MULTIOBJECTIVE SYNTHESIS OF
LOW-POWER REAL-TIME
DISTRIBUTED EMBEDDED
SYSTEMS

Robert P. Dick

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

November 2002

(© Copyright 2005 by Robert P. Dick.

All rights reserved.

Abstract

This dissertation presents methods for automating thenegig of embedded sys-
tems, i.e., special-purpose computers. In addition, itidless a method for analyzing
the manner in which real-time operating system use influeaogedded system power
consumption.

After introducing the embedded system synthesis problesrsammarizing previ-
ous work in the field, we present four evolutionary algorightimat simultaneously opti-
mize the different costs of embedded systems, e.g., pravegipconsumption, response
time, and area, while ensuring that hard real-time congga@re met. These algorithms
generate multiple solutions that present tradeoffs betvagfgerent architectural costs.
Each algorithm targets a different embedded system dormfirst algorithm synthe-
sizes distributed embedded systems. The second synthegstems-on-chip composed
of intellectual property cores that may come from differegnidors. It does clock selec-
tion, floorplanning block placement, and bus topology geti@n. The third synthesizes
distributed client-server systems in which the bandwidtkl@nt-server communica-
tion is tightly constrained, e.g., wireless embedded systelt incorporates a novel
scheduling method tailored to embedded systems with nheltients for each server.
The fourth synthesizes embedded systems that may containfrgurable processors.
In addition, we present a method of analyzing the effect®al-time operating system

usage on the overall performance and power consumption béeded systems.

Acknowledgments

First, | would like to thank my advisor, Niraj Jha. We closelyilaborated on all
the work presented in the body of this dissertation. He hiathaltraits of an excel-
lent research advisor; he is intelligent, diligent, metball careful, imaginative, and
even-tempered. | appreciate the corrections and suggsesiftered by my dissertation
readers: Niraj Jha, Sharad Malik, and Anand Raghunathaaddition, Keith Vallerio
helped me with numerous administrative and research prabbehile | was writing this
dissertation.

| would like to thank Zhen Luo for modifying his design ruleettking software [1]
in order to collect metal density information from a numbéflayouts. This informa-
tion was used to build the system-on-chip synthesis bendtentgescribed in Sections
6.8 and 7.10.2. It also reinforced my view that one can rejldbal routing layer metal
density to floorplanner quality. | appreciate Zhigang P&e'p in answering the ques-
tions | asked while implementing his, and Jason Cong’sngidelay model [2] for use
in the work described in Section 7.7. | thank David Dobkin Ifitcs suggestions during
design of the bus topology generation algorithm describe8dction 7.8. He helped
me to look at the problem from an unconventional perspeckJeng Lin’s suggestions
helped in developing the clock frequency selection alpari{Section 7.10.1).

In addition to Niraj Jha, Anand Raghunathan and Ganesh lnakestrayana collab-
orated on the real-time operating system power consumptiaiysis work described
in Chapter 10. Much of this work was done during my term as apleyee of NEC
Computer and Communications Research Laboratories. ldiNike to thank Dr. Leslie
French, from NEC C&C Research Labs, for helpful discussammseal-time operating

systems and his assistance with the Ethernet interface@&ambavid Rhodes, Wayne

Wolf, and | collaborated on the parametric task graph andureg database project
described in Appendix A.

| would like to thank André Tits for correcting a multiobjae optimization termi-
nology error in Section 4.5 and Forrest Brewer for encourggie to describe a method
of supporting streaming data communication within the setkmodel in Section 3.5.

Niraj Jha, Sun-Yuan Kung, Margaret Martonosi, Sharad Maldry Peterson, and
Andrew Yao gave competent instruction and advice about nomseengineering prob-
lems. | was glad to have the opportunity to discuss reseattthdiong Luo, Li Shang,
Tat Kee Tan, Shaojie Wang, Keith Vallerio, Yuan Xie, and Linaig. Sarah Griffin,
Sheila Gunning, and Karen Williams helped me deal with thearsity’s bureaucracy.
In addition, Sheila and Karen advised me as if | were a youbhgeher.

Financial support for my work at Princeton University was\pded by an NSF
Graduate Fellowship, NSF Grant Number MIP-9423574, a grant NEC C&C Re-
search Labs, Princeton University’s George Van Ness LptRallowship in Engineer-

ing, Army CECOM, and DARPA under contract number DAABO7-0a-516.

Vi

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Embedded system design automation.

1.2 Multiobjective embedded systemdesign

1.3 Powerconsumption

1.4 Dissertation overview

2 Pastwork
2.1 Hardware-software co-designresearch

2.2 Hardware-software co-synthesis

3 Definitions

3.1 Hardware-software co-synthesis decisions

3.2 Problemtaxonomy

3.3 Constraint specifications: Multi-rate task sets
3.4 Multi-rate task sets for real-time systems
3.5 Modification of the task set model for

pre-computation and streaming

Vii

3.6
3.7

Processingelements(PEs)

cCommunication resourceso

Optimization algorithms

4.1
4.2
4.3
4.4
4.5

Solving NP-hard problems
Simulatedannealing
Geneticalgorithms oL
Parallel recombinative simulated annealing (PRSA)

Multiobjective optimization

Synthesis of Low-Power Heterogeneous Distributed Systems

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9

5.10 Conclusions

Requirements for the optimization algorithm

Specialized hardware resources
Solutionrepresentation
Optimization algorithm
Clusters e
Initialization and genetic operators
Solutionevaluation
571 Scheduling
5.7.2 Taskgraphcopies
5.7.3 Costcalculation
5.7.4 Constraintviolation.
Ranking and reproduction.
Experimentalresults
5.9.1 Price optimization

5.9.2 Multi-objective power and price optimization

6 Enhanced Low-Power Heterogeneous Distributed Systems stesis
6.1 Communicationand memory model
6.2 Optimization infrastructure
6.3 Multidimensional locality preserving crossover
6.4 Guided task assignmentmutation

6.5 Initialization

6.6 Costcalculation

6.7 Solutioncache

6.8 Benchmarks

6.9 Experimentalresults
6.9.1 Multiobjective optimization for the E3S benchmarks
6.9.2 Price-only optimization for examples from the therbiture

6.10 Conclusions e

7 Intellectual Property Core-Based System-on-Chip Syntr&s

7.1 Motivation. e

7.2 IPcoremodel

7.3 Algorithmoverview

7.4 Clockselection

7.5 Tieprioritization
7.6 Floorplan block placement
7.7 Wiring delay and power consumptionmodel
7.8 Bustopologygeneration
7.8.1 Motivation
7.8.2 Definitions and assumptions
7.83 Overview
7.8.4 Efficiency

10

7.9 Costcalculation
7.10 Experimentalresults L o oL
7.10.1 Clockselection
7.10.2 Impact of floorplanning block placement and bus togpgen-
eration

7.10.3 Multiobjective optimization for the E3S benchmarks

7.11 Conclusions

Wireless Low-Power Client-Server System Synthesis

8.1 Problemformulation

8.2 Motivatingexample o

8.3 Scheduling and client-server pipelining

8.4 Costcalculation

8.5 Experimentalresults
8.5.1 Multiobjective optimization for the E3S benchmarks

8.6 Conclusions

Synthesis of Dynamically Reconfigurable Embedded Systems

9.1 Motivation e
9.2 FPGAmModel

9.3 Scheduling

9.4 Experimentalresults

9.5 Conclusion

Analysis of Energy Consumption in Embedded Operating Syems

10.1 Introduction

10.2 Related work and contributions

10.3 Motivation for RTOS energy analysis

10.3.1 Anti-lock brakingexample 196
10.3.2 Commodity trading agentexample 8 19
10.3.3 Ethernetinterfaceexample 012
10.4 Energy analysis infrastructure 203
10.4.1 Inputsandoutputs 203
10.4.2 Systemoverview 207
10.4.3 Systemdetails 0 211
10.4.4 Extending our approach to other embedded systems....... 212
10.5 Resultsandcasestudies 214
10.6 Conclusions and recommendations 222
11 Comparisons with Related Work 225
12 Contributions and Conclusions 229
A Task Graphs for Free 233
A.l Introduction L 233
A.2 Tasksetgeneration 235
A.3 Databasegeneration. 124
A4 Conclusions e 243
B Implementation 245
Bibliography 247

Xi

Xii

Chapter 1

Introduction

An embedded system is a computer within a host device, wheehdbt device, it-
self, is not generally considered to be a computer. For el@nipe computers within
automobiles, medical devices, and range finders are embeydeems. In most appli-
cations, well-designed, correctly functioning embeddestesns are almost invisible to
their users. Although consumers might be pleased that thesr automatically adjust
their engine timing to achieve the best non-pinging pertoroe possible with the cur-
rently available gasoline, they are unlikely to considerférct that an embedded system
makes this possible. It is also unlikely that most realizéedued systems are responsi-
ble for 30% of the price of the average car [3] and that miavopssors, alone, account
for 10% of the price [4].

We are surrounded by embedded systems. When | wake up in thengpothe
first thing | hear is the speaker of my digital alarm clock,hated by an embedded
system. | get out of bed and put my breakfast in the micronall@ying its water vapor
sensing embedded system to perfectly cook my cereal. | gajpanents and sister on
my cell phone, a wireless client-server embedded systera.c@h is routed through a
telecommunications infrastructure composed of numer@isperformance embedded
systems. | get into my car, filled with embedded systems (iBearaverage car [5]), and

drive to my office, in which | am surrounded by embedded syst@nithe copier, in my

1

17.5, 5.

15,
4]
Il
12.5) _-
(M 16-bit [16-bit
B s-bit
Bilionsof | E@ 4-bit Billions of
U.S. dollars parts
7.5.
2]
5,
3=
2.5, =
0.
Year Year

Figure 1.1: Estimated global microcoriigure 1.2: Estimated global microcon-
troller sales in billions of U.S. dollars [4]troller sales in billions of parts [4].

calculator, in the printer, and in the vending machine). d tieese embedded systems
because they make my life better: they make it easier to camuate with those | love,
they help me to schedule my time, they improve the speed daty sd travel, they help
me to manage information, and they assist me with hundredthef tasks. Embedded
systems make it possible for me to carry out these tasksqigrigithout investing the
time and energy necessary to become a specialist in hunafedferent skills.

Many consumers value embedded systems. It naturally felkat the size of the
embedded systems market is large. Microcontrollers areggsmrs typically used in
embedded systems. They may differ from general-purpossepsors by having more

input/output support integrated on-chip or by having seratbches. They may be less

Chapter 1: Introduction 3

expensive, have lower power consumption, or be designedpfecialized tasks. Al-
though embedded systems are composed of many other eleatmmponents in ad-
dition to microcontrollers, information about the microtmller market gives some
insight into the embedded systems market. Figures 1.1 @givie dollar and part vol-
umes for sales of 4-bit, 8-bit, and 16-bit microcontrolléFaese figures indicate that the
size of the microcontroller market is substantial (appmadely $16 billion in the year
2000) and growing rapidly. Note that microcontrollers oabcount for a portion of the
costs of embedded systems; the embedded system markesiarsiddly larger than the
microcontroller market.

In 1998, approximately 250 million 32-bit and 64-bit embeddnicroprocessors
were sold [5], [6]. Even though this number is much highenttieat for personal com-
puters, workstations, and supercomputers (100 millio)) [Bls dwarfed by the number
of 4-bit, 8-bit, and 16-bit microcontrollers sold that yéapproximately four billion as

shown in Figure 1.2).

1.1 Embedded system design automation

Embedded system designers have difficult jobs. Customenes $taingent expec-
tations for embedded systems, some of which are listed ior€id.3. The first two
characteristics in Figure 1.3 imply that embedded systesigders need to carefully
test their designs to confirm that the designs contain nosamd that every hard dead-
line is met. Any error has the potential to reduce the prafitglof a product. The
rigorous design required to meet customer expectationsies¢onsuming and expen-
sive. A designer might be able to decrease the probabilday ah embedded system
will miss real-time deadlines by using faster and more egperprocessors. However,

this conflicts with the third and fourth characteristicsople want inexpensive and cool

1. Software or hardware errors are not acceptable. Althouayhy people toler-
ate it when a general-purpose operating system crashesdaittiof behavior
is not acceptable for an anti-lock brake system. Many embedystems
have tasks with hard real-time deadlines. Missing a hardlaesis an error.

2. Embedded systems should not require bug fixes or upgraaeecting cus-
tomers to change the software or hardware in their cars sasonable. Em-
bedded systems are generally more difficult to upgrade tearrgl-purpose
applications. If a designer discovers a software error irembedded sys-
tem after it has been shipped, correcting that error in the igelikely to be
more difficult than upgrading the software of a general-pagapplication.
Correcting hardware errors is even more difficult.

3. An embedded system should be sold at a lower price thanetimygproducts,
i.e., price competition can be intense. Numerous compstégist in many
embedded systems market segments, e.g., mobile commianickavices,
home appliances, automobiles, and consumer electronics.

4. Power consumption should be low. High power consumptigneases the
price, weight, and volume of the cooling systems and eneogyces used
by an embedded system. This is particularly important fotgie battery-
powered embedded systems.

Figure 1.3: Customer expectations for embedded systems.

products with long battery lifespans. Each favorable laite of an embedded system
design conflicts with other favorable attributes, makingeitessary to consider tradeoffs
between them.

The incompatible expectations listed above conspire toenaakembedded system
designer’s job difficult and unpredictable. A CMP Media LL@gey of 1,100 embed-
ded system developers in 2001 indicated that the majoritiyesf projects were running
late, with a four-month lag the norm. The majority also fdite achieve even half of

their expected performance [7]. We advance the followingecture:

Chapter 1: Introduction 5

The unpredictability of the embedded system design prasedse to the

predominance of manual, ad-hoc embedded system design.

According to Napper, “Embedded system design is largelystmae as it was 20
years ago, when 8-bit microcontrollers were the state oattig8]. Consumer expec-
tations have increased the demands on embedded systemevétpdesign automation
software has not kept pace with the resulting increase ireeladd system complexity.

Automation has the potential to help designers keep padeindteasing problem
complexity. Its value has been demonstrated in a numbemadritevel disciplines. As
shown in Table 1.1, design automation has followed the hestbtrend from automation
of low-level stages of the design process toward automationcreasingly high-level
stages of the design process. High-level stages of the rdesaress generally have
more ambiguous problem definitions than low-level stageshé&dded system synthesis
and hardware-software co-synthesis are still open prahlehs they become increas-
ingly well-defined and solved, embedded system designéfineilly have a practical

alternative to ad-hoc design.

1.2 Multiobjective embedded system design

As noted in the previous section, embedded systems haveraumattributes de-
signers attempt to optimize, e.g., power consumptiongpaad speed. It is frequently
possible to improve one attribute only at the cost of anothikis implies that, in order
to understand the interplay between different embeddet@sysosts, a designer needs
to consider different alternative architectures.

The process of exploring the embedded system design spegeiialent to design-
ing and analyzing numerous different embedded systemsagtbis manually would

be time-consuming and expensive. Co-synthesis algoritusmatically synthesize

embedded system architectures. However, the vast magiréyisting co-synthesis al-
gorithms are capable of optimizing only one system costepriThe few co-synthesis
algorithms that attempt to minimize other costs either dmsm informal way, replace
all but one cost with constraints, or combine multiple caste a single cost with a
weighting sum. Each of these approaches has significardvdiagages, as discussed
in Section 4.5. In our research, we have taken care to avesktdisadvantages by

developing a truly multiobjective approach to embeddedesysynthesis.

1.3 Power consumption

Although embedded system power consumption is only oneacoshg many, it has
become increasingly important in recent years. In the pasbedded system power
consumption was frequently ignored, or modeled in extrgnmehrse and inaccurate
ways. However, proliferation of portable embedded systdumsg the past few years
has focused attention on the reduction of power consumpilamerous embedded sys-
tems (e.g., cellular phones, personal digital assistalusks, and games) are portable.
It is important that they be light and compact. High powerstonption implies high
heat dissipation. Embedded systems with high heat dissipegquire bulky cooling
devices, e.g., heat sinks or fans. In addition, a portableegitied system with high
power consumption requires bulkier batteries in order teetthe same run time as a
lower-power embedded system. Although portability is nédcior for stationary em-
bedded systems, high power consumption is still a disadgantlt increases the price

of running and cooling the embedded system.

Chapter 1: Introduction 7

Table 1.1: Design tools development [9]

1950-1965 Manual design
1965-1975 Layout Editors
Automatic routers (for PCB)
Efficient partitioning algorithm
1975-1985 Automatic placement tools
Well-defined phases of circuit design
Significant theoretical development in all phases
1985-1990 Performance-driven placement and routing tools
Parallel algorithms for physical design
Significant development in underlying graph theory
Combinatorial optimization problems for layout
1990-present Over-the-cell routing tools
Three-dimensional interconnect based physical degign
Synthesis tools mature and gain widespread acceptance

Power reduction opportunities Power analysis iteration times

System level

10-20X A A

seconds - minutes § &
Behavior level 2N E
C)
= c
= ks
. o ©
Register-transfer level 2-5X o o
= =
o . c
Q minutes - hours k=
Logic level <4 0
= 3

©
g 2
. o 0
Transistor level 20 - 50% = 8
hours - days o
o)
o

Layout level

Figure 1.4: Benefits of high-level power analysis and optation. Used with permis-
sion [10].

Power optimization has followed the same general trend sigid@utomation (see
Table 1.1 and Figure 1.4). Initially, power consumption wpimized only at the tran-
sistor and gate levels. As time progressed, researchees lmemsidering power con-
sumption at the register-transfer and behavioral levelewAresearchers have recently
started optimizing power consumption at the system levéhohgh formulating con-
crete problem definitions at this level of the design proeessore difficult than at the
lower levels, the potential for power consumption reduttggreater [10]. In our work,
we have taken care to consider the impact of system-levémieecisions on power

consumption.

1.4 Dissertation overview

In Chapter 2, we survey the work of other embedded systenhegist research
groups. In Chapter 3, we provide definitions that are usehdmdiscussing hardware-
software co-synthesis and embedded system synthesisalipenthe basic hardware-
software co-synthesis problem, and describe the evolatyooptimization framework
we use to solve this problem. Chapter 4 describes and ckssesjtimization algorithms
that may be used for hardware-software co-synthesis andduiell system synthesis.

In Chapters 5-9, we describe our algorithms to synthesizelmwver heterogeneous
distributed systems (5 and 6), embedded systems-on-chigl{@nt-server embedded
systems (8), and distributed embedded systems contaigimgnucally reconfigurable
hardware (9). We present experimental results producetidgdftware implementa-
tions of each of these algorithms. In Chapter 10, we desaniveeal-time operating
system power analysis framework. Chapter 11 contrasts otk with closely related
work of other researchers. We summarize our contributios@esent conclusions

in Chapter 12. Appendix A describes TGFF, a tool that may leel ie automatically

Chapter 1: Introduction 9

generate task sets and resource databases. Appendix Bigtads about the software
implementations of our hardware-software co-synthesieambedded system synthesis

algorithms.

10

Chapter 2

Past work

Hardware-software co-design is the concurrent design efhfrdware and soft-
ware portions of a computer system. Most of the work in thikl ftargets embedded
systems [11]. Hardware-software co-synthesis is the aat@indesign of a hardware-
software computer system. Hardware-software co-syrdlagorithms generally target
embedded systems. A number of authors have surveyed thesognrdand co-synthesis
fields [12]-[18].

Although our work relies on and draws from, or advances,aetein humerous
fields (e.g., asynchronous design, computer graphicsugenhry algorithms, inter-
face synthesis, physical design, real-time operatingesyst reconfigurable computing,
scheduling, simulated annealing, wireless communicatibms most strongly tied to
hardware-software co-design and hardware-software othegis. This chapter pro-
vides a survey of previous work in these fields. Summarieglated research in other
fields are deferred until the relevant sections in the fait@gichapters of this disserta-

tion.

11

12

2.1 Hardware-software co-design research

This section provides a survey of previous work in the fielcdhafdware-software
co-design. Although the software described in this sedioes not automatically syn-
thesize embedded systems, it assists designers in detegntie resources used in an
embedded system, and the ways in which they are used. Althbtepuires a designer
in the loop, some of the following software assists in the aggment of implementa-
tion details that are often ignored or modeled in an abswagtin hardware-software
co-synthesis systems. In other words, many hardware-aodtao-design tools tackle
less ambitious problems than hardware-software co-sgigtheols but solve them in a
way that may sooner be practical for designers to use.

Some researchers have examined the manner in which constean an embed-
ded system are specified. Dasarathy described a way to egprasd validate timing
constraints in embedded systems [19]. Gong et al. develpathorithm that automat-
ically refines constraint specifications after manual parting [20].

Others have focused on performance analysis of hardwdéineese systems. Calvez
and Pasquier developed an event monitor to analyze therpefe of an existing
hardware-software system [21]. It is often useful to eviuhe performance of an
embedded system that has been designed but not yet builsifilaation of hardware-
software systems can be time-consuming. As a result, a nuaibesearchers have
focused on simulator acceleration. Benner et al. devisedy af rapidly simulat-
ing application-specific integrated circuits (ASICs) byngsfield programmable gate
arrays (FPGASs) [22]. Coumeri and Thomas accelerated thealaiion of hardware-
software systems by running hardware and software sinrslato separate proces-
sors [23]. Hines and Borriello designed a hardware-softvearsimulator that changes

its level of detail in order to speed up simulation when aacuiis not essential, while

Chapter 2: Past work 13

maintaining accuracy when necessary [24]. Kuttner desdrédomethod of rapidly pro-
totyping hardware-software systems by synthesizing amdilgsiting processors [25].
Rowson and Sangiovanni-Vincentelli designed an evengdasnulator that sacrifices
superfluous details to improve simulation speed [26]. [dBlomas et al. used separate
Unix processes to simulate hardware and software desanbégtilog [27].

Researchers have worked on automating the communicatiented portions of
embedded system design. Castelluccia et al. developesiasefto automatically com-
pile efficient protocol code from an abstract specificati@B][Freund et al. auto-
mated the assignment, bus scheduling, and protocol ogatiioiz of communication
events [29]. Jirachiefpattana and Lai provided utilitiesserify protocol descriptions
and translate them between different languages [30]. SanithDe Micheli automated
the generation of synchronous interfaces between difféa@aware elements described
with a hardware description language [31].

Some work does not cleanly fit into any of the major co-desajrgories. Adé et al.
developed an algorithm to compute the minimal buffer memequired for deadlock-
free satisfaction of multi-rate data flow graph specificagi¢32]. Coelho et al. auto-
mated the process of determining whether old software wl€fion correctly on a new,
modified, version of hardware [33]. Gogniat et al. develoggdrametric hardware ar-
chitecture template that is sufficiently general for somecsd-case applications [34].
Hadjiyiannis et al. developed software that automatiogdigerates an assembler, given
a high-level description of a machine [35].

Many researchers have built hardware-software co-desigasiructures that assist
a designer in partitioning an embedded system implementaitween hardware and

software. The ASAR project is a collection of tools and laages that assist a designer

14

in a number of tasks, e.g., specifying the behavior of rea¢tsystems, generating sys-
tolic arrays, describing reactive systems, and generaijpglined signal-processing ar-
chitectures [36]. Bolsens et al. developed a co-designttadl allows interactive re-
finement of an embedded system specification [37]. The dewiy be partitioned
among multiple heterogeneous processors. Buck et al. dgéneral signal process-
ing co-design infrastructure [38]. Chiodo et al. automatsel analysis of manually
partitioned embedded system specifications [39]. Chou arddllo described trans-
formations and partitioning of embedded system specifinativritten in a hierarchical
state transition language [40]. Hu et al. described theahclical refinement of an au-
tomotive powertrain architecture [41]. They used increglsi detailed analysis during
refinement, as the number of potential solutions decredseahil et al. developed an
interactive hardware-software partitioning tool thatresents architectures with an ex-
tended finite-state machine model [42]. Kalavade and Lek dwmhanual partitioning,
automatic analysis, system for digital signal processplieations [43]. Passerone et
al. developed a virtual prototyping infrastructure in whitiey represented tasks with
finite-state machines [44]. They used a homogeneous timimdehfor hardware and
software to allow rapid migration of tasks between the two.

A number of companies sell tools to assist in hardware-so#veo-design. Most
of these are co-simulation software packages for use irecdication. Co-simulation
or, more formally, hardware-software co-simulation, is firocess of simulating the
interacting hardware and software portions of an embedgs&dm. Generally, the soft-
ware’s behavior is specified using a programming languadetenhardware’s behavior
is specified using a hardware description language (HDLh®gh it is possible to
use conventional simulators running on general-purposeggsors to do co-simulation,
this approach is sometimes too slow to be used for co-veigitaCo-verification is the

process of confirming that the hardware and software patidran embedded system

Chapter 2: Past work 15

function correctly together. Co-simulation tools can bedufor co-verification only if
they are fast enough to allow a significant portion of an erdbddsystem’s functional-
ity to be exercised in a reasonable amount of time. As a resultmber of companies
accelerate co-simulation by using special-purpose haejveag., field programmable
gate array (FPGA) based hardware emulation engines.

The Virtual Component Codesign (VCC) tools, from CadencsifreSystems, Inc.,
allow the simulation and modeling of hardware componenssiileed in VHDL or Ver-
ilog, and algorithms described in C;+€, or a specialized signal processing description
language. The N2C Design System, from CoWare, Inc., prevaden-simulation envi-
ronment for hardware described in Verilog or VHDL. In adalitj hardware described
in their C and G+ variants can be rapidly simulated through the use of an ¢ablmu
specification. These hardware simulators interface wibeg@ssor simulators from other
vendors. The Seamless hardware-software co-verificatiwitomment, from Mentor
Graphics, integrates a collection of instruction set satars for popular embedded pro-
cessors and logic simulators. Mentor Graphics also sedl$tatform Express system-
on-chip co-simulation environment. Virtual-CPU Pro, fr@&uammit Design, Inc., allows
processor descriptions to be written in C or*Cand rapidly simulated without the use
of a logic simulator. The Eagle tools, from Synopsys, Iriok together hardware sim-
ulators from numerous vendors. However, these productsrsedffrom performance

problems and Synopsys recently discontinued their sale.

2.2 Hardware-software co-synthesis

In this section, we survey past work in the field of hardwaoftvgare co-synthesis.
Work in this field tackles the ambitious problem of automalticsynthesizing embed-

ded systems without guidance from a designer.

16

A substantial amount of research has focused on a versidre @ia-synthesis prob-
lem in which only a few processing elements (PEs) are allofiygzically one general-
purpose processor and one ASIC), or the communication medab simple to repre-
sent many real embedded systems. Ambrosio and Hu developadiaare-software
partitioning algorithm that uses very high-level estinsadéthe probability that an archi-
tecture can be scheduled [45]. Chatha and Vemuri developédrative improvement

algorithm to partition task graphs between a single hardwaprocessor and a general

purpose processor [46]. Eles et al. developed simulatedadimg and tabu search
hardware-software partitioning algorithms [47]. Ernstaktdeveloped an algorithm
that iteratively migrates embedded system functionataytfsoftware to hardware [48].
Gajski et al. developed an algorithm that allows a desigmerdnually or automatically
partition an embedded system specification between diffgrecessors [49]. Gupta
and De Micheli developed an iterative improvement algamitb partition real-time em-
bedded systems between a co-processor and a general-@prnoosssor [50]. Henkel
and Ernst developed a dynamic granularity simulated amgealgorithm for hardware-
software partitioning [51]. Kalavade and Lee designed astractive algorithm that
partitions a system specification between hardware andaidtby traversing a list of
tasks [52]. It dynamically changes the relative weightgafesi and area in the optimiza-
tion criterion. Karakehayov developed an algorithm to endtically partition embed-
ded system specifications among homogeneous distributeggsors [53]. Knudsen
and Madsen used dynamic programming to minimize the exattiine of a single
general-purpose processor, single ASIC embedded systdar an area constraint or
minimize the area under an execution time constraint [54rokSi¢-Seljak and Cool-
ing optimized task assignments with a genetic algorithn).[EBe and Shin solved the
homogeneous task assignment problem, with consideratioanamunication, for ho-

mogeneous arrays or trees [56]. They transformed this @nobd the minimum-cut,

Chapter 2: Past work 17

maximum-flow problem and solved it in polynomial time. LiudaWong developed
an iterative improvement algorithm that integrates hardvsftware partitioning and
scheduling [57]. The algorithm migrates tasks from up to tyemeral-purpose pro-
cessors to an ASIC. Potkonjak and Rabaey formulated the Agj@ithm selection
problem in a fashion similar to the classical task assigrimpeablem [58]. They used a
constructive algorithm to optimize throughput or priceh&at al. developed a genetic
algorithm for hardware-software partitioning [59]. Toedsefficiently solved the het-
erogeneous distributed system assignment problem fouggadime minimization in
the absence of hard real-time deadlines [60]-[62]. Vahal.etxplained the advantages
of functional partitioning over structural partitioninG3]. These authors also described
a way of functionally partitioning a system-level specifica between hardware and
software [64].

Recently, researchers have started to consider the hetexogs distributed embed-
ded system problem without tight limits on resource allmeet. Axelsson compared
the solutions produced by three different types of algarghwhen run on a simpli-
fied version of the hardware-software co-synthesis problertabu search algorithm,
a simulated annealing algorithm, and a genetic algorithfj. [(6ee Chapter 11 for a
critiqgue of this work. Bender solved this problem with mixedeger linear program-
ming (MILP) [66]. He used a linear weighting sum to combine@&xion time, pro-
cessor prices, and communication resource prices. He ethoptimality. However,
his approach must use a sub-optimal heuristic pre-pratgssage to have any chance
of solving complicated (realistic) problems in a reasoaainount of time. Dave et
al. used a constructive algorithm to solve the classicatimatie distributed system co-

synthesis problem. This work was extended to target lowgg@mbedded systems [67],

18

hierarchical embedded systems [68], and embedded systentasraing dynamically re-
configurable processors [69]. Hsiung developed a hardeaiterare co-synthesis al-
gorithm for massively parallel homogeneous software appibns in which a small set
of solutions is enumerated [70]. Solutions that do not Batlse specified constraints
are eliminated. Jeong et al. developed a hardware-softweasynthesis algorithm that
allows the use of incrementally, dynamically reconfigueathrdware [71]. Karkowski
and Corporaal allocated and partitioned an ANSI-C spetificaamong homogeneous
processors on a single chip [72]. Kuchcinski used condtlagic programming to min-
imize the price of an embedded system under time consti@8fsThe computational
complexity of his algorithm may be arbitrarily reduced, aad as one is willing to
tolerate sub-optimal solutions. We believe this is the nfosnhal existing approach
to solving a problem similar to the hardware-software cotsgsis problem that, at
the same time, remains computationally tractable. Lee.eatesleloped an A search
algorithm in order to optimize embedded system resourceations [74]. This algo-
rithm uses earliest deadline first scheduling integrated avload balancing assignment
algorithm borrowed from behavioral synthesis. It does notel inter-task dependen-
cies. Oh and Ha developed an iterative algorithm targetiagpneterogeneous distributed
system co-synthesis problem [75]. See Chapter 11 for a metegled discussion of
this work. Prakash and Parker developed a MILP solver fodik&ibuted hardware-
software co-synthesis problem [76]. SchwiegershauserPasdh developed a MILP
solver for the heterogeneous distributed system syntpesidem [77]. Srinivasan and
Jha developed a heuristic constructive algorithm thatr®gizes fault-tolerant real-time
distributed embedded systems [78]. Teich et al. appliedvafutonary algorithm to
the co-synthesis problem. They repaired bad solutiongaaisbf avoiding their cre-
ation [79]. Their algorithm optimized period and price irthbsence of hard real-time

constraints. See Chapter 11 for a more detailed compariswveln our work and this

Chapter 2: Past work 19

algorithm. Wolf developed a fast greedy iterative improeamfor the classical co-
synthesis problem [80]. His algorithm may be used to modeiraanication. However,

in the presence of non-zero communication times, this @lgaris no longer guaran-
teed to produce the minimal cost solutions that meet desgllinven and Wolf also

developed an iterative improvement algorithm for the handasoftware co-synthesis
problem [81].

A few researchers have focused on improving the way embesidgem constraints
are expressed to hardware-software co-synthesis sysi¢mand Wolf described an
iterative improvement hardware-software co-synthegeréthm that allows the use of
conditionals within task graphs [82]. Kordon and Kaim dep&ld a hierarchical com-
municating state machine model for large distributed syst83]. They generated code
and Petri nets from this model in order to facilitate implenation and verification of
the embedded system.

Some researchers have found ways of preprocessing emb&gdenh specifications
in order to allow the co-synthesis algorithm to arrive atdretesults in less time. Hou
and Wolf described a task clustering method to speed cdisgist and, under some cir-
cumstances, improve solution quality [84]. Knudsen and $¢adised a coarse-grained
control/data flow graph to build a specification suitableifardware-software partition-
ing [85]. They did transformations, selected a task gramtyland conducted commu-
nication analysis on the graph.

Others have worked on specifying and computing timing imfation. Dasdan, et
al. explained a method for determining maximum executioesratarting from a gener-
alized task graph specification [86]. Gupta described aistipated method for speci-
fying timing constraints for embedded systems [87]. Hu aathBandam developed a
co-synthesis algorithm that treats timing behavior as dimalued approximation and

produces multiple solutions that trade off different comgats of the timing behavior,

20

e.g., feasibility probability and price [88]. Rhee et alvd®ped a timing tool that com-
putes conservative execution times of tasks on a reducedatisn set computer, taking
into account pipelining and cache effects [89].

Communication between PESs, or between the hardware andasefportions of an
embedded system, has drawn the attention of a few authormeBand Ernst devel-
oped a simulated annealing co-synthesis algorithm thatsteg on the communication
process timing model and protocol [90]. Chou et al. synttegbihe interface between
the hardware and software portions of an embedded systejn Thky simulated the
embedded system before, during, and after synthesis. RlamdkeWolf developed a co-
synthesis algorithm featuring a detailed communicatiomeh¢hat takes into account
real-time operating system preemption costs [92].

Others have worked on analyzing the performance and casigdémenting tasks on
different processors and ASICs. Li and Malik devised an rélgin to derive the worst-
case performance of software [93]. Rabaey and Guerra tesicai method for making
rough estimates of the complexities of implementing singigtal signal processing
algorithms on ASICs [94]. Xie and Wolf developed a way of amébically estimating
the performance of different ASICs used as PEs in co-syighasd optimizing their

implementations [95].

Chapter 3

Definitions

This chapter provides definitions that will be useful whesaiiing our hardware-
software co-synthesis and embedded system synthesistialgsr In this dissertation,
we use the units conventions of the International SystemnitslYSI) and International
Electrotechnical Commission (IEC), i.da,is the symbol for bitsB is the symbol for
bytes k is the symbol for 18, Ki is the symbol for 2°, andMi is the symbol for 2°.

Section 3.1 explains the architectural decisions a harhsaftware co-synthesis al-
gorithm must make. Section 3.2 gives a taxonomy of the diffeclasses of problems
within the hardware-software co-synthesis and embedd&eésysynthesis research ar-
eas. Sections 3.3, 3.4, and 3.5 define, and explain enhantetogemulti-rate task sets.
This type of specification is used to represent problem caimés in our algorithms, and
by other researchers working in hardware-software cokggn$. Sections 3.6 and 3.7
describe basic models for the computation and communitaéisources used within
embedded systems. This chapter should give the reader afaroral understanding
of the co-synthesis problem, and our models for embeddeadrysroblem constraints
and resources. The definitions presented in this chaptefater be expanded to suit

different problem domains.

21

22

3.1 Hardware-software co-synthesis decisions

There are three decisions that must be made during synibfedistributed hetero-

geneous systems. This section describes these decisions.

e Allocation: Determine the quantity of each type of resource, e.g., g88i0g

elements or communication resources, to use.
e Assignment Select a resource to execute each task and communicagoh ev

e Scheduling Determine the time at which each task and communicationteve

occurs.

In addition to making these three decisions, a hardwarevaoé co-synthesis algo-
rithm must evaluate embedded system performance. The a@ioatsarchitecture, e.g.,
price, speed, area, and power consumption, must be computed

Each of the three decisions, listed above, influences otlerefore, attempting to
consider a decision in isolation, or without feedback frarhsequent decisions, is likely
to result in poor quality solutions. We have taken care tovalhcremental feedback in
our algorithms.

Some authors use terms that differ from ours when referon@e decisions made
by embedded system synthesis algorithA$ocationis sometimes used to refer to the
decisions we separate inadlocation andassignment Others uséinding or mapping

as synonyms for what we calksignment

3.2 Problem taxonomy

In this section, we define and classify embedded system asistiproblems. To

solve the homogeneous system synthesis problem, one nuidedgon an allocation

Chapter 3: Definitions 23

Heterogeneous

HW-SW Partitioning

Homogeneous

e

Communication
Synthesis

Figure 3.1: Taxonomy of hardware-software co-synthesiblpms.

of identical processors, an assignment of tasks to procesaed a schedule for these
tasks. The heterogeneous system synthesis problem isstmithe homogeneous sys-
tem synthesis problem. However, the types of processofseimitocation may differ
from each other. The hardware-software partitioning pobéallows only two different
processors, of different types, in the allocation. To soheecommunication synthesis
problem, it is necessary to determine a communication resaailocation and assign
communication events to communication resources.

As shown in Figure 3.1, algorithms capable of solving thesteneous system
synthesis problem are also generally capable of solvindgndéimogeneous system syn-
thesis problem and the hardware-software partitioningplera. Some communication
synthesis algorithms also tackle the heterogeneous systethesis problem, the ho-
mogeneous system synthesis problem, or the hardwareeaseffartitioning problem,
although communication synthesis algorithms need not dogssing element alloca-
tion, assignment, and scheduling.

In the multi-rate system synthesis problem, cyclic spediiii;s may contain tasks

with different intervals of time between subsequent exeast Algorithms that can

24

handle the multi-rate problem can also handle a single ratelgm, in which all tasks
have the same period. Synthesis algorithms that can hanolidems containing data
dependencies are also capable of handling problems wittatat dependencies, i.e.,
problems containing only independent tasks.

Our algorithms solve problems that are supersets of theick$ardware-software
co-synthesis problem or, more formally, the heterogenewus-rate distributed system

synthesis problem with communication synthesis and dejeiadent tasks.

3.3 Constraint specifications: Multi-rate task sets

There are a number of methods that may be used to specify tlawibe of real-time
embedded systems. Many of these representations cort$ieaatiocations and assign-
ments that will ultimately be used for implementation, amel #nerefore not suitable
for use in a synthesis algorithm that needs the freedom tergémits own allocations,
assignments, and schedules. State machine based reptiesentan naturally repre-
sent the behavior of reactive embedded systems that do aotiexcomplicated algo-
rithms. In addition, they're suitable for use in synthestsduse they do not constrain
implementation. However, they have historically had thebpem of state explosion,
e.g., in order for a finite state machine (FSM) to representdancurrenn-state sub-
systemsn? states are required. Some FSM variants have been developeduce
this problem [96], [97]. However, timing analysis is ofteiffidult for these variants.
Many other representations exist, each of which has its alvargages and disadvan-
tages [98]-[101]. In our system synthesis work, we have feodembedded system
behaviors and timing constraints with muti-rate task sdtsis is a natural model for

data flow and signal processing behaviors. It is amenabletaldd timing analysis.

Chapter 3: Definitions 25

period = 39

deadline = 1(

6 kb

deadline = 15

deadline = 23
Figure 3.2: Task graph.

This is especially useful for synthesis of hard real-timébedded systems: it allows a
synthesis algorithm to guarantee that hard real-time cainss will be met.

Multi-rate task sets may be used to specify some of the remugnts a designer
places upon an embedded system. A task graph, as shown ire &) is a directed
acyclic graph in which each node is associated with a taskeand edge is associated
with a scalar indicating the amount of data that must be tesresd between the two
connected tasks. Each task may only begin executing aftef i data dependencies
have been satisfied. Thus, in Figure 3.2, task T4 may onlynbexgcution after tasks
T1 and T5 have each completed execution and transferredrtevtheee kilobits of data,

respectively, to task T4.

26

Embedded system synthesis research generally assumes-goained tasks, i.e.,
each task is complicated enough to require numerous mimcepsor instructions. The
period of a task graph is the amount of time between the earliedttstas of its con-
secutive executions. A node with no outgoing edges is callidk node. Adeadline
the time by which the task associated with the node must cetienjils execution, may
exist for any node. The deadline of a task graph is the maxirolall the deadlines
specified in it. Our task graph model supports hard and seftldess. Hard deadlines
may not be violated. Soft deadlines need not be met, buttinglahem is undesirable.
If a task should finish executing as soon as possible, it mayive® a soft deadline at
time zero. A multi-rate task set contains one or more tasglggaeach of which may
have a different period. Thieyperperiodof a multi-rate task set is the least common

multiple of the periods of the task graphs within the task set

3.4 Multi-rate task sets for real-time systems

In this section, we consider the advantages and disadweste#gusing representa-
tions that are closely related to multi-rate task sets forstr@int specification in real-
time distributed embedded systems.

Some researchers are dissatisfied with multi-rate task$aetpecifying constraints
in real-time distributed embedded systems [102]. It is domes claimed that multi-
rate task sets are too simple and need to be more expressixageinto allow embedded
systems to be realistically modeled. Although the claint thay are simple is correct,
researchers sometimes propose adopting extensions frostraimt representations that
are used to represent problems without hard real-time @int&t. However, many of

these extensions have significant drawbacks when applieartbreal-time systems. In

Chapter 3: Definitions 27

this section, these drawbacks are described. In additiemate one extension that has
value when used to specify real-time systems.

Some constraint specification formats are more general thelnhsets [39],[103],
[104]. Such formats might better represent constraintsout hard real-time deadlines.
However, many of these representations add nothing to &egist system targeting
hard real-time problems. In other words, when the mule-task set representation is
extended to handle many apparently interesting genetializa the extensions must be
bounded to allow synthesis of embedded systems that arargead to meet hard real-
time constraints. This results in a representation thabedosslessly converted back to
a classical multi-rate task set.

If one starts from a multi-rate task set and introduces untled loops between start
and deadline nodes, it becomes impossible to guaranteddtaet-stream deadlines in
the graphs are met. If one constrains the specification hyiniag a bound on the num-
ber of times a loop may be executed, then it becomes possiplerantee that deadlines
are met. However, one must guarantee that sufficient timesigable, in the schedule,
to host the worst-cast number of executions. This leaveswithea representation that
is more complicated than a multi-rate task set but provideadvantage. One could
achieve the same goal by unrolling loops in a pre-pass wamsttion into conventional
task sets. This transformation would increase the timeireddor explicit scheduling
by approximately the same amount as using a bounded loopsequation.

If one starts from multi-rate task sets, introducing a repngation for fine-grained
parallelism internal to tasks may seem useful in order tonakome tasks to be dy-
namically split among numerous processors. However, on&qure-process such a
graph, splitting nodes conservatively based on the prigseof the resources available

and thereby convert it, in a mildly lossy way, back into a amional task graph.

28

If one starts from multi-rate task sets and introduces comaoation between nodes
in task graphs with different periods, one can losslesslysform such a modified task
set into a conventional task set by unrolling the task graptesthe hyperperiod and
adding the new communication events. There is anothegbktfarward change required
involving start node offsets. For scheduling algorithmet timroll to the multi-rate hy-
perperiod [105], the resulting increase in scheduling tivoeld not be dramatic.

If one starts from multi-rate task sets and introduces t#skismay start executing
before their incoming data have arrived, this format canréesformed into a conven-
tional task set by splitting each such task into a zero-thmgiarent task that accepts
the pre-start arc, and a normal-duration child task thattrhesassigned to the same
processing element as the parent task and that acceptsdhstad arc.

If one starts from multi-rate task sets and introduces imatleconditionals, it is nec-
essary to reserve sufficient time in the schedule to ensatéttb more time-consuming
task, and down-stream tasks, can execute. We know of ne&ssshansformation from
a task set with conditionals into a classical task set. énéknumber of other task
set enhancements, conditionals make task sets more expre=gn for hard real-time
systems. Eles et al. describe scheduling of conditionkldesphs in embedded system
synthesis [103]. Their specifications support conditisnalie and Wolf developed an
embedded system synthesis algorithm that allows tasksetsitain conditionals [82].
Their algorithm detects mutually exclusive tasks insteadmumerating all condition
combinations. Ziegenbein et al. described a way of repteggenorrelations between
the execution of tasks and a small set of execution moded.[1&hough their ap-
proach may allow some types of embedded systems to be raprdsrore directly than
would be possible with conditionals, it does not substéigtraduce the complexity of

conducting real-time system synthesis; constraint spetifins to which this approach

Chapter 3: Definitions 29

9 kb -0kb

a) conventional ~ b) pre—and post- c) streaming
computation

Figure 3.3: (a) conventional model and task assignmentpgnguto model (b) pre-
computation and post-computation, as well as (c) streahtg communication.

may practically be applied cannot contain a number of camditombinations that is

exponential in the number of graph nodes.

