lumped 2–4-node circuit templates and employ a so-called dominant pole
approximation to solve the template circuit. While these approximations
allow for very fast analysis, they may result in significant underestimation
of the noise. In this paper, we propose a new and more comprehensive
fast noise estimation method. We propose a novel reduction technique
for modeling quiet aggressor nets based on the concept of coupling point
admittance. We also propose a reduction method to replace tree branches
with effective capacitors which models the effect of resistive shielding.
Furthermore, we model the simplified single aggressor net crosstalk
noise problem using a 6-node template circuit and propose a new double
pole approach to solve the template circuit. We have tested the proposed
method on noise-prone interconnects from an industrial high-performance
processor. Our results show a worst case error of 7.8% and an average
error of 2.7%, while allowing for very fast analysis.

Index Terms—Crosstalk noise, digital CMOS circuits, interconnect, noise
estimation, signal integrity.

Manuscript received August 15, 2002; revised November 18, 2002. This work
was supported in part by the Office of Naval Research, by the National Science
Foundation, and in part by the Semiconductor Research Corporation under Con-
tract 2001-HJ-959. This paper was recommended by Associate Editor S. S. Sap-
atnekar.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
lding@eecs.umich.edu; blaauw@eecs.umich.edu; mazum@eecs.umich.edu).

Digital Object Identifier 10.1109/TCAD.2003.810741

0278-0070/03$17.00 © 2003 IEEE

