
1

Temperature-Aware Scheduling and Assignment for Hard Real-Time

Applications on MPSoCs

Thidapat Chantem, X. Sharon Hu, and Robert P. Dick

Abstract—Increasing integrated circuit (IC) power densities
and temperatures may hamper multiprocessor system-on-chip
(MPSoC) use in hard real-time systems. This article formal-
izes the temperature-aware real-time MPSoC assignment and
scheduling problem and presents an optimal mixed integer
linear programming based solution that considers the impact
of scheduling and assignment decisions on MPSoC thermal
profiles to directly minimize the chip peak temperature. We also
introduce a flexible heuristic framework for task assignment and
scheduling that permits system designers to trade off accuracy
for running time to solve large problem instances. Finally, for
task sets with sufficient slack, we show that inserting idle times
between task executions can further reduce the peak temperature
of the MPSoC quite significantly.

I. INTRODUCTION

MULTIPROCESSOR systems-on-chips (MPSoCs) are

now widely used in application-specific systems and

high-performance computing. They offer performance, power

consumption, and implementation complexity advantages over

highly superscalar uniprocessor architectures. Their use, and

scale, will increase dramatically in the coming years. Accord-

ing to Milchman [1], 16-core processors will be common

within the next four years. Intel plans to deliver proces-

sors that have dozens or hundreds of cores during the next

decade [2]. The use of heterogeneous MPSoCs can sometimes

dramatically improve performance and power consumption

relative to homogenous MPSoCs [3]. However, it can also

increase complexity. It is likely that some future MPSoCs will

be homogeneous and some will be heterogeneous. With the

current use of MPSoCs in soft real-time applications such as

gaming [4], it is expected that many hard real-time applications

will soon be implemented using MPSoCs. In fact, FreeScale

is now offering the QorIQ Embedded Multicore Processor [5],

which is intended for, among others, aerospace applications,

which contain hard real-time tasks.

MPSoC temperature is a strong function of power density.

Increasing transistor counts and aggressive frequency scaling

result in a significant increase in chip power density and

temperature. Increasing chip temperature has significant im-

pact on other design metrics including reliability, performance,

and cost, as microprocessor failure rate depends exponentially

upon operating temperature [6]. A 10–15 ◦C difference in

operating temperature can result in a 2× difference in the

T. Chantem and X.S. Hu are with the department of Computer Science &
Engineering at the University of Notre Dame, Notre Dame, IN 46556. R.P.
Dick is with the department of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, MI 48109. Emails: {tchantem,
shu}@nd.edu and dickrp@eecs.umich.edu. This work was sup-
ported in part by NSF under grant numbers CNS-0834180, CNS07-20457,
CCF-0702761, and CNS-0347941 and by SRC under grant number 2007-HJ-
1593.

lifespan of a device [7]. Temperature also affects speed; re-

duction of charge carrier mobility in transistors and increased

interconnect latency resulting from high temperature degrade

performance, requiring reduced clock frequencies or, worse

yet, resulting in run-time failures.

Increasing power densities makes conservative package and

cooling design prohibitively expensive, since the cost of cool-

ing solutions increases super-linearly with power consump-

tion [8]. It is therefore necessary to design packaging and cool-

ing solutions based on less than worst-case thermal profiles

and compensate by preventing, hopefully rare, dangerous ther-

mal scenarios at run-time. Most popular approaches react to

critical temperatures by reducing frequency and voltage (i.e.,

performing hardware throttling), or by temporarily preventing

instruction issue to reduce the power consumption, and hence

temperature, of the processor [9].

Since the execution times of real-time tasks, and hence total

system utilization, tend to vary significantly due to factors

such as conditional branches and system inputs [10], real-

time applications can exhibit great temperature variation at

run-time. When the system utilization is low, the MPSoC may

not have a high temperature problem, thanks to the amount of

slack available in the system. On the other hand, a system with

high utilization can push an MPSoC to its thermal limit [11]–

[13]. In the worst case, the host MPSoC may lack run-

time thermal management, leading to overheating and signal

timing violations or permanent failure. More subtly, real-time

systems containing MPSoCs that support run-time thermal

management would also fail when a temperature bound is

reached, but for a different reason.

Most run-time thermal management techniques use thermal

sensors to detect when the maximum safe temperature is

approached and react by decreasing processor power consump-

tion, e.g., by decreasing frequency or stalling instruction issue.

These techniques share a common weakness: they decrease

performance. If a real-time task running on an MPSoC with

run-time thermal management ever triggers throttling when

there is little timing slack, the real-time task will miss its

deadlines. Missing hard real-time deadlines is unacceptable; an

example would be failure to stop an automatically controlled

train on time [14]. To guarantee hard real-time performance,

designers should consider thermal effects by explicitly opti-

mizing peak temperature while meeting all functionality and

real-time deadlines. Clearly, the temperature-aware real-time

MPSoC assignment and scheduling problem must be solved.