3.5 Modification of the task set model for

pre-computation and streaming

Our algorithms support a task graph model that allows thigasgents of multiple
tasks within the same task graph to be tied to the same pingedement. This makes it
possible to model pre-computation and post-computatié f5 well as course-grained

streaming data communication. Figure 3.3a illustratesraexational communication

30

event between task J and task K. Task J completes executkimpo9data are trans-
ferred from task J to task K, then task K executes. In Figudb,3tasks J and K are
each split into three sub-tasks. All a task’s sub-tasks tlase assignment tied to the
same processing element, as indicated by the dashed bairdagtthem. This enables
pre-computation and post-computation. For example, asb+1/3 can execute before
sub-task K2/3’s input data have arrived (pre-computatianyl sub-task J2/3 can trans-
mit output data before sub-task J3/3 has completed exec(gast-computation). Fig-
ure 3.3c shows a similar use of task assignment tying to nmetceiming data communi-
cation. In this example, instead of first completing taskeXiscution before conducting
one 9 kb communication event, the communication is spld thtee 3 kb chunks that
occur during task J's execution. After each of task J's sskstdJ1/3, J2/3, and J3/3)
completes execution, a 3 kb communication event may occote bhat this streaming
data model can easily be made more fine-grained by breakagkartto more subtasks.
However, making the streaming data representation moreyfaieed will result in an

increase in the CPU time required for scheduling.

3.6 Processing elements (PESs)

A PE executes tasks. Our hardware-software co-synthedi®edded system
synthesis algorithms model many types of PEs: generalgserprocessors, digital
signal processors (DSPs), application-specific intedraiteuits (ASICs), multiproces-
sor integrated circuits (ICs), intellectual property (#®yes, and FPGAs. However, in
this definition, we will describe only the general model fengral-purpose processors,
DSPs, and ASICs. The features peculiar to multiprocesssy I cores, and FPGAs
will be described in the chapters devoted to the algorithrasuse them: Chapters 5, 7,
and 9.

Chapter 3: Definitions 31

A solution may contain multiple instances of the same typB®©f Our algorithms
require databases that describe the relationships betaskmiand PEs. Characterizing
a PEs in this manner requires that the designer know the wgxtors that elicit the
worst-case execution time for each task-PE pair. Altevehti one may use worst-case
performance analysis tools to determine an upper-boundxeaugon time, without
requiring a specific input vector [89], [106]. In additiohgtaverage power consump-
tion for each task-PE pair must be known or estimated. Theep@monsumption of
general-purpose and application-specific processors eastimated by using models,
simulation, and explicit analysis [10], [107]-[111].

The following information establishes the relationshipsAren tasks and PEs:

e Atwo-dimensional array indicating the worst-case exexutime of each task on

each PE.

e A two-dimensional array indicating the average power consion of each task

on each PE.

In addition to these arrays, each PE has a price, 1/0 enemgggmemunicated bit,
and idle power consumption. PEs may be buffered, in whick tdasy can communi-
cate and compute at the same time, or unbuffered, in whioh casymunication and
computation may not overlap in time. In the case of buffer@shmunication it is, of

course, still necessary for a task’s incoming data to abefere it can begin execution.

3.7 Communication resources

Communication resources have the following attributesatr@dler price, bits per
packet, transmission time per bit, power consumption duojperation, number of con-

tacts, and idle power consumption. The number of contactsrarwnication resource

32

supports is the number of integrated circuits (ICs) it camnat, i.e., a communication
resource with two contacts is a point-to-point communaatiesource and a commu-
nication resource with more than two contacts is a bus. Thibadeof deriving these
attributes depends on the type of architecture being sgizbe. For example, in a dis-
tributed system, the parameters of a communication busedetermined from the bus
specifications, as well as the controller datasheets. listageting a system-on-chip,
the behavior of the on-chip busses can be derived from thecé&lon process param-
eters and floorplan using a wire delay and power consumptiaemas described in
Section 7.7. Each task graph edge must be assigned to a caocathmmresource. The
worst-case communication time and average power consomgtian edge are linearly
dependent on the integer number of packets transferrets\éainmunication resource.
There may be more than one communication resource connecte®E instance. In
previous distributed computing work, it is commonly assdrtieat communication be-
tween tasks that are assigned to the same IC consume anificsiginamount of time
and power. We also make this assumption in our distributetéaysynthesis algorithms.
However, we use a detailed wire delay model in our systenakbop{SOC) synthesis al-
gorithm. If an architecture contains two communicatingsahat execute on separate
ICs, the architecture is invalid if there are no communaratiesources connecting the

ICs.

Chapter 4

Optimization algorithms

This chapter presents preliminary concepts that will laeused in the description
of our evolutionary optimization framework. Section 4.Yeg a brief survey of meth-
ods for solving NP-hard problems. Sections 4.2 and 4.3 destwo problem-solving
heuristics that are closely related to the optimizatiorastiructure used in our evolution-
ary optimization algorithms. This class of algorithms,gi@ recombinative simulated
annealing algorithms, are described in Section 4.4. Ini@edt5 we explain some of
the challenges of solving multiobjective problems, anda&xghow parallel recombina-
tive simulated annealing algorithms can be adapted to samebusly optimize multiple

costs.

4.1 Solving NRhard problems

This section gives an introduction to the classes of allgori that may be used to
solve the hardware-software co-synthesis problem anémsysynthesis problem.

Hardware-software co-synthesis, and embedded systernesysit contain multiple
NP-complete, and therefore NP-hard, problems within th&orse yet, these problems
are interdependent. Allocation/assignment and schaglalie each known to be NP-

complete for distributed systems [112]. Any instance of &ddmplete problem can

33

34

be converted to an instance of any other NP-complete proislemamount of time that
is, at worst, polynomially dependent on the size of the imsta For decades, clever peo-
ple have searched for solutions to NP-complete problemsehaite time polynomially
dependent on the size of the problem instance. However,dyobas ever published
an algorithm that optimally solves an NP-complete problemait worst, polynomial
time. As a result, most algorithm designers operate unaecadnjecture that finding a
guaranteed-optimal solution to an NP-complete problemireg an algorithm that may
take an amount of time exponentially dependent on the sidieegbroblem instance. If
one can be sure to encounter only very small problem insgarices practical to use
potentially exponential-time algorithms, e.g.* £L13], dynamic programming [114],
mixed integer linear programming [115], branch-and-bo[iib], or one of the triv-
ial exhaustive searches. However, if one might encountge lproblem instances, the
above conjecture implies that one must settle for an algorpproducing solutions that
are not guaranteed to be optimal.

Approximation algorithms may be used to produce solutionsR-complete prob-
lems in polynomial time [114],[117]. Although the solut®mproduced may some-
times be optimal, optimality is not guaranteed. Howeveprapimation algorithms
are guaranteed to produce solutions with bounded devsatiom optimal cost. Devis-
ing approximation algorithms for NP-complete problems @em an area of vigorous
research; there are still numerous problems for which amation algorithms have
not yet been developed and analyzed. When attempting te soieh problems, re-
searchers often resort to heuristic algorithms. Good kecrlgorithms can be empiri-
cally demonstrated to produce high-quality solutions tpamant problems most of the
time, although no formal proof bounding the deviation oisian costs from optimality

may be known. Many effective heuristics fall within one of/ee algorithm classes:

Chapter 4: Optimization algorithms 35

Local minima

Optimized /\ /\
cost

\ g \N/

-~

N/

Global minimum

>
Optimization parameter

Figure 4.1: Local and global minima.

constructive, greedy iterative improvement, variabletdéq@rative improvement, tabu
search, simulated annealing, genetic, and parallel rec@tize simulated annealing.
An optimized cosis a value optimization algorithms attempt to minimize, gogice.
For any problem instance, the optimized cost is a functiohebptimization parame-
ters An optimization algorithm attempts to find a value of theiopzation parameters
such that the optimized cost is minimized. Tieighborhoodf a solution to an opti-
mization problem is the set of other solutions that can behedin one discrete step of
the optimization algorithm. Aocal minimumis a solution for which no other solution
within that solution’s neighborhood has a lower optimizedtc This implies that the
local minimain a solution space are based on the optimizafigorithm-dependent def-
inition of neighborhood. Thglobal minimaare those solutions for which the optimized
cost is the lowest value possible for the problem instaneegeheral, optimization al-
gorithms attempt to locate global minima and avoid beconagped in local minima.

This concept may be illustrated with an example. The curirelih Figure 4.1 shows

36

the relationship between a problem’s optimization paramand optimized cost. The
dashed portions of the line are the neighborhoods surragritie solutions at the lo-
cal and global minima. As indicated, although the two loc@tima on the left are
not global minima, there are no lower-cost solutions withi@ neighborhoods of these
solutions. An optimization algorithm with the indicatedgigborhoods could become
trapped in one of the sub-optimal local minima.

Constructive algorithms generate finished solutions tfeahat later improved upon.
Generally, constructive algorithms are fast. Howevely tieually follow a fixed set of
rules that result in a tightly constrained exploration & fiolution space. The qualities
of solutions produced by a constructive algorithm are gfipdependent on the amount
of problem-specific knowledge built into the algorithm. €dg constructive algorithms
are prone to becoming trapped in local minima.

Iterative improvement algorithms generate a solution aalerchanges to it in an
attempt to improve its quality. We do not require that an atgm evaluate and rank all
possible local moves during each iteration in order clgss#fs an iterative improvement
algorithm. Formally, an iterative improvement algorithnush contain a constructive
algorithm within it in order to generate the initial solutio However, most problem-
specific knowledge in an iterative improvement algorithrassally incorporated in the
improvement portion of the algorithm, instead of the camstive portion.

Greedy iterative improvement algorithms repeatedly makeemental changes to
a solution. If a change results in an improvement, it is atep If it results in a
degradation, it is rejected. As soon as the solution reaahmssition from which no
incremental change results in an improvement, the alguritalts. As a result, this type
of algorithm is liable to become trapped in a local minimum.

Variable-depth search algorithms are a type of iteratiyeromement that is capable

of backing out of local minima of arbitrary, but bounded, thefi17]. Of course, run

Chapter 4: Optimization algorithms 37

Parallel
recombinative
simulated
annealing

no x—over temp.=0

Variable—depth
iterative
improvement

Simulated) Tabu
annealing Genetic search

temp.=0 no x—over

no tabu list

Greedy
iterative
improvement

Figure 4.2: Iterative improvement taxonomy.

time depends on the backtracking depth selected. A varidyeh search algorithm
with an infinite backtracking depth may be optimal, assuniimgepertoire of changes
is sufficient to explore the entire solution space. A vaeatipth search algorithm with
a backtracking depth of zero is equivalent to a greedy iter&nprovement algorithm.
Therefore, variable-depth search algorithms are a supafrgeeedy iterative improve-
ment algorithms, as shown in Figure 4.2.

Tabu search is a form of iterative improvement in which sonowes are dynam-
ically prohibited [118]. A tabu list is maintained. Thistliprevents recently visited
solutions from being revisited. A tabu search algorithmhvattabu list of length zero
is equivalent to a greedy iterative improvement algoritfinerefore, tabu search algo-
rithms are a superset of greedy iterative improvement dlgos, as shown in Figure
4.2.

38

4.2 Simulated annealing

In an iterative improvement algorithm, we defigeeedinesss the probability that
a cost-decreasing change to a solution will be preferrettanisof a cost-increasing
change. Simulated annealing algorithms are iterativeavgment algorithms in which
greediness increases during the run of the algorithm [1Bnulated annealing al-
gorithms conducBoltzmann trialsbetween solutions before and after modifications;

changes are accepted with probability

1

1+ NPT
whereT is the global temperatur®, is the cost of the old solution ard is the cost of
the modified solution.

Boltzmann trials are more easily described with the use afstration. Note that,
in order to start a simulated annealing algorithm with agpnately equal probabilities
of selecting changes that decrease or increase cost, icessa&ry to initially have a
global temperature near infinity. In order to smoothly ithase the behavior of a Boltz-

mann trial as the global temperature varies from infinityemz we introduce

1
U=1--——
T+1

U gradually varies from a value near one to zero during the fansamulated annealing
algorithm, causing to gradually vary from a value near infinity to zero.

When a simulated annealing algorithm begins executiongkbleal temperature is
set to a high value, i.el) is approximately one. As a result, changes that increase
the cost of a solution are selected with approximately tmeesprobability as changes
that decrease its cost, as can be seen in Figure 4.3. Whemear one, the accep-
tance probability is approximately 0.5, independent ofdhference between the cost

of the current solution?, and the cost of the modified solutidd, In this explanation,

Chapter 4: Optimization algorithms 39

Accept. prob.

1
0.8
0.6
0.4
0.2

0

Figure 4.3: Boltzmann trial acceptance probability.

we assume tha N € [0,1]. At this stage, the algorithm is capable of easily escaping
local minima. However, it is not particularly effective a&ducing the value of the op-
timized cost. As time elapses, the global temperature isaed, gradually changing
the behavior of Boltzmann trials until changes that deadhe cost of a solution are
always selected and changes that increase the cost aresakyegted. In other words,
as the global temperature approaches zero, a simulatedlanghalgorithm degrades to

a greedy iterative improvement algorithm. This greedy b&nas depicted by the por-
tion of Figure 4.3 at whiclkl is zero; an improvement in solution quality will always be
accepted and a degradation in solution quality will alwagsdjected. Greedy iterative
improvement is a special case of simulated annealing. Tdreresimulated annealing

is a superset of greedy iterative improvement, as shownguargi4.2.

40

4.3 Genetic algorithms

Genetic algorithms maintain a pool of solutions that evailvgarallel over time.
During eachgeneration genetic operators that allow randomized local changeshand
exchange of information between solutions are applied ¢ostiiutions in the current
pool in order to improve them. The lowest quality solutions #nen removed from the
pool [120]. Genetic algorithms have the ability to escagalaninima and communicate
information among solutions. A genetic algorithm with awgmn pool containing only
a single solution is equivalent to a greedy iterative impraent algorithm. Therefore,
genetic algorithms are a superset of greedy iterative irgment algorithms, as shown
in Figure 4.2.

In a conventional genetic algorithm, a solution is représegy a one-dimensional
array, orstring, of values. All changes to strings are made with two opesatmutation
and crossoveMutationrandomly changes part of a solution’s strifigyossoverswaps
portions of different solutions. Two different types of ssopver are commonly used:
one-cut and two-cut. In one-cut crossover, a pair of stisgelected and the portions to
the left of a randomly selected offset into the strings arapgved. In two-cut crossover,
a pair of strings is selected and the portions between twadoraity selected offsets into
the strings are swapped. Figure 4.4 shows an example of tivetgng crossover. In
this illustration, crossover occurs between strings L andlio-cuts are made and the
portions of L and M between these cuts are swapped, prodstimgs L+ and M+.
Crossover is the operator that gives genetic algorithnis strength; it allows different
solutions to share information with each other.

An independent sub-solutiogs a portion of a solution for which the optimal config-
uration is not influenced by the configurations of other sollotgons. It is important that
the string encoding used to represent a solution maifdaality, i.e., it is important for

data representing each independent sub-solution to beetbcantiguously, instead of

Chapter 4: Optimization algorithms 41

Cut Cut

1 0f1 1 0 1 of 1 dstingt

Swap

1 1Jo 0 0 1 1| o dstingm

1 0/0 0 0 1 1[1 0]stingLs

1:1[1:1:0:1:0/0: 0 |String M+

Figure 4.4: Crossover.

being interleaved with data representing other sub-smigtiThe reason for this require-
ment is most easily illustrated with an example. In Figure 4, B, and C represent
variables associated with different independent subtismis. When crossover occurs,
strings are cut into sections. Independent sub-solutiomsnéerleaved in the bottom
two strings. As a result, data representing independensslihions are likely to be
split into separate solutions when crossover occurs. Hewew the top two strings,
independent sub-solution representations are contigudssa result, data describing
most independent sub-solutions won’t be split betweerfit strings when crossover
occurs. If a string contains a good independent sub-soluttas important for the
encoding of that sub-solution to remain intact. The pratteffect of using a string

encoding and crossover method that effectively maintaicality is a genetic algorithm

42

Cut Cut
A1§A2§A3 B1 B2 B3|C1 C2 C3|Soln. 1

0

AL A2 A3]B1 B2 B3Jc1 c2/C3]soin. 2

Al Bl Cila2 B2 c2|A3 B3 .C3|son.1

0

AL B1 C1}A2 B2 C2Ja3 g37C3]Soin. 2

Figure 4.5: String locality.

that takes advantage ohplicit parallelism i.e., n function evaluations implicitly ex-
amine approximately?® string configurations [120],[121], whereis the size of the
solution pool.

Genetic algorithms are, in general, difficult to design, lienpent, and analyze. They
should be considered for solving optimization problems #ra multiobjective or dif-
ficult to analyze and decompose, e.g., problems composedkipte inter-dependant

NP-hard problems, each of which has huge solution spaces.

Chapter 4: Optimization algorithms 43

4.4 Parallel recombinative simulated annealing (PRSA)

PRSA algorithms have some of the best attributes of bothtigealkgorithms and
simulated annealing algorithms [122]. This class of akyonis is best understood as
genetic algorithms that use Boltzmann trials between mextiind existing solutions,
in order to select the solutions that will exist in the nexbgetion. The greediness of
a PRSA algorithm starts low and increases during an optiimizaun, allowing it to
escape local minima in a fashion similar to simulated anngalA PRSA algorithm
in which the global temperature is always zero is substiyeguivalent to a genetic
algorithm. A PRSA algorithm, in which there is only one sa@ut is a simulated an-
nealing algorithm. Therefore, PRSA algorithms are a sigh@fggenetic algorithms and

simulated annealing algorithms, as shown in Figure 4.2.

4.5 Multiobjective optimization

This section describes a method of solving problems for ke solutions have
multiple conflicting costs.

Real-world hardware-software co-synthesis problemsrdrerently multiobjective.
Embedded systems have numerous costs and improving oneftastresults in the
degradation of others. In the past, the few co-synthesisrittigns that attempted to
optimize multiple costs either did so in an informal way,leged all but one cost with
constraints, or combined the multiple costs into a singkt wath a weighting sum and
optimized this sum. For this method to be successful, thghtiig vector used must be
appropriate for the problem instance as well as the desgesired solution. Unfortu-

nately, the hardware-software co-synthesis problem istooplicated for an instance’s

44

QO Solution

Price

Power consumption

Figure 4.6: Linear weighted sum cost function.

best weighting vector to be known without first exploringttimstance’sPareto-optimal
set of solutions, i.e., those solutions that can only be awpd in one area by being
degraded in another. It is impossible, however, to explbeeRareto-optimal set of
solutions if a weighting vector has been used to combineoaliscinto a single value.
Assume that a designer is trying to optimize two conflictiegttires of an embedded
system: price and power consumption. If the designer useswaeational optimization
algorithm that can only deal with one cost function, it is @&sary to combine the two
costs into one value. In Figure 4.6, the curved line is thet®aoptimal curve. It ap-
proximates the Pareto-optimal set of solutions, i.e., @hgsutions that can only have
one cost improved at the expense of degrading another cash & the vectors is as-
sociated with a linear weighting sum a designer might paéyiselect. These vectors
point in the direction of ascent for the gradient defined l®yahsociated weighted sum

of costs. The dotted lines perpendicular to these vectgesent sets of points with

Chapter 4: Optimization algorithms 45

+ | QO Solution

Price

Power consumption

Figure 4.7: Non-linear directed cost function.

the same linear weighting sum costs. As illustrated by thedgfor this Pareto-optimal
set of solutions, a perfect optimization algorithm is ongpable of generating solu-
tions at or near the two solutions shown. The minimum costtewis will lie near the
first intersection of a line (hyperplane) that is swept outiiaom the origin, and the
Pareto-optimal curve. Using a linear weighting sum forceserous, and potentially
preferable, solutions to be neglected.

Alternatively, a designer may use a non-linear directedlfcmgtion to find solutions
near arbitrary intersections between lines that intergextorigin and Pareto-optimal

curve. In Figure 4.7, each line represents a trough in thevimig 2-D cost function:

COS{X, Y, W) = max(x-w,y-1—w)

46

wherew is a weight with a value ranging from 0 to 1. In the general iditiensional

case, this function is defined as:
COSt(V, W) = mr:'j}x(vi W)
1=

wheren is the number of dimensiongjs an arbitraryn-dimensional vector, and is an
n-dimensional weighting vector. This cost function genlgrdecreases as component
costs decrease. The lowest-cost legitimate solution fawvengcost function will lie,
approximately, at the intersection of the line approximgtihe Pareto-optimal set and
the inverse of the cost function’s weighting vector.

Although an apparently reasonable weighting array can leetsel, the designer
has no way of knowing the shape of the Pareto-optimal cuneadiof time. As a
result, a designer might easily select a weighting vectilgg to the production of the
solution marked with an X. However, this is probably not theaghting vector a designer
would have selected if the shape of the Pareto-optimal cware known. For a small
power consumption penalty, the price of the system can Iefisigntly decreased; for a
small price penalty, the power consumption of the systenbessignificantly decreased.
Unfortunately, the designer will never know about thosadvablutions because the
weighting vector prevents this portion of the Pareto-optiourve from being explored.
Although the limitations of single objective optimizatiecan be seen from this simple
example, the problem of selecting an appropriate weigldingy becomes even more

severe as the number of costs in a system increases.

Chapter 4: Optimization algorithms

@

Price >

Figure 4.8: Pareto-rank.

A0
.
‘\
1O
0 ®)
-------------- O
.\

O Solution | o)
= . Pareto—optimal ’
(] ¢ 1}
= ¢+ Set '
o)
o [

Price —

Figure 4.9: Pareto-rank based multiobjective optimizatio

48

Let us digress, for a moment, to provide a definition. A solutiominatesanother
if all of its features are better. A solutiorPareto-rankis the number of other solutions,
in the solution pool, that do not dominate it. Given a solufp@ol of sizep, calculating
Pareto-rank is am (p2) operation; each solution must be compared with every other
solution. In Figure 4.8, each circle represents a solutiBach solution’s price and
power consumption are indicated by the position of its eifnlthe graph. The number
in each circle indicates the Pareto-rank of the associatiedicen.

At the end of a multiobjective optimization algorithm’s ruthe designer is pre-
sented with one or more non-inferior solutions (see Figu®g, 4e., those solutions that
are not dominated by any other solutions. Although the md@rior solutions are not
guaranteed to be the Pareto-optimal set of solutions foptbkblem instance (the het-
erogeneous distributed system co-synthesis problem iosntaultiple interdependent
NP-complete problems), they do form an upper bound on thet®aiptimal set, giving
the designer insight into the shape of the problem’s Pasptwnal solution set. The
tradeoffs available between solution costs in these nfarior solutions are made clear.

In order to carry out Pareto-rank multiobjective optimiaat it is necessary for mul-
tiple solutions to be compared with each other. Algorithmghich a pool of solutions
exists concurrently, e.g., genetic algorithms and PRSArd#lgns, excel at Pareto-rank

optimization [123].

Chapter 5

Synthesis of LowPower Heterogeneous

Distributed Systems

In this chapter, we present MOGAC, an adaptive multiobyectjenetic algorithm
for hardware-software co-synthesis of distributed embddsystems. This algorithm,
and its associated software implementation, solves théwaae-software co-synthesis
problem or, more formally, the heterogeneous multi-raggritiuted system synthesis
problem with communication synthesis and data-depen@skst Our solution to this
classical problem provides a basis for the embedded systathesis algorithms de-
scribed in the remaining chapters of this dissertation. MO@artitions and schedules
embedded system specifications consisting of multipleoperitask graphs. Its adap-
tive multiobjective genetic algorithm is designed to avbetoming trapped in local
minima. Price and power consumption are optimized while& liaal-time constraints
are met. MOGAC places no limit on the number of hardware am&oE processing el-
ements in the architectures it synthesizes. Our genera¢hfimdbus and point-to-point
communication resources allows multiple types of commatioo resources to be used
in an architecture. Heuristics are used to tackle mulg-s3fstems, as well as systems
containing task graphs with hyperperiods that are largativel to their periods. The

application of a multiobjective optimization strategyaa¥ls a single co-synthesis run

49

50

to produce multiple designs that trade off different arettiiral features. Experimental
results indicate that MOGAC has advantages over previouk woterms of solution
guality and running time.

This chapter relies on definitions provided in Chapters an#,3. In Section 5.1, we
state the requirement that must be met by an algorithm tmthegizes low-price, low-
power, heterogeneous, distributed systems. Section S&ides the model MOGAC
uses for integrated circuits containing multiple concotiseexecuting processing ele-
ments. Section 5.3 describes MOGAC’s method of represgstitutions. In Sections
5.4,5.5,5.6, and 5.7, we describe the optimization algoriised by MOGAC. Section
5.7 explains our method of evaluating solution quality anduging that timing con-
straints are met. Section 5.8 describes solution rankingreproduction. We present

experimental results and conclusions in Sections 5.9 ar@l 10

5.1 Requirements for the optimization algorithm

Given constraint specifications in the form of a multi-raaek set (defined in Sec-
tion 3.3), and a resource database describing the typesooégsing elements (PES)
and communication resources available, it is our goal tegda embedded system ar-
chitectures consisting of allocations, assignments, ahddules. These architectures
must meet hard real-time constraints. In addition, theyukhtave low prices and
power consumptions. This problem contains multiple NPoiete problems within it.
The problem instances may be large. Operating under thecting that solving NP-
complete problems optimally requires, in the worst case@maunt of time exponential
in the size of the problem instance, we were forced to res@tdotentially sub-optimal

algorithm. We needed an optimization infrastructure wittuenber of attributes.

e Scalable It should be easy to trade off optimization time for solatguality.

Chapter 5: Synthesis of Low-Power Heterogeneous Dist8l/stems 51

e Multiobjective : It should excel at simultaneously optimizing differensts
e Robust It should resist becoming trapped in local minima.

e Problem-specific It should be straightforward to incorporate problem-sfoec

heuristics into the optimization framework.

We implemented a multiobjective genetic algorithm that &ldthe attributes listed

above.

5.2 Specialized hardware resources

In addition to the single processor PEs and communicatisourees described in
Section 3.6, MOGAC models another type of PE: multiprocegssegrated circuits
(ICs). Multiple cores, each of which has the attributes eisged with a PE, may be lo-
cated on the same IC, allowing multiple tasks to execute lsimeously on the IC. This
provides a model for application specific integrated cic(ASICs) that are capable of
carrying out different tasks at the same time.

MOGAC accepts a database that specifies the performancecbftask on each
available PE and core type, as well as providing other infdiom about the PEs and
cores available, e.g., a list of tasks that are incompaiitte each type of PE and core,
the price of each resource, and the number of devices prbtgleach IC and consumed
by each core.

The relationship between tasks and PEs was described im®8d. The following

information establishes the relationship between tasidiares:

e Atwo-dimensional array indicating the relative worst€agecution time of each

task on each core.

52

e A two-dimensional array indicating the relative averag&@oconsumption of

each task on each core.

e A two-dimensional array indicating the peak power consuompdf each task on

each core.

In MOGAC, cores do not have inherent prices. However, eact oassigned to
an IC that does have a price. The following variables arecatsal with ICs: price,
device count, pins available, idle power consumption, peaker dissipation, speed,
and power efficiency. Each core places a device count ragaintg e.g., number of
transistors or configurable logic blocks (CLBs), on the IGMuich it is assigned. For
an architecture to be valid, each IC must meet device cogpiinements of the cores
assigned to it and the pin count requirements of the comratinitresources attached to
it. In addition, each IC must meet the peak power dissipaggmirements of the tasks
assigned to the cores implemented on it. Tasks do not haveopimt, device count, or
peak power dissipation requirements. However, tasks mayabeed out by cores that
place such requirements on their host ICs.

The worst-case execution time for a task assigned to a caguisalent to its rel-
ative worst-case execution time divided by the speed of @hen which the core is
implemented. The task’s average power consumption isldasive average power con-
sumption divided by the power efficiency of the IC on which task’s core is imple-
mented. Thus, in the current implementation of the algorjtve assume that there is a
linear relationship between core worst-case executioa ind task relative worst-case
execution time. Similarly, there is a linear relationshgtveeen core average power
consumption and task relative average power consumptibis model could trivially
be generalized to use a full lookup table, similar to the appih used to determine the

execution time of a task running on any given PE.

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 53

Processors Communication
2 resources

JO| (KO

K1 RO

Figure 5.1: Example allocation.
5.3 Solution representation

Although we discuss the optimization infrastructure usgdi©GAC in conven-
tional terms, each solution is represented by a collectionudtidimensional data struc-
tures; primitive linear strings are never computed. The Rieation is held in a one-
dimensional array of integers. The offset into this arragresponds to PE type. The
integer at each offset represents the number of PEs of thatitya solution. The
communication resource allocation is represented by dairmne-dimensional array.
Assuming that three types of PEs (J, K, and L) are availab&PE allocation shown in

Figure 5.1 would be represented by the following array:
[1,2,0]

This array indicates that the allocation contains one PEupé tJ, two PEs of type K,
and zero PEs of type L.

Task assignment is represented by a two-dimensional arnaigich the first dimen-
sion corresponds to the task graph that a task belongs tothansecond dimension
corresponds to the task’s index within the graph. Each enttlge array holds a one-

dimensional array with two entries. The first entry is theetypdex of the PE to which

54

- “a
. ~
Y
~

.
.
* .

.
s

JO| |[KOY

A RO

i -

K 1

Figure 5.2: Example assignment.

the task is assigned. The second entry is the instance irfdbg ®E to which the task
is assigned. The example assignment for the single grapknsimoFigure 5.2 would
be represented by the following one-dimensional array @-éntry one-dimensional

arrays:

= 9o 9o 9O

r B O O O

0,
0,
0,
L
L

=)

The five rows correspond to task TO to task T4. PEs JO, KO, andr&lencoded as
[0,0], [1,1], and[1, 0], respectively. Note that an assignment with multiple tasipbs
would require a multidimensional array with a column for legcaph. In addition, an
additional task copy dimension exists in multirate systeaaslescribed in Section 5.7.2.
As mentioned in Section 4.3, a genetic algorithm’s stringsutd preserve local-
ity, i.e., representations of interdependent portionshef $olution should be located
closer to each other in a string than disparate entries [Il103 allocation string order-

ing algorithm places PEs such that those with similar charestics, e.g., price, have

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 55

a higher probability of being located close together in ttigng than those with dis-
parate characteristics. The order of PE types in the PEadltwtstring is determined
in the following way. The relationship between tasks and RBEefined by a collec-
tion of two-dimensional arrays (see Section 3.3). For thep@se of characterizing a
PE type, the one-dimensional arrays corresponding to tBalype are selected from
these two-dimensional arrays. Thus, each PE can be chazadidy a collection of
one-dimensional arrays and some scalars. The first stegemadeing the order of PE
types in the PE allocation string is to collapse each PE $yaeays into scalars. This
conversion is done by taking a sum of each array’s entriesv@mghting each entry with
the number of tasks, of the type corresponding to that enprgsition, which exist in the
embedded system specification. After this step, each PEsigiled by a collection of
scalars, i.e., a vector. An approximation algorithm is ugeinpose an order on these
vectors that, in general, places vectors that are closecto@aer in then-dimensional
space, close together in the PE allocation string. ddramunication resource alloca-
tion stringandIC allocation stringare similar to the PE allocation string and they are
ordered using similar algorithms.

The communication resource connectivity strirgan array of IC and processor
instance references specifying the ICs and basic PEs tdwelaich communication re-
source is connected. An example communication resouragectimity string is shown
in Figure 5.3. In this illustration, communication resaI@’s two contacts are con-
nected to PE instances P and Q. Communication resource c@® Q, and R. More
than one communication resource may be connected to theR&nmstance. In Figure
5.3, PE instance Q is an example of a PE connected to two coroatiom resources.
The order of communication resource types in the commubitatsource connectivity

string is equivalent to their order in the communicatiorotese allocation string.

56

Link instances

]

Contacts[2] [3]
il

#

Link connectivity
string

A1 R
)
)

PE instances

Figure 5.3: Example communication resource connectivitgc.

5.4 Optimization algorithm

In this section, we give an overview of MOGAC'’s optimizatimfrastructure. This
algorithm maintains a pool of solutions that evolve in patal Figure 5.4 illustrates
MOGAC'’s core algorithm. After initializing each solutionith randomized algorithms,
MOGAC enters a loop that repeats until the halting condijttbe passage of a number
of generations without improvement in the solution pooinist. During evaluation, a
solution’s costs, e.g., price and power consumption, areraened. The costs are then
compared to the designer-supplied constraints to deterhow severely the constraints
are violated. At this point, the solutions are ranked ushmeg multiobjective criterion

described in Section 4.5. If the halting conditions haveysitbeen reached, low-rank

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 57

|

(N
Initialization Change
task
assignment &
communication
s d resource
Change - 14 connectivity
processor Lot
allocation Ve
Schedule &
calculate
Results costs
Solution loop
Cluster loop

Figure 5.4: Optimization algorithm overview.

solutions are terminated and high-rank solutions repredactake their places. The
newly born solutions are then modified via crossover and tiuta At this point, the
generation has completed and another begins. Eventuatiygh generations pass with-
out improvement in the solution pool to trigger the haltirapdition. Before halting,
MOGAC prunes any invalid and inferior solutions from itsibn pool and presents

the remaining solutions to the designer.

5.5 Clusters

Clusters of solutions are used to prevent crossover frordymiagstructurally in-
correct solutions, i.e., solutions that are physically impossilifeét were possible for

crossover to occur between arbitrary solutions, strutfjunacorrect solutions would

58

Solution M Solution N

‘Proc. allocation: :Proc. allocation:

Task assignment crossover

Invalid task assignment

‘Proc. allocation: :Proc. allocation:

Figure 5.5: Bad crossover.

sometimes be produced. Assume the existence of two sodutidrand M. As illus-

trated in Figure 5.5, N’s PE allocation contains only one R&ance, of type PO. M’'s
PE’s allocation contains only one PE instance, of type PErdfore, all tasks in M are
assigned to the PE of type PO and all tasks in N are assignée tBE of type P1. If
a crossover were to occur between the task assignmentssiniriige two solutions, the

result might be the existence of some tasks in M that are ragitp a PE of type P1.

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 59

Task PE Communication

assignment allocation resource
crossover mutation \ allocation
mutation

C—0) =
allocation
crossover
— >
‘ - . >
Communication
resource o
allocation Task Communication
. resource
crossover assignment h
mutation connectivity
mutation

Communication
resource
connectivity
crossover

Figure 5.6: Solution clusters.

However, no PEs of type P1 existin M's PE allocation. Simglasblems may be caused
by an indiscriminate crossover of other types of strings.

It would be possible to detect structurally incorrect siolag and repair, or immedi-
ately terminate, them. However, examining every solutimhmodifying or terminating
those that are structurally incorrect would be costly im&of computation time. More
importantly, the post-processing would destroy the ldgalf the crossover operator,
i.e., this step would disrupt the partial solutions thatev@wvapped during crossover.

MOGAC, unlike past work in the research area, uses the comdegmlution clus-
ters to prevent structurally incorrect solutions from Igeimeated in the first place, i.e.,
MOGAC considers the interdependence between differenitoperof a solution’s rep-
resentation when carrying out genetic operators. As shawigure 5.6, solutions are
grouped into clusters. In this figure, each dot is a solutimhthe circles around groups
of dots are clusters. Solutions within a cluster all shaeestime PE allocation and com-

munication resource allocation strings. Thus, each swiuti the single cluster has the

60

same PE and communication resources available to it. Hawehestask assignment,
core assignment, and communication resource connecsitritygs of solutions in the
same cluster may differ. Crossover of assignment and conuation resource connec-
tivity strings occurs between solutions in the same cludtatividual communication
resources (busses or point-to-point links) are treatedasia during communication
resource connectivity crossover. Mutation of these ssricen be applied to individual
solutions. Solutions resulting from these operations aisranteed to be structurally
correct. Crossover of allocation strings occurs betwedineeclusters. Similarly, when
one of a cluster’s allocation strings mutates, all of theiSohs within the cluster are
updated so that they share the cluster’'s new allocationgstrinter-cluster crossover
and mutation of allocation strings occurs less frequehiytintra-cluster crossover and
mutation. Every time crossover or mutation are applied tistelrs, instead of individ-
ual solutions, the information contained in the assignna@dtcommunication resource
connectivity strings of the involved solutions is no longalid. These strings are, there-
fore, re-initialized.

There are three advantages to the use of solution clustdrs.oVerall algorithm
is simplified because it is not necessary to detect or repraictsirally incorrect solu-
tions after solution crossover. The algorithm’s executiome is decreased because it
is not necessary to deal with structurally incorrect soluiand because locality is not
destroyed by repair operations, thus allowing more imppeirallelism in the genetic
algorithm (see Section 4.3). Finally, using clusters make€sGAC easier to parallelize.
The solutions within a cluster can evolve independentlyadfitsons in other clusters,
except when crossover between clusters occurs. There isatbfar solutions in differ-
ent clusters to communicate with each other except duriagnfinequent application of

inter-cluster crossover.

Chapter 5: Synthesis of Low-Power Heterogeneous Dist8l/stems 61

Start from an empty PE allocation.
For each task:
If there exist no PEs capable of executing
Randomly select a PE typpe that
is capable of executing

Add an instance gbeto the solution’s
PE allocation string.

Figure 5.7: PE allocation string initialization.
5.6 Initialization and genetic operators

In this section, we describe the manner in which solutioegratialized and modi-
fied by genetic operators.

PE allocation strings are initialized with the simple counstive algorithm shown in
Figure 5.7. If the solution contains any cores, its IC altmrastring is initialized to con-
tain a single, randomly chosen IC. Otherwise, the IC aliocadtring is initially empty.
Initially, a solution’s communicate resource allocatidnng is empty, i.e., the solution
contains no communication resources. Communication ressre introduced by sub-
sequent mutations. The intention of these initializatilgoathms is to set up minimal
valid solutions that will be improved via mutation and crossr.

An allocation string’s mutation operator selects a PE, K&ommunication resource
type at random; each PE, IC, or communication resource tgpete same probability
of being selected. The number of instances of the selected@®Br communication
resource type is either incremented or decremented, withlgarobability. When the
crossover operator is applied to two allocation strings, gtrings are cut at the same
two random offsets and the portions between the cuts arepatlapg\fter the crossover
or mutation of a PE allocation string, the constructive &t shown in Figure 5.7 is

applied to the participating string. This enforces the d¢tad that, for each task, there

62

Randomly select a task instantgin the task assignment string.

peis the position, in the allocation string, of the PE to whigk assigned.
g is a Gaussian random variable wjth= 0 ando? = 1.

Setpe" := [g-a+ pe|.

If there are no PEs of typee" allocated ot may not execute ope":
Select the nearest neighborgd" in the allocation that can exectite

Figure 5.8: Task assignment string mutation.

exists at least one PE capable of executing it. Usually,nbisnecessary for this post-
processing step to make any changes to the PE allocatiag.s8imilarly, if a crossover
or mutation causes a solution that contains one or more totesve no ICs, a single,
randomly selected, IC is introduced.

Initially, each task is randomly assigned to a PE instan¢kerPE allocation string
that is capable of executing it. The constructive algoritisad to initialize a solution’s
PE allocation string guarantees that there is at least oneap&ble of executing each
task (see Figure 5.7). Similarly, each core in the core assat string is randomly
assigned to an IC.

The task assignment string mutation operator selects aatasihdom and changes
the PE type used to carry out that task (see Figure 5.8). Alogowas algorithm is used
for the mutation of core assignment strings. MOGAC mairgarPE aggressiveness
variable,a, that decreases during the run of the algorithm. If the valudis variable
is small, a nearby PE type will probably be used to carry ogitélsk. Ifais large, it is
likely that pe™ will be far from pein the PE allocation string. The PE allocation string
is ordered in a locality preserving way. Hence, there is &arge correlation between
distance on the PE allocation string and PE type similabtgcreasinga during a run
allows MOGAC to initially mutate task assignment stringsairway that is likely to
cause large jumps across the solution space. As a run ngasdt task assignment

mutation makes only small changes to the task assignmamj sfine-tuning it.

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 63

Generate an arraly, of PE locations.
Set each PE location into a unique location in the PE allocation string.

For each array,, of PE references in the commun. resource connectivitygstri
Randomize the order of the entriedin
c is the number of PEs to whidhmay connect.
Fori:= 0 to min(c—1,length(r)):
Setrli] :=]i].

When the crossover operator is applied to two task assigtstrangs, the strings are
cut at the same random offset and the portions following theare swapped. The two
participating strings always come from solutions that hizneesame PE allocations be-
cause task assignment string crossover is an intra-clgstatic operator. The mutation
operation for core assignment strings is analogous.

Initially, each communication resource is randomly coneédo PEs in the PE al-
location string (see Figure 5.9). The communication res®wonnectivity mutation
operator selects a location in the string at random and egpptie inner loop of the
initialization algorithm shown in Figure 5.9 to it. In otheords, it connects a commu-
nication resource to PEs randomly. The communication megotonnectivity string’s
crossover operator cuts the participating strings at theesandom offset and swaps
the portions following the cut. The two participating sggalways come from solu-
tions that have the same communication resource allosabenause communication
resource connectivity string crossover is an intra-clugémetic operator.

During mutation, randomized local changes are made toieakiand clusters. Note
that randomized changes need not be entirely random, iugation may be directed to-
ward more promising results by heuristics as describedati®e6.4. Cluster mutations
occur a random number of times, varying from zero to the nurobelusters, during

each iteration of the cluster loop. Similarly, solution @itins occur a random number

64

times, varying from zero to the number of solutions, duriagteiteration of the solution
loop. During cluster PE allocation mutation, a PE of a ranlyaelected type is either
added or removed. Similarly, during communication resewaftocation mutation, a
randomly selected type of communication resource is edddded or removed. During
task assignment mutation, a task is randomly selected saadsignmentis re-initialized
as described in Section 6.5. During communication resocwo@ectivity mutation, the
PEs to which a communication resource is connected ardtralized as described in
Section 6.5.

Sometimes, due to PE allocation crossover or mutation, & Ririoved from a clus-
ter’'s allocation. When this happens it is necessary to athestask assignments of the
solutions within the cluster. Any tasks assigned to the RiSimust be immediately re-
assigned for the solutions in the cluster to remain stradljucorrect (see Section 5.5).
The assignments of the affected tasks are re-initializetjube algorithm described in
Section 6.5.

5.7 Solution evaluation

Performance evaluation consists of calculating a soligtioasts and determining
how severely they violate the constraints imposed by thgydes If one of the system’s
costs is higher than itsard constrainithe system is invalid. For example, the times at
which tasks are scheduled cannot exceed their hard realeimstraints. Valid systems
may have costs that are higher than thsmft constraintsalthough it is desirable to
reduce a cost until it is lower than its soft constraint. Iisthection, we will explain
how MOGAC does performance evaluation and then describerteess by which raw

performance metrics are converted into hard and soft ainstriolation values.

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 65

Figure 5.10: Task durations, communication event duratiand deadlines.

5.7.1 Scheduling

The PE allocations, communication resource allocatiask assignment, core as-
signment, and communication resource connectivities ofdQO’s solutions are opti-
mized by its genetic algorithm. Scheduling, however, igiedrout by a conventional
algorithm during each solution evaluation. MOGAC uses akslzased list scheduling
algorithm to generate static PE and communication res@aicedules. Static schedul-
ing makes it possible to guarantee that hard real-time caings will be met [124].
MOGAC'’s scheduling algorithm assigns a priority to a taskdshupon the difference
between its latest possible start time and its earliestilplesstart time. The relative
priorities of tasks in different task graphs, as well asetéht copies of the same task
graph, are based on the periods and deadlines of the diffgraphs. The scheduler
is capable of dealing with embedded system specificatiomghinh task graphs have

periods less than their deadlines.

Figure 5.11: Earliest finish times.

66

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 67

Figure 5.12: Latest finish times.

Slack computation is best illustrated with an example. f@gb.10, 5.11, 5.12, and
5.13 show the major steps in slack computation. The tasks@mdnunication events in
Figure 5.10 are labeled with their durations. Deadlinesase specified (21 ms, 18 ms,
and 8 ms). Figure 5.11 shows the earliest finish times of esth Earliest finish times
are computed by conducting a topological search of the teehg starting from the
node with no incoming edges. Each communication event iduret assumed to be the
duration required by the slowest communication resourcamecting the PEs to which
the communicating tasks are assigned. It is commonly assumdistributed comput-
ing research, that communication between tasks assigrtée same PE is effectively
instantaneous, relative to inter-PE communication. We idake this assumption. Fig-
ure 5.12 shows the latest finish times of each task. Lateshfiimes are computed by
conducting a backward topological search of the task grstphting from the nodes that
have deadlines. Figure 5.13 shows the slack of each taskk Sléhe different between
a tasks’s latest finish time and its earliest finish time. Acgapriority is equal to its

negated slack. Priority is static, i.e., it is computed befecheduling begins and is not

68

Figure 5.13: Slacks.

adjusted during scheduling. Priority computation, thereftakes (e+t) time, where
eis the number of edges amhds the number of tasks.

An example schedule is shown in Figure 5.14. This schedulesponds to the
allocation shown in Figure 5.1 and the assignment showrgargi5.2. In this example,
a task graph is shown on the right and one possible schedslkwign on the left. For
the sake of simplicity, a single rate schedule, in which teeqa of the task graph
is greater than its highest deadline, is shown. Task TO isdidkd to PE JO at time
zero. After this, communication event C1 is scheduled toroomication resource RO.
Note that communication event CO need not be scheduled betasks TO and T1 are
both assigned to PE JO. The schedule continues, similaitly,time ordering partially
determined by data dependencies.

Co-synthesis systems that use a straightforward apmitafithe LCM scheduling
method [105] are forced to repeatedly schedule each taghgmatil the hyperperiod
of the system has elapsed. This can be computationally ex@efor systems in which

the hyperperiod is large, relative to the periods of indiatkask graphs. MOGAC uses

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 69

Proc. JO Proc. KO Proc. K1 ~ Commun.
Res. RO @
70 Co C1
>
T1 Cl
~ () ()
. >
Time T2 T4 oo c4
C3
-
T3 CO0 and C4 need
Y not be scheduled

Figure 5.14: Example schedule.

heuristics to tackle system specifications with a large hyg@od. One of these is an
extension of a method used in real-time computing [125]. @roblem caused by a large
hyperperiod can be reduced by tightening the periods of sastegraphs. Consider a
system consisting of two periodic task graphs, in which tist Fas a period of 12, and
the second has a period of 13. The hyperperiod is, therei&@, If we tighten the

period of the second task graph to 12, however, the systeypsrperiod reduces to
12. The designer has full control over the aggressivenegswhich the hyperperiod

contraction heuristic is applied. MOGAC allows the desigioespecify the maximum

and minimum acceptable periods for each task graph in thersysSubject to these
constraints, a period for each task graph is calculated thathhe number of task graph

copies needed for LCM scheduling is minimized.

5.7.2 Task graph copies

When a task graph’s periog, is less than the hyperperida,of a task set% copies

of the graph are scheduled (see Section 3.4). Figure 5.0gss&io example schedule

70

Time

>

3 copies

[/Q‘o\;'ol /Q\)\;OI /bo] Period = 20 ms

Deadline = 20 ms

[/ Q‘?iﬂo/jo/ Qb\/'llo _,],O ngg(ljin:e 3:04r(r)15m5

T

2 copies

System hyperperiod = 60 ms

Figure 5.15: Task graph copies.

containing two task graphs. The upper task graph has a pefi@® ms, the lower
task graph has a period of 30 ms. As a result, the system hgmpedas 60 ms. Three
copies of the upper task graph must be scheduled and twosooipilee lower task graph
must be scheduled. Intuitively, scheduling new copies sk graphs until the system
hyperperiod is reached ensures that all inter-task graj@naictions that may ever be
encountered will have valid schedules. Somewhat lesstively, some graphs may
have periods that are less than their maximum deadlines. |oWer task graph has
a period of 30 ms but it has a maximum deadline of 40 ms. As dtresame tasks
from the first (left) task graph copy may continue to exectiter éhe second (right) task
graph copy begins execution. Some of the tasks in the secimyid)(task graph copy
may execute after the first task graph copy has started eng@gain, thereby wrapping
past the end of time to the beginning of time. This can be mugtively understood

by viewing time as circular.

Chapter 5: Synthesis of Low-Power Heterogeneous Dist8l/stems 71

Implicit task graph copies

Real task graph copie

Figure 5.16: Implicit task copy assignment.

We have developed a method in which some of the task graplesapihe hyper-
period aremplicit and some areesal (see Figure 5.16). Each implicit copy has a real
parent Implicit copies are not entered in a solution’s task agsignt string; they share
the assignment strings of their parents. Although it is seag/ to schedule implicit
task graph copies, there is no need to prioritize the nodésesk copies; the implicit
task graph node priorities are equivalent to the parentdessh node priorities. Addi-
tionally, the absence of implicit copies from a solutior@isk assignment string reduces
the size of the genetic algorithm’s solution space, thusding optimization. Selecting
a ratio of the number of real task graph copies to the totalberof task graph copies
involves making a trade-off between potential solutionliggiand MOGAC's run-time.
This decision is left to the designer. For the examples ini@e&.9, a low ratio € 0.2)

rapidly produced high-quality results.

5.7.3 Cost calculation

Hard real-time deadline violation, price, and power congtiom are computed dur-
ing cost calculation. The completion time of each node irsk tgaph is recorded during
scheduling. Therefore, the completion times of all node¢hk deadlines are available for

inspection. All schedules span the system’s hyperperiade s determined by taking

72

the sum of the prices of all PEs and communication resourcessolution’s PE and
communication resource allocations. System power consamis computed by step-
ping through each PE’s and communication resource’s hypegb schedule, obtaining
the system energy required, including the idle PE or compatitn resource energy,

and dividing the energy by the hyperperiod [68].

5.7.4 Constraint violation

A system’s constraint violations are derived from its castd the constraints im-
posed by the designer. Solutions have a number of hard edmtstrAlthough solutions
in which one or more hard constraints have been violatedraadid, MOGAC treats
them no differently than other solutions during its run. (iains that violate their hard
constraints are removed only at the end of a co-synthesis ltumay seem counter-
intuitive to allow invalid solutions to survive. Howeverpithg so is beneficial when
solving constrained problems [126], for there are significtisadvantages associated
with the alternatives. If one terminates invalid solutiomsnediately, one wastes a sig-
nificant amount of computation time in identifying such smuos. The solutions most
likely to eventually evolve into high-quality valid solotis are those that are near the
boundary between valid and invalid. By immediately terrtimgall invalid solutions
in each generation, one destroys many solutions that aly li& ultimately evolve into
high-quality valid solutions. One could, instead, attertgptepair invalid solutions.
However, in general it is difficult to formulate a repair ogion that is guaranteed to
repair all solutions [79]. Thus, one will often be forced ¢ominate solutions even after
expending computation time attempting to repair them. Moygortantly, a repair oper-
ation applied to a solution that was made invalid by crossdigupts a portion of that

solution, effectively changing the crossover operatohsihat it no longer preserves

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 73

eis the solution selection elitism.

G is a Gaussian random variable wjth= 0 ando? = %

nis the number of solutions to be replaced via reproduction.
Sis the array of solutions, withgs entries.

Sort solutions in the order of increasing Pareto-rank.

Fori:=0ton—1:
Select a random instanag,from G.
Seto:=Ls—1—g/e
SetSi] := So].

Figure 5.17: Solution reproduction algorithm.

locality. These problems are analogous to the problem witiminating or repairing
invalid solutions discussed in Section 5.5.

Every task graph has one or more nodes with specified deadlfksystem’s hard
real-time constraint violation is the sum of the time coaisir violations of all such

nodes in all the task graph copies in the system.

5.8 Ranking and reproduction

In this section, we explain the manner in which solutions elndters are selected
for reproduction. The number of clusters and solutions taaied by MOGAC is con-
served during one run of the algorithm. For each cluster lutism created via repro-
duction, another is terminated. The number of solutionschmsters maintained during
a run can be chosen at the start of the run. We typically uséuafecs, each of which
contains 20 solutions.

Solutions within a cluster are ranked using the method ptesen Section 4.5. In
each generation, a pre-specified number of solutions weaah cluster are eliminated

to make space for the reproduction of other solutions. MOGW&ntains a solution

74

selection elitism variableg, that controls the probability of high-rank solutions kgein
selected for reproduction. This variable increases dutiegun of the algorithm. This
feature has the practical effect of allowing MOGAC to morsilyaescape local minima
during the start of an optimization run. Near the end of a however, MOGAC be-
comes greedier to allow its solutions to converge on locaimmé. Solutions are selected
for reproduction by indexing inward from the highest-rarksolution with a Gaussian
random variable whose variance is the inverse.offhe pseudo-code for MOGAC's
reproduction algorithm is shown in Figure 5.17.

After reproduction, crossover and mutation are carriecbauhe solutions that were
copied. The number of crossovers and mutations per geoey&br each type of string,
are specified by user-defined parameters. Crossover isedpplirandomly selected
solution pairs that are selected from the solutions crelaya@production. Mutation is
applied to randomly selected solutions that are also ssldobm the solutions created
by reproduction.

Ranking clusters is more complicated than ranking solsti@ach solution has one
set of costs. Thus, determining whether it dominates anathiation is straightforward.
Clusters, however, contain numerous solutions; eacheslistassociated with many
sets of costs. We extend the concept of domination, in agstifairward way, to take
partial domination into account. Cluster domination isresgnted by a scalar instead
of a Boolean value. The definition of rank must also be adgusteen it is applied
to clusters. Let andy be clusters. Ni&) is the set of non-inferior solutions ix
dom(a,b) is 1 if ais not dominated by and O otherwise. Cdom is a function of two
clusters. Then,

cdom(x,y) = max dom(a,b)
acnis(x) benis(y)

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 75

and,

rankx| = cdom(x,y)
ye cluasters; y7éx

Once cluster ranks have been determined, cluster reptiodustanalogous to solution
reproduction. A pre-specified number of clusters is remdweeshake room for high-
rank clusters to reproduce. Clusters are selected fordeptmn in the same manner as
solutions. Cluster crossover and mutation are also anatgosolution crossover and

mutation.

5.9 Experimental results

MOGAC is a prototype consisting of approximately 18,00@4$rof Cr+ and Bison
code. Our results were obtained on a 200 MHz Pentium Promygi¢gh 96 MB of
memory running the Linux operating system. We compare osult® with those of
Yen [127], Hou [84], and COSYN [128], which were obtained o8RARCstation 20,
as well as those of SOS [76], which were obtained on a Solleofenies5e/900 (similar
to a SPARC 4/490). The CPU times are given in seconds.

MOGAC'’s input consists of two ASCII files. The first file speedithe attributes
of each PE, IC, and communication resource type that may ée@ tesimplement an
architecture. In addition, this file specifies the relatlips between PEs and tasks,
i.e., for each PE it contains arrays specifying the worseaaxecution times, average
power consumptions, and peak power consumptions of eaklotaghat PE. The sec-
ond file specifies the topologies, periods, deadlines, task$ communication events
associated with all the task graphs comprising the systauifggation. MOGAC runs
without designer intervention and, upon halting, outpuis or more solutions. Each so-
lution is a system architecture consisting of a price, pavegisumption, PE allocation,

IC allocation, communication resource allocation, coggaenents, task assignments,

76

communication resource connectivities, task schedutasaich PE, and communication

event schedules for each communication resource.

5.9.1 Price optimization

MOGAC has numerous parameters that can be modified to tumpeitermance.
Although every problem has its own optimal parameter sgstiit would be inappro-
priate to only report the CPU time necessary to achieve angietution if significantly
more time was spent finding a good set of parameters. We foinereise the same set
of parameters for all the examples presented in this sedtcaddition, the same value
is used to seed MOGAC's random number generator for evegltneesented in this
paper, with the exception of Table 5.4.

It was necessary to trade off run-time against solutionityyahen selecting a gen-
eral parameter set for the examples in this section. Usingaler solution pool and
cluster pool would allow MOGAC to produce low-cost soludior simple examples
more rapidly. However, the solution quality for more coropted examples would suf-
fer. For illustrative purposes, run-times achieved byrigiMOGAC’s parameters to an
individual problem’s complexity, as well as the run-timesattresulted from using the
general parameter set, are shown in the price optimizadioies.

Table 5.1 compares MOGAC's performance with that of COSYN] [&1d Yen's
system [127] when each is run on the clustered and unclustersions of Hou's task
graphs [84]. Task clustering is the process of using a pss-ftacollapse multiple tasks
into a cluster of tasks. This cluster is treated like a sitig#k during assignment, i.e.,
all the tasks in a cluster are executed on the same PE. Ghgsteduces the complexity
of the co-synthesis problem by decreasing the number o§ tdek must be assigned.
Hou ran Yen’s system on the clustered and unclustered versibhis graphs. We use

the same clusters as Hou when comparing our results wittahsthose of COSYN.

Chapter 5: Synthesis of Low-Power Heterogeneous Dist8l/stems 77

Table 5.1: Hou's examples

Yen's system COSYN MOGAC
Example || No-of |=m——T—¢cpy —] cPU [CPU | Tuned
Tasks || Price | time s) Price | time (s) Price | time (s) | time (s)
Hou 1&2
(unclustered) 20 170 | 10,205 || 170 5.1 170 5.7 2.8
Hou 3&4
(unclustered) 20 210 | 11,550 || n.a. n.a. 170 8.0 1.6
Hou 1&2
(clustered) 8 170 16.0 n.a. n.a. 170 5.1 0.7
Hou 3&4
(clustered) 6 170 3.3 n.a. n.a. 170 2.2 0.6

For the example upon which it was possible to make a compabistwveen MOGAC
and COSYN, COSYN’s performance was similar to that of MOGAGe only existing
implementation of COSYN is solely owned by Lucent. We reliedresults reported in
the literature to compare with COSYN.

It is interesting to observe the impact of an increase in lpralcomplexity upon
MOGAC and Yen's system. MOGAC’s CPU time increases slighthen it solves the
unclustered versions of Hou’s examples instead of the elledtversions. In contrast,
Yen's system takes approximately 1,000 times as long toym@dolutions. Despite
consuming significantly less CPU time, in one case MOGAC pced a lower-price
architecture than Yen’s system. The difference in solutjoality between Yen'’s sys-
tem and MOGAC is likely to be a result of differences in thespective optimization
infrastructures. The run-time of Yen'’s system is signiftbamfluenced by the method
used to guarantee schedule validity. In addition, Yen usegpéimization algorithm in
which a single solution is iteratively improved. Althoudtetsearch is not blind, only a
single stage of look-ahead is used. For each real evalyatibya single solution is im-

plicitly evaluated. Invalid solutions are terminated argty instead of being improved

78

Table 5.2: Prakash and Parker’'s examples

SOS COSYN MOGAC
Example || No. of | CPU , CPU , CPU | Tuned
(Performance || tasks || Price | 4o) Price | time) Price | time (s)| time (s)
Prakash &
Parker 1(4) 4 7 28 n.a. n.a. 7 3.3 0.2
Prakash &
Parker 1(7) 4 5 37 5 0.2 5 2.1 0.1
Prakash &
Parker 2(8) 9 7 4,511 n.a. n.a. 7 2.1 0.2
Prakash &
Parker 2(15) 9 5 385,012 5 0.4 5 2.3 0.1

upon. The use of a locality preserving crossover operatlowalMOGAC’s genetic al-
gorithm to implicitly evaluate more than one solution fockaxplicit evaluation (see
Section 4.3). Instead of maintaining a single solution thaves across the solution
space, MOGAC maintains multiple solutions that spread otdss the solution space.
These solutions share information with each other. MOGA€hapts to improve invalid
solutions, which are otherwise of high quality, insteadeofrtinating them immediately.
We believe that these features allow MOGAC to tackle largdiam instances without
a prohibitive increase in execution time.

The hyperperiod contraction heuristic described in Sachd was applied to the
clustered and unclustered versions of the task graphsiddiber 3&4. The period of
one of the task graphs in these examples was contracted by\&4vere able to de-
crease MOGAC'’s CPU time, without decreasing solution dudby tuning the size of
MOGAC's solution pool and making its halting conditionsdeslerant.

Table 5.2 compares MOGAC'’s performance with that of SOS BitiJ COSYN
when they are applied to Prakash and Parker’s task graphe pditiormance number

shown by each task graph is the worst-case finish time foratsiedgraph. For instance,

Chapter 5: Synthesis of Low-Power Heterogeneous Dist8l/stems 79

Table 5.3: Yen’s large random examples

Example No. of Yen'’s system MOGAC
Tasks || Price | CPU Time (s)|| Price | CPU Time (s)| Tuned (s)
Yen’'s Random 1| 50 281 10,252 75 6.4 0.2
Yen's Random 2 60 637 21,979 81 7.8 0.2

“Prakash & Parker 14),” refers to Prakash and Parker’s first task graph with a worst
case finish time of 4 time units. In these graphs, an uncommailtmodel for com-
munication is used [76]. A task may begin executing beforefaits input data have
arrived. We converted their specifications into graphs ¢baform to the conventional
communication model, i.e., a task can only begin executibemall of its input data
have arrived. Their model implies that part of each taskdependent of the task’s input
data. This is expressed by splitting each task into a pothahdepends on input data
and a portion that is independent of its input data. We enthateeach task’s subtasks
are assigned to the same PE. It is not surprising that SO$rescgignificantly more
CPU time than MOGAC. The mixed integer-linear programmilggathm used in SOS
has the potential to take exponential time, relative to tioblem instance complexity. It
guarantees optimality, while MOGAC makes no such guarariiesvever, in practice,
MOGAC also obtained optimal results.

Table 5.3 compares MOGAC'’s performance with that of Yen'steyn when each
system is applied to Yen's large random task graphs [127hdB@n 1 consists of six
task graphs, each of which contains approximately eigkstaBhere are eight PE types
available in this example. Random 2 consists of eight taakhg, each of which con-
tains approximately eight tasks. There are 12 PE typesadlaiin this example. Neither
of these examples contains communication resources;raliemication costs are zero.

The observations comparing MOGAC to Yen'’s system, in theutision of Table 5.1,

80

apply to these examples as well. However, the price savidgieeed by MOGAC are
even more substantial.

The task graph periods in these systems are co-prime. Therehe hyperperiod
contraction heuristic presented in Section 5.7 signifigareduces the number of task
graph copies that MOGAC is required to schedule. The hétmss prevented from
specifying task graph periods to be less than the correspgdéadlines, or greater than
their original periods [127]. MOGAC's performance dependsthe seed given to its
pseudo-random number generator. Each problem instance diésrent random seed
for which MOGAC produces the best results most rapidly. HeeveMOGAC is able
to arrive at a high-quality solution given suboptimal seetlgs solution pool size or
cluster pool size are increased, or its halting conditioesw@ade more lenient.

Table 5.4 shows the average results of optimizing each optlee optimization
examples thirty times, given random seeds ranging from ort@itty. In this table,
reported priceis the price reported for a single run of MOGAC with a fixed sések
Tables 5.1, 5.2, and 5.3ffort corresponds to the computing resources MOGAC is al-
lowed to dedicate to the problem. The meaning of each efédue/s given in Table 5.5.
Theaverage priceolumn shows the average price of the solutions. MOGAC wasTu
single-objective optimization mode for these experimenkerefore, each run produces
only one non-dominated solution. When MOGAC is given thesgarameters as were
used in the previous tables in this section, there are a smaiber of example-random
seed combinations for which it does not arrive at valid sohg. Slightly more liberal
parameters were used for Table 5.4 than for the precedirgstallhis ensures that
average pricdas meaningful. Note that, when allowed a modest increasenrtime,
MOGAC robustly deals with varying random seeds.

Table 5.5 shows the parameter settings corresponding oedfact setting in Table

5.4. Solutionds the total number of solutions per cluster argiv solutionss the number

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems

Table 5.4: Effect of varying random seed

| Problem | Reported Price|| Effort | Average Price] Average CPU Time (s)
1 183.3 23.1
Hou 1&2 2 175.0 56.2
(unclustered) 170 3 176.7 89.4
4 171.7 156.8
1 176.0 41.8
Hou 3&4 0 2 177.7 80.9
(unclustered) 17 3 171.0 1255
4 171.7 226.0
1 176.3 11.9
Hou 1&2 0 2 176.7 26.3
(clustered) 17 3 170.7 39.7
4 170.7 73.3
1 176.61 12.6
Hou 3&4 2 175.7 30.5
(clustered) 170 3 174.0 416
4 178.7 72.4
1 7.0 11.4
Prakash & Parker 1 2 7.0 31.7
(4) 7 3 7.0 79.9
4 7.0 89.6
1 5.0 8.0
Prakash & Parker 1 2 5.0 24.8
@) 5 3 5.0 0.1
4 5.0 73.3
1 7.3 10.1
Prakash & Parker 2 2 7.1 27.2
(8) 7 3 70 423
4 7.0 72.1
1 5.0 6.0
Prakash & Parker 2 2 5.0 18.0
(15) 5 3 5.0 295
4 5.0 54.1
1 75.0 18.7
Yen's 2 73.7 80.1
Random 1 75 3 744 1252
4 74.4 225.6
1 81.0 32.1
Yen’'s 2 81.0 91.1
Random 2 81 3 81.0 148.0
4 81.0 266.4

82

Table 5.5: Effort definitions

. New New Generations beforg
Effort || Solutions| ¢ tions| CIUSErs| ciysters halting
1 26 10 33 17 5
2 34 14 40 20 10
3 36 14 44 22 14
4 44 18 45 23 20

of solution reproductions that occur per generation, pester. Similarlyclustersand
new clustersare the total number of clusters and the number of clusteodegtions
per generationGenerations before haltingg the number of generations that must pass

without improvement in MOGAC's solution pool before MOGAGIts.

5.9.2 Multi-objective power and price optimization

Table 5.6 displays the results of simultaneously optingzihe price and power
consumption of system architectures based on examplesrneesin past work. The
database for the example called Yen’'s Random 2 contains @umydes and two core
types in addition to the processor types specified by Yerg total of 14 PE types. The
values shown in the “Ignoring Power” column indicate theutessof running MOGAC,
in single objective price optimization mode, on the same exidied system specifica-
tions. MOGAC was given the same parameters for all of the @kasnin this section,
although the parameter set used for price optimization icti@® 5.9.1 differs from
the parameter set used in this section. The database fildarsthese examples are
available at ftp://ftp.ee.princeton.edu/pub/dickrafis/Mogac. These examples do not
contain soft deadlines.

The advantage of multiobjective optimization, over the ofsa non-linear directed

cost function, can clearly be seen in Table 5.6. When MOGA@i#aneously optimizes

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems 83

Table 5.6: Power consumption examples

MOGAC Ignoring Power|| MOGAC Optimizing Power
Example No. of |— CPU , CPU
Tasks || Price | Power time (s) Price | Power time (s)
Hou 1&2 (unclustered) 20 170 | 60.6 16.9 170 | 51.8 89.6
Hou 3&4 (unclustered) 20 170 | 62.4 30.7 170 | 48.6 26.3
Hou 1&2 (clustered) 8 170 | 75.3 7.8 170 | 62.5 9.5
Hou 3&4 (clustered) 6 170 | 47.1 3.9 170 | 43.3 5.1
Prakash & Parker 14) 4 7 75.4 10.1 7 75.4
15 | 642 | 201
Prakash & Parker 17) 4 5 44 .4 8.5 5 44 .4
7 35.1 16.9
10 215
Prakash & Parker 28) 9 7 49.8 8.4 7 49.8
12 | a00 | 172
Prakash & Parker 215) 9 5 48.0 6.32 5 48.0
7 26.8 22.4
12 21.8
Yen’s Random 1 50 75 25.6 43.1 75 17.7
151 8.2
225 | 68 | 4931
301 3.3
Yen’s Random 2 60 81 39.8 59.2 81 34.4
153 | 25.4
158 | 15.7 268.8
214 9.9
338 7.0

power and price, it provides a designer with its entire setasf-inferior solutions. For
each system specification, only a single co-synthesis rismngaessary to produce all
the corresponding architectures whose costs are listeahle b.6.

MOGAC provides an upper bound on a problem’s Pareto-optsuhiltion set in-
stead of merely producing a single solution. This approdidwa a designer to see
the relationship between the costs of different architestthat satisfy the same system
specification. Figure 5.18 illustrates the danger of selga solution without knowing

the shape of a system’s non-inferior solution curve. Altjioall of MOGAC's solutions

84

35 r 7
30 ¢ price =153 1
/power:25.4
25 1
S
220 | :
=N
15 ¢ Pl 1
price =158
power = 15.7
10 ¢ :

100 150 200 250 300
Price

Figure 5.18: Yen's Random 2 example.

for Yen’s Random 2 example are non-inferior, a designer @oarely select the solution
with a price of 153 and a power consumption of 25.4 when, fai@epenalty of only 5,
a solution with a power consumption of 15.7 can be obtaineesdnhting a non-inferior

solution set shows the designer the cost tradeoffs availadtiveen different solutions.

Chapter 5: Synthesis of Low-Power Heterogeneous Distib&lstems

Power

40 60 80 100 120 140
Price

Figure 5.19: Very Large Random 1 example.

27

26.5

26 ¢

Power

255

25 ¢

245 44—V
35 40 45 50 55 60 65 70 75 80
Price

Figure 5.20: Very Large Random 2 example.

85

86

Figs. 5.19 and 5.20 show the results of optimizing very largsti-rate examples
that require communication resource synthesis. Thesalpseumdom examples were
generated with the TGFF system [129]. They are availablem@ymous FTP. The
first very large example contains 8 task graphs, each of wiash62 or 63 tasks. There
are 8 PE types and 5 communication resource types availdiid& AC took 40.9 CPU
minutes to arrive at the non-inferior solution curve showrrigure 5.19. The second
very large example contains 10 task graphs, each of whicl®®aasks. There are 20
PE types and 10 communication resource types available. MD®Bok 203.5 CPU
minutes to arrive at the non-inferior solution curve showifrigure 5.20. The primary
purpose of these examples is to demonstrate that MOGAC gadtlyaolve extremely
large problem instances. We hope that others will use themm@es for comparative

purposes.

5.10 Conclusions

In this chapter, we have presented a method for the co-syistioé low-power
real-time multi-rate heterogeneous hardware-softwastriduted embedded systems.
A novel multiobjective genetic algorithm that allows exltion of the Pareto-optimal
set of architectures instead of providing a designer witimgls solution, has been de-
veloped and applied to a number of examples found in theatitee. MOGAC has
been shown to rapidly synthesize architectures with costsare lower than or equal
to those presented in previous work. For large examples which comparisons with
other systems are possible, MOGAC produces significantrgtecost solutions, despite
requiring orders of magnitude less run-time. It has beenaestnated that adaptive mul-

tiobjective PRSA algorithms are well suited to solving tleesynthesis problem.

Chapter 6

Enhanced Low-Power Heterogeneous

Distributed Systems Synthesis

In this chapter, we introduce a number of improvements toogitemization algo-
rithm described in Chapter 5. We refer to the resulting og#tmon infrastructure as
EMOGAC. Section 6.1 describes changes made to our hardwaoeince model to
increase its accuracy. Section 6.2 describes changes tiptimization infrastructure
that make it conform more closely to the definition of palakkEombinative simulated
annealing and improve its performance. Section 6.3 de=tiibe changes we made
to crossover in order to better preserve locality. Sectidnd@scribes a new task as-
signment mutation algorithm that takes problem-speciferimation into account. Sec-
tion 6.5 describes the constructive algorithm used toalite solutions. Section 6.6
describes EMOGAC's cost calculation algorithms. Sectioh éxplains a method of
caching solutions that improves EMOGAC's performance. tiSec6.8 introduces a
new embedded synthesis benchmark suite we have developegaredént experimental

results and conclusions in Sections 6.9 and 6.10.

87

88

6.1 Communication and memory model

In this section, we describe changes made to the commumicegsource model
presented in Section 3.7 in order to increase its accuratyddition, we present an
enhanced memory model.

Processing elements (PEs) that have had their performaacaaterized for the Em-
bedded Microprocessor Benchmark Consortium benchmaites(giescribed in Section
6.8) are representative of those commonly used to impleerabedded systems. The
differences between bus protocols for these PEs motivatéd make a change in our
communication resource model. We have augmented the silpksical model de-
scribed in Section 3.7 with a new cost, price per contactpoasent bus bridge and/or
interface circuit price. The augmented communicationues®model may be used to
model a bus that requires a protocol translator, or bridgeed&ch connected processor
by assigning the bus an appropriate controller price anahtacoprice equal to the price
of a bus bridge.

We use a memory model in which each PE has a dedicated memeadybysthe
tasks assigned to it. It might, at first, seem desirable tmnafihared external memo-
ries in order to reduce the total quantity of memory, and nemab packages, required
in the embedded system. Unfortunately, using shared ettememory requires that
communication with memory be scheduled in a way that avoagention between
memory access requests by tasks assigned to different BEsswduld require detailed
information about the exact times at which different taséseas memory. Gathering
this information would be difficult; it would be processaggkendent and data-set de-
pendent. In the absence of this information, in order to guiae that hard real-time

deadlines are met, it would be necessary to assume eachaastactly accesses the

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 89

shared memory during its execution. This would prevent ipleltasks from execut-
ing concurrently on different PEs, eliminating one of thejonadvantages of having
multiple PEs. Therefore, we associate dedicated memotyegith PE.

We compute the quantity of memory associated with each Pédogson code and
data memory requirements. For each PE, we require an eritng iRE database giving
the code size of each task type that may execute on that PEEotieenemory for a PE in
a solution’s allocation is the sum of the code memory requénets of the tasks assigned
to that PE. We do not currently have access to any benchnravidsich the data mem-
ory requirements of each task are given. Therefore, we nfakadsumption that each
task requires an amount of data memory equal to the sum ottiaegdiantities of its in-
coming and outgoing communication events. Although tharieasonable assumption
for many dataflow tasks, it should be noted that this methazbofputing memory re-
qguirements could easily be changed in the presence of mtaidedkinformation about
task data memory requirements. In order to compute the merequirements for a
PE, we take the maximum of the data memory requirements tiellasks assigned to
it, and add the sum of the code memory requirements of the tasdigned to it. Note
that task code could initially be stored in electrically pgrammable read-only memories
(EPROMSs), and transferred to PE local memories during sygtéialization. Memo-
ries commonly have sizes that are integer powers of two. dieroio be conservative,

we ensure that each PE has a quantity of memory that is areinpegver of two.

6.2 Optimization infrastructure

In this section, we describe changes made to our optimizatiastructure caus-
ing it to more closely conform to the definition of a paralletombinative simulated

annealing (PRSA) algorithm.

90

During our design of MOGAC, described in Chapter 5, we wamdeloild an opti-
mization infrastructure with the multiobjective optimizan strength of a genetic algo-
rithm and the resistance to becoming trapped in local mirofreasimulated annealing
algorithm. We believe MOGAC meets these criteria. Howeitewas not, exactly,
a PRSA algorithm. We have subsequently changed our solgjamoduction method
from that described in Section 5.8 to that described in 8ecti4. Changing from a
method that does randomized weighted ranking to a methdctimalucts Boltzmann
trials between the old and new solutions after mutation aogsover makes EMOGAC
conform more closely to the definition of a PRSA. The main neing exception stems
from the multiobjective nature of the embedded system ®gishproblem. In order
to use Pareto-ranking for multiobjective optimization, kaak all solutions relative to
each other. This requires a comparison between every psatations. Based on empir-
ical observations of algorithm performance, we have chaséto constrain Boltzmann
trials such that they only occur between direct participantthe same crossover or
mutation operation. Constraining Boltzmann trials in timanner has the advantage
of easing parallel implementation of PRSA algorithm. Hoem\or a multiobjective
optimization algorithm using Pareto-ranking, this adeaetis illusory.

At the end of a solution loop, after new solutions have beeated and changed as
described in Sections 5.6 and 6.3, solutions within eacéteflare ranked based on the
costs described in Section 5.7.3, using the method desldnl@ection 4.5. Boltzmann
trials (see Section 4.2) are then used to eliminate solsitioril the cluster contains the
same number of solutions as it did at the start of the loo@titem. At the end of a
cluster loop, Boltzmann trials are used to eliminate chssitea similar way.

In EMOGAC, the global temperature used in Boltzmann triadsrdases linearly
(subtractively) during execution. We experimented withtiplicative and linear cool-

ing schedules and found that using a linear cooling schegknierally resulted in better

Chapter 6: Enhanced Low-Power Heterogeneous Distributete®s Synthesis 91

solution quality and optimization time. When a user-sa@datumber of generations

pass without improvement in solutions, the temperaturecsehsed.

6.3 Multidimensional locality preserving crossover

In a conventional PRSA algorithm, each solution is represeby a string, i.e., a
linear array of values. Information is traded between d#ifé solutions by conduct-
ing crossover of the strings representing them. Unforelgathe solutions to many
real problems cannot be cleanly represented by one-dimaistrings of values. Each
solution in EMOGAC is represented by a collection of valies;h of which is associ-
ated with a multidimensional vector. For example, each tfpeE in a solution’s PE
allocation is associated with a scalar value indicatingrthiaber of PEs of the corre-
sponding type existing in the solution, as described iniGed&.3. In addition, each
type of PE is associated with a multidimensional vector desy its attributes, i.e.,
price is one dimension, weighted average power consumistemother dimension, and
weighted average execution time is a third dimension, etmveéntionally, researchers
who use genetic algorithms impose a linear order on thenmdition representing a solu-
tion. However, there are problems with this approach. Faete algorithms to operate
efficiently, it is necessary for their crossover operatiangreserve locality [120], [121].

When solutions are represented by multidimensional datatstes, the complexity
of imposing a good locality-preserving order on a soluti®increased. Consider the
problem of imposing a linear order on a senedimensional vectors. If it is possible to
make the assumption that locality is inversely proportidag&uclidean distance, i.e.,
the attributes that are closest together in space are canfoof the same mostly in-

dependent sub-solutions, building blocks then imposing a linear optimally locality

92

Price

Power consumption

Figure 6.1: Selection of random orientation in crossover.

preserving order on these attributes is equivalent tantdanensional Euclidean trav-
eling salesman problem, which is NP-complete [112]. Evenvifere computationally
feasible to find an optimal solution to this problem, in gethereducing the dimension-
ality of information fromn to one would result in a distortion of space and, consequentl
bias the exploration of the solution space. In order to eecsmine building blocks con-
tiguously, it is necessary to disrupt others. EMOGAC atttntgp mitigate the effects of
this disruption by dynamically imposing a linear order or #lements of a solution’s
allocations and assignments. This allows the preservatidocality for a different
combination of dimensions during each crossover.

EMOGAC'’s dynamic locality preserving linearization algbm assumes an inverse
correlation between the distances between resourcesP&sg. in a multi-dimensional
cost space and membership in the same building blocks. Tgusithm has two stages.
An illustration of the first stage is shown in Figure 6.1. Hoe tsake of simplifying

this example, we will discuss only two PE dimensions: pricd power consumption.

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 93

! Don't
A Swap \\ O swap

Price

\
\

o O

. O

A >
Power consumption

Figure 6.2: Selection of bounded random position in crossov

However, in general, this method may be appliedimensional elements, whene
is an arbitrary positive integer. Each circle in Figure &Xnh element in a solution’s
PE allocation, i.e., each circle corresponds to a PE. llyitia randomly oriented, unit
length vector (labeledandom orientationin the illustration) is placed in the PE allo-
cation hyper-space (a plane in this example). The dot ptasfuzach element and this
vector is taken, i.e., the relative offsets of the intereest between tha— 1 dimension
hyper-planes that intersect the elements and are perpgadio the randomly oriented
vector are computed. As shown in Figure 6.2, an offset batweEminimum and max-
imum dot products is then randomly selected using a unifamdom variable. Am— 1
dimension hyper-plane perpendicular to the randomly teenector is then placed at
this offset and the values associated with elements on aleecdithe hyper-plane are
swapped between solutions while the values associateceleithents on the other side

remain in their original solutions.

94

When carrying out crossover, we take care not to disruptisslcomponents, e.g.,
during PE allocation crossover, solution task assignmaddpt to the loss of PEs via
re-assignment, as described in the next section.

It is our belief that the effects of locality preservatiorridig crossover between solu-
tions with multidimensional representations is an areaiwiévolutionary optimization
theory that can have great impact on solution quality butilisg®orly understood. Pe-
likan, Goldberg, and Canl-Paz have noted the difficultyupdanatically identifying so-
lution building blocks in order to better preserve locatitying crossover and developed
an adaptive method of building block identification based®Bagesian networks [130].
After comparing it with a number of alternative methods c#gmrving locality during
crossover, we are satisfied with the performance of the steuwe have described in
this section. However, in the future we hope to consider tbblpm of locality preserv-

ing crossover for multidimensional solution representagiin more detail.

6.4 Guided task assignment mutation

A desire for improved performance, especially on problemsvhich the band-
width of communication resources is tightly constraineativated us to incorporate
problem-specific knowledge within EMOGAC's task assigntm@mitation algorithm.
This change also resulted in improved performance for gih@slem domains. In this
section, we describe this guided task assignment mutalgonitom.

As described in Section 5.6, mutation makes randomizedgesato task assign-
ments. However, these changes need not be random: they ntaydsel by problem-
specific heuristics. We have developed a guided task assiginmutation algorithm
that attempts to minimize PE over-use, task execution tand, communication time.

After randomly selecting a task to be reassigned, this beamgenerates an array of

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 95

PEs capable of executing it. Three costs are associateceatth PE in the solution’s
allocation: communication time, execution time, and logdi

Communication time is a metric that takes into account thgaich of a change to a
task’s assignment upon the amount of time required to tréansooming and outgoing
data. A task’s neighbors are the other tasks with which itrooimicates, i.e., the tasks
connected to it by arcs as shown in Figure 3.2. Qgf be the quantity of data, in bits,
transferred along the edge between a tasland one of its neighbor$, Let function
ctime(q, Pa, Py) give an estimate of the amount of time required to trangniiits of
data between the PIP,, to which taska is assigned and the PB,, to which taskb
is assigned. In a distributed system, we approximate theuatnaf time required to
transmit information between a pair of PEs based on the geatata transmission rate
of the communication resources in that solution’s allaratiWe previously computed
the set of communication resources between each pair of E®ie accurately ap-
proximate communication time. However, the CPU time resplifor this operation was
too costly to justify the potential for improved estimatidn our wireless client-server
system synthesis algorithm, described in Chapter 8, wetaiaiseparate average data
transmission rates for the communication resources inlitietcthe communication re-
sources in the server, and the wireless communication resoin the system-on-chip
synthesis algorithm described in Chapter 7, we do not useat@@ communication time
to guide task assignment. Instead, when high-priority comigation occurs between a
pair of PE’s, we position them close together on the integkatrcuit to reduce commu-
nication time. The communication tin@ 1 for each PEP, a task,T, might potentially
be assigned to is the sum of the communication times for camwation between that

task and all of its neighbors, sk, i.e.,

Cpr = % ctime(Qri,P,R)
ieNt

96

We attempted defining communication time as the maximum conication time for
any neighbor of the task under consideration. Howeverguaisum instead of a maxi-
mum resulted in better solution quality.

In addition to communication timé&, we use execution time to prioritize PES to
which a task might potentially be assigned. Execution timthe amount of time re-
quired to execute the task on the PE under considerationfi@diprioritization metric
is loading, the proportion of a PE’s time, in the system hppepd, that has already
been occupied by the other tasks assigned to it, i.&.jsfthe system hyperperiod;
is the set of all tasks assigned to PEand function etiméP, T) is the time required to
execute task’ on PEP, then the execution timEpt for each PEP, a task,T, might

potentially be assigned to is defined as follows:
etime(P,i)

Unless all PEs are overloaded, i.e., have a loading greaderdr equal to one, over-
loaded PEs are not considered legitimate targets for tasgranent.

Note that we have three metrics for the quality of PEs to whithsk’s assignment
might potentially mutate. We rank candidate PEs by usingPdaeto-ranking method
described in Section 4.5. We considered using only two dostisis Pareto-ranking:
loading and the sum of communication time and execution.tiHoevever, we found that
leaving communication time and execution time separatéRerteto-ranking resulted in
better solutions. After ranking, PEs are sorted by theiksakVe empirically determined
that better results were produced when PEs of the same raekarelomly ordered, i.e.,
EMOGAC does not allow solution encoding to bias task assigmtrdecisions. Once the
PEs are ordered, we select one by indexing into the array ®tiBiag a random variable
with a probability density function (PDF) that favors PEs$twthe highest rank. We tried
using a number of different indexing functions but settledaomathematically elegant

approach that produces good results.

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 97

c) PDF for abs(x +y)

Figure 6.3: Probability density functions

We wanted a function that, given uniform random variable YWWRistances, pro-
duces random variable instances with a biased PDF. In additie wanted to be able
to control the degree of bias toward selecting high-rank. PBs will now present a
function meeting the first requirement. beandy be uncorrelated URVs in the range
3, 2) with the PDF’s shown in Figure 6.3a. Recall that the PDF oftia of two URVs
is the convolution of their PDFs. Therefore, the PDF of twoMdRvith equal ranges is
a pyramid peaking at the sum of their means, as shown in Fi§@te By taking the

absolute value ok +y we get the triangular PDF shown in Figure 6.3c. The random

98

0 1 1.5
b) Computation of g(0.333, X, y)

0.476

15
c) PDF of g(0.333, x, y)

Figure 6.4: Calculation of(@, x,y)

variable instances produced in this manner range from payoé and are biased toward

zero. Thus, the following function satisfies our first requient:

f(x,y) = abg(x+Y)

In order to satisfy our second requirement, we introducepestontrol variables,

with a range of0,1). Whens = 0 we would like function ¢s,x,y) to produce random

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 99

variable instances that have a PDF with a slope of 0 in theergh@). Whens= 1 we
would like function ds, X, y) to produce random variable instances that have a PDF with

a slope of-2 in the range0, 1). Let

1
smods) = %

and

Figure 6.4a shows the PDF fof(x333 x,y). Note that the maximum value of this

function is greater than one. Now let

r(S7X7y) < 1 if r(S_/ ny)
g(s; X, y) —
r(s,xy)>1 if 1 [xy_smods

1-smods)

As illustrated for the case in whick= 0.333 in Figure 6.4b, the case in which
r(s,x,y) is greater than one can be intuitively understood as refigdtie tail of the
PDF, i.e., the portion for values greater than one, back wpememainder of the PDF
and scaling the tail such that it covers the raf@é). Figure 6.4c shows the PDF for
0(0.333 x,y). Note that, given URVS andy, g(s,X,y) produces random variables with
a PDF bias controlled bg. We use the function(g, x,y), multiplied by the number of
PEs to which a task might be assigned, to index downward @oank-sorted array of
PEs. In practice, setting—= % results in high-quality solutions.

In addition to guiding task assignment mutation, we alsdabalistically constrain
differences in task assignment mutation between diffeceptes of the same task in
the hyperperiod. We allow tasks in different copies of a tasdph to be assigned to
different PEs, as described in Section 5.7.2. However, we taveloped a more flexible
way of integrating control of these task assignment prdhigsi into the evolutionary

algorithm. We allow the user to provide a parameter spewfyine probability, per task

100

assignment mutation, that the mutation will affect all ohaki’'s copies instead of only
one task copy. This allows arbitrary combinations of taskigasments to be explored
while making it possible to focus the search on promising afethe solution space in
which most copies of a task are assigned to the same PE. Tigndemay specify the
proportion (a value greater than 0.9 works well in practafegpask assignment changes
that are made to all copies of a task, and the proportion oftla@ges that are made to

only a single copy.

6.5 Initialization

At the start of the EMOGAC's run, the initial solution pool sttbe populated. A
user-defined number of clusters is created, each of whidarwa user-defined number
of solutions. Constructive algorithms are used to ini@lcluster allocations, commu-
nication resource allocations, task assignments, and comneation resource connectiv-
ities.

In the first step of PE allocation initialization, it is ensdrthat, for each type of task
in the task set, there is at least one PE capable of exechrigsk. This is accomplished
by iteratively finding a task that cannot be executed by arth@PEs in the allocation,
and adding a randomly selected PE of a type capable of exegcihie task. Note that,
even after this step, it is still possible that there are @& fesources to execute all
the tasks in the system before their hard deadlines. In tkiestep, additional PEs are
randomly added until there are sufficient hardware ressuexecute all tasks within
an amount of time equal to the hyperperiod multiplied by dasch. The valueh is
proportional to twice the ratio of the index of the clustethe total number of clusters,
i.e., some clusters will have few PEs in their allocation atiters will have many. This

allocation diversity in the initial solution pool improvegtimization.

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 101

After a PE allocation has been decided, task assignmenisitiadized by a two-
stage algorithm. In the first stage, information is not yetilable about communication
times. Therefore, a modified version of the algorithm désatiin Section 6.4 is used to
assign each task to a PE. This algorithm considers all therieriof the guided task mu-
tation algorithm, with the exception of communication tenéfter the first stage of task
assignment initialization is complete, the second staggsigns each task using the full
guided task assignment mutation algorithm, i.e., it corsidhe communication times
associated with different potential task assignments. i@anication resource connec-
tivity is initially random, i.e., each contact of a commuattion resource is attached to a

randomly selected PE.