Existing power-aware techniques, such as energy minimiza-

tion, peak power minimization, as well as global dynamic

voltage and frequency scaling (DVFS), cannot solve the tem-

perature problem in MPSoCs because they do not consider

spatial thermal variation; heat generated by an active core also

2

affects other neighboring thermal elements, be they other cores

or portions of the heatsink. The net heat flow from one thermal

element to another depends on the conductance parameters and

the current temperatures of these thermal elements. Ignoring

spatial thermal variation can lead to unnecessarily-high peak

temperatures, especially for high power density chips.

I.A. Related Work

Researchers have only recently started work in temperature-

aware high-level synthesis [15] and design space explo-

ration [16]. The objective is usually to optimize system perfor-

mance subject to a peak temperature constraint. For uniproces-

sor architectures, Wang and Bettati presented a reactive two-

speed policy to control the peak temperature [13]. To guarantee

real-time deadlines, a proactive thermal management policy

was later proposed [12]. Rao et al. presented an optimal pro-

cessor speed control to maximize the work completed under

a temperature constraint [17]. The thermal model was later

improved by the same authors [18]. Mutapcic et al. focused on

energy minimization under thermal and task constraints [19].

Quan et al. presented a necessary and sufficient condition for

schedulability as well as a novel scheduling algorithm for real-

time applications running on processors with a temperature

constraint [20]. A temperature constraint may be sufficient

if only timing faults are considered and if the designer has

control over the post-deployment thermal environment, e.g.,

fan speed and ambient temperature. If wear is also considered,

then lower temperatures are better. In addition, due to factors

such as a high ambient temperature or a broken fan, the peak

temperature minimization approach will maximize the number

of systems that still meet the temperature constraint under

severe conditions. Unfortunately, there is little research that

targets peak temperature control directly. Bansal et al. were

among the first to study the problem of peak temperature

minimization using continuous dynamic speed scaling for

uniprocessors running independent tasks [21]. Jayaseelan and

Mitra presented a task sequencing technique to minimize the

peak temperature for periodic real-time tasks running on a

single processor [22]. Neither work considers MPSoCs nor

task dependencies.

For multiprocessors and MPSoCs, the problem of assigning

and scheduling real-time tasks is an important topic that has

received significant research attention. Some papers focus

on meeting hard real-time constraints [23] while others aim

to optimize energy consumption in the presence of timing

constraints [24]. Since most real-time scheduling problem

variants are NP-hard, many heuristics have been proposed

to solve large problem instances with different optimality cri-

terion [25]. Once again, the focus is usually placed on meeting

the thermal constraint instead of minimizing peak temperature.

For example, Rao et al. presented a method to maximize

throughput by determining speeds of different cores subject

to a peak temperature constraint [26]. Mulas et al. proposed a

task migration algorithm that balances the loads on different

cores to reduce hotspots [27]. Coskun et al. used online

learning [28] and integer linear program (ILP) [29] to reduce

the frequency of peak temperature constraint violations. Jung

et al. used dynamic thermal management (DTM) to minimize

energy while meeting a peak temperature constraint [30]. An

approximation algorithm for minimizing the peak temperature

of ideal processors was proposed by Chen et al. for real-

time tasks with no precedence constraints [31]. In addition,

a temperature-aware task assignment and voltage selection

algorithm was proposed by Sun et al. for three-dimensional

stacked-wafer MPSoCs [32]. However, this solution cannot be

used to solve our problem since only homogeneous cores are

considered and spatial thermal variation is ignored (the peak

temperature of 3-D MPSoCs is strongly influenced by vertical

inter-core heat flow).

Xie and Hung were the first to propose a collection of

heuristics for temperature-aware processor allocation, task as-

signment, and scheduling [11]. However, the proposed heuris-

tics either consider spatial or temporal thermal variations, but

not both types of variations at the same time. In Section Sec-

tion V, we show that their technique can deviate significantly

from optimality.

Finally, Paci et al. claim that temperature-aware design

is unnecessary in low-power embedded systems [33]. While

their conclusions hold for very low-power embedded pro-

cessors because on-die temperature variation is small, our

results show substantial (> 30 ◦C improvement) benefits from

temperature-aware design for MPSoCs containing processor

cores characterized by the Embedded Systems Benchmarks

Consortium [34] using the thermal model in Section II-B.

I.B. Contributions

This article makes the following main contributions. We

present a mixed-integer linear programming (MILP) formu-

lation for assigning and scheduling tasks with hard real-

time constraints on an MPSoC to minimize the chip peak

temperature. Our formulation considers spatial and temporal

thermal variations. It relies on a phased steady-state thermal

analysis directly integrated within the MILP formulation.

The phased steady-state thermal analysis produces a separate

steady-state thermal profile for each power profile occurring

during the schedule. Extensions for temperature-dependent

leakage power modeling, DVFS, finer-grained thermal mod-

eling, and inter-task communication modeling are given.