6.6 Cost calculation

In this section, we describe EMOGAC'’s cost calculation athpmns. Before a so-
lution’s cost may be calculated it is necessary to genetatschedule. The first step
in scheduling is task prioritization. Now that task execonttimes and communication
times are known, it is possible to use slack, earliest stag {EST), and latest finish
time (LFT) based prioritization. The method of prioritiat and scheduling is similar
to that used in Section 5.7.1. As in MOGAC, we use negativekslthe difference be-
tween a task’s EFT and its LFT, to prioritize tasks. HoweneEMOGAC, we also use
other priority metrics if slack-based prioritization doest produce a solution that meets
all its hard real-time deadlines. If slack-based scheduimes not work, EMOGAC also
attempts to produce a valid schedule using negative ESTthemdhegative LFT, as pri-
ority metrics. We found that using multiple priority mesianproved solution quality,

for some problems.

102

Although EMOGAC uses multiple prioritization metrics whigrere is some hope of
producing a valid schedule, it is careful to avoid needleksdguling. A PE is overloaded
if the sum of the execution times of the tasks assigned togteater than the system
hyperperiod. EMOGAC does not spend time generating sckedoit solutions in which
some PEs are overloaded. Instead, it notes the degree th Whis are overloaded
and uses this cost for comparison with other solutions. dwng needless scheduling
decreases the amount of run-time the synthesis algoritequare without decreasing
solution quality.

The other aspects of cost calculation are similar to thoserd®ed in Section 5.7.3.
However, price computation differs slightly. The pricesREs to which no tasks are
assigned, and communication resources that carry no comatiom events, are not
included in the price of the embedded system. Such unusedrees play a role in
optimization. However, they should not appear in a manufadctembedded system. In
addition, each PE has a local memory with a size computeceimidmnner described in
Section 6.1. The price of this memory is determined basedmita per bit value read
from the resource database. Each solution has a soft deadltilation proportion cost,
defined as the sum of the times by which every copy of everyitasike architecture

misses its soft deadline, divided by the hyperperiod.

6.7 Solution cache

Every time a solution is changed, it is necessary to determsmew cost. Carrying
out cost evaluation every time a solution changes would bartbst straightforward
approach. However, solution evaluation, which requirégedaling, and might require

floorplan block placement (see Section 7.6) and bus topolegeration (see Section

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 103

7.8), is the most time-consuming operation undertaken yhawware-software co-
synthesis and embedded system synthesis algorithms. é&n twdavoid needless so-
lution evaluations, EMOGAC maintains a cache of solutiostcsets to prevent the
re-evaluation of solutions after every modification. In algorithms, scheduling, floor-
planning, and bus topology generation are deterministicerdfore, for any PE allo-
cation, task assignment, link allocation, and link conivégt there exists exactly one
system cost set. Thus, any solution is characterized by 8 amaunt of information,
relative to the amount of information computed during cesi@ation.

Sometimes, solution mutation and crossover produces f@oldentical to one for
which cost calculation was previously done. In these cabessolution’s cost set is
retrieved from a cache, making it unnecessary to carry ostt @aluation. We use a
least-recently used (LRU) replacement policy. The cacheisidynamically controlled
based on EMOGAC's total memory usage, i.e., we allow morgesnto exist if the en-
tries consume little memory. Our experimental resultsdatéi that the cache is usually

hit 50% of the time. Its use generally cuts synthesis timeaif h

6.8 Benchmarks

In this section, we describe our motivations for constngtn embedded system
synthesis benchmarks suite based on the Embedded MicegsmcBenchmark Con-
sortium (EEMBC) benchmarks suite [131], and briefly desethis benchmarks suite.

Our hardware-software co-synthesis and embedded systahesys algorithms can
be viewed as functions that take an embedded system sysiffirelem specifications,
i.e., a resource databases as well as behavioral and dahspecifications, as their in-
put, and produce embedded system architectures as thgirtolrt order to demonstrate

the operation of our synthesis algorithms, it is necessapydvide them with embedded

104

system synthesis problem specifications. Making thesdgmobpecifications public al-
lows other researchers to compare the results producedebyallgorithms with those
produced by ours.

Acquiring realistic embedded system synthesis problenciBpations is difficult.
Ideally, we would have access to large industrial probleatdjgations. A colleague of
ours was employed by a company that is heavily involved inesidbd systems design.
He requested the release of some old specifications to us amim-disclosure agree-
ment. However, even in this nearly ideal situation, the lldgaartment of his company
refused to give us access to the specifications. As a restiteddifficulty of getting
access to industrial examples, we were left with three athb&ons.

It is possible to find examples in the embedded systems déggature. This ap-
proach has the advantage of allowing easy comparison of Igarithms with those
designed by other researchers. However, it also has a nushbléesadvantages. Most
examples in the literature are simple, small, and somewiraalistic. In addition, they
typically assume synthesis software that solves the mast bdhardware-software co-
synthesis problems, i.e., power consumption, and issleedeo single-chip synthesis
are neglected. Nonetheless, we run our algorithms on exefaim the literature.

We could hand-generate our own examples. This would painéllow us to pro-
duce larger and more realistic problem specifications thaee common in the litera-
ture. However, there is a reason for the scarcity of largeraalistic problem specifica-
tions. Accurately characterizing a large set of resouroesspecifying the constraints
on an embedded system takes a lot of time. For each subst&@iaple, we would be
required to do a large portion of the work required to desigembedded system. This
would have diverted a great deal of our resources away frggareh and toward useful
but mundane design projects. However, we do use some mapuatiuced embedded

system problem specifications for illustrative purposesaddition, we have gathered

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 105

information about hardware resources. This informationeseas a starting point for
automatically generated examples.

In collaboration with David Rhodes, an algorithm was depebbfor the automatic
generation of embedded system problem specifications (pperflix A). This algo-
rithm is parametric, i.e., it allows the user to control tleagral attributes of the resource
databases and task sets it generates. This allows the us@efaf the characteristics of
real processors, real communication resources, and niaussk sets in automatically
generated embedded system problem specifications. Aut@ityagenerated examples
have a number of advantages over examples from the literahd hand-generated ex-
amples. One can rapidly generate numerous large, diffepgraplem instances with
similar structural attributes.

In order to ease collaboration in finding and building emlaebldystem synthesis
benchmarks, we established a mailing list [102]. We comsidiéhe discussions on this
list when collecting benchmarks for this dissertation. @benchmarks motivate better
problem formulations and algorithms. We have developedaeelded system synthe-
sis benchmarks suite, called E3S, based on data from EEMBQ.[The first release
of E3S contains 17 processors, e.g., the AMD ElanSC520,o4nBlevices 21065L,
the Motorola MPC555, and the Texas Instruments TMS320C620i&se processors
are characterized based on the measured execution timéstagks, power numbers
derived from processor datasheets, and additional infbomee.g., die sizes, some of
which were necessarily estimated, and prices gathered bylieghand calling numer-
ous processor vendors. In addition, E3S contains commitimniceesources modeling
a number of different busses, e.g., CAN, IEEE1394, PCI, USB &nd VME. Our
task sets follow the organization of the EEMBC benchmarkseré is one task set for
each of the five application suites: automotive/industdahsumer, networking, office

automation, and telecommunications. This benchmark kagebeen publicly released

106

and are available via the E3S link on the http://www.eegaion.edu/ cad/projects.html

web page. We make heavy use of E3S in this dissertation.

6.9 Experimental results

In this section, we present the results produced by runnM@EAC on the E3S
benchmarks suite, introduced in the previous section, amahaber of examples from

the literature.

6.9.1 Multiobjective optimization for the E3S benchmarks

Table 6.1 gives the results of running EMOGAC on the E3S beracks and simul-
taneously optimizing price, power consumption, and sadidtiee violation proportion.
Note that multiple solutions trading off these costs werdpced for each benchmark.
In Table 6.1, the first column gives the name of the benchntlagksecond column gives
the price of each solution, the third column gives the ave@myver consumption of each
solution, and the fourth column gives the soft deadlineatioh proportion (see Section
6.6) of each solution. We rounded prices and power consomptip to the nearest
dollar and milliwatt. This table demonstrates that EMOGAGapable of running on
examples containing 47 tasks representing a wide range bée@ded application, and
17 commonly used embedded processors. For these problestti®ective optimiza-
tion was valuable, i.e., there were dramatic differenceés/éen the prices and power
consumptions of different non-dominated solutions. Fa@megle, among the different
solutions to the Automotive-Industrial problem, pricesied from $169 to $652, power
consumptions varied from 167 mW to 184 mW, and soft deadlioktion proportions
varied from 1.13 to 2.08.

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 107

Table 6.1: Multiobjective optimization for the E3S benchhksa

, Average Soft DL

Example Price (%) power (mW) | viol. prop.
169 167 2.08
_ 453 140 1.50
Automot_lve- 530 316 1.05
Industrial 652 182 1.24
652 184 1.13
. 57 72 1.31
Networking 70 101 1.23
291 1569 4.58
291 1666 4.57
Telecom 378 2098 3.18
379 1974 3.44
155 298 1.57
176 378 1.46
Consumer | 55q 351 1.52
365 355 1.42
66 55 0.02
Office 127 449 0.01
Automation 184 440 0.01
215 273 0.01

6.9.2 Priceonly optimization for examples from the the literature

Table 6.2 shows the results of running EMOGAC on all of Prakasd Parker's SOS
examples [76]. The first column shows the names of the exanjplee second column
shows the prices of the solutions found by EMOGAC. The otldurans show the
prices of the solutions found by algorithms developed byeotksearchers. The third
column is for SOS, Prakash and Parker’s mixed integerHlipeagramming (MILP) al-

gorithm [76]. This algorithm has the advantage of guarantgeptimality. However,

Table 6.2: Prices for Prakash and Parker’'s examples

108

Example Oh & Ha’s
(performance EMOGAC | SO5| COSYN algorithm
P&P 1(2.5 14 14 n.a. n.a.
P&P 1(3) 13 13 n.a. n.a.
P&P 1(4) 7 7 n.a. 7
P&P 1(7) 5 5 5 5
P&P 2(5) 14(15)t | 15 n.a. n.a.
P&P 2(6) 12 12 n.a. n.a.
P&P 2(7) 7(8) T 8 n.a. n.a.
P&P 2(8) 7 7 n.a. 7
P&P 2(15) 5 5 5 5
P&P 3(6) 10 10 10 n.a.
P&P 3(7) 6 6 n.a. n.a.
P&P 3(15) 5 5 5 n.a.
| T See Figure 6.5. |

its run-time increases dramatically with increasing peobcomplexity. The fourth col-
umn is for COSYN, a constructive algorithm, [128]. The fiftlemn is for Oh and Ha’s
heuristic [75]. Entries of n.a. indicate that a result fog ttorresponding problem and
optimization algorithm was not reported in the literaturee P&P 2(5) and P&P 2(7)
entries are explained in the next few paragraphs.

Prakash and Parker’'s examples contained no soft deadlinesa@r information.
Therefore, we ran EMOGAC in single-objective price optiatian mode. We used the
same optimization parameters for each of these examplé$oathose in the next sub-
section. A 1.4 GHz AMD Athlon Thunderbird CPU was used to edivese problems.
Each example took between 12 and 35 minutes of CPU time. Matdttis possible
for EMOGAC to produce good solutions to the simpler PrakaghRarker examples in
significantly less than 12 minutes of CPU time. However, wated to use the same

optimization parameters for all of Prakash and Parker'smptas, as well as all of Hou

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 109

e Deadline 5: For this example, SOS’s optimal solution to ttedfem contains
exactly one pair of back-to-back links. A bidirectional cmmication model
might allow one of these links to be removed, thereby redutie solution
price by, at most, one unit. Our algorithm arrived at suchlatem. If one
were to re-insert that link, the solution price would be 1%ich we have
shown in parenthesis in Table 6.2.

e Deadline 6: SOS’s optimal solution to this problem contaia$ack-to-back
links. A bidirectional communication model will not makeiak redundant,
allowing it to be removed.

e Deadline 7: SOS’s optimal solution to this problem contaeactly one
back-to-back pair of links. A bidirectional communicatiorodel might al-
low one of these links to be removed, reducing the solutiacegdry, at most,
one unit. Our algorithm arrived at such a solution. If oneevir re-insert
that link, the solution price would be 8, which we have showparenthesis
in Table 6.2.

e Deadline 8: SOS’s optimal solution to this problem contaia$ack-to-back
links. A bidirectional communication model will not allomg improvement
to the solution.

e Deadline 15: SOS’s optimal solution to this problem corgaio point-to-
point communication links. A bidirectional communicatiorodel will not
make a link redundant, allowing it to be removed.

Figure 6.5: Impact of difference on communication modelR&P 2 example.

and Wolf’s examples. Therefore, we selected a solution pi@aeland halting conditions
sufficient for more complicated problems, i.e., we grantesl dptimization algorithm
more CPU time than was necessary for simple problems sottwaiuld have good
performance on complicated problems. The dependence of &M CPU time re-
quirements upon problem complexity stand in contrast withrequirements of SOS.
Although SOS took only 11 CPU seconds, on a Solbourne Sev@d6 (similar to a

110

SPARC 4/490), for a simple problem, P&R215), its run time increased dramatically
with increased problem complexity; it took 106.7 hours oflCime for P&P 2(15).
That there isn’t any particular problem in taking a large amtaf CPU time to solve a
problem well. However, dramatic increases in optimizatiore with increasing prob-
lem complexity imply that an algorithm may not halt in an guedle amount of time
for large problems.

Prakash and Parker’s behavioral specifications are sonmewhanventional. They
contain tasks with pre-computation and post-computatidfe used the method de-
scribed in Section 3.5 to precisely model this. Our modekdaey from that used by
Prakash an Parker in one way: our point-to-point commuiaicdinks are bidirectional
and theirs are directed, i.e., they allow communicationdouo over a point-to-point
link in only one direction during the life of an embedded syst In our model, com-
munication via a point-to-point link can occur in eitheredition, although only one
communication event can be carried by the point-to-ponk &t a time. This results
in some apparently unusual results for the P&P52and P&P 2(7) examples. Our
slightly different model for point-to-point communicatidinks allows our algorithm to
get lower prices than SOS in a few instances. Although a poceparison is still legit-
imate, it requires some explanation. We will now descrilgeithpact of this difference
on the solutions to each of the Prakash and Parker examples.

None of the solutions produced by SOS for any of the dead&sssciated with
the P&P 1 examples contain a pair of point-to-point commaition links that connect
the same pair of PEs and have different directions, back-to-back links Therefore,
a bidirectional communication model will not allow backdtack links to be merged,
thereby reducing price, in any of these solutions. For el&F 1 example, EMOGAC
arrived at a solution with the same price as SOS. The P&P 3 pbearmasource database

does not contain directed point-to-point communicatiokdi As a result, the difference

Chapter 6: Enhanced Low-Power Heterogeneous Distributeté®s Synthesis 111

Table 6.3: Optimization for Hou and Wolf’s examples

. Example Yen's | Oh & Ha’s
Clustering (performance EMOGAC | COSYN algorithm | algorithm
H&W 1&2 140 170 170 170
Unclustered H&W 1&3 170 170 240 170
H&W 3&4 140 n.a. 210 170
H&W 1&2 140 n.a. 170 170
Clustered H&W 1&3 170 n.a 170 n.a.
H&W 3&4 170 n.a. 170 n.a.

in communication models has no impact on the results foregk@émple. EMOGAC
arrived at a solution with the same price as SOS for every P&Ra®nple. In Figure
6.5, we describe the impact of the difference between oummanication model and
that used by SOS upon the results for the P&P 2 problems.

EMOGAC produced a solution with the same price as SOS’s @btsolution for
every example in which a bidirectional communication madelld not allow a pair of
back-to-back links to be merged in the optimal solution picet by SOS. In cases for
which our communication model could potentially allow peio-point communication
links to be merged, thereby reducing price, our algorithnived at a solution that had
a price exactly equal to that of SOS, minus the savings thghtmesult from merging
of back-to-back links. In practice EMOGAC finds solutionattare substantially equiv-
alent to those produced by SOS, an optimal algorithm, abhdeMOGAC has CPU
time requirements that do not increase rapidly with indregproblem complexity.

Table 6.3 compares the results produced by running EMOGABamnand Wolf’s
examples [84] with those produced by other hardware-so&wa-synthesis algorithms.
The first column states whether or not the example in quesiolustered. Clustering

is described in Section 5.9.1. Clustered graphs have aasistilucture to unclustered

112

graphs but contain fewer tasks. The second column contagnsames of Hou and
Wolf’s examples. The third column shows the prices of theutsmhs produced by
EMOGAC. The other columns show the prices of the solutionsébby algorithms
developed by other researchers. The fourth column is forYIOR28]. The fifth col-
umn is for Yen’s iterative improvement algorithm [81]. Theth column is for Oh and
Ha’s heuristic [75]. Entries of n.a. indicate that the aitfon’s developers did not report
a result for the given problem and optimization algorithm.

These examples contained no soft deadlines or power infamaTherefore, we
ran EMOGAC in single-objective price optimization mode. W not contract the pe-
riods and and deadlines of these examples in order to retdadeyperperiod: these are
precisely Hou and Wolf’s example. We used the same optiimizgiarameters for each
of these example, and for the examples in the previous stibsethese examples were
runon a 1.4 GHz AMD Athlon Thunderbird CPU. Each example tapgroximately 10
CPU minutes, with the exception of H&W 1&3 unclustered, whiook 74 CPU min-
utes. For all of Hou and Wolf’s problems, EMOGAC arrived alusions with prices
that are equal to or lower than those produced by past work.

It is interesting to note the implications of these resuwtsdustering research. Task
clustering converts a task graph into another task grapt fewwer nodes by grouping
some nodes together and treating them as a single node. hikhé potential to im-
prove the solutions produced by a co-synthesis algorithralioyinating unpromising
areas from the search space. For example, if all of a problproimising solutions as-
sign two tasks to the same PE and schedule them concurreoiyerting them into a
single task will concentrate a search on the most promisiegsaof the solution space.
However, although task clustering can simplify a hardwsoftware co-synthesis prob-

lem and eliminate unpromising potential solutions from search space, it can also

Chapter 6: Enhanced Low-Power Heterogeneous Distributsté®s Synthesis 113

eliminate promising solutions from the search space. Nudé for the Hou 3&4 ex-
ample, EMOGAC was able to find a superior solution to the wsteked version of the
problem. For the unclustered version of this problem, EM@3JAund a solution with
a price of 140. However, for the clustered version, such at&wl is not possible. In
this example, clustering forced tasks that would ideallyabgsigned to different PEs to
be assigned to the same PE. It is important for a clusterigori#thm not to eliminate
the possibility of finding a good solution in its attempts tmglify a problem. Task
clustering is a method of simplifying a behavioral spectfmaand pruning unpromis-
ing areas from the solution space. It is our opinion that & place to carry out such
pruning and simplification is within a synthesis algorithminen additional information

is available about allocation and assignment, not as a@ss-p

6.10 Conclusions

In this chapter, we have described a number of enhanceneents tevolutionary
optimization algorithm and hardware resource models. Vi@gsgnted a new embedded
system synthesis benchmarks suite containing realistadefs@f 17 processors running
47 different types of embedded system tasks. Finally, we d¢lag results of running
our optimization infrastructure on these benchmarks amdpewed the quality of so-
lutions produced by our optimization algorithm with sotuts presented in past work.
When run on the specification in the E3S benchmark suite, EMO@roduces mul-
tiple solutions that trade off different architectural tosWhen run on problems from
the literature, EMOGAC meets, and very often beats, thelteepuoduced by other
hardware-software co-synthesis algorithms, without irgggian long run-time for dif-

ficult problems.

114

Chapter 7

Intellectual Property Core-Based

System-on-Chip Synthesis

In this chapter, we present a system synthesis algorithiledddd OCSYN, that par-
titions and schedules embedded system specificationsdiberttal property cores in
an integrated circuit. Given a system specification comgjsif multiple periodic task
graphs as well as a database of core and integrated cir@naaeristics, MOCSYN
synthesizes real-time heterogeneous single-chip haedsa@ftware architectures using
an adaptive multiobjective genetic algorithm that is desdjto escape local minima.
As shown in the previous chapter, the use of multiobjectptenaization allows a single
system synthesis run to produce multiple designs that toffdéifferent architectural
features. Integrated circuit price, power consumptiory area are optimized under
hard real-time constraints. MOCSYN differs from previousrkvby considering prob-
lems unique to single-chip systems. It solves the probleprafiding clock signals to
cores composing a system-on-chip (SOC). It produces a i ste that balances ease
of layout with reduction of bus contention. In addition, @rdes out floorplan block
placement within its inner loop, allowing accurate estiorabf global communication

delays and power consumption.

115

116

7.1 Motivation

It is possible to implement some embedded systems usingke $iiegrated circuit
(IC), thereby reducing cost and improving performance [1B2onomic and time pres-
sures frequently make it impractical to do an in-house aefig each component in a
single-chip system. Fortunately, the number of intelletproperty (IP) cores available
from the industry has dramatically increased in the past/avs. Numerous companies
and non-profit organizations offer a wide range of IP cores.,, @rotocol processors,
general-purpose processors, micro-controllers, digitalal processors (DSPs), mem-
ory, and application-specific hardware (e.g., Data EnaoyppgStandard engines) [133].

MOCSYN, which stands for multiobjective core-based sirgjlg system synthe-
sis, differs from past work on system synthesis by considea number of problems
unique to core-based single-chip systems. MOCSYN detesriime clock frequencies
supplied to different cores. It generates priority-basesl giructures of arbitrary topol-
ogy, balancing ease of routing and bus contention mininuimatn addition, it conducts
floorplan block placement [134] within its inner loop, thieyedetermining the location
of each core and allowing estimates of global wiring delays power consumption to
be used during scheduling and cost calculation. Experiahe@sults demonstrate that
a global bus is, in general, inferior to the use of a priokfsed arbitrary bus topol-
ogy. Conducting block placement in the inner loop generabults in an improvement
in solution quality when compared with worst-case or besteccommunication delay
estimates.

The rest of this chapter is organized as follows. In Sectid) We describe the
model MOCSYN uses for IP cores. Section 7.3 gives an overgiaive SOC synthesis
algorithm. Section 7.4 describes MOCSYN's clock selectadgorithm. Section 7.5
describes the way we determine how important it is for eagh gfalP cores to be

placed near each other on the SOC. In Section 7.6, we deshetagorithm we use

Chapter 7: Intellectual Property Core-Based System-aip-Gynthesis 117

to determine floorplan block placements. Section 7.7 dessrihe model MOCSYN
uses for wire delay and power consumption estimation. &eati8 describes our bus
topology generation algorithm. In Section 7.9, we desooilbemethod of calculating a

SOC'’s costs. We give experimental results and concludedhid®es 7.10 and 7.11.

7.2 |P core model

In this section, we describe MOCSYN'’s model for IP cores. Aeds a processing
element (PE) that is capable of executing one or more typesks$. Multiple cores may
be located on the same IC, upon which multiple tasks may ¢xeomnultaneously. Note
that MOCSYN uses a model for cores and ICs that is substhntredre complicated,
and powerful, than the one used by MOGAC (described in Clhdptd he following

information establishes the relationship between taseMOCSYN'’s cores:

A two-dimensional array indicating the relative worsteasimber of execution

cycles of each task on each core.

e Atwo-dimensional array indicating the energy consumpgiencycle of each task

on each core.

e Atwo-dimensional array indicating the core types upon \wtdach task type may

be executed.

e Atwo-dimensional array indicating the amount of code mgmequired for each

task type executed on each core.

In addition, each core has a price that corresponds to thatiey paid to the IP

producer for each fabricated instance. This price is zerodgalty-free IP cores. If

118

IP has a one-time fee instead of, or in addition to, a per-ogalty, the price is equiv-
alent to the one-time fee divided by the expected produatadnme. Each core has a
width, a height, a maximum clock frequency, a variable iatirgy whether or not its
communication is buffered, an energy consumption per cyoént in communication,
an idle energy consumption per cycle, and a global routiggrla@ensity that is used

when estimating routability.

7.3 Algorithm overview

In this section, we give a high-level description of the MO@Balgorithm. This

algorithm carries out the following tasks:

1. Determine &lock frequencyor each core type, subject to tradeoffs between exe-

cution time and power consumption.
2. Determine thallocationof cores to use.

3. Determine the tasks tssignto each core, subject to tradeoffs between ease of

routing and minimization of bus contention.
4. Determine dus structurdo use on the IC.

5. Derive ablock placemenfor the cores, allowing an estimation of wire delay, wire

power consumption, and silicon area.
6. Assigneach communication event to a bus.

7. Scheduleghe tasks on the cores and the communication events on theaoim

cation links.

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 119

Clock 3
selection Do T Tak) Tie
) s | ask «— |re—prioritization
* Do prioritizaton [~ | T T T
p R Bus
Communication formation

Block placement]

Initialization : assignment
............ * Schedule I

Change core
allocation

Figure 7.1: MOCSYN overview.

MOCSYN uses a parallel recombinative simulated anneaRSA) algorithm to
optimize embedded system architectures. An overview af @dlgorithm is shown in
Figure 7.1. Initially an optimal, but potentially slow, algthm determines the clock fre-
guency to provide to each core. Basic data structures amarthialized. MOCSYN is a
hierarchical algorithm. After this phase has been repemteatbitrary (user-selectable)
number of times, an attempt is made to improve the core ditocaf a cluster of ar-
chitectures, i.e., a collection of architectures thatsliae same core allocation but may
have different task assignments (see Section 5.5). Witienarchitecture optimiza-
tion loop, a number of deterministic algorithms are useddiocarrently evaluate the
core allocation and task assignment of each architecturst, & priority is assigned to
eachcommunication tigi.e., the communication carried out between each pair i#co

These priorities are used to generate a block placemertidardres, ensuring that core

120

pairs for which communication priority is high are locateglan each other. Ties are
re-prioritized based on global wiring delay informatiomtlis extracted from the block
placement. During embedded system design, a synthesemtimin-time scheduler pre-
vents multiple communication events from being schedwdte same communication
resource at the same time. Contention occurs when one coitation event’s trans-
mission blocks the transmission of another communicat@meduring scheduling. A
bus structure that trades off potential bus contention &seeof routing is produced.
After bus structure generation, tasks are prioritized asdreedule is generated for the
tasks assigned to each core. Communication events arercenity assigned to, and
scheduled on, busses. At the completion of each archieoptimization loop, changes
are made to the task assignments in an attempt to improve tAethe completion of
each cluster optimization loop, changes are made to theaflogations in an attempt to
improve them. Initialization, changes to processing el@nfeore) allocation, changes
to task assignments, and scheduling were described in &sdpand 6. The remaining

internal algorithms shown in Figure 7.1 are described irféHewing sections.

7.4 Clock selection

In this section, we discuss the problems associated wiitsey a clock frequency
for each core in an IC and describe the algorithm used in MOC®Y solve these
problems.

An IC’s global clocking can be single-frequency synchrasauulti-frequency syn-
chronous, or asynchronous [31], [135]. Single-frequengyckronous global clocking
has the potential to keep communication overhead at a mmimblowever, its use
requires that all the cores that communicate with each dibeclocked at the same

frequency. When different cores have different maximungdencies, all cores must

Chapter 7: Intellectual Property Core-Based System-aip-Gynthesis 121

be clocked at a frequency less than or equal to the maximuwnérey of the slowest
core. Thus, using a single-frequency synchronous comratiaicprotocol will gener-
ally force sacrifices in core speed. Multi-frequency syodmus communication allows
cores with different clock periods to communicate with eattter at a rate proportional
to the LCM of the communicating core’s periods. Unfortuhgteshen cores have dif-
ferent minimum periods and efforts are made to allow eack tmrun near its maxi-
mum frequency, the LCM of the periods of communicating caas be significantly
higher than the period of any individual core, e.g., LEW) = 35. This generally re-
sults in slow communication. It is possible to significargbcelerate semi-synchronous
communication between clock domains if their frequencres@ated by rational num-
bers with small integer numerators and denominatorsthe..CM of the frequencies
is small [136]. Finally, one may use asynchronous commuioicaclocking cores at
arbitrarily different frequencies and relying on asynetwos circuits to facilitate com-
munication between them. Although it has a reputation foraasing communication
overhead, we believe that it is a good option for systems iithvtdifferent cores are
clocked at mostly unrelated frequencies. Using asynchuseommunication, speed is
bounded only by bus bandwidth, the rate at which commumgatores can transmit
and receive information, and some protocol overhead; caings need not be placed on
the relative frequencies and phases of different coresndisynchronous communica-
tion has the additional advantage of making inter-corelckkew irrelevant. Past work
has developed asynchronous communication approachesaisak pausing [137], and
first-in first-out memories (FIFOs) [138]. Other work has\pded a framework for
automatically synthesizing asynchronous interface mal135].

If one decides to use asynchronous communication, thetselesf clock frequen-
cies for the cores comprising a single-chip system needenobhstrained by communi-

cation considerations. However, there are a number of ptiadlems that must be dealt

122

with. Supplying each core with an arbitrary clock frequenmuld require a large num-
ber of frequency generators, e.g., analog timers based ateR§ or crystal oscillation.

These components are difficult to integrate with converli@MOS IC processes. Us-
ing discrete components is a poor option because each @uligxternal component
increases the price and area of an embedded system. Thoskanglapproach that re-
quires only one frequency source but allows nearly arhjitirmquencies to be delivered
to each core would be advantageous.

We use an approach in which a single external oscillatorad s supply a base fre-
guency. A cyclic counter or interpolating clock synthesi@associated with each core is
used to divide this frequency by an integer, in the case otkoogounter, or multiply the
frequency by a rational number, in the case of an interpajatiock synthesizer [139].
Note that frequencies generated in this manner can easifysthe requirements for
semi-synchronous communication [136] as well as asyncdusmommunication. A
description of the clock selection algorithm used in MOCSfoNbws. This algorithm
is capable of dealing with interpolating clock synthesizefhe cyclic counter clock
selection problem is a special case of the interpolatingkckynthesizer clock selec-
tion problem. Therefore, the algorithm used in MOCSYN isatap of solving either
problem.

Given: A maximum external clock frequendgmax and a maximum frequency
associated with each of tlmecores{Imax, Imax, ..., Imax,}.

Each core’s clock frequency multiplier is a rational numbdy = N;/D;, with a
positive integer numeratdy; less than or equal to a user-supplied maximdmax
and a positive integer denominat@,. A core’s internal frequency;, is equal to the

external frequencyg, multiplied by its multiplier,M;.

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 123

MOCSYN maximizes the average of the ratios of the core frages,|;, to the core

_ili/lmax

Our quality metricq € [0, 1], is the average, over all cores, of the ratio of each core’s

frequency maximamayx;, i.e.,

actual frequency to its maximum frequency, i.e.,
_ 2itgli/tmax
n
Thus, when each core is running at its maximum frequelmegix quality is one. When
each core is running at an extremely low frequency, quafijyreaches zero. We ini-
tially considered using a quality metric that weights thiatiee contribution of each
core type by its number of instances in the core allocatiobydiow heavily it is used

by the tasks eventually assigned to it. However, as showraid 7.10.1, we found

that it is possible to clock all cores at nearly their maximiueguencies before decid
ing core allocation or task assignment. This allows us toomerclock selection from
MOCSYN'’s inner loop and conduct it in a pre-pass.

It is simple to determine an optimal external frequetgyif the value of each multi-
plier, M;, is known. Given thaE < Emax for an optimal, Ji € {1,2,...,n} such that
li = Imax. Thus, one need only consider a small seE st

For a given set of multipliers, at least one core’s internadfiency will be equal to
that core’s maximum frequency if the external frequencypsmal. This is obviously
the case because, if each internal frequency is below itegoonding maximum, it
would be possible to increase the external frequency ungl iaternal frequency is
equal to its maximum; this would be guaranteed to result innarease inquality.
The maximum external frequency that does not result in ang’siternal frequency
exceeding that core’s maximum internal frequency is thentgdtexternal frequency. It

is guaranteed that there exists at least one external fnegukat does not result in any

124

core’s internal frequency exceeding the core’s maximurarivdl frequency, because
the first external frequency selected by the clock seleaigorithm is less than the

maximum internal frequency of any core. It is still neceggardetermine an optimal

set of multipliers. It is obvious that, for any given pair ofernal frequencies, if the first
is greater than or equal to the second, then the optimal pheltiassociated with the

first is greater than the multiplier associated with the sdcaorlhis observation allows

the solution space to be pruned.

We now restate the preceding paragraph more formally. GikehEopt is the
optimal E for corei, for Vi € {1,2,...,n},Eopt = Imax/M;. The maX_, Eopt for
which 7_;1; > Imax; is the optimalE for a given set oM’s. It is guaranteed that at
least oneE for which ﬂ?zllj > Imax; exists because the firt chosen by the clock
selection algorithm is less than or equal to theax value of every core. The only
remaining problem is to determine an optimal setd$. It is obvious that, for any
given pair ofImaxs, Imax, andImay, if Imax, > Imax, then an optimaMg > My,
This observation allows the solution spacevi$ to be pruned.

Initially, all D’s are equal to 1 and alN’s are equal tdtNmax Therefore, alM’s are
equal toNmax To maximize the average of core frequency to maximum frequea-
tios, one need only repeatedly execute a simple algoritkeriael, while keeping track
of the best set oM’s, until E > Emax This kernel is shown in Figure 7.2. Although,
given that the maximum and minimum of the $émnax, Imax, ..., Imax,} arelmax
andImax, respectively, this algorithm takes(n- Nmax Imax/Imax,) time, in prac-
tice it is fast (see Section 7.10).

Linear interpolating clock synthesizers are compatiblgstandard digital design
tools and processes. Their use provides a significant aalyanione can distribute a
base global clock frequency that is below the maximum lolalicfrequencies, thereby

reducing power consumption in the global clock distribnti@t. However, interpolating

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 125

For each between 1 and, inclusive,
there is an array;, of sizeNmax
that contains integers.

Each of these integers is the current denominator
for the numerator equivalent to its index.

OptimizeE for the currentM’s.

For alli’s between 1 and, inclusive, ifl; = Imax:
j ranges from 1 ttNmax inclusive
Find thej for which j/(Aj; + 1) is maximal
IncrementAj
SetD; + Ajj
SetN; + |

Figure 7.2: Clock selection kernel.

clock synthesizers are more complicated than cyclic cosnbe addition, they are likely
to require more area [139]. If one chooses to use cyclic dftiikion counters, instead
of linear interpolating clock synthesizers, the same clselection algorithm is used.

However,Nmaxis set to 1.

80 MHz
Max Freq.—

Actual Freq. —3»

Divider —»» /1 1 1

Reference = 50 MHz
Quality = 0.708

Figure 7.3: Clock selection example initial condition.

100 MHz

Reference = 80 MHz
Quality = 0.867

Figure 7.4: Clock selection example first iteration.

126

Chapter 7: Intellectual Property Core-Based System-aip-Gynthesis 127

100 MHz

12 /1 2
Reference = 100 MHz
Quality = 0.875

Figure 7.5: Clock selection example second iteration.

For the sake of example, consider a set of three cores thatrhaximum internal
frequencieslfnax , Imax, Imax) of 80 MHz, 100 MHz, and 50 MHz. For the sake of
simplifying this example, we will consider the use of courdeiders only, not inter-
polating clock synthesizers. This implies that each caraitiplier (M;) is equal to the
reciprocal of its counter divider valu®(), i.e.,M; = Dii. Initially, the counter dividers
for each core@1,D»,D3) are set to one and the external frequengy i§ set to the

minimum of the cores’ internal maximum frequencies, i.e.,

3
E « mi{]lmax
1=

Therefore, as shown in Figure 7.3, the quality is initially

5OMHZ+ 50MHz +50|\/|HZ

3
In the next step, the cores for whith= Imax are located and their divider®y)

are incremented. As shown in Figure 7.4, the divider of thee @n the far right is
incremented. The external frequen®) (s then increased untili € {1, 2,3} such that

Imax = l;. In this caseE is increased to 80 MHz, resulting in a quality of 0.867.

128

The iterative kernel in Figure 7.2 is executed again, ineneting the divider of the
core at the far left in Figure 7.5 is increased to 100 MHz, resulting in a quality of
0.875. Wherk reache€ max the algorithm terminates and returns the highest-quality

configuration encountered.

7.5 Tie prioritization

This section describes the algorithm used by MOCSYN to piizercommunication
ties between pairs of cores. These priorities are used bffadbmlanner to determine
which pairs of cores should be placed closes to each othaddition, it is re-calculated
after floorplanning and used in the generation of a bus streicties of high priority are
likely to get their own point-to-point links. During tie mniitization, task assignments,
and therefore task execution times, are known. Tie pri@iétermination is conducted
before block placement and bus structure generation. Tdrefeexact communication
times are not yet known during tie prioritization. For conmuation between different
cores, communication time estimates are based on the avexagcted separation be-
tween pairs of cores in a square grid containing the same auafilcores as the solution
for which tie priorities are calculated. Each core in thelgsia square with height and
width equal to the average of the heights and widths of thesor the solution. For
cases in which the square root of the number of cores is nottager, the average core
separation distance is interpolated. These estimatesackta guide floorplanning, en-
suring that cores between which a large amount of low-slackngunication occurs are
placed near each other. The communication delays are rpwdechafter floorplanning

block placement has been completed in order to estimate thema accurately.

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 129

Slackis the difference between the earliest finish time and ldit@sh time of a task.
Thus, it is the amount of time by which a task’s execution mayeélayed, from its ear-
liest possible execution time, without causing any othekgao miss their deadlines.
Earliest finish times are computed by considering task ei@ttimes and estimated
communication delays during a topological search of thk ¢gaph, starting from the
node with no incoming edges. Latest finish times are compoyezbnducting a back-
ward topological search of the task graph, starting frormibaes that have deadlines.

Task graph edges, which signify communication, have a flgakvalent to the mini-
mum of the slacks of the tasks they connect. A tie’s priogtthe average of the negative
slacks of the task graph edges (communication events) alpogzero if there are no
edges along it. Given thatis tie priority, C is the set of communication events along
the tie with sizen, andsis slack, then

Yiecc ifn>0

0 ifn=0
We did not settle on this definition of priority easily. Nuroas experiments revealed
that negative slack average, with zeros for unused tiesltegkin better quality solu-
tions than prioritizing ties by their communication eveatalquantities, communication
times, negative slacks, communication durations minukglmes, and numerous other
metrics. In some cases this was counter-intuitive, e.gnguslarge-magnitude negative

priority, instead of zero, for unused ties resulted in a ddgtion in architecture quality.

7.6 Floorplan block placement

This section describes the block placement algorithm usganWOCSYN's inner

loop. This algorithm is built upon the work of other reseansh

130

Initially, it is necessary to determine the layout shapeasfhecore. Although the
raw IP core layout shapes are specified in the resource databput to MOCSYN,
the area of memory required by each core must be determin@agdihe run of the
algorithm. The memory requirements of each core dependetatiks assigned to the
core. We calculate the code and data memory requirementachf @re, using the
method described in Section 6.1. After determining a caressnory requirements, we
compute the area required to implement this memory and genarnew core layout
shape that has the same aspect ratio as the core and an aat#oeitpe sum of the
core’s area and its associated memory area, thereby egshaitthere is sufficient area
reserved for each core’s memory to be located near or withifihese core-memory
layouts shapes are used in floorplan block placement.

It is possible for some of the cores within a cluster’s alt@mrato be unused by some
of the solutions within the cluster. During floorplannings@ution’s unused cores are
given insignificant sizes so that they do not interfere wiblofplanning.

After core areas have been calculated and unused cores bameohitted, a bal-
anced binary tree of cores is formed, based on tie prioyities the priorities of com-
munication between core pairs. Accounting for the prioofycommunication is an
extension of the historical algorithm, which consideret/dhe binary presence or ab-
sence of communication [140]. As a result, the time compjeaf the partitioning
algorithm is increased fronv (n?) to o (n?-logn) wheren is the number of cores.
Cores that are adjacent in the binary tree will be adjacetttarfinal block placement.
After forming the binary tree, MOCSYN optimally determinéne orientations of all
of the cores, under the constraint that the aspect ratiothe ratio between width and
height, does not exceed a value specified by the user. Padialgled to orientations
that do not conform to the desired aspect ratio. Howeveratititional area resulting

from padding is counted in the block placement area; thisodisages the selection of

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 131

block placements with poor aspect ratios. Under these tiondj IC area is minimized.
This algorithm is based on past work and take# - logn) time wheren is the number
of cores [141].

7.7 Wiring delay and power consumption model

We have used the approach proposed by Cong and Pan to modelurocation
delay and energy [2]. In this section, we summarize the parars required for the
buffered wire model. We follow the parameter naming conearst used by Cong and
Pan, although we use basic units instead of scaled unitswieeuse 108 m instead of

1 pm.
e Widthnax the maximum buffer width multiplier
¢ Vi the voltage for a logical one (logical zero is 0 V)
o Whin: the minimum wire width in meters
e Shin: the minimum wire spacing in meters
e r: the sheet resistance @y/]
e Ca: the unit area capacitance in Farads/nfeter
e C;: the unit effective-fringing capacitance in Farads/meter
e tg: the intrinsic gate delay in seconds
e Cg: input capacitance of a minimum-sized gate in Farads

e Iy output resistance of a minimum-sized gat&in

132

Using these parameters, and our own implementation of CoddPan’s algorithms,
we model optimal buffer insertion and wire sizing under tlo@straints supplied by
the designer. We compute delay, as well as driven wire anféhcdpacitance, as lin-
ear functions of wire length. Wire and buffer capacitanaesused to compute power
consumption. The linear model allows rapid delay and enesiynation during cost

calculation [2].

7.8 Bus topology generation

This section describes the algorithm used by MOCSYN to predan arbitrary bus
structure. Before bus formation, MOCSYN recalculates tierfiies using an algorithm
similar to that described in Section 7.5. The global wiriredagy information extracted
from the floorplan block placement, however, is now avadallllowing an accurate

estimation of communication time during this recalculatio

7.8.1 Motivation

The objective, during bus formation, is to minimize the @bitity of bus scheduling
contention under the constraint that the bus structureutaklde. If routability were not
a concern, point-to-point communication resources coaldsed between every pair of
cores, eliminating contention. However, this solution mige un-routable, especially
in SOCs containing numerous cores. Therefore, it is nepessastablish some metric
of routability. There has been little research on the pnobté estimating routabil-
ity, although some have looked at related problems. WangSamchfzadeh do block
placement in a way that minimizes the number of crossingsdmt rectilinear layout
regions and nets [142]. Unfortunately, their approach iregfairly precise knowledge

of global routing paths. There are widely used commercigl@mentations of global

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 133

and detailed routing tools. Therefore, we defer precisbalmuting, and detailed rout-
ing, to other software instead of re-implementing matugoathms. As a result, we

cannot safely make assumptions about the detailed patks bgkglobal wires.

7.8.2 Definitions and assumptions

We assume that rectilinear global routing is used. In aolditiwo-layer routing is
assumed. Our algorithm’s parameters may be adjusted taacfor the availability of
additional metal layers for global routing.

In order to make an estimation of congestion that does nog¢riepn the precise
paths taken by global wires, we define the term denBignsityis the ratio between the
area of routing metal in a region to the total area of the megie use the maximum
density of a layout and bus topology as a proxy for routabilithis allows us to take
into account flexibility in routing paths.

One can estimate the wire length of a bus by taking the reetii minimal Steiner
tree of the points connected by the bus. However, computingctilinear minimal
Steiner tree is an NP-hard problem [112]. Therefore, we @pprate the rectilinear
minimal Steiner tree with a rectilinear minimal spanniregt(RMST). The length of an
RMST for a set of points is at most one and a half times the kengthe rectilinear
minimal Steiner tree for the same set of points [143]. Conmguthe RMST is of time
complexityo (e-loge) [114]. We estimate the amount of routing metal in a region by
multiplying the length of the RMST by the number of wires ir thus and the average
width of each wire.

A bus’scontention estimates the sum of the priorities of the communication ties it
serves. Itis necessary to determine a contention estinefbegbbus structures are gen-
eration and a schedule is produced. Therefore, we do notnyget khe times at which

communication events will occur. However, minimizing thatention estimate guides

134

1) Create point-to-point links for communicating pairs ofes.o (I - 1gl)
2) While maximum density- density boundo (1)
3) Find the most congested positimongesto (I -Igl)
4) For each bus, intersecting with theongest o (12)
5) For each busj: o (I3)
6) Tentatively mergéandj. o (14)
7) Evaluate the densitpew dens of congesto (13)
8) Evaluate new maximum contention estimantest o (14)
If newdensdecreased for any tentative merge:
9) Merge the pair with greatesew densdecreaseo (12)
Break ties by selecting merge with leasint estincrease.
Else ifnewdensincreased for any tentative merge:
10) Merge the pair for which theew densincrease is leasb (12)
Break ties by selecting merge with leasint estincrease.
Else halt: no valid topologies were found.

Figure 7.6: Bus formation kernel.

the bus formation algorithm to generate bus structures iolwigh-priority communi-
cation events are likely to occur on point-to-point linksldow-priority communication

events are likely to occur on large busses.

7.8.3 Overview

An overview of the bus formation algorithm is shown in Figité. The order notes
to the right of the figure will be explained in more detail irc8en 7.8.4. This algorithm
merges pairs of busses until the maximum density on the sHgwier than the density
bound. A heuristic is used to rapidly evaluate the qualitdifferent potential merges.
In order to reduce computational complexity, this heuristonsiders only changes to
the maximum density for points within the pair of busses #ratmerged, not changes
in density for other points contained within the tentatyeteated bus. The algorithm
accepts the move that reduces estimated maximum densitydbe Ties are broken

by accepting a move that increases the maximum contentionate the least. If all

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 135

Cont.
est. =7

Cont.
est. =5

Figure 7.7: Bus formation example, step 1.

moves increase estimated maximum density, the move thaltges the smallest in-
crease is taken. This has the potential of allowing the &lgorto escape local minima
in some special circumstances. However, as described tio8&t8.4, computational
complexity was a more significant factor in the design of tlyp@athm than thorough
solution-space exploration. Recall that bus formatioraisied out in the inner loop of
MOCSYN.

We describe this algorithm with an example. Figure 7.7 shtbestarting conditions
for a simple instance of the bus formation problem. In thiage, every square is a core,
all of which are the same size in this example. In order to &fynfhis example, we
assume that the cores have densities of zero, i.e., one mgedamsider the densities
of busses. However, our algorithm does take into accour® densities. The top tie
has a priority, and therefore a contention estimate, ofreeVle left tie has a priority,
and therefore a contention estimate, of five. Figure 7.8 shitv bus structure after
creating a point-to-point bus, i.e., link, between each mmmicating pair of cores. In

this figure, shaded rectangles depict busses. The darkheékse shading at a point

136

Highest density

C 1N

Cont. :
est. =5

Merge

Figure 7.8: Bus formation example, step 2.

indicates the wiring density at that point. As shown in theifeg the highest density
points are located at the intersections of the two bussabidrexample, this density is
higher than the maximum acceptable density; a merge wiltteengted. The points of

highest density, i.e., the corners of each bus that intevaédtthe other bus, are located.
These points are indicated by black dots. One of these pginésdomly selected and
pairs of busses intersecting with that point are tentatierged. In this example, only
one such pair exists. After the busses in the pair are meageyl one bus remains, as
shown in Figure 7.9. The new bus has a contention estimata #égjthe sums of the

contention estimates of the two busses that were mergedrtoifoThis new bus has a

lower density than the maximum acceptable density; therilhgo halts.

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 137

Figure 7.9: Bus formation example, step 3.

7.8.4 Efficiency

We use red-black trees to store information about positidaessities, and busses.
This allows the lookup and storage of these data to be acdsimegl in timeo (Ign).
In Figure 7.6, information about the time complexity of theshimportant portions of
the algorithm is given in Figure 7.6. In this figurdeis the number of communicating
pairs of cores in the algorithm’s input. During step 1, itécassary to creatgoint-to-
point links. Creating each of these links requitedgl) time, for a time complexity of
o (I-1gl). During each execution of loop 2, the number of busses muetdieced by
one. Therefore, the contents of loop 2 may be executed a niaxiail times. Step 3
requires a search in a red-black tree of density values agdmaxecuted a maximum
of | times, for a time complexity ob (I -1gl). The contents of loop 4 may be executed
once per bus, per execution of loop 2, for a time complexity ¢f2). Similarly, loop
5 has a time complexity af (13). Step 6 results in the bus configuration being copied,

o (1), for a time complexity ofo (I4). Step 7 requires a simple addition, for a time

138

complexity ofo (I3). Step 8 requires a summation over all busses intersectitigtine
old highest density positiorrongest In the worst case, there aréntersecting busses,
for a time complexity ofo (14). Steps 9 and 10 may be executetimes and each
merge may take (I) time, for a time complexity ob (|2)_ Therefore, the overall time
complexity of the bus formation algorithm s (14).

A heuristic is used to decrease the time complexity of therdlgm. It would be
most straightforward to fully evaluate changes in the derssof all points affected by
tentatively merging two busses in order to compute the nghdst density. However,
this would require new density calculations to be carrietifou o (1) points, in the
worst case. Instead, the change in density is evaluatedabmihe point that previously
had the highest density. Although this may result in a subwdtmerge being chosen,
correctness is maintained by doing a density calculatioallsffected points after a

merge is completed. This heuristic reduced the time conitglex the algorithm from
o (I°) too (I4).

7.9 Cost calculation

As mentioned before, MOCSYN optimizes architecture pracea, and power con-
sumption under hard real-time constraints. An architectsiinvalid if any task with a
deadline violates that deadline. Total hyperperiod energlye sum of the energy con-
sumptions of all of an IC’s tasks executed on all its coregyughout the hyperperiod,
in addition to the sum of the idle energy consumption of all tlores, plus the energy
consumed in the global clock distribution and communicatietworks. This value is
divided by the hyperperiod to get the power consumption. dscdbed in Section 7.7,
we assume the presence of buffers in the global communicagivork. In addition, the

clock network is assumed to be constructed with bufferecheegs. Leakage current is

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 139

assumed to be negligible. This allows delay and energy eopsan to be estimated as
linear functions of wire length and transition count, wittmstant factors derived from
the process parameters angp/ Ultimately, three such constant factors are computed:
communication wire delay factor, communication wire egdagtor, and clock energy
factor. The energy consumed by the global clock network isrd@ned by estimating
the total wire length of this network, multiplying this vaiby the number of signal tran-
sitions occurring during a hyperperiod, and also multipdyby the clock energy factor.
The wire length estimate is derived from an RMST of the corsgitmms in the block
placement [114]. This provides an approximation of wiregdn A Steiner tree may be
used in the final post-optimization routing operation, gaggesulting in a lower total
wire length. However, as mentioned earlier, computatiomofimal Steiner trees is
time-consuming (NP-hard) [114]. Hence, it is not used iremloop routing estimates.
Energy consumption in the global communication networksinsilarly computed. A
separate RMST is computed for each bus. The transitionsregbfior the communica-
tion events occurring on each bus are used to compute thenkugyeconsumptions.
An architecture’s price is the sum of the prices of all theesawn the IC. The area of

the IC is equivalent to the total rectangular area requioed$ block placement.

7.10 Experimental results

In this section, we present experimental resultBrevious hardware-software co-
synthesis systems do not target the single-chip synthesidgm. As a result, there
is no body of work by other researchers with which MOCSY N’sf@enance can be
compared. It is, however, possible to experimentally deiee the effects of the algo-

rithms comprising MOCSYN. The examples discussed beloswrgit to determine how

LExperimental results for this chapter were updated on 5200.

140

X L o 7

0.8 I

0.7 No frequency multiplication

0.6
0.5
0.4
0.3

0.2

Average proportion of maximum internal frequencies

0.1

1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
External frequency (MHz)

Figure 7.10: Clock selection quality as a function of exéfrequency.

clock selection, block placement, and bus topology gereratffect the solution of the
single-chip synthesis problem. Section 7.10.1 shows thaltseeproduced by the clock
selection algorithm when run on a difficult example, i.e.e @amwhich core maximum
frequencies varied widely. In Section 7.10.2, we empilycedktermine the influence
of a number of MOCSYN's specialized algorithms. Section0731shows the result
of running MOCSYN on the E3S benchmarks suite in the muléotiye optimization

mode.

7.10.1 Clock selection

MOCSYN automatically selects clock frequencies for eadle csing the algorithm
described in Section 7.4. In this section, we examine thdtseproduced by this algo-
rithm when run on an example problem.

In the interest of decreasing the power consumed in the pldbek distribution
network, one may reduce the frequency of the base clock.eTibex tradeoff between

power consumption and execution time. However, this @hetip is not linear. Figure

Chapter 7: Intellectual Property Core-Based System-aip-Gynthesis 141

7.10 shows the relationship between maximum referencd étequency and the aver-
age proportion of maximum internal clock rates at which thees are clocked for a set
of eight cores, each of which has a random maximum intereguiency ranging from
2 MHz to 100 MHz. Each sample point lies at the optimal refeeedlock frequency
for a set of core multiplier values. The top solid line shotws &verage ratio of actual
core frequencies to maximum core frequencies for linearpaiating clock synthesiz-
ers with a maximum numerator of eight. The bottom solid liner€sponds to a cyclic
counter clock divider. The dotted lines indicate the maxmmatio encountered before
or at each frequency. The increase in power consumed bydhbk @ference frequency
distribution network is approximately a linear functionfegquency, although this func-
tion will be superlinear if voltage scaling is simultanelyusarried out. As shown in
Figure 7.10, the quality of the internal clock frequencis isub-linear function of the
reference clock frequency. If one were using an interpodpsiynthesizer with a maxi-
mum numerator of eight for the cores in this example, chapaimaximum reference
frequency greater than 100 MHz would not result in a signifi¢gacrease in execution
speed but may have a negative impact on system power consampt

In summary, itis possible to clock each core at nearly itsimar frequency despite
using a fairly conservative global clock frequency and widerying core maximum

frequencies.

7.10.2 Impact of floorplanning block placement and bus topagy

generation

This experimental results presented in this section detreteghe influence of floor-
planning block placement and bus topology generation artisol quality.
Table 7.1 shows the results of synthesizing a number of ICgyMOCSYN with

various sets of features enabled. These results indicatattts extremely important

142

to consider low-level details such as floorplan block plaeetand bus topology when
making allocation, assignment, and scheduling decisionsg SoC synthesis for dif-
ficult problem instances. For the examples in this tablesepwas optimized under
hard real-time constraints. If multiobjective optimizatiwere used, it would have been
difficult to compare the solutions produced by differenttbgsis runs because multi-
ple solutions would have been produced for each problenagplsee Section 7.10.3).
We used the 17 processors from the E3S benchmarks suiteddrom the EEMBC
benchmarks as described in Section 6.8. For each procéssolayout shapes were
used: square and rectangular (with an aspect ratio of appadely two). We required
numerous task sets for these experiments. Therefore, ihatgsossible to use the E3S
task sets built from the EEMBC benchmarks. Please note hieaE8S task sets were
used for the results presented in Section 7.10.3. For thétsan this section, the task
sets were produced with the aid of TGFF [129], a randomizedrpatric task set gen-
erator. Each example contains five task graphs with ten task®. For each task with
a hard deadline, the hard deadline is equalde- 1) - 750pus where depthd, is the
distance of a task, in nodes, from the start node of a taskhgrapch communication
event requires that 240 kb of data be transferred. The graghsomposed of the 47
task types within the EEMBC, and E3S, benchmarks. Commtiaicavire delay fac-
tor, communication wire energy factor, and clock energydiawere calculated based
on the 0.1&m process parameters given in the literature [144], withpg df 1.8 V.
We used 32-bit wide busses. Wire delay and energy consumpéoum per transi-
tion are calculated based on the use of a buffer separatiteindie that optimizes delay
per um. This optimal buffer separation is internally computecheTmaximum clock
reference frequency is 500 MHz and the maximum interpadatiock synthesizer nu-
merator is eight. Note that internal frequencies may, floeeebe higher than 500 MHz.

For each example, the same parameters were given to TGFF @@BVIN. Only the

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 143

random seed given to TGFF is varied, to produce differeikt $ats based on the same
parameters. We permit the generated floorplans to havetagpes ranging from 0.5
to 2. Based on the automated analysis of wiring density inrabar of designs, e.g.,
PipeRench [145], using modified design rule checking saftvid], we believe that 0.8
is reasonable bound on interconnect density, and useddhisddfor our bus topology
generator. Solution prices and power consumptions wenedexito the nearest dollar
and milliwatt.

The bottom two rows in Table 7.1 show the number of problems/foch a version
of MOCSYN, with floorplan block placement and bus topologyemtion, produced
better and worse solutions than the limited version of MOBS$sociated with the
column. The first and sixth columns in Table 7.1 show the exampmber. Many of
these examples had tight deadlines; they were difficult keesdentries of n.a. indicate
situations in which no solution was found. Note that thersiguarantee that a solution
exists for each example. Therefore, when no solution wasddar a given example
running in any of the four modes of operation, we omitted tkangple from the ta-
ble and moved on to the next example. Each of the examplessiséletion took less
than two minutes to complete on a 2091 MHz AMD Athlon XP maehumnning Linux.
Allowing longer run-times might have produced lower prié@sthese examples. How-
ever, in these experiments, we were interested in relatieeg: we wanted to determine

the effect of including a number of low-level algorithms kit SoC synthesis.

144

Table 7.1: Impact of floorplanning block placement and bpskogy generation

Worst-case Best-case Single
MOCSYN

Example - commun. commun. bus
price price price price

1 240 n.a. n.a. n.a.
2 186 n.a. n.a. 186
3 162 n.a. n.a. 162
4 162 n.a. n.a. 162
5 162 n.a. n.a. 162
6 162 n.a. n.a. 162
7 162 n.a. n.a. 162
8 162 n.a. n.a. 162
9 392 n.a. n.a. 392
10 308 n.a. n.a. 339
11 272 n.a. n.a. 272
12 162 n.a. n.a. 162
13 209 n.a. 209 209
14 162 n.a. n.a. 162
15 162 n.a. 162 162
16 162 n.a. 162 162
17 162 n.a. n.a. 162
18 162 n.a. 162 162
19 162 n.a. n.a. 162
20 162 n.a. n.a. 162
21 328 n.a. n.a. 328
22 240 n.a. n.a. 240
23 209 n.a. n.a. 209
24 209 n.a. n.a. 209
25 n.a. n.a. n.a. 239

Continued on next page.

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 145

Table 7.1: Impact of floorplanning block placement and bpslkogy generation (Con-
tinued)

Worst-case Best-case Single
MOCSYN

Example - commun. commun. bus
price price price price

26 162 n.a. n.a. 162
27 209 n.a. n.a. 209
28 317 n.a. n.a. n.a.
29 162 n.a. n.a. 162
30 240 n.a. n.a. 240
31 162 n.a. n.a. 162
32 252 n.a. n.a. 252
33 209 n.a. n.a. 209
34 172 n.a. n.a. 172
35 370 n.a. n.a. 370
36 158 n.a. 209 158
37 162 n.a. n.a. 162
38 162 n.a. n.a. 162
39 162 n.a. n.a. 162
40 375 n.a. n.a. 375
41 187 n.a. n.a. 187
42 476 n.a. n.a. n.a.
43 162 n.a. n.a. 162
44 162 n.a. n.a. 162
45 441 n.a. n.a. 441
46 264 n.a. n.a. 264
47 162 n.a. n.a. n.a.
48 227 n.a. n.a. 402
49 162 n.a. n.a. 162
50 162 n.a. n.a. 162

MOCSYN better 49 45 6

MOCSYN worse 0 0 1

146

The second column shows the prices of solutions produced®¢$Y N when car-
rying out block placement-based wire delay estimationse fhiird column shows the
prices of solutions under the assumption that the distam¢ke block placement be-
tween each pair of cores is equal to the maximum distancedegtany pair of cores.
Although this estimate may appear conservative, it is nesjte to derive a tight bound
on the maximum separation between any pair of cores witharwyiog out block place-
ment in the inner loop. Thus, in practice, this estimate waqarbbably be even more
conservative if an inner-loop block placement tool werean@tilable. The fourth col-
umn shows the prices of solutions produced under the asgumtpit communication
events take almost no time. After the optimization run is ptate, solutions that are in-
valid because their schedules do not meet their hard meal-dieadlines are eliminated.
The fifth column shows the prices of solutions that resultfrallowing MOCSYN to
carry out block placement in the inner loop to accuratelineste communication delay
but allowing only a single global bus to be used, instead cdrditrary priority-based
bus topology.

MOCSYN consistently produces better results when floorplagnis used during
SoC synthesis. In 49 out of the 50 problems, using floorplackbplacement infor-
mation permitted valid, or lower-price, solutions than mngkworst-case assumptions
about core separations. In 45 of the problems, using flootglack placement informa-
tion permitted valid, or lower-price, solutions than makirest-case assumptions about
core separations. In 6 of the problems, MOCSYN was able tdyme better results by
using its bus topology generation algorithm than by usiniggls global bus. However,
for problem 25, using a single global bus permitted a be#sult. This is understand-
able: if the best solution to a particular problem uses ontyngle system-wide bus,

then the one-bus solver will concentrate its search on ftieia af the solution space.

Chapter 7: Intellectual Property Core-Based System-aip-Gynthesis 147

Table 7.2: Multiobjective optimization for the E3S benchhksa

Average Soft DL

Example Solution Price ($) power (mW) viol. prop. Area (mnf)
Automotive/ 1 80 1005 2.04 3
Industrial 2 91 1102 0.60 2
3 103 1055 0.61 6
4 103 1060 0.59 10
Networking 1 60 708 1.69 38
2 84 1329 0.65 48
3 86 1140 1.53 48
4 92 739 1.21 72
5 114 708 0.45 74
6 192 8101 0.44 138
Telecommunications 1 220 2379 2.23 2
Consumer 1 134 2675 1.40 21
Office 1 63 3656 0.53 33
Automation 2 63 3657 0.53 36
3 65 388 0.00 7

The full-featured version of MOCSYN produces better solusi than the limited ver-
sions 100 times as often as it produces inferior solutiomsmRhis we conclude that,
for difficult problem instances in which the problem speaifions contain some degree
of parallelism and communication, it is important to inautborplan block placement

and bus topology generation within synthesis of a SoC coetho§IP cores.

7.10.3 Multiobjective optimization for the E3S benchmarks

This section presents the result of using MOCSYN to condudtiabjective opti-
mization on the E3S benchmarks described in Section 6.8.n"WAHRCSYN is run in

the multiobjective optimization mode, it produces a setafisons, each of which is

148

superior, in some cost, to at least one other solution. Tal@eshows the sets of solu-
tions produced for the five task sets in the E3S benchmarks. sthe same command-
line flags and pseudo-random number generator seed weretgiOCSYN for each
benchmark. The prices and power consumptions of the solitieere rounded to the
nearest dollar and milliwatt. MOCSYN took less than 50 CPUutes when run on
each of these benchmarks. For most of the benchmarks, MOG&¥d multiple solu-
tions that trade off price, average power consumption detlline violation proportion,
and area (please see Section 7.9 for descriptions of thesg).c&or certain problems,
it is possible for the lowest-price solution to also have ltweest power consumption,
soft deadline violation proportion, and area. In such casesultiobjective optimizer
will find only one solution. This may have been the case forfileecommunications
and Consumer benchmarks. Note that MOCSYN produced dreatigtdifferent so-
lutions to some problems, e.g., the prices of solutions éoNktworking benchmark
ranged from $60 to $192, the power consumptions ranged f@Bm&V to 8,101 mW,
the soft deadline violation proportions ranged from 0.44 %9, and the areas ranged
from 38 mnf to 138 mnf. Consider solutions 1 and 6 to the Networking benchmark,
MOCSYN traded off price, area, and power for performancduced soft deadline vi-
olation). In all cases, the solutions meet their hard reaétdeadlines, i.e., they are

valid.

7.11 Conclusions

In this chapter, we presented a method for the synthesisretlzased, single-chip,
low-price, low-power, real-time, multi-rate, heterogens embedded systems. A multi-
objective PRSA algorithm that allows exploration of thed®aroptimal set of architec-

tures instead of providing a designer with a single solytwees applied to a number of

Chapter 7: Intellectual Property Core-Based System-aip-Gyinthesis 149

examples. MOCSYN'’s use of automatic clock selection, blpleicement-based com-
munication delay and power estimation, and arbitrary bpsltgy generation allows
it to efficiently solve the core-based synthesis problem.eWeerimentally determined
that it is important to carry our floorplanning block placerhand bus topology gener-

ation within SOC synthesis.

150

Chapter 8

Wireless LowPower Client-Server

System Synthesis

In this chapter, we present COWLS, a hardware-software/nthissis algorithm that
targets embedded systems composed of servers and low-pleeves that communicate
with each other through a channel of limited bandwidth,,egvireless link. A novel
scheduling algorithm is used to pipeline the execution sif$dahat serve multiple clients
associated with a given server. COWLS simultaneously apésthe price of the client-
server system, the power consumption of the client, andesiganse times of tasks that
have only soft deadlines, while meeting all the hard deadlint produces numerous
solutions that trade off different architectural featyresg., price, power consumption,
and response time, of an embedded client-server systenaras fve know, this is the
first synthesis algorithm of its kind. We present the expernital results for a low-power,
client-server camera system as well as several randomxzedes.

A bandwidth-constrained embedded client-server systearsgecial-purpose com-
puter in which clients and servers communicate with eacrotia a channel of limited
bandwidth. Clients are frequently consumer products, paytable communication de-
vices, for which price is often particularly important. Ser price is also an important

factor, although it is usually less important than client@rbecause clients typically

151

152

outnumber servers. In this work, we assume that serversdwess to high-capacity
power supplies. In order to maintain mobility, clients ma&amall and battery-powered.
Therefore, client power consumption must be minimized ttwoe heat production and
increase battery life. Clients or servers may initiate camitation events.

The literature contains numerous case studies of embedidattserver system de-
sign and general descriptions of the client-server prokdemain. Some researchers
have discussed wireless and cellular systems [146], [14@ine have focused on em-
bedded systems in which the server is a satellite [148]][12%d others have studied
telerobotics, systems in which a robot is partially or tgtalontrolled via a limited-
bandwidth communication channel [150],[151]. The majoat previous research on
embedded client-server systems either surveys the pralignically faced by the de-
signer of such systems or provides case studies detailgafgpsolutions to individual
problems.

Despite the previous work dealing with embedded clienteyesystems, we know of
no previous work that automatically synthesizes such systeCOWLS automatically
synthesizes architectures for embedded client-servegmgs taking into account price,
power consumption, bandwidth requirements, as well asdaaKlines. It uses a novel
scheduling algorithm that pipelines the computation amdrooinication associated with
the multiple clients that may interact with a server.

In the next section, we formulate the problem solved by COW&&ction 8.2 pro-
vides a motivational example, describing the different svay which a designer, or
hardware-software co-synthesis algorithm, might parifunctionality between client
and server. Section 8.3 describes the scheduling, and-skewer pipelining, algorithms
used by COWLS. In Section 8.4 we describe the method COWLS tosealculate the
costs, e.g., price, power consumption, and soft deadlilatn, of each architecture.

Section 8.5 shows the results of using COWLS to producetesierver architectures for

Chapter 8: Wireless Low-Power Client-Server System Sygishe 153

the E3S benchmarks. In addition, we give experimental tesi@imonstrating the effect

of using client-server pipelining during scheduling. Irc&en 8.6, we draw conclusions.

8.1 Problem formulation

In this section, we present the client-server synthesiblprno formulation used for
COWLS.

The independent synthesis of a client or server is similtrealistributed, heteroge-
neous embedded system co-synthesis problem. The optiomzafrastructure used by
COWLS is similar to that described in Chapters 5 and 6. Howe&@®WLS targets the
servers and clients simultaneously, and examines the goasees of allowing tasks to
migrate between clients and servers. A designer may spéwfpehavior and timing
constraints of a client-server system using a modified varsf the model presented in
Section 3.3. This version also allows some tasks to havedbsignment constrained to
processing elements (PESs) in the clients or PEs in the saftleough many tasks will
be free to migrate between client and server during syrgh#ss also necessary to de-
scribe the characteristics of the resources that may betasedet these requirements.
We model three main types of resources: PEs, communicagmurces, and memory.

As described in Section 3.6, PEs model general-purposeecaiadfpurpose proces-
sors that are capable of executing tasks. However, COWLSmddo classes of PEs:
client PEs and server PEs. Client PEs may only exist withenctlent’s PE allocation.
Server PEs may only exist within the server’s PE allocatinrgeneral, server PEs will

have better performance than client PEs but their powenwgoptgons will be higher.

154

Task assignments are modified using the algorithm desciib&ection 6.4. This
algorithm was originally designed to improve the perforc&nf our optimization in-
frastructure when synthesizing client-server systemganoing low-bandwidth commu-
nication resources. By considering the expected impaat bpadwidth caused by each
potential change in task assignment, COWLS is able to aasikl assignments that in-
crease communication time without compensating improvesi@ computation time
or reduction in PE overloading.

COWLS synthesizes embedded systems containing arbiiwaolegy busses and
point-to-point communication links, as well as the primagmmunication resources
that are used to connect clients and servers. There are aenwhhttributes associ-
ated with each type of communication resource. There mayugale communication
resources within the client, and within the server. Différprimary communication
resources may be available. However, only one primary conication resource may
be present in a client-server pair, as multiple wirelesssimatters and receivers will
typically result in unreasonably expensive client-sesystems. Each type of commu-
nication resource has a price per instance (to represerdmioller price), a price per
contact (to represent bus bridge or interface circuit pripacket size (which can be
very small to model communication that is not packet-bgse@rgy consumption per
packet, transmission time per packet, and maximum numbeortacts. A communi-
cation resource’s number of contacts is the number of @iffePEs that it may connect
together, i.e., a communication resource with two contiscéspoint-to-point link. Pri-
mary communication resources have four prices: the clietitsarver each have a price
per instance and a price per contact. For primary commuaicegsources, each contact
is associated with a PE, on the client or server, that nedas ¢onnected to the primary

communication resource.

Chapter 8: Wireless Low-Power Client-Server System Sygishe 155

COWLS uses task sets to specify client-server behaviorstiamndg constraints.
These task sets are identical to those described in SecenvBh one addition: any
task may have its assignment locked to a client PE, a servesRie permitted to exe-
cute on either a client or server PE. Given the client-sesystem requirements, in the
form of a task set, the attributes of the PEs, memory, and aamuation resources avail-
able, as well as the number of clients and servers in thetedenver system, COWLS
attempts to synthesize client-server systems that meeetherements with minimal
price, client power consumption, and soft deadline violati COWLS contains algo-
rithms that carefully consider the impact of task assignyndefined in Section 3.1, on
the wireless communication resource. In addition, thedalee in COWLS uses a novel
method of client-server pipelining.

An architecture’s costs are derived from the manner in wheslources are used in
its construction. Therefore, by attempting to meet reaktconstraints, one ensures that
high-speed PEs, well-suited to tasks they execute, arefoisiegks that lie along critical
paths in the task graphs. By attempting to minimize price ensures the use of PEs
that are capable of carrying out the required tasks with mahiprice. By attempting
to minimize client power consumption, one minimizes the bamof power-intensive
tasks run on power-hungry PEs located on the client. Of epussme of these goals
conflict with each other. For this reason, a single run of C@BAgenerates multiple

solutions that explore the tradeoffs among different costs

8.2 Motivating example

A synthesis system for the client-server problem domaimkhsimultaneously op-
timize multiple costs. It must also consider the differenirecost between executing a

task on a client or a server. It is, therefore, necessaryjdwahsks to migrate from one

156

side of the primary communication resource, the link cotingahe client and server,
to the other. Optimizing only one cost, or considering ldogbrovements instead of
system-level improvements, is likely to lead to a poor oWe@ution.

We will show how COWLS explores the design space in a manraraifows it to
uncover a high-quality design similar to one proposed imtla¢ivational example, and
consider other options that trade off different systemstost

Consider a system specification requiring a battery-posveaenera to transmit dig-
ital images to a base station via a limited-bandwidth wsglénk. If the designer has
decided that the video information should be compressdddsinot yet decided what
sort of processor should be used to carry out this operatioayen whether it should
be done by the client or the server, COWLS will simultanepesiplore the different
options.

Figure 8.1 shows the Consumer benchmark from the E3S bemkbreaite de-
scribed in Section 6.8. In this example, images must itjtia¢ generated on the client
camera. They are then filtered, on either the client or seceewerted to another image
format, and compressed. Images must be transferred ®irtkéask within 2.5 s and,
ideally, within 0.1 s. Image capturing (represented bystieeode in the left graph), and
display must be carried out on the client. Data storage €sgmted by theinknode in
the left graph) data retrieval (represented bydhenode in the right graph) and image
printing must be carried out on the server. Storage has adeadline of 2.5 s and a soft
deadline of 0.1 s. Printing has a hard deadline of 15 s and @saflline of 5 s. Display
has a hard deadline of 15 s and a soft deadline of 1 s.

In this motivational example, we will focus on the left tastagh in Figure 8.1.
This task graph carries outimage acquisitisrc); filtering (filt-x), conversionigb-yig),
compressiondjpeg, and storagesfnk). In one possible client-server partitioning of this

graph, shown in Figure 8.2, filtering, conversion, and datajression are executed on

Chapter 8: Wireless Low-Power Client-Server System Sygishe 157

period: 2 s period: 6 s

hard DL: 15 s
6Mb soft DL: 1's

hard DL: 15 s
soft DL: 5s

hard DL: 2.5 s
soft DL: 0.1 s

Figure 8.1: Camera specification, i.e., the Consumer E&8tetierver benchmark.

the client and all other tasks are carried out on the sentas Jartitioning reduces the
load on the wireless communication link to 1 Mb per task grapécution and allows
an inexpensive primary communication resource to be uskdkelea the client and the
server. However, carrying out data compression on thetaleguires increased client
price and power consumption.

In another possible partitioning, shown in Figure 8.3, imagquisition §rc) exe-

cutes on the client and all other tasks execute on the selwéhis partitioning, the

158

period: 2 s

Figure 8.2: Camera architecture 1

client executes only essential functions, shifting allestbomputational burdens to the
server. This decreases the client’s price and power consampHowever, it increases
the demands upon the communication link between the cliehtlze server, increasing
its price and power consumption. Although some of the triddacing the designer of
client-server systems are apparent even from this sim@mple, COWLS is capable

of solving problems that are significantly larger and mommpbcated.

Chapter 8: Wireless Low-Power Client-Server System Sygishe 159

period: 2 s

Figure 8.3: Camera architecture 2
8.3 Scheduling and clientserver pipelining

In this section, we describe the scheduling algorithm useZiOWLS.

In order to determine a solution’s client power consumptsmit deadline violation,
and hard deadline violation, it is necessary to generatmitgplete schedule. COWLS
uses a rapid multi-rate list scheduler (see Section 6.@)ishaapable of handling task

graphs with periods that are greater than, equal to, or hessthe deadlines in the task

160

graphs. The scheduler treats time as circular, i.e., antélrahoccurs at one point in
time also occurs at every integer multiple of the hypergkfrom that point in time.
This scheduler operates in two stages. During the first stagescheduler determines
a priority for each task. During the second stage, commtinit@vents are assigned
to communication resources, communication events arelstdet and tasks are sched-
uled.

In order to prioritize tasks, the approximate earliest firtisnes (EFTs) and latest
finish times (LFTs) of every task is determined by conductingodified breadth-first
search of each task graph. At this point, task assignmeat$xad. Therefore, the
execution time of each task is known. Communication evesigaments are not fixed
when EFT and LFT calculations are carried out. Thereforis, ot possible to know
the exact amount of time required to carry out each commtiaitavent. A communi-
cation event'’s time is approximated by taking the maximunoamt of time required by
the event on any of the communication resources that cotime8tEs to which the com-
munication event’s parent and child tasks are assigned.tiR@s are used for EFT and
LFT computation, i.e., these time values are not multiptigdhe number of clients per
server. A more detailed explanation of this decision rezgiknowledge of the method
of pipelining used in COWLS. We explain this concept in latethis section. Slack
is the difference between a task’s LFT and its EFT. The sdeedises negative slack
in order to prioritize task scheduling, i.e., low-slackhpain the task graphs have high
scheduling priorities. If the schedule produced in this nearails to meet all hard real-
time deadlines, COWLS retries scheduling using negativiedurd negative earliest start
time (EST) for prioritization.

Once tasks are prioritized, the second scheduling stageassel. During this stage,
the contents of a continuously updated prioritized listagks, whose data dependen-

cies have been satisfied, are iteratively scheduled. Riedlsome task graphs will be

Chapter 8: Wireless Low-Power Client-Server System Sygishe 161

scheduled multiple times during the hyperperiod. Giventiaa taskc is the offset of
a task’s copy in the hyperperiodhis the maximum copy number for a given task, then
a task’s proportional copy numbgy, is defined as follows,

oo C

m

tasks are sorted in the following manner. If the slacks oftdsks are unequal, the
task with the lower slack is scheduled. If slacks are equm,task with the lower
proportional copy number is scheduled.

When a task is selected for scheduling, each of its incomamgnaunication events
is first scheduled on one of the communication resourcesemtimy the PEs to which
the task and its parent are assigned. The communicationnesthat allows the com-
munication event to finish at the earliest time is used. Iftdsks are assigned to the
same PE, communication is treated as instantaneous. lfatteegissigned to PEs sep-
arated into the client and server, the communication ewestheduled on the primary
communication resource, i.e., the wireless link.

While scheduling, bus contention is explicitly simulat&tie scheduler is determin-
istic, i.e., given a particular resource allocation and tssignment, it always produces
the same complete, static schedule. Therefore, after abhggdthe worst-case comple-
tion times of each task and communication event are knowis. allows straightforward
calculation of soft and hard deadline violations. In adudtitithe scheduler determines
the communication resources upon which each communicatient occurs. This in-
formation allows the calculation of power consumption by thient’'s communication
resources. The power consumption of each task that execuntté® client, as well as
the power consumed by the client PEs while idle and commtingiais added to the
client communication resource power consumption to dategrine total client power

consumption.

162

Primary
Server . commun. Clients
resource
Idle
time
A
B Idle

o | time Time

Figure 8.4: Part of a non-pipelined schedule

Recall that there may be multiple clients per server. It isesgeary to ensure that a
server is capable of executing the tasks associated with@@nt. The most straight-
forward way of accomplishing this is to multiply the executitimes of the tasks and
communication events on the server, and the communicatem between the server
and clients, by thelient-server ratigi.e., the number of clients per server. However, in
order to ensure that this straightforward approach is cgriteis necessary to delay the
execution of the corresponding tasks on each client untihaltasks have received the

data upon which their execution depends, and provide aufterthe transmitted data.

Chapter 8: Wireless Low-Power Client-Server System Sygishe 163

Consider the schedule portion shown in Figure 8.4. Timeeases from the top
of the figure to the bottom. The left column depicts the scleedlor the server. In
the top rectangle of this column, each of the three portidgn®8(andC) corresponds
to a task associated with one of three clients. In this figarstraightforward, non-
pipelined method of scheduling is used. The communicat@mts that transmit data
from the server to the client do not begin until the tasks @ssed with each client have
completed execution. Similarly, none of the clients begirscution until data have
been transmitted to each client. This results in the princamymunication link and
clients sitting idle when they might otherwise be carryingwork. There are a number
of ways that this problem might be remedied.

One possible approach is to explicitly schedule each cBepgarately, thereby al-
lowing every task to execute as soon as its incoming dateeayr This approach has
two disadvantages, one tolerable and one intolerable.dbting each client separately
would increase the average run-time of the scheduler by tarfa¢ the client-server
ratio. However, this synthesis-time cost might be tolexabthe increased scheduling
flexibility resulted in improved schedules. More importgnthis approach would re-
sult in each client having a different schedule. We considéhe resulting increased
complexity of manufacturing, debugging, and maintainingrsa system sufficient to
disqualify this approach. To give some idea of the problessoaated with such a
scheme, note that it would require the maintenance of a nuoflient designs equal
to the client-server ratio.

The approach we selected gains a significant amount of skhgdiexibility with-
out sacrificing synthesis-time efficiency or dramaticaltigreasing the complexity of
producing, debugging, and maintaining the embedded sysféenpipeline the execu-
tion of tasks and communication events associated witlerdifft client copies. How-

ever, we constrain each client to the same schedule. Eamft’'slschedule is offset,

Server

Intentional
packing
delay

- resource

Clients

|}

Fixed
client
offset

Idle
time

164

Time

Figure 8.5: Part of a pipelined schedule with a large cliéfsied

in time, by a fixed duration from every other client’s schedul'he approach may be

most directly illustrated with the aid of a diagram. Figurd 8 analogous to Figure 8.4.

However, it shows a portion of a schedule produced using ipefiping approach. Note

that the first series of communication events (shown at theftthe center column) may

begin as soon as their parent tasks have completed. Sintlaelclient task may begin

execution as soon as their data have arrived, under theraorighat each client task

must be separated from its corresponding task in othertsllgna fixed amount of time,

the client offset. As a result of adhering to a fixed clienseff it is only necessary to

produce one client schedule explicitly. Each of the othemtIschedules is equivalent

to the explicit schedule offset in time by an integer mudipf the client offset.

Chapter 8: Wireless Low-Power Client-Server System Sygishe 165

As described in Section 8.3, the raw execution time of taskssed during EFT
and LFT calculation. Pipelining frequently allows taskd®scheduled as soon as the
corresponding incoming communication event has complétiedrefore, using raw task
and communication event durations allow more accurate EFITL&ET estimates than
using task and communication event durations multipliethigyclient-server ratio.

Consider the second set of server tasks in Figure 8.5. Natetlile task associ-
ated with client copyA begins execution later than its incoming data are readys Thi
intentional packing delay is introduced to ensure that #skg are scheduled as one
contiguous event. We considered the alternative of allgwine tasks to be separated
by an arbitrary amount of time. However, this leads to a dtamiacrease in the time
complexity of the scheduling algorithm with little gain inteduling flexibility. By al-
lowing arbitrary gaps between the scheduling events ofdBkstand communication
events associated with different clients, one introducgsarous (a number equal to the
client-server ratio minus one, in general) gaps into thedale every time an event is
scheduled. Scheduling complexity is increased, not onlyhieynecessity of checking
each of these gaps when every new event is scheduled, buirmooetantly, by the ne-
cessity of finding a location for new events, each of whichststs of a pattern of gaps
and active periods. We avoid these problems by making a ¢ask$, associated with
different clients, contiguous.

Even if allowing non-contiguous scheduling of the eventoamted with different
clients did not grossly increase computational complexitwould be of dubious ben-
efit. Figure 8.6 shows a portion of a pipelined schedule witlpacking. Consider the
second server task set, to the lower left. By allowing agipjtidelays between the tasks
associated with different clients, we have traded a modédé slot in a position where

it can easily be filled or masked by other tasks in practicentonerous (equal to the

166

Primary
Server commun. Clients
- resource

A Fllxed
client
offset

Time
. :} Idle
1’ time
A
Had [A]" |B Y
to fill =1 :
idle
time

Figure 8.6: Part of a pipelined schedule without packing

client-server ratio minus one) small idle slots that inseethe computational complex-
ity of scheduling and are difficult to fill or mask. These obs¢ions led us to use the
packing approach.

We initially considered the selection of the client offsebe an important problem.
Compare the client schedules of Figure 8.5 and Figure 8.thdfirst case, idle time is
introduced between client tasks by using a client offsdtitharger than the ideal offset.
In the second case, the execution of the first client’s tagklesyed in order to enforce the
constraints imposed by a client offset that is smaller tharideal offset. Unfortunately,
it is necessary to use a single client offset for all tasksrdeoto ensure that all client

schedules are identical. Therefore, the client offsekedyito be too large for some tasks

Chapter 8: Wireless Low-Power Client-Server System S)gishe

Primary
Server commun. Clients
- resource :

Idle
time
Intentional
packing * Fixed
delay client
offset

Time

Figure 8.7: Part of a pipelined schedule with a small clidfged

167

and too small for others in any problem of moderate complefihe must select a client

offset that provides a good tradeoff between these tworatees. We set the client

offset to be equal to the average time required by the coneation events assigned to

the primary communication resource. We experimentallgmheined that the qualities

of the results produced by a synthesis run are not stronglgreient upon the client

offset, as long as a few conditions hold. An explanation @ thenomenon and a

comparison between non-pipelined and pipelined scheglalie presented in Section

8.5.

168

8.4 Cost calculation

In this section, we describe the process by which a solgtionsts are calculated.

After making changes to solutions, it is necessary to determvhether or not those
changes resulted in improved costs. Thus, after modifyiaglation, COWLS carries
out cost calculation to determine its aggregate price, lteetts power consumption, and
the degree to which soft deadlines are violated. In addttahese visible costs, there
are a number of hidden costs that need never be displayed tieiigner. Hard deadline
violation is an example of such a cost. All solutions in whilea hard deadline violation
is non-zero are eliminated before results are presentdutddsigner. However, during
optimization, solutions with hard real-time deadline atodns are allowed to exist, for
they have the capacity to evolve into high-quality, valitsions during optimization.
Soft deadline violation proportion is the sum of the softdlee violation times in every
copy of each task graph, divided by the hyperperiod.

Once a schedule is computed for a solution, that solutidigatqpower consumption
and soft deadline violation information is stored in a ca@®® Section 6.7) and used for
any equivalent solutions that subsequently arise durirignigation. Aggregate price
is computed by taking the sum of the prices of the PEs, taskugix® memory, com-
munication buffer memory, communication resources, argtimary communication
resource associated with the client, multiplying this by éxpected number of clients,
and adding to this the sum of the prices of the resources ngbé server multiplied by

the expected number of servers. This gives a total cliemesaystem price.

Chapter 8: Wireless Low-Power Client-Server System Sygishe 169

8.5 Experimental results

In this section, we present experimental results and distesr implications. These
results provide a reference point for other researcheggjesit the superiority of particu-
lar synthesis tool design decisions, and allow a deeperstateling of the client-server
synthesis problem. Note that we have already discussediitadiity of the optimiza-
tion infrastructure used by COWLS by comparing its perfanoewith past work in

Section 6.9.

8.5.1 Multiobjective optimization for the E3S benchmarks

This section presents the result of using COWLS to condudtiohjective opti-
mization on the E3S benchmarks described in Section 6.8. &e modified these
benchmarks to ensure that at least one task in each task ggapts assignment locked
to the client and at least one has its assignment locked setiver. For example, see the
Consumer benchmark discussed in Section 8.2. In additienmelaxed some deadlines
and periods. Some of the distributed system E3S benchmarkdgdrdlines that were
too tight for timing constraints to be met when communicatia a wireless channel
was necessary. We used three Linux machines to producerdmdes: a Pentium IlI
running at 900 MHz, an Athlon Thunderbird running at 1.4 Gétz an Athlon running
at 650 MHz.

Table 8.1 shows the sets of solutions produced for the fikesiets in the E3S bench-
marks suite. There are five clients for each server. For thesehmarks, COWLS was
used to explore the tradeoffs among different system costgad of attempting to min-
imize a single cost. Given a similar amount of CPU run timeyould be possible to
better optimize a single cost by ignoring all other costsweleer, this approach would

ignore the fundamentally multiobjective nature of embebggstem design. COWLS

Table 8.1: Multiobjective optimization

, Average Soft DL

Example Price (%) power (mW) | viol. prop.
Automotive- 518 186 0.00
Industrial 563 98 0.00
372 136 0.86

408 136 0.74
. 423 134 0.86
Networking | 507 134 0.80
543 134 0.75

583 135 0.74
659 143 1.62

659 147 0.98

659 152 0.64
660 146 0.92
673 143 1.52

Telecom 996 366 0.58
1168 145 0.88

1559 327 0.62

1684 343 0.52

2902 344 0.51

610 126 0.98

Consumer 1038 167 0.61
2890 165 0.65

344 159 1.14

385 158 0.71

418 157 0.75

. 436 157 0.72
Office 476 172 0.69
Automation 492 164 0.69
651 162 0.68

664 162 0.67

893 158 0.68

170

Chapter 8: Wireless Low-Power Client-Server System Sygishe 171

took less than 80 CPU minutes when run on each of these benkfinvde rounded the
prices and power consumptions of the solutions up to theesedollar and milliwatt.
For most of the benchmarks, COWLS found numerous solutioatsttade off price,
average power consumption, and soft deadline violatiopgnten. Note that COWLS
produced multiple solutions for each benchmark. In paldiglet us revisit the camera
(E3S Consumer) example we described in Section 8.2. COWba&uped three wire-
less client-server architectures for this example. Theda@tactures had prices ranging
from $610 to $2,890, power consumptions ranging from 126 mm\W8&7 mW, and soft
deadline violation proportions ranging from 0.61 to 0.98eTirst solution to the cam-
era example contains an IBM PowerPC 405GP running at 266 MHBaeclient, an ST
Microelectronics ST20C2 running at 50 MHz on the server,amtEEE 802.11 Lucent
Wavelan card. COWLS found that the requirements placed®witeless communica-
tion resource could be significantly reduced by assignihgsks, prior to compression,
to the client in the left, data acquisition, task graph inuf@8.1. This corresponds
with the assignment decisions specified in Figure 8.2. Therdivo solutions have rel-
atively more PEs and communication resources and use tbsserces to reduce soft
deadline violation. These benchmarks are available vi&8&link on the http://www.-
ee.princeton.edu/"cad/projects.html web page.

In the interest of evaluating the performance of the clgetrer pipelining algo-
rithm described in Section 8.3, we did a number of experisi@ntvhich we compared
different versions of pipelining scheduler with each otterd with a straightforward
non-pipelining scheduler. Multiobjective optimizatiagsificantly complicates presen-
tation of, and comparison between, the results of diffeogtimization runs because

each run produces numerous examples. For these compagativeples, we forced

172

Table 8.2: Price-only pipelining comparison experimenith\an offset factor of 1.0

Price with | Price without Price with | Price without
Example| hinelining | pipelining || EX@MPI€| binelining | pipelining
1 525 526 2 885 448
3 547 653 4 671 671
5 686 849 6 845 861
7 542 1092 8 617 618
9 719 910 10 561 1035
11 513 590 12 583 408
13 3277 n.a. 14 954 954
15 740 622 16 695 1003
17 491 500 18 1455 n.a.
19 1149 754 20 829 773
21 726 809 22 n.a. 1017
23 663 663 24 874 n.a.
25 431 586 26 465 716
27 444 570 28 919 n.a.
29 1564 1564 30 1442 n.a.
31 430 430 32 557 515
33 1020 690 34 952 558
35 440 603 36 1016 1127
37 657 657 38 420 441
39 464 927 40 820 787
41 618 988 42 914 1017
43 843 1369 44 714 714
45 615 868 46 832 758
47 744 n.a. 48 897 825
49 754 n.a. 50 2085 n.a.
Improved: 31
Degraded: 12

Chapter 8: Wireless Low-Power Client-Server System Sygishe 173

COWLS to ignore soft deadline violation and power, concairig only on price opti-
mization. As a result, each run produces only one result. aded the prices of the
solutions up to the nearest dollar.

Table 8.2 shows the result of running COWLS on 50 examplesicmthe proces-
sors come from the EEMBC benchmarks suite and the task setaradomly generated.
Solution quality improved 2.58 times as frequently as itrddgd. For the examples in
this table, we used the 17 processors from the E3S benchmaitksderived from the
EEMBC benchmarks as described in Section 6.8. For each ggocewe generated
a server version and a client version. The server versiodestical to the EEMBC
processor. The client version has one-fifth the power copsiomof the EEMBC pro-
cessor and five times the execution time, for each task, mtherwise identical. Our
task sets each contain 12 tasks. Each task type is randolattesttfrom the Network-
ing and Telecom EEMBC benchmarks. Each communication dvasia quantity of
1 kb. Approximately a third of the tasks must be assigned tleatc a third must be
assigned to the server, and a third may be assigned to elibet ar server. There are
five clients for each server. There is no guarantee that exegnple generated in this
manner will have a valid solution. In this table, an entry a.nindicates that no solu-
tion was found for the problem and parameters associatddtiagt entry. For cases in
which no solutions were found by either the client commuticepipelining nor client
communication non-pipelining version of COWLS, we omittké example from the
table.

We found that pipelining schedules usually results in anrowement to solution
quality. As shown in Table 8.2, solution quality improvedpegximately two and a
half times as frequently as it degraded. Although there wgerae cases when using
a non-pipelining scheduler allowed the production of a sepesolution, one should

not draw the conclusion that it would be wise to run the schexdua pipelining and

174

non-pipelining mode for every cost evaluation and take & bost. By doubling the
amount of time required for each solution evaluation, onalddalve the number of
solutions that may be evaluated. One could, instead, ussctiexluling method that is
generally superior, i.e., the pipelining scheduler, atalxah more thorough exploration
of the solution space, guided by the evolutionary algorjtimthe same amount of time.
As discussed in Section 8.3, we had initially consideredstslection of a client
offset ratio to be an important problem. However, in pragtsolution quality is highly
resistant to degradation. Varying this ratio from zero to tesults in only small changes
to the number of cases for which pipelining resulted in anrompment to solution qual-
ity. Solution quality remains independent of the clienseffratio until it approaches the
ratio of primary link communication time to computation grExamining the schedules
with a simple graphing tool revealed that, up until this pothe task delays required
due to dependency on data transmitted via the primary conoaion link mask the

idle slots that result from having a large client offset fact

8.6 Conclusions

COWLS automatically synthesizes embedded client-sepstesis. It uses a multi-
objective evolutionary algorithm to simultaneously produmultiple solutions that trade
off different costs. It optimizes price, client power congtion, and soft deadline
violations under hard real-time constraints and constaidient-server communica-
tion bandwidth. COWLS incorporates a novel and tractabeedaling algorithm that
pipelines the execution of tasks associated with diffecbants while maintaining iden-
tical client schedules. This form of pipelining has beemiftto improve solution quality

in the majority of cases.

Chapter 9

Hardware-Software Co-Synthesis of
Dynamically Reconfigurable

Embedded Systems

In this chapter, we describe our co-synthesis algorithmhéydware-software sys-
tems containing dynamically reconfigurable hardware.dqpebgrammable gate arrays
(FPGASs) are commonly used in embedded systems. Althouglpdssible to reconfig-
ure FPGAs while an embedded system is operational, thigrie& seldom exploited.
Recent improvements in the flexibility and reconfiguratipeexd of FPGAs have made
it practical to reconfigure them dynamically, i.e., while ttmbedded system contain-
ing them is operating, thereby reducing the amount of harelwequired in an embed-
ded system. We have developed a synthesis algorithm, dalt#DS, that produces
multi-rate, real-time, periodic distributed embeddedeysarchitectures containing dy-
namically reconfigurable FPGAs. Executing different taskshe same FPGA requires
that potentially time-consuming reconfiguration be caroet between tasks. CORDS
uses a novel dynamic priority, multi-rate scheduling aitdgpon to deal with this problem.

Experimental results indicate that using dynamically rdigured FPGAS in distributed

175

176

real-time embedded systems has the potential to reducetics, and allow the synthe-

sis of architectures that meet system specifications thaldvaiherwise be infeasible.

9.1 Motivation

Until recently, dynamic reconfiguration of FPGAs in hardl+#é@e embedded sys-
tems has been impractical. FPGA reconfiguration times haweantionally been on the
order of 100 ms. However, recently a number of companies tedgased products that
improve upon the reconfiguration times of existing FPGAs byader of magnitude
or more [152],[153]. In particular, the largest member ad Xilinx XC6200 family,
the XC6264, can be completely reconfigured in under ZdHowever, a price is paid
for this speed. Rapid reconfiguration FPGAS can cost apprabely ten times as much
as FPGAs using conventional architectures. Rapid recaiafign FPGAs are a new
product and production has been limited. Therefore, thedeps likely to decrease
in the future. Already, many of the features that used to appealy in research parts,
e.g., the Xilinx XC6200, have been incorporated into maessh parts, e.g., the Xil-
inx Virtex series. Nonetheless, if price is a concern, itnigportant to consider more
conventional FPGAs, which have large reconfiguration tinlfesne derives a schedule
that locates different instances of the same task type edjac each other, the number
of reconfigurations an FPGA needs to undergo will be redueesilting in significant
time savings.

FPGAs fit naturally into the hardware-software co-synthesisign flow. The holy
grail of configurable computing research is a system thdtaeitept a problem de-
scription in a general-purpose programming language naatically partition it between
hardware (FPGAs) and software (general-purpose pro@ssynthesize the required

hardware, and manage communication between the two donfdirssproblem closely

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems 177

mirrors the co-synthesis problem. By using FPGASs in cofsgsis, designers can take
advantage of research in the reconfigurable computing fidldre are already systems
that accept algorithm descriptions in general-purposguages, like ANSI-C, and au-
tomatically produce FPGA configurations [154].

CORDS was the first co-synthesis system to handle dynamiealbnfigurable FP-
GAs, although others have subsequently considered theii69$, [71], [155]. CORDS
automatically selects an allocation from a set of FPGAs egarpurpose processors,
and communication resources. It assigns tasks to FPGAs emata-purpose proces-
sors, and determines the connectivity of communicatiooue®s. Finally, it derives
schedules for tasks and communication events. It optintizesequence of tasks
on FPGAs to reduce the impact of reconfiguration time on sygterformance while
considering the priorities of individual tasks.

CORDS uses an evolutionary optimization infrastructuag ithcorporates numerous
problem-specific heuristics. It is similar to the algorithatescribed in Chapters 5 and
6, and differs primarily by modeling FPGAs and schedulingktaon FPGASs in a way
that takes advantage of dynamic reconfiguration.

The rest of this chapter is organized as follows. In Sectidh @e describe our
model for FPGAs. Section 9.3 describes the scheduling ighgorun within CORDS.
In Sections 9.4 and 9.5, we give the results of running CORD& eollection of

hardware-software co-synthesis problems and presentusinics.

9.2 FPGA model

In CORDS, each FPGA type is described by a set of scalars artdrse A list of

the scalars follows:

e price

178

e number of devices, i.e., configurable logic blocks (CLB$)tlee FPGA
e input/output (I/0) pins available

e bits required to configure entire FPGA

e reconfiguration clock frequency

e energy per device switching event

e energy per I/O switching event

e proportion of clock cycles in which 1/O pins switch

An FPGA type’s vectors describe characteristics of eadhtigse that may be ex-
ecuted on the FPGA type. Each vector contains an entry fdr &ek type. A list of

entries in these vectors follows:

e a Boolean variable indicating whether the task type is etedide on the FPGA
type

e worst-case execution time of the task type

e devices, e.g., CLBs, required to implement the task type

e energy per device switching event

e energy per I/0O switching event

e proportion of clock cycles 1/0O pins switch

e proportion of clock cycles during which devices, e.g., CaBe active

e number of input pins required by task type

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems 179

e number of output pins required by task type

The uses of some of these variables are self-explanatgryF2GA prices are used
to calculate embedded system prices. However, the purmdésesne variables merit
further explanation. An FPGA is overloaded if it doesn’'t @a@nough devices, e.g.,
CLBs, to implement the tasks assigned to it. The number oicdsvon an FPGA and
the devices required for different task types variablesused to ensure that FPGAs
are not overloaded. If a task type requires more devicesdh@aavailable on an FPGA
type, the task type may not be executed. In the algorithmridbextin this dissertation,
we allow only one task type to execute on an FPGA at a time. Mewyéhis approach
was subsequently extended to allow concurrent executiaiiffefent tasks in different
portions of the same FPGA [155]. The variables associatt#dttie number of input and
output pins available on an FPGA are used to ensure that wakkee assigned only to
FPGAs with a sufficient number of pins. The number of bits negilito reconfigure the
entire FPGA variable allows the determination of the nunabéits required to program
one of the FPGA's devices. This, in conjunction with the nemtif devices required for
a given task type, and the reconfiguration clock frequeniéywa the reconfiguration

time required for each task type to be determined.

9.3 Scheduling

In this section, we describe the scheduling algorithm use@®RDS. When the
scheduling algorithm is invoked, CORDS has already deteethPE allocations, com-
munication link allocations, task assignments, and comaation link connectivities.
Thus, it is only necessary to determine the time at which eask is executed, the
communication resource to which each communication egeassigned, and the time

at which each communication event occurs. This problem ishhid for distributed

180

systems [112], and is further complicated by consideradioreconfiguration, i.e., on
FPGAs, the amount of time a task requires depends on theopieaind next task in the
FPGAs schedule. We, therefore, resort to a heuristic adieglalgorithm. CORDS
uses a static critical path scheduling algorithm with dyrtatiask reordering based on
FPGA reconfiguration time. Reordering is dynamic but theltesy schedule is static,
i.e., CORDS computes the time at which each event is caraeth@rder to determine
whether or not hard deadlines are met by the schedule. Sachrgees are not possible,
in general, when priorities are allowed to vary during theragion of the synthesized
architecture.

Earliest finish times are computed by conducting a topobdgiearch of a task graph,
starting from the node with no incoming edges, and assumargtvcase reconfiguration
times for all tasks that are assigned to FPGAs. Latest finishst are computed by
conducting a backward topological search of the task gragarting from the nodes
that have deadlines, and assuming worst-case reconfigutaties for all tasks that are
assigned to FPGAs.

Reconfiguration delai the amount of reconfiguration time an FPGA would require
to change from the configuration capable of executing tHertasst recently scheduled
on the FPGA, to a configuration capable of executing anotsi. tSuppose two tasks,
f andg, are both assigned to the same FPGA. Was the task most recently scheduled
to the FPGA, then the FPGA is configured to execute a tagksdf/pe. If g is the same
type of task asf, then the FPGA need not be reconfigured between their executi
otherwise the FPGA needs to be reconfigured. Some FPGAs pableaof partial
reconfiguration. For such FPGAs, the reconfiguration timmeafpair of configurations
depends on the number of CLBs used by each configurationditi@uto the similarity

between the configurations.

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems 181

There is a reconfiguration delay associated with every tagkis assigned to an
FPGA. The reconfiguration delay for a task of typassigned to an FPGA whose most
recently scheduled task was also of typas zero. Reconfiguration delay is dynami-
cally adjusted during the execution of the scheduling allgor. Every time a task is
removed from the pending list, a dynamic check is first maddetermine whether or
not executing another task first would be likely to reducalt6PGA reconfiguration
time without causing deadlines to be missBgnamic priorityis defined to be the sum
of a task’s negative slack and its weighted negative recordtgpn delay. Ifsis slack,

w is reconfiguration weight, amdlis reconfiguration delay, then the dynamic priority,
is as follows:

p=-s—w-d

Reconfiguration weighis a positive scalar that is used to manipulate the contabut
of reconfiguration delay to dynamic priority. In practiceyaue ranging from one to
two produces good results. We used a value of one for the iexgets in this chapter.
It may seem counter-intuitive to increase the dynamic pyiaf tasks with low recon-
figuration times. However, this encourages similar tasksetecheduled on an FPGA
consecutively, reducing the amount of reconfiguration ssaey. If the tasky, that was
just removed from the pending list is assigned to an FPGA) the dynamic priorities
of all the other tasks in the pending list that are assignatiessame FPGA as are
compared withu's dynamic priority. If another task has a higher dynamiopty than
u, it is removed from the pending list and scheduled immetjiasdter which timeu
is again considered for scheduling. When two tasks havel eégunamic priorities, the
task belonging to the earlier copy of a task graph is schelduls.

Suppose there are two tasksgndm, in the pending list and assigned to the same
FPGA. Supposeé has a slack of 4 ms and a reconfiguration delay of 5 ms, andiask

has a slack of 8 ms. The task most recently scheduledsd-PGA was of the same

182

type asm. Thereforem's reconfiguration delay is 0 ms. Assuming a reconfiguration

weight of one, task has a dynamic priority of
—4ms— 5ms= —9ms
Taskm has a dynamic priority of
—8ms— 0ms= —8ms

Thus, although taskhas less slack than taski.e., it lies along a more critical path, task
mwill be scheduled first. Scheduling before another task is scheduled to its FPGA is
likely to reduce the reconfiguration time required. Considext, a comparison between
taskmand task that has a slack of 1 ms, a reconfiguration delay of 5 ms, arslitireg
dynamic priority of

—1ms—5ms= —6ms

Although schedulingn first has the potential to reduce the reconfiguration timevef
FPGA, n's extremely low slack makes it dangerous to take a chanceetayiag n.
Thereforen will be scheduled beform.

The first step of scheduling an individual task,s to schedule all of its incom-
ing edges, i.e., communication events. Each edge is satkdala communication
resource connecting the PE to whitlis assigned and the PE to whitk parent is
assigned. When multiple communication resources areadlajl CORDS selects the
communication resource upon which the communication evédihtomplete at the ear-
liest time. If either of the communicating PEs does not hawamunication buffers,
CORDS schedules the communication event to the unbuffes] & well. If there
are no communication resources connecting the PEs invoB@&DS notes this in the

architecture’s cost set as a unschedulable communicatent.e

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems 183

9.4 Experimental results

We use a set of task graphs, processors, and communicasoarces produced
by TGFF [129] based on information found in trade journasg]Jl datasheets [153],
and discussions with a representative of Xilinx Corporatidhe same optimization
parameters, e.g., solution pool size, are used by CORDSlIfof the examples within
each of the following tables. Each of our 35 examples contfue task graphs. Each
task graph contains an average of 20 tasks. There are 15 ¢ygasks, five types
of processors, ten types of FPGAs, and five types of commumiceesources. The
tightness of the deadlines differs from example to examplee depth of a task is the
number of tasks on the longest path between it and the sskrtThe tasks in Example
Al that have deadlines, have an average deadline of 70 mgphaaltby the depth
of the task. In each subsequent example, the average tadkndemcreases by 450
ms, multiplied by the depth of the task. Thus, the average daadline in Example
A5 is 1.87 s times the depth of the task. The seed given to T&FEFidom number
generator for each example is equivalent to that examplergoer, e.g., TGFF is seeded
with three for Example A3 and Example C3. The processors havaverage price of
$20, with a variability of $10, i.e., processor prices rafrgpen $10 to $30. Tasks have
an average execution time of 300 ms, with a variability of 285 on the processors.
Preemption time has an average of 180with a variability of 14Qus. Execution time
and preemption time are both inversely correlated to psmresost. Tasks executed on
processors require an average of 40 KiB of memory, with aatdity of 28 KiB. 9.7%
of processors lack communication buffers. Communicatesources have an average
price of $20 with a variability of $10. Communication time58 ps per KiB, with a
variability of 40 us per KiB. Communication events have an average size of 42 KiB
with a variability of 40 KiB. Memory has a price $3.17 per MiBith a minimum unit
size of 256 KiB.

184

For FPGAs, average task execution time is 20 ms with a véitiabf 19 ms. The
average task execution time on FPGAs, relative to the aeetagk execution time on
processors, is approximately one twelfth as high, a coasigevestimate based upon
the literature, in which speedups of 20-100 times are fretipeeported. The average
memory load of a task executed on an FPGA is 42 KiB with a vdiiglof 28 KiB, in
addition to the memory required to hold the CLB contents fiertask. XC6200 family
parts have price ranging from $200 to $400. The XC6200 family low-volume and
high-cost part used primarily for research. Xilinx Corpgara is, however, integrating
many of the features present in the XC6200 family into highsmne Virtex parts. The
prices given here are rounded to the nearest $100 at thesteofue representative of
Xilinx Corporation.. The average number of CLBs requiredaligsk implemented on a
6200 family FPGA is 2000, with a variability of 1970. Task oefiguration time for the
6200 family is 5 ns per CLB. The XC6216 provides 4096 CLBs. X@6264 provides
16386 CLBs.

Eight XC4000 series parts are used in the examples. Theie painges from ap-
proximately $30 to $400. Their CLB counts range from 100 t@4L0XC4000 series
members do not support partial reconfiguration, i.e., eachnfiguration requires the
entire FPGA to be programmed. Therefore, task CLB countg affiéct the total mem-
ory requirements of the tasks, not their XC4000 series FB@&onfiguration time.

Note that although our algorithm and model support it, fazsth examples, we
do not optimize power consumption. We are currently in thecess of integrating
our optimization infrastructure with scheduling algonits [155] and a power model
[157], [158] developed by a colleague.

For each example, CORDS required less than 15 CPU minute200 ®MHz Pen-
tium Pro processombDeadline violationis the amount by which an architecture overran

its deadlines, as a percentage of the sum of the maximumideadh each copy of

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems

Table 9.1: Resource modification experiments

Price ($) or Price (%) Price (%)

Example|| (deadline viol. (%) | w. processors w. processors

w. processors only| and XC40005 and XC6200
Al (unsched. 162 360
A2 (65.32 32 175
A3 (1.47 45 226
A4 (3.48 66 346
A5 (0.15 61 503
A6 89 39 65
A7 108 43 91
A8 60 23 32
A9 116 20 117
A10 38 29 38
All 54 54 62
Al2 16 16 16
Al3 63 54 70
Al4 34 36 34
Al5 52 31 52

185

the task graph. When forced to use processors only, CORDSumade to produce

a solution for Example Al in which all tasks were schedulethinithe hyperperiod,

even when deadline violations were allowed. The secondwoia Table 9.1 shows the

best architectures produced by CORDS when it uses only socg For high example

numbers, in which deadlines are loose, processors alorsuirgient to produce valid

architectures. For the examples with tighter deadlinesRDO is able to synthesize

valid architectures by using a combination of processodsFGAs. The third column

shows the best architectures produced by CORDS when usitggsors and XC4000

series FPGAs. The fourth column shows the best architecpuneduced when using
processors and XC6200 family FPGAs.

186

Table 9.2: Conventional vs. rapid reconfiguration FPGAs

Price ($) or .
(deadline viol. (%) | Frice ($)
Example W. Processors W. pProcessors
and XC4000s | and XC6200s
Bl 72 589
B2 (1.05 178
B3 27 228
B4 (6.80 647
B5 62 504

In general, by using XC4000 series and XC6200 family par®@ROS was able
to produce valid architectures for a number of examples¢batd not be solved us-
ing only processors. Using XC4000 series FPGAs typicakylted in a reduction of
price, when compared to architectures using only processés a result of the high
price of 6200 family parts, architectures containing pssces and 6200 family parts
are generally more expensive than architectures contppriocessors and 4000 series
parts. However, in some cases the more rapid reconfigurati6@00 family parts al-
lows the satisfaction of specifications that are not metgusimly processors and 4000
series parts. This is especially true for examples in wheclonfiguration time is similar
to computation time. The examples shown in Table 9.2 difl@mfthose in Table 9.1 in
three ways: the amount of time spent executing tasks and corcating data are re-
duced such that reconfiguration time and execution timeafgks associated with a 4000
series part are similar, there are five task types insteadteéri, and tasks with dead-
lines have an average deadline of 32 ms times the depth oaske tn general, when
CORDS produces a valid architecture using either processud 4000 series parts, or
processors and 6200 family parts, the architecture condpokerocessors and 4000

series parts is less expensive. However, a design usinggsors and 6200 family parts

Chapter 9: Synthesis of Dynamically Reconfigurable Embé®&)estems 187

Table 9.3: Dynamic priority experiments for XC4000 series

Price ($) or ,
(deadline viol. (%) Price ($)_ Price
Example w.0. dynamic W- d_yn_amlc decrease (%
priority priority

C1 48 49 -2.08
C2 78 64 17.95
C3 56 25 55.36
Cc4 (0.02 133 n.a.
C5 90 56 37.78
C6 32 33 -3.12
C7 81 77 4.94
Cc8 27 10 62.96
C9 90 51 43.33
C10 61 55 9.84
Cl1 62 67 -8.06
C12 25 10 60.00
C13 70 47 32.86
C14 72 34 52.78
C15 69 24 65.22

are sometimes capable of meeting specifications that ammebtising processors and
4000 series parts.

The examples shown in Table 9.3 are different from those showable 9.1 in one
way: the tasks in examples in Table 9.3, which have deadlivea® an average deadline
of 310 ms times the depth of the task. Table 9.3 compares taktyaf the architec-
tures produced by CORDS running in two different modes. o®sd column shows
architectures produced when CORDS only considers statcstack during scheduling.
The third column shows the architectures produced when C®RDrders tasks based

on their dynamic priorities. In example C4, reordering lobsie dynamic task priorities

188

allowed CORDS to produce a valid architecture when scheduiased on static pri-
orities alone produced no architectures that met their ldessd Reordering based on
dynamic priority improved architecture price in 11 of the@myples. For three examples,
reordering resulted in a slight increase in price. Howdegeithe 14 examples for which
reordering resulted in a change in price, the average peabection was approximately

30%.

9.5 Conclusion

CORDS is the first co-synthesis system to consider the sftéatynamically recon-
figuring FPGASs during the operation of an embedded systethteuce the amount of
FPGA reconfiguration time. Experimental results indichig time multiplexing tasks
on dynamically reconfigurable FPGAs has the potential toedese system price and

allow otherwise infeasible specifications to be met.

Chapter 10

Analysis of Energy Consumption in

Embedded Operating Systems

The increasing complexity and software content of embedgstems has led to the
frequent use of system software to help applications adtwashvare resources easily
and efficiently. In this chapter, we present a method foritketanalysis of real-time
operating system (RTOS) power consumption. RTOSs form @oiitant component of
the system software layer. Despite the widespread use agignificant role played by,
RTOSs in mobile and low-power embedded systems, little aknabout their power
consumption characteristics. This work presents a metliguaazlucing a hierarchi-
cal energy consumption profile for applications as theyratewith an RTOS. As a
proof-of-concept, we use our infrastructure to producepthweer profiles for a commer-
cial RTOS,uC/OS [159], running several applications on an embeddetdisybased
on the Fujitsu SPARCIite processor [160]. These examplewdstrate that an RTOS
can consume a significant fraction of system power and, iitiaddimpact the power
consumed by other software components. We discuss waysiainapplication soft-
ware can be designed to use an RTOS in a power-efficient maWedbelieve that this
work is a first step towards establishing a systematic agprt@apower optimization of

embedded systems containing RTOSs.

189

190

10.1 Introduction

Embedded systems often contain programmable processorsesipherals in ad-
dition to application-specific hardware. The complexityapplications and underly-
ing hardware, tight performance and power budgets, as welggressive development
schedules, require application developers to use rungupport software. This support
usually takes the form of an RTOS, run-time libraries, andaedrivers [161]-[167].
RTOSs are used in embedded systems with soft real-timereantst as well as for-
mal real-time systems with hard real-time constraintshinihterest of brevity, we will
use the term RTOS to refer to all operating systems (OSsgtiagytime-constrained
embedded systems.

An RTOS provides a number of services to an embedded systaigneée In Figure
10.1, the boxes at the upper-left corner depict differeptiagtions that may be run on

an embedded system. The ovals depict the tasks composingapecommunication

Applications

MPEG ABS

encoding

Communication etc. & o= === == ==
[ranade’ Basic g [Processor] [Memor)}

10
RTOS = Timer | | Other hardware
@

manager

Micro—

browser Organizer

AN

Database

Message
composer,

Tasks

Figure 10.1: Overview of RTOS services.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 191

device application. The arrows between these ovals represenmunication or syn-
chronization between tasks. The RTOS is depicted in theecefthe figure. Hardware
resources are shown to the right. An RTOS’s services pravdaterface between ap-
plications and an embedded system'’s hardware, therebyifimg the work of appli-
cation designers. For example, the RTOS provides the desigith timer management
routines that may be used without detailed knowledge alimutimer hardware in the
embedded system.

In addition to simplifying the use of hardware, the intettraprvice routines (ISRs)
provided by an RTOS allow hardware to signal an applicatibhne device driver and
memory management portions of an RTOS simplify embeddet@sydesign by pro-
viding the designer with routines to ease the managemenamfware resources. In
addition, an RTOS manages the execution of, and interalbbgbmeen, tasks in an appli-
cation. It schedules the tasks in an application, ensuniatthe highest-priority task has
access to an embedded system'’s hardware resources at anytigie. It also provides
for communication and synchronization among tasks. Intshananages the details of
task interaction and provides a simplified interface to hare resources.

Unlike general-purpose operating systems, RTOSs oftaifisasome functionality
for the sake of compactness, predictability, and speed. mAlran of services typically
provided by general-purpose operating systems are notilusemost embedded ap-
plications, e.g., support for multiple users or complex-$ystems. By omitting such
features, the size of an RTOS may be reduced, decreasing meeguirements and,
therefore, embedded system cost. General-purpose opeatstems usually try to
complete their duties quickly. However, they typically dat provide a hard guarantee
that a task will complete by a certain time. True RTOSs diffem general-purpose
operating systems by making hard real-time guarantees #®time requirements of

the critical services they provide. Note that some peogér te all embedded operating

192

systems as RTOSs, even if that do not provide hard guaramite®$ service execution
times.

Typical applications involve significant use of RTOS prines, the complex inter-
actions among which are hidden from the application softwadeveloper. Although
abstracting away the detailed behavior of RTOS servicesvalembedded system de-
signers to more easily manage complexity, tight perforreaswed power constraints
sometimes demand more detailed analysis. An RTOS accoomgsdignificant frac-
tion of the computational effort expended by an embeddesysTherefore, designers
need to be aware of the potential performance and power inghd®TOS use. Com-
mercial RTOS manuals and datasheets typically includmeastis of the execution times
for various parts of the RTOS running on specific hardwardigarations. However,
vendors do not provide information about RTOS power congiangharacteristics. In
addition, state-of-the-art techniques in embedded so&wawer analysis do not clearly
separate and analyze power consumed in RTOS componentstopesp and demon-
strate a method of conducting a detailed hierarchical aisabf the power consumption
and execution time of embedded system applications ruronirgmulti-tasking RTOS.
In addition, our work is a first step towards analyzing andrabierizing power con-
sumptions of different RTOS components.

The rest of this chapter is organized as follows. Sectior? Iftroduces related
research and summarizes our contributions. Section 1@8uigtrates the impact of the
RTOS on embedded software energy consumption, using \&itlastrative examples.
It also describes how insights into RTOS effects on energylm used to optimize
software to reduce energy consumption. Section 10.4 desciour energy analysis
infrastructure, and presents an overview of ti&OS RTOS. Section 10.5 presents

guantitative experimental results on several example dodx software systems, on

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 193

which we base our analysis of RTOS energy effects. Sectighddhcludes and makes

recommendations to designers of low-power embedded sgdteahuse RTOSs.

10.2 Related work and contributions

The importance of reducing power consumption in embeddsi@sys has now been
widely recognized, and a large body of work has focused amatihg, managing, and
reducing power consumption in various system componentsh&rdware design, tech-
niques have been developed to estimate and optimize powsugwtion starting from
the algorithm and architectural design phases, down taitbeitdesign and technology
optimization steps [168]-[172]. Application, semiconthrdechnology, cost, and time-
to-market trends are causing a shift toward increased acéteontent in embedded sys-
tems and systems-on-chip. As a result, designers and usemsbedded software must
be increasingly aware of power issues. While power disgipas inherently a property
of the underlying system hardware, a knowledge of the endmbddftware that runs on
the hardware is useful in order to analyze and improve thiesys power consumption
characteristics.

Recognizing the important role played by embedded softwacdetermining sys-
tem power consumption, researchers have started to igaéstiechniques for soft-
ware power analysis and power-efficient software designveP@nalysis techniques
have been proposed for embedded software based on instrlietiel characteriza-
tion [173] and simulation of the underlying hardware [174Jechniques to improve
the efficiency of software power analysis through statitprofiling have been pro-
posed [175]. The system-on-chip design paradigm, whichlesantegration of proces-

sors, peripherals, busses, and complex user-defined lmgikd) has fueled research in

194

hardware and software power consumption estimation [JZ8pB}. Reducing embed-
ded software power consumption through compiler optinonat [181], source-level
transformations [178], [182], customized memory managersehemes [183], power
management schemes [168], [184], device driver and operatistem policies [185],
and variable-voltage processors [186]-[190] has beersiigated. Researchers have
also investigated sophisticated methods of using operagistems to dynamically dis-
able peripherals in order to save power [191]-[193]. Othex® advocated re-designing
page allocation and communication policies to decreasggmensumption [194].

Our work focuses on understanding and characterizing thvepeffects of RTOS
and application software. Our goal is to provide designétis asmethod of determining
the system-specific changes to the interaction betweerncapiph software and RTOS
that will most effectively reduce system power consumptidhe steps required to re-
duce system power consumption are necessarily dependehe@pecific RTOS and
processor being used. We applied this method tq©S RTOS [163] and applica-
tions running on the Fujitsu SPARCIite processor. Howewar,method of hierarchi-
cally analyzing RTOS and application software power corpion [195] can be applied
to different processors and RTOSs, e.g., an ARM processoimg Linux [196]. Others
have subsequently used a simulation-based approach t@am@I'OS power consump-
tion [197], [198]. We modeled the SPARCIite processor'®plenode. It was observed
that the RTOS, itself, can consume a significant amount ofgpoW/e present quanti-
tative results for energy and time consumed by differentatpey system tasks, such
as context switching, scheduling, inter-process comnatiaig, and timer management.
In addition, we present concrete examples of the ways in lwhtormation derived
from RTOS power analysis can be used to optimize embeddédagef power con-

sumption. Our method of RTOS power analysis can be used $eareh on high-level

Chapter 10: Analysis of Energy Consumption in Embedded @y Systems 195

power-modeling of different RTOS components. These maxheide incorporated into

power-aware system-level design tools.

10.3 Motivation for RTOS energy analysis

In this section, we illustrate, with examples, the impaa@RTOS usage on system
energy and time consumption. The RTOS energy analysissinfieture described in
Section 10.4 is used to provide a quantitative breakup oétieegy and time consumed
by different parts of the application and RTOS. Our analidesitifies the key sources
of energy consumption in the system. Significant savinga&rgy consumption are ob-
tained by re-writing the application software to use the Bli®a more energy-efficient
manner.

Energy consumption information is generally more useflilewoptimizing an em-
bedded systems’s battery lifespan, than power consumptformation. Even in sit-
uations requiring the optimization of power consumptiog, ebuilding an embedded
system with limited short-term heat dissipation, one maygdiently convert an energy-
reduced system to a power-reduced system by reducing ttensg<lock rate, putting
it in a reduced power consumption sleep mode part of the timegducing the voltage
at which some of its components operate. Therefore, we focuke energy consump-
tion of a number of simulated embedded systems in this chajteaddition, we give
time consumption profiles for these examples. Note that ¢éineep consumption profile

follows directly from the energy and time consumption pexil

196

Sense speed and

pedal conditions I
Timer 1

Compute

acceleration
Brake

pedal

' ' ' |
' ' ' '

' ' ' '

' ' ' '

' ' ' '

.. | B B 1

Brake decision ' ' ' '

' ' ' '

' '
| | ' ' | | '
' ' ' ' ' ' 1
' ' ' ' ' ' 1
' ' ' ' ' ' 1
' ' ' ' ' ' 1
' ' T T ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
'
b
ABS]
Actuate brake process !
I
' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' '

Wheel
sensor

Brake
action

Y

Time

Figure 10.2: A straightforward implementation of the AB&mple.

10.3.1 Antilock braking example

Our first example is based on embedded software used in amatine anti-lock
braking system (ABS) [199]. The system uses a timer wakeigipakto trigger ex-
ecution of the ABS process. The flow chart shown in Figure H@gicts part of an
ABS. The ABS process calls thfeense brake pedand Sense speefilinctions that
sense the brake pedal and the current angular velocity oivtteel, respectively. It
then computes the current speed and acceleration of thenabtie, and uses the speed,
acceleration, and brake pedal status to decide whethermply #pe brakes, pump the
brakes, release the brakes, or do nothing. This brakingidecis conveyed to thAc-
tuate brakefunction, which clamps the brake calipers, if appropriaiée simulated
vehicle was subjected to an input trace during which its d@eal brake pedal condi-
tions change multiple times. The energy consumption prigihown in thenon-gate

bar of Figure 10.4a.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 197

Sense speed and
pedal conditions
Compute
acceleration
Actuate brake

Brake
pedal

=

ABS
process !

Wheel
sensor

action

' ' ' '
Brake ' ' ' H ‘
' ' ' '

Y

Time

Figure 10.3: An energy-optimized implementation of the AB@mple.

In the straightforward implementation of the ABS exampliysirated in Figure
10.2, the processor is awakened and the ABS process exadthesvery timer tick.
Note that even this straightforward implementation is peaware: it uses the pro-
cessor’s sleep mode between sensor sampling events irdteadtinuously leaving
the processor in its high-power active mode. However, guently executes without
changing the condition of the brake calipers. This unnesgssxecution requires en-
ergy that might otherwise be conserved. By changing theriéthgo slightly, such that
it only wakes up the processor on a timer tick if the brake peddepressed (as shown
in Figure 10.3), the embedded system’s energy consumggiceduced. As shown in
thegatedenergy bar of Figure 10.4a, the energy-optimized impleatent of the ABS
example consumes 65.0% less energy than the straightibiwgdementation. Most
of the energy savings result from allowing the SPARCIitecessor to remain in the
sleep mode, and the DRAM to remain in a low-power self-réfre®de, through timer
ticks during which it is certain that the brake calipers neetlbe clamped. As the ex-

ecution time in each case was 14 seconds (see Figure 10c4t@r ponsumption also

198

9500_ 14000_
9000] 13000_|
8500_|
8000_] 12000_|
7500_| 11000_|

7000 10000_|
6500_|

6000_| 9000
5500 8000
5000 7000

4500
4000_| 6000
5000

3500

3000
4000
3000

2500

2000
2000
1000

1500_]
0

Application
Floating—point
E=3 Initialization
Input/output
Interrupt

%% Mailbox

E3 Memory

B Misc.

[T scheduling
FH semaphore
B sleep

[synchronization
B3 Task control

Energy (mJ)
Time (ms)

1000_]
500_]
0

Figure 10.4: ABS example: (a) energy, and (b) execution toresumption by RTOS
service category.

reduced by 65.0% in the energy-optimized version. In botisivas of this example,
operating system and board support services accountegpooxmately half of the
system'’s energy consumption. In this example, floating tpeenvice routines account
for the majority of RTOS energy consumption. Although sorhiéhe functions listed
in the bar chart’s key account for little energy, we haveelilséll categories to keep the

keys of different figures consistent.

10.3.2 Commodity trading agent example

In our second example, we consider a market composed of cdityrioading
agents. As shown in Figure 10.5, each agent has money, andlifterent types of
commodities. The starting quantity of each commodity idanly initialized. Ran-
domly selected agents broadcast, to all other agents, diesire to sell a particular

commodity. Agents receiving the broadcast respond withffem price computed from

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 199

Agent 1
1 Money
Key ! Commodity 1
Commodity 2
----- > Broadcast Commodity 3
- - -2 Price advertisement Commodity 4
—> Sale

~

Figure 10.5: An overview of the commodity trading agent egbem

the agent’s supply-price curve for the commodity under maration. The seller agent
uses its supply-price curve to determine whether the highesived offer is higher than
its internal valuation of the commodity under considerma@b the quantity it currently
owns. If so, it sells one unit of the commodity to the agent imgithe highest offer.
The mail bar of Figure 10.6a shows the energy consumption profilericzrabed-
ded system running the commaodity trading example, whenamphted using RTOS
mailboxes to transmit messages between agents. In addiemail version relies on
the RTOS scheduler to manage the activity of different agyefihetunedbar shows
the energy consumption for code that is carefully handdunaise shared memory for

message communication, and avoid the use of RTOS mailbosebeduler. In thenalil

200

Agent Ethernet

3750,

3500_] 3000 §

3250 § 2750_ Application
3000 Floating—point
27504 2500 § % Initialization
2500_| 2250 Input/output
2250_| 2000_| Interrupt
2000_| 1750_| % Mailbox

1750_| 1500_ g Memory
1500_] 1250 B misc. .
1250_ [[m] Scheduling
1000 B2 1000 @ Semaphore

7 Sleep

@ Synchronization

E33 Task control

3250_

W/

Energy (mJ)

=

4,

3
S
S
&

3

(@) (b)

Figure 10.6: (a) Commodity trading agent example energy,(bh Ethernet interface
example energy by RTOS service category.

version, the RTOS is responsible for 95.5% of the embedd&@sys energy consump-
tion. Interrupt handling, mailbox services, and schedylalone, account for 27.6% of
the energy consumption. In thenedversion, the RTOS is responsible for 92.2% of the
energy consumption. Interrupt handling, mailbox servieesl scheduling account for
2.0% of the energy consumption.

As shown in Figure 10.6a, there is an energy cost associathdising the RTOS
scheduler and mailboxes to allow a more versatile and nmaattée implementation.
Thetunedversion required only 70% of the energy of thail version. However, adding
new prioritized tasks to thmail version is simple, while changing the behavior of the
tunedversion is more difficult. In this case, a designer may traffié¢lexibility and

maintainability for energy savings.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 201

Checksum computation Checksum
and output computation

I
Compute)

Get packet

Compute
checksum

Buffer
management

Procure
Ethernet
controller

Transfer
packet

Release
— Ethernet
controller

Procure
Ethernet
controller

Release
Ethernet
controller

Transfer
packet

(@) (b)

Figure 10.7: (a) A straightforward implementation, andgbjulti-process implemen-
tation of the Ethernet interface example.

10.3.3 Ethernet interface example

In our third example, we consider checksum computation atetfacing with an
Ethernet controller that has high per-access overheads adtion occurs at the low-
est level of a TCP/IP protocol stack. Incoming packets acegssed to derive their
checksums. The packets are subsequently transmitted ¢atpet device.

The most straightforward implementation of this algorittginown in Figure 10.7a,
processes each packet as soon as it is available. Howeteis example, preparing the
Ethernet controller to receive a packet, represented byprheure Ethernet controller

operation in Figure 10.7a, is costly. Then-bufbar in Figure 10.6b shows the energy

202

consumed by this straightforward implementation, brokewrby RTOS service and
application categories.

It is possible to amortize the cost pfocure Ethernet controlleover the transmis-
sion of multiple packets by decoupling packet generatiomftransmission to the Eth-
ernet controller. In this energy-optimized implementatithe application is broken into
three tasks, as shown in Figure 10.7b. Thecksum computatidask communicates
packets to théuffer managemerntsk via shared memory. When thaffer manage-
menttask has enqueued a number of packets, it transfers thene tutputtask that
procures the Ethernet controller and transmits all the @@k its queue.

The buf energy bar in Figure 10.6b shows the energy consumed by tg\en
optimized version of the Ethernet interface example. Altjito some energy or time
is consumed by functions in each of the classificationsdigtehe key, some of these
classifications account for very little energy or time cangtion, and are barely visible
in the bar charts.

Energy optimization of the Ethernet interface exampleltssua 23.1% overall de-
crease in energy consumption, with most of the savingstragdtom reduced reliance
on hardware access synchronization and initializationises. Power consumption re-
duced by 0.1%, i.e., the energy savings resulted from a tieduin execution time, not
average power consumption. The energy saved in the hardweess synchronization
and initialization services was sufficient to more thanetffs 2.9% increase in energy
resulting from the increased complexity of the multiplskanplementation. One could
easily convert some of these energy savings into power gawiy putting the processor
and memory into sleep mode for the amount of time saved in differed version. In

this example, the RTOS consumed only 1.2% of the overallggnierthe version that

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 203

was not energy-optimized, and a similar percentage of dvenargy in the energy-
optimized version. However, in a number of other examplesvehin Section 10.5, the
RTOS consumes a substantial fraction of the embedded sgstaergy.

The examples presented in this section demonstrate theemamwhich an RTOS
power analysis infrastructure may be used to determine isiograreas for power op-
timization and evaluate the tradeoffs between power andratbsts. Understanding
the effects of an RTOS on time and energy enables a desigrogtitnize the energy

consumption of an embedded system.

10.4 Energy analysis infrastructure

In this section, we present our RTOS energy analysis framewdfe first describe
the inputs and outputs of our framework. Next, we presentgh-tevel view of its
building blocks, and the manner in which they interact tolyeathe system energy

consumption. We then present some details of individuadlimg blocks.

10.4.1 Inputs and outputs

Our framework can be used to analyze the energy consumgptian application,
consisting of multiple tasks, executing under a multi-tagloperating system. These
tasks interact with each other, as well as with periphenalcgs such as universal asyn-
chronous receivers and transmitters (UARTS), brake senaad other hardware com-
ponents. The embedded system is simulated to obtain aetetaiport of the energy

consumed by different application and RTOS functions.

204

J
J

External
stimulus
s

SPARCIite cache
simulator Cache

I controller .)
SPARCIite ISS model
Instruction—level

Timer
model

N
Energy by call N
tree position for

UART

energy model

Application SPARCIite (" Energy by call
code compiler tree position for
=l >
-

model Bus task B
I interface _fl> -
) — SH §
Vodels for Memory model unit model g L §
other Memory N § - '
peripherals energy model HY 26 & O
S > AN >,

Figure 10.8: Energy analysis framework.

Figure 10.8 depicts our energy analysis framework. Theiegmn, which consists
of multiple processes, is compiled and linked together wWithuC/OS RTOS and Fu-
jitsu’'s SPARCIite run-time libraries. In addition, a mod#élthe system’s environment
or external stimuli is provided to our framework.

The outputs of our software, shown at the right of Figure 1@&8ude call-trees for
each task and the RTOS. Each call-tree node correspondsutaction call, and has
a child node for each function call instance that occursiwith Recursive functions
are supported. The time and energy resulting from recufsinvetion invocations are
recorded in that function’s call tree node. An edge from figrcfoo to functionbar
indicates thatoo callsbar. The nodes of the call-tree are annotated with the functions
they represent, and the energy and time consumed by eaatatimo of the function.
The contributing sources of energy consumption within thection, e.g., instruction

execution, stalls, dynamic random access memory (DRAMEsking, are recorded.

Chapter 10: Analysis of Energy Consumption in Embedded @y Systems 205

Table 10.1: Hierarchical call-tree for the semaphore examp

Function _lrznr:/eo_r%% Energy (%) | Time (ms) | Calls
real start init_tvecs 0.00 0.00 1
25.40 mJ total init_timer liteled 4.26 0.00 0.00 1
2.43% 18.01 mJ total
1.72%
startup do_nai n 7363.11 0.70 5.57 1
7.39 mJ total save_data 5.08 0.00 0.00 1
0.71% init_data 4.23 0.00 0.00 1
init_bss 2.86 0.00 0.00 1
cache_on 8.82 0.00 0.01 1
Task1 wi n_unf _trap 6.09 1.16 9.43 1999
508.88 mJ total| OSDi sabl el nt 0.98 0.09 0.82 1000
48.69 % COSEnabl el nt 1.07 0.10 0.92 1000
OSSenPend wi n_unf _trap 6.00 0.57 4.56 999
104.59 mJ total 0SDi sabl el nt 0.94 0.18 1.56 1999
10.01 % COSEnabl el nt 0.94 0.18 1.56 1999
OSEvent TaskWai t 13.07 1.25 9.89 999
0sSSched 66.44 6.35 51.95 999
OSSenPost 0sSDi sabl el nt 0.96 0.09 0.78 1000
9.82 mJ total OSEnabl el nt 0.98 0.09 0.81 1000
0.94 %
OSTi meGet 0SDi sabl el nt 0.84 0.08 0.66 1000
4.62 mJ total COSEnabl el nt 0.98 0.09 0.81 1000
0.44 %
CPUI ni t BSPI ni t 3.52 0.00 0.00 1
0.29 mJ total | exceptionHandl er 15.51 0.02 0.17 15
0.03 %
printf wi n_unf _trap 6.18 0.59 4.87 1000
368.07 mJ total viprintf 355.04 33.97 257.55 1000
35.22 %

Note that if a functiorh is called from two function$ andg, we create separate nodes
in the call-tree corresponding to these two scenarios. dimgsires that the energy con-
sumption statistics of a function are separated by callechEcall instance’s energy
information can be examined separately or the call-ingsntay be combined in order
to find the total energy consumed by all of the instances ohatfan located at a given
position in the call-tree. At each position in the call-treletailed information is re-
ported about the sources of energy consumption within thetion. In addition, a total
hierarchical energy consumption, equal to the sum of thed &stergy consumptions of

a node’s children, is given.

206

Table 10.1 shows a portion of the automatically formatteipouof the system when
analyzing a semaphore example. In this example, concutagks are synchronized
through the use of RTOS services. We present this table ier dodgive the reader a
concrete idea of the sort of output the embedded system penvedysis tool produces.
Note that each context, e.gealstartandTask1 is a separate start node in the call-tree
hierarchy. The same function may appear more than once icelh&ree, if it is called
from different locations, e.g., the window underflow trapvége routinewin_unf_trapin
Taskl Although only energy per invocation, percentage of totedrgy, total time, and
number of calls are displayed in this table, the analyzer pteduces more detailed re-
ports on embedded system attributes, e.g., it can sepa&igyeconsumption into sleep
energy, stall energy, cache stall energy, memory accesgyengemory idle energy, and
instruction processing energy.

For the sake of brevity, the call-tree has been pruned td itsdepth and breadth.
We have truncated the call-tree at a depth of three and ahthtETask2context. For
example, the table shows information about thalstart and Tasklcontexts. Taskl
calls OSSemPenthat, in turn, calls a number of other functions, includid§Sched
Although OSSchectalls other functions, they are omitted from the table faavidy.
OSSemPendonsumed 104.59 mJ, including the energy consumed by afieobther
functions it calls. OSScheadonsumed 66.44 mJ per invocation and it is invoked 999
times at this position in the call-tree. Including the eryeaj the other functions it
calls, it consumes 6.35% of the total system energy and é®tor a total of 51.95 ms.
Note that the figure produced by multiplying the energy comstion of each child
function called byOSSemPenty the number of times the child function is called is
slightly lower thanOSSemPerisl total energy consumption. The difference between
these figures is the amount of energy consumed by local st&ins inOSSemPend

i.e., computations that do not involve function calls.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 207

A\

IBM Fujitsu
0118160PT3-60 SPARClite 86832
DRAM On-chip cache

IBM
0118160PT3-60 Timer

DRAM Interrupts
UART
EPROM
Brake
sensor
Other ASICs
and peripherals

Processor
bus \/
Figure 10.9: Modeled architecture.

10.4.2 System overview

We now describe the operation of our energy analysis framew®dhe simulated
embedded system consists of a processor interacting wigh af sipplication-specific
integrated circuits (ASICs) and other peripherals. As shawFigure 10.9, our en-
ergy analysis infrastructure models a Fujitsu SPARCIlitecpssor, connected to two
fast page-mode DRAMSs, a timer, a UART, and a number of othaplperals. Cycle-
accurate simulators have a reputation for being slow. Hewetis approach is suffi-
ciently fast to handle substantial applications; a sinsianulation infrastructure sub-
sequently built by colleagues booted Linux in less than fiveutes on a Pentium Il

processor running at 667 MHz [196].

208

In order to analyze the energy consumption of the system,eed detailed func-
tional models and energy models of its constituent partstruction-level power mod-
els for the Fujitsu SPARCIite processor and internal cacre e found in the liter-
ature [173]. The internal operation of the SPARCIlite preoess simulated using a
power-aware version of an instruction set simulator (IS8l by Li and Henkel [178]
that was, in turn, built upon work by Ye et al. [200]. We modiftais ISS to handle inter-
action with other components in the modeled embedded sysinhave implemented
an easy-to-use, object-oriented, inheritance-basedadeihadding new hardware to
the simulated system, e.g., the brake sensors used in theeA&8ple. Application-
specific devices may interrupt the operation of the proge8fe use interrupt routines
based on those found in the Fujitsu MB86832 evaluation kid, . &C/OS. Applications
run underpC/OS. The addition of hardware interrupts to the embeddstesy sim-
ulator required significant changes to maintain correctuation. In particular, it is
not possible to use off-line hardware models in the presehce-processor generated
interrupts.

The ISS simulates the cycle-by-cycle execution of the Bsog i.e., it accounts for
effects such as branch delays, pipeline flushes, contnel4fhdspredictions, etc. We
have enhanced this ISS in a number of ways. In order to acdourthe effects of
cache misses, we added an on-line cache simulator desigeedically to model the
SPARCIite processor’s cache. It is necessary to use amerzche simulator in or-
der to know, during execution, whether or not a cache misobesrred. An off-line
cache simulator would not allow the correct simulation otarbedded system because,
due to races with interrupts generated by other periphdtrespresence or absence of
a miss penalty may change the flow of execution. The cachelaioniaccounts for
the cache and memory behavior. We model a number of SPARSéeific features.

Among these, low-power sleep mode is particularly impdrtam addition, we model

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 209

external memory. Specifically, we simulate the cache antiaard bus interface unit
of a Fujitsu MB86832 [160], [201], as well as the operatiortved IBM0118160PT3-

60 low-power fast page-mode DRAMSs [202]. Memory energy comgtion is derived

from the manufacturer’s data-sheet, and depends on the D&#btle of operation. We
consider the energy required to drive the processor-metmasy Our power model is
built from datasheets [202] and published current measenes{173]. If the hardware
implementation of an additional device a designer wantsitegrate into the system
is known, its energy consumption can be computed using kreoveingy analysis tech-
niques [168],[169], [172].

As mentioned earlier, our energy analysis framework omgmenergy consumption
data by function. Therefore, in addition to evaluating thergy consumed by the sys-
tem in a cycle, our energy analyzer needs to keep track otthetibn and process that
are currently being executed. In general, the manner inlwthie context is determined
is specific to the operating system, and the processor bemgjaereduC/OS performs
scheduling and context switch occurs through the func®&8ched Our framework
uses this information to keep track of context switches. ckion calls are performed
using theimpl instruction from the SPARC assembly language. The nameeofutinc-
tion to which control flow is transferred is determined frame symbol table. The sym-
bol table associates an address with each function andlglabable. The problem of
tracking returns from function calls is complex and regsiirdormation specific to the
instruction set architecture of the processor being usedirtanner in which the com-
piler translates different control-flow constructs in thghlevel programming language
into assembly code, and information specific to the RTOS ¢tbdeperforms context
switching.

Our energy analysis technique is non-intrusive. This diffeith many well-known

software debugging and performance analysis technigagstlyment the program to

210

be analyzed with monitoring code in order to enhance obbéityeof the program state
and internals. While the addition of monitoring code easegyais, it results in a loss
of accuracy because the monitoring code modifies the paeasiiat needs to be mea-
sured: execution time and energy. Additionally, this exiode may change the order
in which tasks execute in an embedded system containingpteultardware devices.
The need to perform cycle-accurate performance analybsightened in the presence
of external devices that communicate with the processaacdaracies in timing can
cause a change in the functionality of the system being imefged, leading to inaccu-
rate control-flow and energy results. Since we use cyclerate processor and cache
energy models, our framework does not suffer from this bl When run on a 336
MHz UltraSPARC-II with four gigabytes of memory, the simidatakes approximately
40 minutes to simulate the 14-second original version, (nen-gate) of the ABS ex-
ample and approximately 12 minutes to simulate the 2.5rgkooiginal version (i.e.,
non-buf) of the Ethernet interface example.

There is one caveat regarding the power model used for th&kRGM& processor.
We selected the Fujitsu SPARCIlite MB86832 for simulationéhese an evaluation kit
for this processor is currently available from Fujitsupaling us to use their develop-
ment tool’s electrically programmable read-only memorPiOM) code to facilitate
the simulation of a concrete embedded system core. Howeeadp not currently have
a power model for the MB86832. We used the instruction-I@aster model for the
Fujitsu SPARCIlite MB86934 that is available [173]. The coleck frequency for the
modeled processor is 80 MHz, while the core clock frequersgduo build the power
model is 20 MHz. The I/O clock frequency for the modeled pssce is 26.7 MHz,
while the core clock frequency used to build the power maslébi MHz. It was neces-
sary to scale the current values in the power model in ordact¢ount for the increased

core clock frequency. According to the MB86832 data-shmetent scales linearly with

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 211

clock frequency [201]. This behavior is to be expected fanemtional, low-leakage
CMOS processes. The instruction-level power model doesejdrate the power con-
sumed in the processor core from the power consumed in therdGits. We relied on
the relative contributions given in the MB86934 data-slmetder to scale the separate

components of the overall current correctly [203].

10.4.3 System details

In this section, we describe the operation of two key comptsef our target system
architecture: the processor and the operating system. ¥fepfiesent an overview of
the processor, and then briefly describeii#gOS RTOS.

Our system is built around a Fujitsu SPARClite MB86832, &8RISC processor,
operating at 80 MHz, with an external bus speed of 26.7 MHmplements a superset
of the SPARC v8 instruction set architecture. Its integdt bas a five-stage pipeline
that can handle data interlocks, and a branch handler tonpeidontrol-flow transfers
efficiently. The bus interface unit is capable of providiggse-cycle access to the on-
chip cache. The processor has 136 registers, organize@igto overlapping register
windows, and 8 KiB instruction and data caches. Multiply aivde operations are
supported by dedicated, on-chip hardware that can compktat multiplications in
five cycles. The processor also has a power-down mode thdtecamployed to reduce
energy consumption.

We have taken care to simulate the context-dependent IBBIEAPT3-60 memory
and MB86832 bus interface unit timing in sufficient detailetosure that memory ac-
cesses require the number of cycles implied by the timingrdmas in the specifications.
In addition, we simulate stalls resulting from periodictdisuted DRAM refreshes.

MC/OS is Jean Labrosse’s portable real-time kernel for rpraoessors and micro-

controllers. We use the version Brad Denniston ported toMB&86832 processor.

212

MC/OS has been used in many commercial applications, aneitermance is com-
parable to that of other commercial RTOSgC/OS supports multitasking, and can
handle up to 63 concurrent processes. The kernel is fullgrpptive. The RTOS is
designed to be scalable, i.e., designers who do not reqgoime ®f its features may
save memory by easily building a light-weight version. THEORS provides a number
of services such as scheduling, task management, inteeggaommunication, mem-
ory management, interrupt handling, and timer-relatedices. We chos@C/OS for
our experiments because it is modular, well-designed, agiddecumented; its source
code is readily available. Further information jg@/OS can be found on the Internet at

http://www.uCOS-Il.com, or in Labrosse’s book [163].

10.4.4 Extending our approach to other embedded systems

Our approach for analyzing RTOS and application softwavege@onsumption can
be extended to other processors and operating systems. velowieere are system-
dependent components in this approach.

It is necessary to have ISSs for the processors used in tet mbedded system.
There must be a method for tracing the status of the simufatszkssor cycle by cycle,
in order to record energy consumption, detect context ésgcand simulate interaction
with other hardware in the embedded system. Although it icewvable for an ISS to
provide a run-time interface meeting these requiremetitspur belief that, in practice,
the ISS source code will be required. ISSs are available fmmaber of popular archi-
tectures. Vendors sometimes provide simulators for mooti@grocessors. A designer
who wants to use our power analysis method on complex proce$sr which ISSs
are not available will face a substantial burden. Fortugatgetting access to simula-
tion modules for system-specific ASICs is likely to be stréiigrward, as the in-house

simulators used to design and debug the ASICs are likely tovadable.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 213

Ideally, the source code of the RTOS, including low-levedteyn support software,
will be available. Our approach is useful even if the RTOS sewode is not available.
However, in this case it will be more difficult to apply. It iecessary for the embed-
ded system simulator to detect context switches. Howelwverwiay in which a context
switches is RTOS-dependent. If the RTOS source code is adgahle, it is necessary
to learn how the RTOS handles context switches based onsdisdded binaries and
EPROM images. In addition, it is important for the desigreunhderstand how dif-
ferent components of an RTOS interact in order to best opérts usage. Unless the
documentation of the RTOS is detailed, a designer intedt@stenaking the best possi-
ble use of the RTOS without access to its source code will beeébto learn about its
operation by tracing its execution at the instruction leeelby disassembling it. This
sort of reverse engineering can be time-consuming andycodtbwever, even in the
absence of the RTOS source code, our approach remains.uBgfutdicating which
RTOS services have high energy consumption, it allows tlseyder to focus attention
on understanding, i.e., reverse engineering, those sstvic

Unless power consumption was a primary consideration in &0@sign, minor
changes to an RTOS can significantly improve its power copsiom characteristics.
A feature of uC/OS provides support for this observation. When no usének pro-
cesses are running, an idle task executes. Normally, thksrepeatedly increments a
variable. By comparing the actual number of increments iftvargtime-span with the
maximum number of increments possible in that time-sp@iQOS keeps track of the
percentage of time spent idle. This behavior is beneficglpag as one is not trying
to minimize power consumption. There are sophisticatedagmhes one could use to
dramatically reduce idle power consumption. However, eenstraightforward ex-
pedient of preventing the variable from being incrementedieates numerous writes

to the processor’s write-through cache, thereby reduciaghary power consumption.

214

The ability to make changes to the source code of an RTOSasegethe designer’s
flexibility in optimizing embedded system power consumipticHowever, even if the
source code is not available, our approach allows a desigmaodify the use of RTOS
services in order to reduce power consumption.

Finally, it is necessary to have power models for the embedgistem devices that
consume a significant amount of power. It is our hope thathenftiture, hardware
vendors will see the competitive advantage of providingauers with detailed power
information about their products. Until this practice be@s common, designers who
want to apply our approach will be forced to rely on power nis@ad analysis tech-
niques found in the literature [168], [169], [172], [173]ternally developed power mod-
els, or the limited power information found in conventiodatasheets. Note that, for
some processors, this power information is sufficient tovak reasonable estimate of

power consumption.

10.5 Results and case studies

We analyzed the energy consumptionu@/OS RTOS when running several em-
bedded applications. In all cases, we targeted the FujiBARElite processor based
embedded system presented in Section 10.4.2. Some appicatere abstracted from
real embedded system application software, while others designed to exercise spe-
cific RTOS functions and services. Overall, care was takeensure that key RTOS
functions and services were used by the chosen applications

For each example, we categorized energy consumption by RirdSapplication

service type, as explained in the following list.
e Application: Non-RTOS functions.

e Floating-point: Integer operations to simulate floating point math.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 215

Initialization : Embedded system initialization functions. This is tyflicaxe-

cuted only once during an application’s run.

Input/output : Input and output formatting and communication with thetsgss

UART channels.

Interrupt : Interrupt service routines.

Mailbox: Code to handle task communication with mailboxes.
Memory: Memory initialization, allocation, and copying functien
Misc.: Functions not in other categories.

Scheduling Task scheduling.

Semaphore Semaphore-based task synchronization code.

Sleep Sleep mode.

Synchronization: Non-semaphore-based task synchronization code.

Task control: Task management, e.g., task creation.

Energy (mJ)

Time (ms)

216

375
9500_ 8750 3250_ 7
9000 =T 3500_| = 350_|
§ 3000
8500 3250_| 7 325_| -
8000 S 2750, Application
S 3000 — 300 —))
7500_| — 2500 — Floating—point
7000 2750 T s 275 Initialization
6500_] KIS 2500_] S 2250_] 250_| Input/output
gggg— 2250_| % 2000_| 225_| Interrupt
s000_] RS 2000 1750_] 200 [Mailbox
4500 (5 1750_| 1500_ 175_| £ Memory
40004 27 1500_| 1250 150_| B wisc.
3500_] 1250_] — 125_| [T scheduling
3000 1000_] FF semaphore
2500_| 1000 100} s
ee|
2000_| 750 750 75_] £ Steep o
1500_| 500_| =] synchronization
500_| 50_|
1000_| 250 m Task control
500_| 250_| 25_]
0] o]] o] o]
) & /)o
Y Y
log
Agent Ethernet Mailbox Semaphore
Figure 10.10: Energy consumption profiles.
2750_
14000_ 2500 275 800
= Y 2500 = 750_]
13000 RS — § 2250_] 250_| 700_| —
12000_| 2250_| 205_| 650_| Application
11000_] \: 2000 2000 600_| Floating—point
S — 200 Initialization
10000 == 1750_] S 550 — Ioutoutout
= nput/outpul
9000_ 1750_] = 175_] 500 putioutp
% 1500_| 450 Interrupt
8000_| =2 1500_| 150_| [Mailbox
Z 1250_| 400_]
7000_] 1250_] 125_| 250 £ Memory
6000_] 1000_ 200 B Misc.
5000_] 1000_| 100 250— [T scheduling
4000_ 750_| 750 75_| 200 E Semaphore
3000_] RS 500 150 £ Steep
500 . | 50 - — =] synchronization
2000 bl 100 Task control
250_ 250 K 25_| 32|
1000_| L 50
0 0 = oJBEd B o 0
(7 . () (&
® %y O’)@ 7 ‘ ”
log e
ABS Agent Ethernet Mailbox Semaphore

Figure 10.11: Time consumption profiles.

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 217

Figure 10.10 shows the energy consumed by different RTO8cssrand the ap-
plications, themselves. Each vertical bar representstmcigexample. Vertical bars
are divided to indicate functions. For instance, in the bwilexample, 1/0O primitives
used by the RTOS account for a larger portion of the energgwoption than any
other function category. Figure 10.11 presents a simifaryatted breakdown of time
consumption by RTOS service and function category.

The Ethernet and ABS examples are described in Section TAe3ratio of proces-
sor energy consumption to DRAM energy consumption variechf2.71 (in the energy-
optimized version of the Ethernet interface example) tal Zif the energy-optimized
version of the ABS example). The results in this section, iarfBlection 10.3, indicate
that an embedded system’s RTOS may be directly responsibke significant portion
of the embedded system’s energy consumption. The pereeofagystem energy di-
rectly consumed by the RTOS may vary dramatically from apipnately 1% (in the
energy-optimized version of the Ethernet interface exajpl 99% (in the mailbox ex-
ample), depending on the degree to which the applicatior oeltes on RTOS services.
Even when the RTOS does not directly consume a significanep&ge of the system’s
energy, one can significantly reduce overall energy consompy more wisely using
RTOS services, as demonstrated by the different versiotiedABS example.

The mailbox example illustrates the use of mailboxes fogriprocess communi-
cation. It consists of three application tasks that comwatei via the shared mem-
ory mailbox communication service provided p§/OS. The tasks also perform writes
to the UART. Figure 10.10 shows that, in this example, thennsaiurces of energy
consumption are input/output primitives, interrupt seevioutines, task scheduling, as
well as RTOS and processor initialization code. Mailbox agement services also
consume a small but significant fraction of the system’sg@neformatting and trans-

mitting data to the UART can be energy-intensive, and shbaldparingly used in an

218

energy-constrained implementation. The application getles heavily on RTOS and
processor support routines. As a result, the applicatiale @nly consumes 1.0% of
the total system energy, with RTOS and processor suppaitssrconsuming the other
99.0%.

In the semaphore example, concurrent tasks are synchdothireugh the use of
RTOS services. RTOS primitives that post and release semnephccount for a small
but significant portion of the system’s energy consumptibime application code con-
sumed 1.2% of the total system energy, with RTOS and procespport services con-
suming the other 98.8%.

From the results presented above, one can observe that tielded system con-
sumed significantly less power during sleep mode (14.2-H8\0depending on exam-
ple) than when running in other modes. As described in Sediib4, a call-tree node
holds the total time and energy of all function calls located given position in the call-
tree. The average power consumption of call-tree nodes;aptext-dependent function
execution, varied from 769 m\WOSEnablelntto 1,047 mW (art_delay). However, the
differences among the power consumption of RTOS serviesekawere smaller. Aver-
age RTOS service class power consumption varied from 842 fakhterrupt service
routines) to 976 mW (for floating-point routines). While thevas a strong correla-
tion between execution time and energy consumption for xaengles in which sleep
mode was not used, it would be unwise to generalize this wagen to all embed-
ded systems. In embedded systems containing peripheraggsors that consume a
substantial amount of energy, and whose control is reldgata subset of the RTOS
service classes, there would be substantial differendegela the power consumptions

of different RTOS service and function categories.

Table 10.2: RTOS service energy per invocation

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 219

. Minimum | Maximum
Service energy (1J) | energy ()
Agent Task 3.13 4727.88
fpdiv_parts 4.23 261.22
BSPI ni t 3.52 3.55
f pmul 21.57 40.66
CPUI ni t 286.98 291.39
fpmul _parts 4.73 43.83
Cet Psr 0.38 0.55
fptodp 17.46 49.72
Cet Thr 0.38 0.67
fstat 4.61 16.34
I nitTimer 2.53 2.56
fstat_r 7.83 31.42
OSCt xSw 46.63 65.65
init_bss 2.86 3.07
OSDhi sabl el nt 0.84 1.31
init_data 4,23 451
OSEnabl el nt 0.84 1.31
init_timer 18012.10 | 20347.00
OSEvent TaskRdy 26.45 30.54
init_tvecs 1.31 1.31
OSEvent TaskWai t 11.62 13.75
isatty 1.77 1.77
OSEvent Wi t Li st nit 30.35 31.48
liteled 4.26 4.26
Sl ni t 7036.20 7057.59
l'itodp 10.22 225.33
OSMhoxCr eat e 41.04 43.25
| ocal econv 1.74 2.35
OSMboxPend 10.11 130.59
| ocal econv_r 0.42 0.83
OSMWhoxPost 7.78 129.06
[shrdi 3 2.63 3.37
CSMenCr eat e 31.37 31.61
make_dp 9.87 40.44
OSMentet 10.00 12.34
mal | oc_r 71.09 71.50

Continued on next page.

Table 10.2: RTOS service energy per invocation (continued)

. Minimum | Maximum
Service energy (1J) | energy (1)
OSMvem ni t 4432.06 4432.59
nbt owc 3.21 4.07
OSMenPut 9.71 11.89
menchr 1.95 15.19
osQnit 60.02 62.72
nmenmove 3.91 20.67
OSSched 10.24 80.73
nor ecore_r 57.07 57.27
OSSentCr eat e 41.60 43.40
pack_d 6.01 24.65
CSSenPend 9.83 112.72
pack_f 3.49 7.66
CSSenPost 9.24 115.69
printf 367.52 890.27
OSSt ar t H ghRdy 20.53 20.82
put Char Port 1 19.22 32.51
COSTCBI ni t 42.31 45.68
put char 6.78 7.40
OSTaskCreate 84.28 87.98
put char _r 5.56 6.07
OSTaskCr eat eExt 2123.10 2145.03
put str 64.01 66.09
OSTaskCr eat eHook 1.92 1.94
rand 2.35 3.15
OSTaskSt ki ni t 16.54 31.76
rand_range 912.52 1003.22
OSTask SwHook 0.53 1.13
rdt br 0.38 0.88
CSTi meGet 4.62 5.29
rint 3.70 435.11
Roul ette 957.48 5684.69
save_dat a 5.08 5.22
agent _broadcast 990.70 4714.15
sbrk 4.86 19.06
agent _buy 7.22 8.94
shrk_r 7.14 33.56

Continued on next page.

220

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 221

Table 10.2: RTOS service energy per invocation (continued)

_ Minimum | Maximum
Service energy (1J) | energy (1J)
agent _i ni t 71.19 211.09
sfvwite 44.19 648.40
agent _of fer 239.13 1279.00
sinit 35.45 36.31
agent _price 227.02 830.43
sitofp 7.67 86.79
agent _sel | 6.26 933.14
smakebuf 94.37 118.08
cache_of f 3.18 3.18
sprint 47.51 651.70
cache_on 8.68 8.82
std 8.95 9.36
do_gl obal ctors 3.26 3.26
swhuf 152.65 152.65
dpadd 31.31 139.92
swite 149.93 607.27
dpcnp 18.68 23.27
swset up 101.59 125.31
dpdi v 28.58 291.14
uart _del ay 14.25 14.68
dpmnul 29.08 74.04
unpack_d 5.24 8.59
dpsub 26.54 286.74
unpack_f 3.60 6.10
dptol i 8.44 16.75
vfprintf 354.51 872.99
except i onHandl er 15.26 18.86
viprintf_r 346.54 859.51
fflush 159.41 625.94
wi n_ovf _trap 11.25 12.09
fpadd_parts 3.59 255.83
wi n_unf _trap 6.00 11.84
fpcnp_parts 3.47 5.76
wite 143.41 577.06
fpdiv 21.17 72.81
wite.r 146.30 591.68

222

Table 10.2 shows the minimum and maximum energy per invecédir each RTOS
service, board support package routine, and standardhlibvatine used in our exam-
ples. These routines might consume less energy than thenomimin the table, or more
energy in the maximum in the table, if they are used in a manneencountered in
any of our examples. However, for applications similar to examples, these values
provide a reasonable range for the energy costs of RTOScesrand other support

routines.

10.6 Conclusions and recommendations

In this chapter, we have described the design and impletiemtzf an RTOS power
analysis infrastructure. Examples were presented tan#itesthe application of this in-
frastructure. By analyzing a commercial RTQ&/OS, running several applications,
we have demonstrated that the manner in which the RTOS ishased significant im-
pact on an embedded system’s power consumption. Insighteddrom such RTOS
power analysis may be used to optimize embedded softwarermpoammsumption and
drive research on high-level power modeling of different® components. Further-
more, this work enables power-efficient RTOS and applicatiesign, and may be in-
corporated into power-aware system-level design tools.

Based upon our observations, we have found a few generaklgwed that de-
signers should follow in order to use an RTOS in a power-efficivay. However,
before presenting these guidelines, we must first mentioemaciveats. The most
power-efficient implementation of embedded system so#vsuprocessor-dependent
and RTOS-dependent. We strongly suggest implementingtatgpe without expend-
ing heroic efforts on low-level power optimization. One shibstart trading off code

flexibility and maintainability for power efficiency only tafr it is clear, e.g., via energy

Chapter 10: Analysis of Energy Consumption in Embedded &gy Systems 223

profiling, which portion of the RTOS or application code isnesessarily consuming
power. The guidelines we present, here, are no substitutesiag a detailed power
analysis infrastructure, of the sort presented in this tdrapluring the design of an
embedded system.

A number of energy reduction options are available to an elakde system designer

with access to an RTOS, as follows.

e Rewrite high energy consumption portions of an applicatoavoid unnecessary
use of the RTOS scheduler.

e When synchronization between tasks is implicitly carried, @do not use RTOS
services to carry out (redundant) synchronization. Thig bweasier said than

done because redundant synchronization can make code otors r

e Take advantage of RTOS primitives, e.g., process suppottllaw easy imple-
mentation of multi-process schemes that amortize the ob$tigih-overhead op-

erations.

¢ If power analysis indicates that memory management consarsabstantial pro-
portion of embedded system power, consider custom, e.ggromblock, mem-

ory management for commonly allocated and deallocatedtylpés.

e Concentrate on special modes available in the processast ddsigners already
pay some attention to code execution time and, in the abs#repecial proces-
sor modes, there is a strong correlation between executradnd energy for
general-purpose processors. However, using specialgsocenodes, e.g., sleep
mode, can dramatically reduce power consumption. One c@ndge an RTOS
to easily retrofit an existing application for power redantie.g., one may use a

low-priority task that puts a processor into sleep mode.

224

We emphasize that the above recommendations are not eixfeaubey will not
be beneficial for every embedded system. Our strongest stigges to examine an
embedded system’s RTOS and application energy profile defttempting to power-

optimize code.

Chapter 11

Comparisons with Related Work

In this chapter, we describe three algorithms that are ljlostated to our work and
point out differences with our work.

Axelsson compared the performance of a tabu search alggritlsimulated anneal-
ing algorithm, and a genetic algorithm on the real-timeiparing problem [65]. His
tabu search algorithm and simulated annealing algorithechbedter performance than
his genetic algorithm. However, it would be dangerous tesaer his three algorithm
instances to be representatives of the three algorithnsedadn addition, it would be
dangerous to generalize results obtained for the real{tamgtioning problem to the
hardware-software co-synthesis problem.

An early version of MOGAC, running in simulated annealingdapwas capable
of generating high-quality solutions for problem instasmagewhich link synthesis was
not necessary. Even in these instances, adding crosseuttekin faster convergence
to results with the same quality. The main problem with Agelss results is that they
compare naive versions of the three algorithm types: sitedlannealing, genetic, and
tabu search. Although it is easier to get simulated anngalial tabu search functioning
at a basic level, than itis to get genetic algorithms workiuetj, simulated annealing and
tabu search lack the ability to share information betwe#ardint solutions. In addition,

simulated annealing and tabu search are poorly suited taabjgctive optimization,

225

226

when compared with genetic algorithms. In short, Axelssonmparison is not relevant

to the problems we are dealing with for the following reasons

e His work solves a significantly simpler problem than thatkted by our co-

synthesis and system synthesis software.
e The genetic algorithm he implemented does not attempt teepve locality.

e His conclusion, “... genetic algorithms are less suitabies to the difficulty in
defining a reasonable crossover operator,” is nearly correlowever, he has
succeeded in finding a fault only with his implementationt wgh genetic al-

gorithms, in general.

In our evolutionary algorithms, care is taken to presereality in string encodings
and crossover. We use a clustering method to prevent theugtiod of structurally
invalid solutions. Although the resulting genetic alglonitis complicated, it is effective.
In summary, Axelsson’s results are interesting and vakiadbwever, they should not
be generalized beyond their proper scopes.

Teich et al. applied a multiobjective genetic algorithm hbe theterogeneous dis-
tributed system co-synthesis problem [79]. Their apprabuds not target systems with
hard real-time constraints. Power consumption is not camed. Multi-rate systems,
and systems containing task graphs with periods less tlendeadlines, are not han-
dled. They use a method of crossover that randomly seletstddoswap and does not
attempt to preserve sequences of bits describing relatebuses, i.e., it does not at-
tempt to preserve locality. As described in Section 4.3y i§ the solution pool size,
this may result in up to an (nz) slowdown in the rate at which solutions are implicitly
evaluated, when compared to a genetic algorithm using dityppaeserving crossover

method [120]. In this work, solutions that are not valid, dnat cannot be made valid

Chapter 11: Comparisons with Related Work 227

by the application of a repair operator, are immediatelynteated. Multiobjective opti-
mization is not performed. Their experimental results ¢cgired one small example and
no comparisons are made with other co-synthesis systems.

Oh and Ha applied a heuristic to the heterogeneous distdlayistem co-synthesis
problem [75]. They compare the results produced by theworélgn with those pro-
duced by MOGAC. Their algorithm is able to find lower-pricéutimns than MOGAC
using less CPU time for some problem. However, we have sulesgly improved our
optimization infrastructure, allowing our algorithm taggluce superior solutions to two

of the task sets for which they reported results, as showeati@& 6.9.

228

Chapter 12

Contributions and Conclusions

We have presented algorithms for hardware-software cthsgis and embedded
system synthesis. The optimization framework, upon whigy tare built, produces so-
lutions to the conventional co-synthesis problem that matcsurpass those produced
by prior work. The CPU times required by these algorithmsoditen orders of magni-
tude better than many prior algorithms. Their CPU time regjuents increase slowly
with increasing problem complexity. In addition, we havegented a framework for
the energy analysis of real-time operating systems (RTOSS)

Although we carefully compared the results produced by qimazation frame-
work with those produced by prior art, our primary goal wak/isg new problems.
Each algorithm tackles a different class of embedded systerd considers essential
details that have typically been ignored in past work, fa sake of simplicity. Com-
parisons between these algorithms and alternative appeedloat do not model physical
details with as much accuracy indicate that it is importantih embedded system syn-
thesize algorithm to consider some detailed physicaltreg)ieven during high-level
design.

We believe that embedded system synthesis is an inherenttiobjective problem
and, to the best of our knowledge, we were the first to forneutetrdware-software

co-synthesis as a multi-objective optimization problem.

229

230

We were the first to formulate and solve the heterogeneousmysn-chip synthe-
sis problem. We consider intellectual property (IP) copeklselection. Our algorithms
take physical realities, e.g., routing congestion, wirkagleand bus topology, into con-
sideration. We developed a novel and efficient bus topolaetation algorithm that
optimizes communication contention under routability stoaints. We proposed a new
system-on-chip clock selection method. Our experimentsahstrate that it is impor-
tant to consider a number of low-level details during systewchip synthesis [204].

We were the first to synthesize heterogeneous distributdisy containing dynam-
ically reconfigurable hardware [205], although others hadead work on this problem
at our time of publication [69]. Our scheduler considers] amnimizes, inter-task re-
configuration delay. We demonstrate that considering rfegaration delay allows the
synthesis of superior embedded system architectures.

We were also the first to solve the limited bandwidth cliegiiver system synthesis
problem. We took care to pipeline the execution of tasksaatad with different clients
while maintaining identical client designs. During syrgise tasks automatically mi-
grate across wireless communication resources in ordergmve system price, power
consumption, and speed [206].

All of our work considers the power consumption of the systhed real-time em-
bedded system. Our work was among the first to consider powerglheterogeneous
distributed system synthesis [207]. To our knowledge ordyd®and Jha [128] as well
as Kirovski and Potkonjak [208] preceded us.

In addition to power consumption, the following costs maycbasidered, depend-
ing on the problem targeted: price, soft deadline violgtiamd area. Instead of col-
lapsing these costs into a scalar with a weighting sum, theses are simultaneously

optimized by allowing multiple solutions that trade off tti#ferent costs to evolve in

Chapter 12: Contributions and Conclusions 231

parallel. Ours was the first system synthesis work to conaudtiobjective optimiza-
tion in this manner. In addition, to the best of our knowledge were the first to devise
an arbitrary-dimension dynamic locality preserving coyes selection method. This
method is used within our evolutionary algorithm basedeyssynthesis framework.

We were the first to build and describe an infrastructure éinalyzes the contribu-
tion of an application and real-time operating system torabexded system’s power
consumption [195]. This simulator provides detailed infiation about the power con-
sumption impact of each portion of an embedded system’svacdt It allows one to
find bounds on the energy consumptions of operating systerntseoutines.

We initially set out with the goal of automating the desigmadiroad class of embed-
ded systems. In the process of working toward this goal, we bBaplored, and solved, a
number of specific problems within this research area. \Wargited to select problems
that are likely to become more important in the next few yead tested our ideas by
complete implementation in software, comparison agaiast work, and execution on
high-quality benchmarks. It is our hope that others can fiteinem our work. If you

found this work interesting, and would like to discuss iegde contact me.

Robert P. Dick

dickrp@ee.princeton.edu

232

Appendix A

Task Graphs for Free

In this appendix, we present a user-controllable, genargbose, pseudorandom
task graph generator called Task Graphs For Free (TGFF)FTa&ates problem in-
stances for use in allocation and scheduling research.sltheability to generate in-
dependent tasks as well as task sets that are composediafipardered task-graphs.
A complete description of a scheduling problem instancedated, including attributes
for processors, communication resources, tasks, andtagkicommunication. The user
may parametrically control the correlations betweenlaitas. Sharing TGFF ’s param-
eter settings allows researchers to reproduce the examgeesby others, regardless of
the platform on which TGFF is run. This work was done in catlition with David L.
Rhodes and Wayne Wolf.

A.1 Introduction

Research in embedded real-time systems and operatingrsysie well as in more
general allocation and scheduling fields, is hampered bjattieof a common base of
examples. In general, an example used in allocation andlatihg research consists

of a task set and a database of processors and communicgmurces. Aask seis a

233

234

collection oftask graphseach of which is a directed acyclic gragpXG) of commu-
nicating tasks. Generation of sample task sets is oftenwdresgent when comparing
allocation or scheduling methods with each other [2090]2There are generally no
standard task sets available, making comparison of differethods all but impossible.
Moreover, since task set generation is only a secondaryceaepecheduling research,
the details necessary to enable exact recreation of anetbesircher’s task sets are usu-
ally lacking. At best, re-implementation of another resbar’'s random task set gen-
eration algorithm is tedious. At worst, the new implemebotasubtly differs from the
algorithm used in the work with which a comparison is madsulteng in misleading
experimental results. These problems conspire to mak#idudi to compare one’s new
allocator or scheduler with existing algorithms.

This situation would be improved by the existence of a steshdzhareable base of
task sets that are sufficiently general to enable applitalhd a wide range of areas
(e.g., embedded systems and parallel computing) and thabeduned to particular
problem domains. Shareable examples have been criticebgpgss in other areas such
as computer-aided design and computer science, e.g.atidestl ISCAS digital circuits
used to compare digital circuit simulators [211] or the DIMIA Boolean formula sets
used for satisfiability solvers [212]. However, a surveyhie tirea of task sets reveals
that researchers are ‘on their own’; this is true among bdwthndustrial and academic
research communities. Allocation and scheduling reseigrahsufficiently broad area
that any static set of examples meeting the needs of the ityagbresearchers would be
gigantic. TGFF gives researchers the flexibility to dynaattyctailor examples to their
work while making it easy for others to regenerate these pkasngiven knowledge of
the parameters used. It has been used by numerous schezhdiafiocation researchers

in published work.

Appendix A: Task Graphs for Free 235

Some allocation and scheduling research for very hight-Bxstem design assumes
that there are no data dependencies between differentitasktask set, while at the
other extreme, directedyclic task-graphs usually arise in low-level or small-grain are-
nas, for example, in instruction-level code analysis. T&Esk graph format, the DAG,
is commonly used in medium-level and high-level allocatiod scheduling research in
academia and industry [67],[76],[81]. TGFF is nonethelsgsable of generating sets
of independent tasks as a special case of the sets of DAGsHhichvit is primarily
intended.

TGFF includes a pseudorandom number generator [213]. TEmnsrgtor behaves
identically on any machine that represents mantissas witbranore bits. Given the
same command line options, TGFF will generate the same &tskpsocessors, and
communication resources when run on nearly any architedhat supports floating

point computation.

A.2 Task set generation

Task graphs may be roughly categorized by their structuggrties. DAGs gen-
erated to solve some numeric or algorithmic method, for gtaran FFT computation
or a Quicksort, exhibit a particularized (and predictastejicture. Although there also
appears to be a lack of shareable task graphs in this ‘staedctgraph’ regime, these
types of graphs are more easily documented and re-creaadrtbre randomly struc-
tured graphs. Thus, the TGFF effort focuses on random tagkhggeneration subject to
the limitations and parameters provided by the user.

TGFF generates a given number of random task graphs, whegrdphnodesare

tasks and the grapércs represent communication between tasks. Arcs are assibciate

236

with parametrically controlled data volume scalars; tregyresent inter-process commu-
nication and impose a partial order on nodes. TGFF acceptsd®dm number generator
seed parameter, among others. The value of the seed aftabtthie structure as well
as other aspects of the task set. TasKam®miliescontaining an arbitrary number of task
sets may be generated by varying the seed while holdingtedr gtarameters constant.

Terse documentation of each commend-line parameter isdqadwith the software.
Therefore, only a high-level description is given here. @h¢he most challenging
aspects of generating task graphs is developing an algofahdefining their structure.
For TGFF, there are a number of parameters relevant to thegtaph structure: the
averagen, and multiplier,m, for the lower bound on the number of nodes in a graph,
and the maximum in-degre, and out-degreend, of graph nodes. While andod
are fixed for every task graph generated in the task set, & ¥atuhe lower bound is
selected at random from the uniform rarjge- m, n+m|.

Let x be a lower bound on the number of nodes in a task graph, asmaydelected
from the uniform rangén — m, n+ m|. The task graph is constructed by first creating
a single-node graph and then iteratively augmenting itl timé number of nodes in the
graph is greater than or equalxo

The augmentation operates as follows. First randomly seiier afan-outstep or a
fan-instep (with equal probability). If it is a fan-out step, finetbet of nodes that have
the largest amount of ‘available’ out-degree, i.e., tho# the maximum difference
betweenod and the actual number of out-arcs, and call this maximuneificer.
Assuming that > 0, randomly pick a nodey, from the set, and then agchodes and
arcs to the graph fronp to each of these new nodes wherg/ is a random number
ranging from O ta..

If it is a fan-in step, find a set of existing nodes that are ne&trdheirod limit and

call the cardinality of this sef. Assuming thatj > 0, randomly select a valugein the

Appendix A: Task Graphs for Free 237

range[0, max(q,id)]. Add a single node to the graph andrcs fromz nodes from the
set to this new node.

This procedure generates DAGs that honor the in-degreetrdiegree limits, con-
tain at leastx nodes, have a single start node, and do not have duplicatedey.,
those between the same pair of nodes). The actual numberetrio the generated
task graph ranges fromto x4 od — 1.

TGFF associates a deadline with evegyminal node(a node that has no outgoing
arcs) in the task graphs it produces. A heuristic is used negge deadlines that are
likely to be challenging but tractable. If depghis the length of the maximum-length
path from atask graph’s start node to a given nedethe user-specified average amount
of time taken to execute a task, and laxiig an arbitrary scalar, then the deadlohéor

that node is set in the following manner:

Task sets containing task graphs with differing periodstarmed multi-rate task
sets. TGFF is capable of parametrically generating thegsf task graphs in multi-
rate task sets. The user specifies an array of period maksaat is used to determine
the relative periods of different task graphs in the task Setecting only small integer
multipliers allows one to generate a task set that can flgab# scheduled with the
least common multiple scheduling method [105]. Howeverser us free to specify
multipliers that are vastly different or for which the leastmmon multiple is large,
relative to the individual multipliers. Givemular (an array of user-provided period
multipliers), p_laxity (a user-provided scalar), atglar (an array containing all the task
graphs in the task set), TGFF uses the algorithm in Figurédaksign a period to each
task graph. This algorithm generates periods that are basdde period multiplier
array provided by the user and are loosely related to thelideadof individual task

graphs.

238

mular is a user-specified array of multipliers
tg_ar is an array of task graphs

mulls is an empty list

p_laxity is a user-specified scalar

while mulls—elements< tg_.ar—elements
selectmulrandomly frommul ar
appendmulto mulls

sortmulls in increasing order
sorttg_ar in order of increasing deadlines

gr = tg_ar[lasi—deadline/ mulls[last

for eachi in all task graph indexes:
tg_ar|i]—period= gr- mulls[i] - p_laxity

Figure A.1: Period computation algorithm

An important characteristic of task sets is the relatiomieen the deadlines and the
periods of their task graphs. While some schedulers allovoge that are less than
deadlines (e.g., [67], [214]), many do not. If requestedFF@revents the period of any

task graph from being greater than any of the deadlinesmithi

Appendix A: Task Graphs for Free 239

TASK_GRAPH 0
Peri od= 900
InfQut Deg Limts=3/ 3

d=500 d=500

Figure A.2: Result fotgff -n1 -e3:3 -g10:2 -r5

TASK_GRAPH 0 TASK_GRAPH 1 TASK_GRAPH 2
Peri od= 500 Peri od= 1500 Peri od= 500
In/Qut Degree Linmits=1/ 2 In/Qut Degree Limits=1/ 2 In/Qut Degree Limits=1/ 2

Figure A.3: Result fotgff -e1:2 -g15:14

240

TASK_GRAPH 0 TASK_GRAPH 1 TASK_GRAPH 2
Peri od= 1350 Peri od= 450 Peri od= 1350
In/Qut Degree Linits= 3/ 4 In/Qut Degree Linits= 3/ 4 In/Qut Degree Linits= 3/ 4

S5

d=100 d=100 d=100 d=100

d=300 d=300 d=300 d=300

=700 d=700

Figure A.4: Result fotgff -e3:4 -g20:18 -r3

In addition to the primary output file, a PostScript file deipig the task set is gen-
erated. Figure A.2 shows an example task graph output by B3¥#5tScript facility.
This is a problem instance with a single task grapii), a maximum in-degree and out-
degree of two4e3:3), a number of nodes ranging from eight to twelve per tasklgrap
(-910:2, and a random seed of five). In this illustration, each task is represented
by a square and is labeled with its number. In addition taag& number, each terminal
node is labeled with its deadline. A task graph family of 5@gé¢ task graphs can be
generated by running TGFF with the following flags) 1 -sx’ wherex is given integer
values in the sef0,1,2,---,49}. This statement is sufficient documentation to enable
other researchers to reproduce the same family. Figureha®sthe task set produced
when TGFF is run with its in-degree restricted to one andutsdegree restricted to two

(-el:2), forcing TGFF to generate out-trees rather than more géD&AGs. As another

Appendix A: Task Graphs for Free 241

Average 5 10 10

Multiplier 3 5 6 L~rice=5+jitter(3*0.3,])
—” packet_size = 10 + jitter(5 * 0.3])
packet_power = 10 + jitter(-6 * 0.3)

Al e

Communications B /

resource type g —— 0.3| Random
Ct o o 4

price' pap'ket p\acket
size power

Parameter

Figure A.5: Setting communication resource attributes

example, Figure A.4 shows the generation of three task grapth widely varying

numbers of tasks.

A.3 Database generation

Some work in allocation and scheduling optimizes multigtelautes, e.g., execu-
tion time, power consumption, testability, and cost. TGEports this by allowing an
arbitrary number of attributes that may be correlated oouetated, to be associated
with each processor and communication resource.

Although attribute generation for processors and comnatiaio resources is simi-
lar, communication resource attribute generation is moegghtforward. This process
is most easily illustrated with an example. Figure A.5 depattribute generation for
communication resources. TGFF generates a random scafar(rand), ranging from
-1 to 1, for each communication resource. The user speciii@veragea, and a mul-
tiplier (m) value for each communication resource attribute, as veddl jitter, j, for the

task set. Given a scalax, and the task set jittelj, the function jittefx, j) returns a

@COMMUN 0{
#cost setup
1268.5145

}

@COMMUN 1 {

#cost setup
9119.64

}

@COMMUN 2 {
#cost setup
1092.5214

}

242

Figure A.6: Communication resource attributes

randomly selected numbeg, from the uniform rangéx- (1— j), x- (1+ j)]. With this

function, and the parameters specified by the user, TGFRg®sehe attributes, for

each communication resource, i.e.,

q= a-+jitter(m-c;, jit)

A processor has attributes that are independent of taskselhss attributes that

indicate the behavior of each task on that processor. Ik attribute generation is
analogous to communication resource attribute genetaliask-processor intersection

attributes that provide information about a task’s exexutin a particular processor,

are generated with procedure similar to the one illustratddgure A.5. However, for

task-processor intersections, the procedure operatbsda tlimensions instead of two.

In addition to an array of random numbers associated witbgasors, there is a similar

array associated with tasks. Each attribute depends ondlegsor and task for which

the attribute is being generated.

Appendix A: Task Graphs for Free 243

TGFF has a number of default attributesost for processorsgost and transmi-
trate for communication resources, amaectime for tasks. These attributes can be
augmented or altered. As an example demonstrating TGFRsrgkty, consider the
following scenario: one wants to add an attribute that defasetuptime for communi-
cation resources. This attribute is, in general, to be Belgrelated to cost. By giving
TGFF the following command-line flagC '10:5:t:cost 100:-80: f:setup’one declares
thatcosthas an average value of 10, a multiplier of 5, and is an int&}jgnrilarly, setup
has a average value of 100, a multiplier of -80, and is a reabmau. Settingosts multi-
plier to a positive value ansketups multiplier to a negative value causes these variables,
in general, to be inversely related to each other. A portidh@resulting output appears

in Figure A.6.

A.4 Conclusions

TGFF provides a standard method for generating randomagitotand scheduling
problem instances involving periodic or non-periodic tasks. Users have paramet-
ric control over an arbitrary number of attributes for tgsgsocessors, and commu-
nication resources. TGFF is capable of generating probfestamces that are tuned
to particular domains in allocation and scheduling redealdowever, the ease with
which its parameters can be changed allows it to be appliedaoy allocation and
scheduling domains. Although TGFF simplifies the rapid paithn of large fami-
lies of examples, this work’s primary goal is to encourageparison of allocation
and scheduling algorithms by making it practical to repthe examples used by
other researchers. The source code for TGFF is availablieigrojects” link on the

http://www.ee.princeton.edu/"cad web page.

244

Appendix B

Implementation

This appendix is included as a reference to researchers mhatarested in using
our implementations as a starting point for their own regdeaMVe implemented the
hardware-software co-synthesis and embedded systemesystilgorithms described
in this dissertation in the €+ programming language, with heavy use of the standard
template library (STL). We wrote a foundation library thatused extensively in our
system synthesis software. It is 10,000 lines long and aontzode for the following

data structures and algorithms:
e 2-D associative matrices
e arbitrary-dimension geometric hypercubes
e arbitrary-dimension ragged and hypercube dynamicalizaese arrays
e binary trees
e dereferencing containers and iterators
e fast static-dimension arrays

¢ floating-point epsilon comparison

245

246

e function objects

e generic object management interfaces for cloning, prntamd debugging
¢ high-quality lagged Fibonacci random number generator

¢ highly efficient and type-safe graphs

¢ highly efficient bidirectional maps

¢ highly efficient interval sets

e memory tracking

e minimal spanning trees

e numerous deterministic and probabilistic mathematicaragpons
e numerous numerical search algorithms

e numerous other data structures and debugging suppomesuti

e parsing operations

smart pointers

This foundation library is portable to machines with updte G+ compilers.

The unified (MOCSYN, CORDS, and COWLS) system synthesisrdlgus con-
sist of approximately 25,000 lines of code, in addition te 18,000 lines used for the
separate MOGAC. These include a floorplanner, interconmedébrmance estimation
model, bus topology generator, etc. Initially, the synihakyorithms were implemented
separately. However, in the current implementation, ced@ared between the different

algorithms, when practical. As a result, it is possible targe multiple algorithms by

Appendix B: Implementation 247

changing the code in one place. The data structures andtalgsrwithin this imple-

mentation provide clean interfaces. They have been usedtagiag point by a number
of researchers. This system synthesis software is portéatiieone exception: we use a
Linux-specific method of determining the memory usage oftitimeent process in order

to control the size of the architecture cache describedati@e6.7.

248

Bibliography

[1] Z. Luo, M. Martonosi, and P. Ashar, “Edge-endpoint-ldhsenfigurable
hardware architecture for VLSI layout design rule checkRiMi_SI Design
vol. 10, no. 3, pp. 249-263, 2000.

[2] J. Cong and Z. Pan, “Interconnect performance estimatiodels for design
planning,”IEEE Trans. Computer-Aided Design of Integrated Circuitsl a
Systemgpp. 739-752, June 2001.

[3] P. Thoma, “Automotive electronics - A challenge for ®sis engineering,” in
Proc. Design, Automation & Test in Europe Comf. 4, Mar. 1999.

[4] R. Hersch, “Embedded processor and microcontrollenpriand frequently
asked questions.” Posted monthly to the comp.arch.embdd8&NET group.

These figures initially came from World Semiconductor Tr&datistics.

[5] J. Turley, “Embedded processors by the numbdtgajbedded Systems
Programmingvol. 12, May 1999.

[6] J. Turley, “ARM the big winner for 1998; Motorola’s 68Kilton top,”

Microdesign Resourcesol. 31, Jan. 1999. Cahners Electronics Group.

[7] J. Child, “Survey finds embedded efforts lagging, lackirEE TimesApr. 2001.

249

250

[8] S. Napper, “Embedded system design plays catchigiE Computer
pp. 118-120, Aug. 1998.

[9] N. SherwaniAlgorithms for VLSI Physical Design Automation: Secondibdi

Kluwer Academic Publishers, Boston, 1995.

[10] A. Raghunathan, N. K. Jha, and S. Deygh-level Power Analysis and

Optimization Kluwer Academic Publishers, Boston, 1997.

[11] W. H. Wolf, Computers as Components: Principles of Embedded Computing
System DesigrMorgan Kaufmann Publishers, CA, 2001.

[12] J. K. Adams and D. E. Thomas, “The design of mixed harevgaftware
systems,” inProc. Design Automation Conpp. 515-520, June 1996.

[13] G. De Micheli and R. K. Gupta, “Hardware/software ccsigm,” Proc. IEEE
vol. 85, pp. 349-365, Mar. 1997.

[14] R. Ernst, “Codesign of embedded systems: Status andsfdEEE Design &
Test of Computersol. 12, pp. 45-54, Apr. 1998.

[15] L. Garber and D. Sims, “In pursuit of hardware-softweoglesign,TEEE
Computervol. 31, pp. 12-14, June 1998.

[16] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, A. Kifli.iem, and P. G.
Paulin, “Embedded software in real-time signal processysgems: Design

technologies,Proc. IEEE vol. 85, pp. 436—454, Mar. 1997.

[17] K. G. Shin and P. Ramanathan, “Real-time computing: ¥ descipline of
computer science and engineeringroc. IEEE vol. 82, pp. 6-23, Jan. 1994.

Bibliography 251

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. H. Wolf, “Hardware-software co-design of embeddgdtems,”’Proc. IEEE
vol. 82, pp. 967-989, July 1994.

B. Dasarathy, “Timing constraints of real-time embeddystems: Constructs
for expressing them, methods of validating thelBREE Trans. Software
Engineeringvol. 11, pp. 80-86, Jan. 1985.

J. Gong, D. D. Gajski, and S. Bakshi, “Model refinememtifardware-software
codesign,”ACM Trans. Design Automation Electronic Systewas. 2,
pp. 22-41, Jan. 1997.

J. P. Calvez and O. Pasquier, “Performance analysimbeeded HW/SW
systems,” inProc. Int. Conf. Computer Desigpp. 5-22, Jan. 1998.

T. Benner, R. Ernst, I. Konenkamp, P. Schuler, and HS€haub, “A prototype
system for verification and emulation in hardware-softwargynthesis,” in
Proc. Int. Wkshp. Rapid System Prototypipg. 54-59, June 1995.

S. L. Coumeri and D. E. Thomas, “A simulation environrfem
hardware-software codesign,” Rroc. Int. Conf. Computer Desigpp. 58-63,
Oct. 1995.

K. Hines and G. Borriello, “Optimizing communication eémbedded system
co-simulation,” inProc. Int. Wkshp. Hardware/Software Co-Design

pp. 121-125, Mar. 1997.

C. Kuttner, “Hardware-software codesign using precesynthesis,JEEE

Design & Test of Computersol. 13, no. 3, pp. 43-53, 1996.

[26] J. A. Rowson and A. Sangiovanni-Vincentelli, “Intezéabased design,” iRroc.

Design Automation Confpp. 178-183, June 1997.

252

[27] D. E. Thomas, J. K. Adams, and H. Schmit, “A model and rodtiogy for
hardware-software codesignEEE Design & Test of Computergol. 10, no. 3,
pp. 6-15, 1993.

[28] C. Castelluccia, W. Dabbous, and S. O’Malley, “Geniaatfficient protocol
code from an abstract specificatiol2EE Trans. Networkingvol. 5,

pp. 514-524, Aug. 1997.

[29] L. Freund, D. Dupont, M. Israél, and F. Rousseau, ‘fligige optimization
during hardware-software partitioning,” Proc. Int. Wkshp. Hardware/Software

Co-Designpp. 75-79, Mar. 1997.

[30] A. Jirachiefpattana and R. Lai, “A rapid prototypingvéédopment system,” in
Proc. Int. Wkshp. Rapid System Prototypipg. 118—-124, June 1995.

[31] J. Smith and G. De Micheli, “Automated composition ofth&are components,”

in Proc. Design Automation Conpp. 14-19, June 1998.

[32] M. Adé, R. Lauwereins, and J. A. Peperstraete, “Buffiemory requirements in
DSP applications,” ifProc. Int. Wkshp. Rapid System Prototypipg. 108—-123,
June 1994.

[33] C. N. Coelho Jr., C.-Y. J. Yang, and V. Mooney, “Redesgign
hardware-software systems,”roc. Int. Wkshp. Hardware/Software

Co-Designpp. 116-123, Sept. 1994.

[34] G. Gogniat, M. Auguin, and C. Belleudy, “A generic multinit architecture for
codesign methodologies,” iAroc. Int. Wkshp. Hardware/Software Co-Design
pp. 23—-27, Mar. 1997.

Bibliography 253

[35] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL.: Astinction set
description language for retargetability,”ifroc. Design Automation Conf.
pp. 299-302, June 1997.

[36] P. Asar, “Towards a multi-formalism framework for aitglttural synthesis: The
ASAR project,” inProc. Int. Wkshp. Hardware/Software Co-Desigp. 25-32,
Sept. 1994.

[37] I. Bolsens, H. J. De Man, B. Lin, K. V. Rompaey, S. Vereen, and
D. Verkest, “Hardware/software co-design of digital telegnunication
systems,Proc. IEEE vol. 85, pp. 391-418, Mar. 1997.

[38] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “RtoleA framework for
simulating and prototyping heterogeneous systeins,J. Computer
Simulation vol. 4, pp. 155-182, Apr. 1994.

[39] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagsmad
A. Sangiovanni-Vincentelli, “A formal methodology for lbware/software

co-design of embedded system&EE Micro, vol. 14, pp. 26—36, Aug. 1994.

[40] P. H. Chou and G. Borriello, “Modal processes: Towartaarced retargetability
through control composition of distributed embedded syistéin Proc. Design
Automation Conf.pp. 88—93, June 1998.

[41] X. Hu, J. G. D’Ambrosio, B. T. Murray, and D.-L. Tang, “@esign of
architectures for automotive powertrain moduléEEE Micro, pp. 17-24, Aug.
1994.

[42] T.B. Ismail, M. Abid, K. O’Brien, and A. Jerraya, “An appach for
hardware-software codesign,” Rroc. Int. Wkshp. Rapid System Prototyping
pp. 73-80, June 1994.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

254

A. Kalavade and E. A. Lee, “A hardware-software codesitgethodology for
DSP applications,JEEE Design & Test of Computergol. 3, pp. 16—-28, Sept.
1993.

C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovafmeentelli, “Fast

hardware/software co-simulation for virtual prototypeugd trade-off analysis,
in Proc. Design Automation Conpp. 389-394, June 1997.

J. D’Ambrosio and X. Hu, “Configuration-level hardwé#seftware partitioning
for real-time systems,” ifProc. Int. Wkshp. Hardware/Software Co-Design

pp. 34—-41, Aug. 1994.

K. S. Chatha and R. Vemuri, “An iterative algorithm faardware-software
partitioning, hardware design space exploration and sdhegj’ Design
Automation for Embedded Systewdl. 5, pp. 281-293, Aug. 2000.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Systesad|
hardware/software partitioning based on simulated ammgeahd tabu search,”
Design Automation for Embedded Systewos. 2, pp. 5-32, Jan. 1997.

R. Ernst, J. Henkel, and T. Benner, “Hardware/softwargynthesis for
microcontrollers,"EEE Design & Test of Computergol. 12, pp. 64—-75, Dec.
1993.

D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, “Systewe! exploration with
SpecSyn,” inProc. Design Automation Conpp. 812-817, June 1998.

R. K. Gupta and G. De Micheli, “Hardware-software cohesis for digital
systems,IEEE Design & Test of Computergol. 10, pp. 29-41, Sept. 1993.

Bibliography 255

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

J. Henkel and R. Ernst, “A hardware/software partiéoasing a dynamically
determined granularity,” iProc. Design Automation Confpp. 691-696, June
1997.

A. Kalavade and E. A. Lee, “The extended partitioninglgem:
Hardware/software mapping and implementation-bin sigle¢tin Proc. Int.

Wkshp. Rapid System Prototypjpg. 12—18, June 1995.

Z. Karakehayov, “A fine-grained approach to distriltbieanbedded system
design,” inProc. Int. Conf. Parallel & Distributed Computing & Systems
pp. 376-380, Oct. 1995.

P. V. Knudsen and J. Madsen, “PACE: A dynamic prograngnalgorithm for
hardware/software partitioning,” iRroc. Int. Wkshp. Hardware/Software
Co-Design pp. 82-95, Mar. 1996.

B. Korousi¢-Seljak and J. E. Cooling, “Optimizatiohmultiprocessor real-time
embedded system structures,Rroc. Mediterranean Electrotechnical Conf.
pp. 313-316, Apr. 1994,

C.-H. Lee and K. G. Shin, “Optimal task assignment in logg@eneous networks,
IEEE Trans. Parallel & Distributed Systemol. 8, pp. 119-129, Feb. 1997.

H. Liu and D. F. Wong, “Integrated partitioning and sdhéng for
hardware/software co-design,” Rroc. Int. Conf. Computer Design
pp. 609—-614, Oct. 1998.

M. Potkonjak and J. Rabaey, “Algorithm selection: A qgtitative
computation-intensive optimization approach,Hroc. Int. Conf.
Computer-Aided Desigpp. 90-95, Oct. 1994.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

256

D. Saha, R. S. Mitra, and A. Basu, “Hardware softwardipaning using
genetic algorithm,” irProc. Int. Conf. VLSI Desigmpp. 155-159, Oct. 1998.

D. Towlsey, “Allocating programs containing branctaesl loops within a
multiple processor systemEEE Trans. Software Engineeringol. 12,
pp. 1018-1024, Oct. 1986.

F. Kaudel, “Comments on ‘Allocating programs contambranches and loops
within a multiple processor systemlEEE Trans. Software Engineering
vol. 16, p. 471, Apr. 1990.

D. Towlsey, “Corrections to ‘Allocating programs cairting branches and loops
within a multiple processor systemlEEE Trans. Software Engineering
vol. 16, p. 472, Apr. 1990.

F. Vahid, T.-D. Le, and Y.-C. Hsu, “A comparison of furartal and structural
partitioning,” inProc. Int. Symp. System Synthepjs. 121-126, Nov. 1996.

F. Vahid and T.-D. Le, “Towards a model for hardware aatigare functional
partitioning,” in Proc. Int. Wkshp. Hardware/Software Co-Desigp. 116-123,
Mar. 1996.

J. Axelsson, “Architecture synthesis and partitianof real-time systems: A
comparison of three heuristic search strategiesroc. Int. Wkshp.

Hardware/Software Co-Desigpp. 161-165, Mar. 1997.

A. Bender, “Design of an optimal loosely coupled hetgmoeous multiprocessor

system,” inProc. European Design & Test Confip. 275-281, Mar. 1996.

Bibliography 257

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYNddare-software
co-synthesis of heterogeneous distributed embeddedsySIEEE Trans.
VLSI Systemwol. 7, pp. 92-104, Mar. 1999.

B. P. Dave and N. K. Jha, “COHRA: Hardware-software cuibgsis of
hierarchical heterogeneous distributed embedded systHaEE Trans.
Computer-Aided Design of Integrated Circuits and Systewis 17,

pp. 900-919, Oct. 1998.

B. Dave, “CRUSADE: Hardware/software co-synthesiglyphamically
reconfigurable heterogeneous real-time distributed eddzbdystems,” ifProc.

Design, Automation & Test in Europe Cargp. 97-104, Mar. 1999.

P.-A. Hsiung, “CMAPS: A cosynthesis methodology fopépation-oriented
parallel systems ACM Trans. Design Automation Electronic Systewas. 5,
pp. 51-81, Jan. 2000.

B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-sofemarsynthesis for
run-time incrementally reconfigurable FPGASs,"Rnoc. Asia & South Pacific
Design Automation Confpp. 169-174, Jan. 2000.

I. Karkowski and H. Corporaal, “Design space explaatalgorithm for
heterogeneous multi-processor embedded system desidirgc. Design

Automation Conf.pp. 82—-87, June 1998.

K. Kuchcinski, “Embedded system synthesis by timingstoaints solving,” in

Proc. Int. Symp. System Syntheps. 50-57, Sept. 1997.

C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hardlrgme application
specific systemsPesign Automation for Embedded Systewas 4, no. 4,
pp. 215-242, 1999.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

258

H. Oh and S. Ha, “Hardware-software cosynthesis teplmbased on
heterogeneous multiprocessor schedulingPiac. Int. Wkshp.
Hardware/Software Co-Desigpp. 183—-1878, May 1999.

S. Prakash and A. Parker, “SOS: Synthesis of applinatjgecific heterogeneous
multiprocessor systems]! Parallel & Distributed Computingvol. 16,
pp. 338-351, Dec. 1992.

M. Schwiegershausen and P. Pirsch, “Formal approactié&optimization of
heterogeneous multiprocessors for complex image praggsshemes,” in

Proc. European Design Automation Cqrmfp. 8-13, Sept. 1995.

S. Srinivasan and N. K. Jha, “Hardware-software cotsgsis of fault-tolerant
real-time distributed embedded systems Phoc. European Design Automation
Conf, pp. 334-339, Sept. 1995.

J. Teich, T. Blickle, and L. Thiele, “An evolutionary pach to system-level
synthesis,” inProc. Int. Wkshp. Hardware/Software Co-Desigp. 167-171,
Mar. 1997.

W. H. Wolf, “An architectural co-synthesis algorithrarfdistributed, embedded
computing systemsJEEE Trans. VLSI Systemeol. 5, pp. 218-229, June 1997.

T.-Y. Yen and W. H. Wolf, “Communication synthesis fasttibuted embedded
systems,” inProc. Int. Conf. Computer-Aided Desigop. 288—294, Nov. 1995.

Y. Xie and W. Wolf, “Allocation and scheduling of condihal task graph in
hardware/software co-synthesis,’Pnoc. Design, Automation & Test in Europe
Conf, pp. 620-625, Mar. 2001.

Bibliography 259

[83] F. Kordon and W. E. Kaim, “H-COSTAM: A hierarchical conumicating
state-machine model for generic prototyping,Aroc. Int. Wkshp. Rapid System
Prototyping pp. 131-138, June 1995.

[84] J. Hou and W. Wolf, “Process partitioning for distriedtembedded systems,” in
Proc. Int. Wkshp. Hardware/Software Co-Desigp. 70-76, Mar. 1996.

[85] P. V. Knudsen and J. Madsen, “Graph based communicatiatysis for
hardware/software codesign,” Rroc. Int. Wkshp. Hardware/Software
Co-Designpp. 131-135, May 1999.

[86] A. Dasdan, D. Ramanathan, and R. K. Gupta, “Rate deonand its
applications to reactive, real-time embedded system&tac. Design
Automation Conf.pp. 263—-268, June 1998.

[87] R. K. Gupta, “Framework for interactive analysis of tirg constraints in
embedded systems,” PProc. Int. Wkshp. Hardware/Software Co-Design
pp. 44-51, Mar. 1996.

[88] X.Huand R. S. Sambandam, “Multi-valued performancéricefor real-time
embedded systemdyesign Automation for Embedded Systevos 5,
pp. 5-28, Feb. 2000.

[89] B.-D. Rhee, S. L. Min, S.-S. Lim, H. Shin, C. S. Kim, andYCPark, “Issues of
advanced architectural features in the design of a timiof'tm Proc. Wkshp.

Real-Time Operating Systems & Softwgp. 59-62, May 1994.

[90] T. Benner and R. Ernst, “An approach to mixed systemsysahesis,” inProc.
Int. Wkshp. Hardware/Software Co-Desjgp. 9-14, Mar. 1997.

260

[91] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chino@«dware/software
co-synthesis system,” iAroc. Int. Symp. System Synthepis. 22—-27, Sept.
1995.

[92] D. L. Rhodes and W. Wolf, “Co-synthesis of heterogersamultiprocessor
systems using arbitrated communication,Proc. Int. Conf. Computer-Aided
Design pp. 339-342, Nov. 1999.

[93] Y.-T. S. Li and S. Malik, “Performance analysis of emted software using
implicit path enumerationJEEE Trans. Computer-Aided Design of Integrated

Circuits and Systemsol. 16, Dec. 1997.

[94] J. M. Rabaey and L. M. Guerra, “Exploring the architeetand algorithmic
space for signal processing applications,Piroc. Int. Conf. VLSI & CAD
pp. 315-319, Nov. 1993.

[95] Y. Xie and W. Wolf, “Co-synthesis with custom ASICs,” Rroc. Asia & South
Pacific Design Automation Conpp. 129-133, Jan. 2000.

[96] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagaaqg
A. Sangiovanni-Vincentelli, “A formal specification moder
hardware/software codesign,” Rroc. Int. Wkshp. Hardware/Software
Co-Design Oct. 1993.

[97] B. Lee and E. A. Lee, “Hierarchical concurrent finitetstenachines in ptolemy,”
in Proc. of International Conf. Applications of ConcurrencySystem Design
pp. 34-40, Mar. 1998.

[98] D. D. Gajski, F. Vahid, S. Narayan, and J. GoBgecification and Design of
Embedded SystemBrentice-Hall, Englewood Cliffs, NJ, 1994.

Bibliography 261

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

L. A. Cortéz, P. Eles, and Z. Peng, “A survey on hardvsofware codesign
representation models,” tech. rep., Dept. Computer aradrimdtion Science,

Linkdping University, June 1999.

A. Yakovlev, L. Gomes, and L. Lavagno, eddardware Design and Petri Nets

Kluwer Academic Publishers, Boston, 2000.

S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanniegntelli, “Design of
embedded systems: Formal models, validation, and systhEsbc. IEEE
pp. 366—-390, Mar. 1997.

“The hardware-software co-synthesis benchmark$imgdist.”

http://www.ee.princeton.edu/"cad/cosynth-benchmarks

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pdpg¢Heduling of
conditional process graphs for the synthesis of embeddsdrsg,” inProc.
Design, Automation & Test in Europe Cargp. 132—-139, Feb. 1998.

D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and Li€lé, “Representation of
process mode correlation for scheduling,Aroc. Int. Conf. Computer-Aided
Design pp. 54-61, Nov. 1998.

E. L. Lawler and C. U. Martel, “Scheduling periodigaticcurring tasks on
multiple processorsJhformation Processing Lettersol. 7, pp. 9-12, Feb.
1981.

Y.-T. S. Li and S. Malik, “Performance analysis of erdded software using
implicit path enumeration,” ifProc. Design Automation Conpp. 456—461,
June 1995.

262

[107] Z. Chen and K. Roy, “A power macromodeling techniqusdzhon power
sensitivity,” in Proc. Design Automation Conpp. 678-683, June 1998.

[108] M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analg and minimization
techniques for embedded DSP softwatBEE Trans. VLSI Systemgol. 5,
pp. 123-135, Mar. 1997.

[109] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instation level power
analysis and optimization of software),”VLSI Signal Processingol. 13,
no. 2-3, pp. 223-238, 1996.

[110] Xilinx, Inc., “A simple method of estimating power inC4000XL/EX/E
FPGAS,” June 1997. http://www.xilinx.com.

[111] R.Y. Chen, R. M. Owens, M. J. Irwin, and R. S. Bajwa, ‘\dattion of an
architectural level power analysis technique,Proc. Design Automation Conf.
pp. 242—-245, June 1998.

[112] M. R. Garey and D. S. Johnsddomputers and Intractability: A Guide to the
Theory of NP-Completenesd/. H. Freeman & Company, NY, 1979.

[113] J. PearlHeuristics: Intelligent Search Strategies for Computeotftfem Solving

Addison-Wesley, Reading, MA, 1984.

[114] T. H. Cormen, C. E. Leiserson, and R. L. Rivéstroduction to Algorithms
McGraw-Hill Book Company, NY, 1990.

[115] W. Green)ntroduction to Operations Engineeringrighard D. Irwin, Inc., IL,
1971.

[116] E. L. Lawler and D. E. Wood, “Branch-and-bound methodisurvey,”
Operations Researglpp. 699719, July 1966.

Bibliography 263

[117] C. H. Papadimitriou and K. StiglitZombinatorial Optimization: Algorithms
and Complexity Prentice-Hall, Englewood Cliffs, NJ, 1982.

[118] F. Glover and M. Lagun&abu SearchKluwer Academic Publishers, Boston,
1997.

[119] E. Aarts and J. Kors§imulated Annealing and Boltzmann Machingshn
Wiley & Sons, Chichester, England, 1989.

[120] D. E. Goldbergenetic Algorithms in Search, Optimization, and Machine
Learning Addison-Wesley, Reading, MA, 1989.

[121] A. Neubauer, “The circular schema theorem for geradgiorithms and
two-point crossover,” ilProc. Genetic Algorithms in Engineering Systems:

Innovations & Applicationspp. 209-214, Sept. 1997.

[122] S. W. Mahfoud and D. E. Goldberg, “Parallel recombiasimulated
annealing: A genetic algorithmParallel Computingvol. 21, pp. 1-28, Jan.
1995.

[123] C. M. Fonseca and P. J. Fleming, “Multiobjective genatgorithms made easy:
Selection, sharing and mating restrictions,FAroc. Genetic Algorithms in

Engineering Systems: Innovations & Applicatippp. 45-52, Sept. 1995.

[124] K. Ramamritham and J. Stankovic, “Scheduling aldwnis and operating
systems support for real-time systenfrdc. IEEE vol. 82, pp. 55-67, Jan.
1994.

[125] S. Kim and J. Browne, “A general approach to mappingarbiel computations
upon multiprocessor architectures,’®noc. Int. Conf. Parallel Processing
vol. 2, pp. 1-8, Aug. 1988.

264

[126] A. E. Smith and D. M. Tate, “Genetic optimization usiagenalty function,” in
Proc. Int. Conf. Genetic Algorithmgp. 499-503, July 1993.

[127] T.-Y. Yen,Hardware-Software Co-Synthesis of Distributed Embedgstegs
PhD thesis, Dept. of Electrical Engg., Princeton Univgrsitine 1996.

[128] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSY N:dware-software
co-synthesis of embedded systems Phoc. Design Automation Conf.
pp. 703—-708, June 1997.

[129] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task grajsfree,” in Proc.
Int. Wkshp. Hardware/Software Co-Desjgmp. 97-101, Mar. 1998.

[130] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, “BOAETBayesian
optimization algorithm,” inProc. Genetic and Evolutionary Computation Conf.

July 1999.
[131] “Embedded microprocessor benchmark consortiuntg:févww.eembc.org.

[132] R. Weiss, “32-bit cores drive systems-on-a-ch{pgmputer Designpp. 82—89,
Sept. 1996.

[133] “Design and reuse.” http://www.design-reuse.com.

[134] W. Wolf, “Floorplanning: The art of chip-level desigrkElectronics J.pp. 8-13,
Oct. 1998.

[135] M. Kishinevsky, J. Cortadella, and A. Kondratyev, ¥&hronous interface
specification, analysis and synthesis,Aroc. Design Automation Conf.

pp. 2—7, June 1998.

Bibliography 265

[136] L. F. G. Sarmenta, G. A. Pratt, and S. A. Ward, “Ratiariatking,” in Proc. Int.
Conf. Computer Desigmpp. 217-278, Oct. 1995.

[137] S. Moore, G. Taylor, R. Mullins, and P. Robinson, “Rdmpoint GALS
interconnect,” inProc. Int. Symp. Asynchronous Circuits & Systems
pp. 769-775, Apr. 2002.

[138] T. Chelcea and S. M. Nowick, “A low-latency FIFO for neid-clock systems,”
in Proc. IEEE Computer Society Annual Wkshp. VIppl 21-28, Apr. 2000.

[139] M. Bazes, R. Ashuri, and E. Knoll, “An interpolatingock synthesizer,J.
Solid-State Circuitsvol. 31, pp. 1295-1300, Sept. 1996.

[140] C. M. Fiduccia and R. M. Mattheyses, “A linear-time histic for improving
network partitions,” inProc. Design Automation Conpp. 173-181, June 1982.

[141] L. Stockmeyer, “Optimal orientations of cells in $fig floorplan designs,”

Information & Contro| vol. 57, pp. 91-101, May/June 1983.

[142] M. Wang and M. Sarrafzadeh, “Modeling and minimizataf routing
congestion,” ilProc. Asia & South Pacific Design Automation Conf.
pp. 185-190, Jan. 2000.

[143] F. K. Hwang, “On steiner minimal trees with rectilimeistance,”'SIAM J.
Applied Mathematicgpp. 104-114, Jan. 1976.

[144] J. Cong, Z. Pan, L. He, C.-K. Koh, and K.-Y. Khoo, “Intennect design for
deep submicron ICs,” iRroc. Int. Conf. Computer-Aided Desigop. 478-485,
Nov. 1997.

266

[145] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. CadanpthiR. Taylor, and
R. Laufer, “PipeRench: A coprocessor for streaming multraecceleration,”

in Proc. Int. Symp. Computer Architectump. 28—39, June 1999.

[146] D. Halchin and M. Golio, “Trends for portable wirelesgplications,”
Microwave J, vol. 40, pp. 62—78, Jan. 1997.

[147] S. Komaki and E. Ogawa, “Trends of fiber-optic micrdaiar radio
communication networks[EICE Trans. Electronicsvol. E79-C, pp. 98-103,
Jan. 1996.

[148] G. Comparetto and R. Ramirez, “Trends in mobile siég¢achnology, 'EEE
Computervol. 30, pp. 44-52, Feb. 1997.

[149] F. Ananasso and F. D. Priscoli, “Issues on the evafutbevards satellite
personal communication networks,”froc. Global Telecommunications Cqgnf.
pp. 541-545, Nov. 1995.

[150] R. E. Barry and J. P. Jones, “Rapid world modeling fromabile platform,” in
Proc. Int. Conf. Robotics & Automatiopp. 72—78, Apr. 1997.

[151] D. W. Gage, “Telerobotic requirements for sensingjgation, and

communications,” irProc. National Telesystems Cqrgp. 145-148, May 1994.

[152] “Altera ARC-PCI reconfigurable computing platform.”

http://www.altera.com/html/new/pressreligarc-pci.html.
[153] “Xilinx part information.” http://www.xilinx.compartinfo.

[154] D. Galloway, “The transmogrifier C hardware descaptianguage and compiler
for FPGAs,” inProc. Symp. FPGAs for Custom Computing Machjnes
pp. 136-144, Apr. 1995.

Bibliography 267

[155] L. Shang and N. K. Jha, “Hardware-software co-syritheslow power
real-time distributed embedded systems with dynamicaltpnfigurable
FPGAS,” inProc. Int. Conf. VLSI Desigmpp. 345-352, Jan. 2002.

[156] “Computer design.” Product trends sections of vol.8%2, 6, 8, 9, vol. 36: n. 1,
9, &vol. 37: n. 1-3.

[157] L. Shang and N. K. Jha, “High-level power modeling ofLCR and FPGAS,” in
Proc. Int. Conf. Computer Desigpp. 46-51, Sept. 2001.

[158] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic powensumption in
Virtex™-[I FPGA,” in Proc. Int. Symp. Field Programmable Gate Arrays
pp. 157-164, Feb. 2002.

[159] J. J. LabrosséMlicroC/OS-IL R & D Books, Lawrence, KS, 1998.
[160] Fujitsu Microelectronics, Inc., “MB8683x user’s gia.’

[161] S. HeathEmbedded Systems Desidgutterworth-Heinemann, Boston, MA,
1997.

[162] J. J. Labrossé&mbedded Systems Building Blacks& D Books, Lawrence,
KS, 1997.

[163] J. J. LabrosséMlicroC/OS-IL R & D Books, Lawrence, KS, 1998.

[164] P. A. LaplanteReal-Time Systems Design and Analysis: An Engineers
Handbook IEEE Press, Piscataway, NJ, 1993.

[165] R. Sharma, “Distributed application developmentwitiferno,” inProc. Design
Automation Conf.pp. 146-150, June 1999.

268

[166] D. Stepner, N. Rajan, and D. Hui, “Embedded applicatlesign using a
real-time OS,” inProc. Design Automation Conpp. 151-156, June 1999.

[167] W. Warner, “Non-pre-emptive multithreading perfaembedded software’s

juggling act,”Electronic Design Newwol. 44, pp. 117-126, July 1999.

[168] L. Benini and G. De MicheliDynamic Power Management: Design Techniques
and CAD Tools Kluwer Academic Publishers, Norwell, MA, 1997.

[169] A. R. Chandrakasan and R. W. Broderdeny Power Digital CMOS Design
Kluwer Academic Publishers, Norwell, MA, 1995.

[170] G. Yeap Practical Low Power Digital VLSI DesigrKluwer Academic
Publishers, Norwell, MA, 1998.

[171] J. Monteiro and S. DevadaSpmputer-Aided Design Techniques for Low Power

Sequential Logic CircuitsKluwer Academic Publishers, Norwell, MA, 1996.

[172] J. Rabaey and M. P. (Editor&)ow Power Design MethodologieKluwer
Academic Publishers, Norwell, MA, 1996.

[173] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of éradded software: A
first step towards software power minimizatiolfEE Trans. VLSI Systems
vol. 2, pp. 437-445, Dec. 1994.

[174] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Eatdun of
architecture-level power estimation for CMOS RISC prooessin Proc. Symp.

Low Power Electronicspp. 44-45, Oct. 1995.

[175] C. T. Hsieh, M. Pedram, G. Mehta, and F. Rastgar, “Rraffiven program
synthesis for evaluation of system power dissipationPiiac. Design

Automation Conf.pp. 576-581, June 1997.

Bibliography 269

[176] L. Benini and G. De Micheli, “System-level power optiration: Techniques
and tools,” inProc. Int. Symp. Low Power Electronics & Desjgp. 288—293,
Aug. 1999.

[177] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSY N:dWare-software
co-synthesis of embedded systems Pnoc. Design Automation Conf.
pp. 703—-708, June 1997.

[178] Y. Liand J. Henkel, “A framework for estimating and rimimizing energy
dissipation of embedded HW/SW systems,Piroc. Design Automation Conf.
pp. 188-193, June 1998.

[179] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Efficient power estimatioechniques for HW/SW
systems,” inProc. Alessandro Volta Memorial Wkshp. on Low-Power Design
Mar. 1999.

[180] S. Gurumurthi, A. Sivasubramaniam, M. J. lIrwin, N.a¥yikrishnan,
M. Kandemir, T. Li, and L. K. John, “Using complete machinmasiation for
software power estimation: The softwatt approachPrac. Int. Symp. High
Performance Computer Architectyngp. 141-150, Feb. 2002.

[181] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techques for low energy: An
overview,” inProc. Symp. Low Power Electronigsp. 38—39, Oct. 1994.

[182] T. Simunic, G. De Micheli, and L. Benini, “Energy-efient design of
battery-powered embedded systemspPimc. Int. Symp. Low Power Electronics
& Design, pp. 212-217, Aug. 1999.

270

[183] J. L. da Silva, F. Catthoor, D. Verkest, and H. De Marmgwer exploration for

[184]

[185]

[186]

[187]

[188]

[189]

[190]

dynamic data types through virtual memory management reéng” in Proc.

Int. Symp. Low Power Electronics & Desigop. 311-316, Aug. 1998.

Q. Qiu, Q. Wu, and M. Pedram, “Stochastic modeling oba/@r-managed
system: Construction and optimization,”Rmoc. Int. Symp. Low Power
Electronics & Designpp. 194-199, Aug. 1999.

L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, ‘“dfitoring system activity
for OS-directed dynamic power management,Phoc. Int. Symp. Low Power

Electronics & Designhpp. 185-190, Aug. 1998.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Saistava, “Power
optimization of variable voltage core-based systemsPnoc. Design
Automation Conf.pp. 176-181, June 1998.

T. Ishihara and H. Yasuura, “Voltage scheduling peobfor dynamically
variable voltage processors,” Rroc. Int. Symp. Low Power Electronics &
Design pp. 197-202, Aug. 1998.

T. Pering, T. Burd, and R. Brodersen, “The simulatiod avaluation of
dynamic voltage scaling algorithms,” Proc. Int. Symp. Low Power Electronics
& Design, pp. 76—-81, Aug. 1998.

N. K. Jha, “Low power system scheduling and synthesisProc. Int. Conf.
Computer-Aided Desigipp. 259-263, Nov. 2001.

P. Pillai and K. G. Shin, “Real-time dynamic voltagakieg for low-power
embedded operating systems,Rroc. ACM Symp. Operating Systems
Principles pp. 89-102, Dec. 2001.

Bibliography 271

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

L. Benini, M. Kandemir, and J. Ramanujam, edsgc. Wkshp. Compilers &
Operating Systems for Low Powd€luwer Academic Publishers, Sept. 2002.

Y.-H. Lu, L. Benini, and G. De Micheli, “Power-aware eting systems for

interactive systems|EEE Trans. VLSI Systemgol. 10, Apr. 2002.

T. Simunic, L. Benini, P. W. Glynn, and G. D. Micheli, $§dpamic power
management for portable systems,Aroc. MOBICOM pp. 11-19, Aug. 2000.

A. Vahdat, A. R. Lebeck, and C. S. Ellis, “Every jouleoigecious: The case for
revisiting operating system design for energy efficienicyProc. ACM SIGOPS
European WkshpSept. 2000.

R. P. Dick, G. Lakshminarayana, A. Raghunathan, and.Nha, “Power
analysis of embedded operating systemsPiiac. Design Automation Conf.
pp. 312—-315, June 2000.

T.-K. Tan, A. Raghunathan, and N. K. Jha, “EMSIM: An ggesimulation
framework for an embedded operating systemProc. Int. Symp. Circuits &
Systemspp. 464-467, May 2002.

K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. KedhGuSmit, T. Zhang,
and B. Jacob, “The performance and energy consumptioneé gimbedded
real-time operating systems,” Proc. Int. Conf. Compilers, Architecture &

Synthesis for Embedded Systepps 203-210, Nov. 2001.

T. Simunic, L. Benini, and G. De Micheli, “Cycle-acate simulation of energy
consumption in embedded systems,Proc. Design Automation Conf.
pp. 867-872, June 1999.

CoWareN2C Training Manual1999.

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

272

W. Ye, R. Ernst, T. Benner, and J. Henkel, “Fast timinglgsis for
hardware-software co-synthesis,”Rnoc. Int. Conf. Computer Design
pp. 452—-457, Oct. 1993.

Fujitsu Microelectronics, Inc., “SPARCIite serie2-Bit RISC embedded
processor MB86832 databook,” 1998.

IBM, “1995 DRAM databook,” 1994.

Fujitsu Microelectronics, Inc., “MB86934: 930 sexig2-bit RISC embedded

processor datasheet,” 1996.

R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective colmsed single-chip
system synthesis,” iRroc. Design, Automation & Test in Europe Conf.
pp. 263-270, Mar. 1999.

R. P. Dick and N. K. Jha, “CORDS: Hardware-softwaresgothesis of
reconfigurable real-time distributed embedded system&ftac. Int. Conf.

Computer-Aided Desigipp. 62—68, Nov. 1998.

R. P. Dick and N. K. Jha, “COWLS: Hardware-softwaresymthesis of
distributed wireless low-power embedded client-servstesys,” inProc. Int.
Conf. VLSI Designpp. 114-120, Jan. 2000.

R. P. Dick and N. K. Jha, “MOGAC: A multiobjective gerealgorithm for the
co-synthesis of hardware-software embedded systemBroio Int. Conf.

Computer-Aided Desigmpp. 522-529, Nov. 1997.

D. Kirovski and M. Potkonjak, “System-level synthesif low-power hard

real-time systems,” ifProc. Design Automation Conpp. 697-702, June 1997.

Bibliography 273

[209] T. Yang and A. Gerasoulis, “DSC: Scheduling parakbekis on an unbounded
number of processordEEE Trans. Parallel & Distributed Systemsol. 30,
pp. 951-967, Sept. 1994.

[210] W. Zhao, K. Ramamritham, and J. Stankovic, “Preengaigheduling under
time and resource constrainti#EE Trans. Computersol. 36, pp. 949-960,
Aug. 1987.

[211] M. Sengupta, “ISCAS '89 benchmark information,” M2889.
http://www.cbl.ncsu.edu/CBIDocs/iscas89.html.

[212] D. Du, J. Gu, and P. M. Pardalos, “Satisfiability prabte Theory and
applications,” inDIMACS: Series in Discrete and Applied Mathematics and
Computer Science&ol. 35, American Mathematical Society, Providence, RI,
1997.

[213] G. Marsaglia and A. Zaman, “Toward a universal randamrmher generator,”
Statistics & Probability Lettersvol. 9, pp. 35—-39, Jan. 1990.

[214] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective gerealgorithm for
hardware-software co-synthesis of distributed embedgstems,’ |EEE Trans.
Computer-Aided Design of Integrated Circuits and Systewis 17,
pp. 920-935, Oct. 1998.