To solve problem instances that are large or for which

the effects of heat capacitance are significant, we propose a

heuristic task assignment and scheduling framework in which

the actual method for computing the thermal profile can

be selected as appropriate. Specifically, phased steady-state

thermal analysis is used when task durations are long relative

to the time constants of the cores. Transient thermal analysis,

in which temperatures are time-dependent, is used otherwise.

To exploit slack in the system where the effects of heat

capacitance are significant, we use the concept of delay (i.e.,

idle time) insertion in our transient analysis based heuristic to

further reduce the chip peak temperature while guaranteeing

hard real-time deadlines.

I.C. Organization

The paper is organized as follows. In Section II, we intro-

duce our system model, state our assumptions, and formally

3

define the problem. We motivate the need for a temperature-

aware assignment and scheduling algorithm in Section III. We

describe our formal approach in Section IV and present our

flexible heuristic framework in Section V. We introduce and

incorporate the concept of delay insertion into our heuristic

framework in Section VI. The benefits and efficiency of

our approach are experimentally determined in Section VII.

Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

The system model and the temperature-aware real-time MP-

SoC assignment and scheduling problem are now described.

II.A. Task Model

In our model, J represents the set of hard real-time tasks

to be executed. For each task j ∈ J , the worst-case execution

time when running on core m is denoted by E(j, m), the

deadline by D(j), and the release time by R(j). Note that

R(j) = 0 and D(j) = ∞ if no release time and deadline

constraints are associated with task j. A directed acyclic graph

(DAG) is used to capture data dependencies among tasks. In

a DAG, nodes represent tasks and directed edges indicate data

dependencies between pairs of tasks. Let Γj1,j2 denotes the

dependency between tasks j1 and j2 where

Γj1,j2 =

{

1 if task j1 is immediately precedes task j2

0 otherwise

(1)

A task j may execute only after all its predecessor tasks

have completed and j has been released, i.e., the current

time is at or later than R(j). For now, we assume that

there is no communication cost among dependent tasks. This

assumption will be relaxed in Section IV-E. For periodic

systems, we guarantee schedule validity by scheduling out to

the hyperperiod of all tasks [35]. The hyperperiod is the least

common multiple of the periods of all tasks in the problem

specification.

II.B. Thermal Model

We model an MPSoC with a set of cores, M . For each

core m ∈ M , its width, height, and location are specified.

Based on the floorplan, the set of neighbors of core m, Nm,

thermal conductance to a neighbor n, Gn(m,n), and thermal

conductance to the heatsink element above it, Gh(m), can

be calculated. For each task and core combination, P (j, m)
indicates the power consumption of core m when executing

task j. We discuss an extension to this power model to account

for leakage power in Section IV-B.

Thermal analysis estimates the heat transfer through hetero-

geneous materials among heat producers (e.g., transistors) and

heat consumers (e.g., heatsinks attached to an MPSoC). In the

task assignment and scheduling phase, we will adopt a coarse-

grained discrete heat flow model analogous to widely-used

compact models [36] to balance thermal analysis efficiency

and accuracy. However, the algorithm framework proposed in

Section V can be used with any thermal analysis technique.

In our thermal model, which is based on the classical Fourier

heat flow model, each core corresponds to a discrete thermal

element. (Section IV-D discusses how our approach can be

modified to support finer-grained thermal element modeling.)

The heatsink on top of the cores is modeled using multiple

thermal elements and its partitioning corresponds to the layout

of the cores. Since the heatsink is usually larger than the

processor itself, we model heatsink overhang using additional

thermal elements; the heatsink overhangs the chip by 25%

of its length and width. The interface layer is included within

the heatsink instead of being modeled explicitly. (The interface

material is usually very thin so lateral heat flow within it can

be neglected.) Lateral heat flow between cores and heatsink

elements is modeled.

To perform thermal analysis, we take advantage of the well-

known duality between electrical and thermal circuits. The

temperature of each thermal element can be expressed as

a function of its power consumption, the ambient tempera-

ture, and the temperatures of neighboring thermal elements.

Figure 1(a) depicts the circuit representation of this model.

Here, TA denotes the ambient temperature, GA(h) is the

conductance from the heatsink element h to the ambient, and

Gnh(h, g) is the conductance between heatsink elements h
and g. The current source Pm denotes the power consumption

of core m. The terms Gh(m) and Gn(m,n) were as defined

previously.

The temperature of core m at time t, T (t,m), can be

determined using the node thermal analysis of the circuit in

Figure 1(a):

0 =
∑

n∈Nm

(T (t, m)− T (t, n)) ·Gn(m,n) + C(m) ·
dT (t, m)

dt

+ (T (t, m)− T (t, h)) ·Gh(m)−
∑

j∈J

α(t, j,m) · P (j,m)

(2)

0 =
∑

g∈Nh

(T (t, h)− T (t, g)) ·Gnh(h, g) + C(h) ·
dT (t, h)

dt

+ (T (t, h)− T (t,m)) ·Gh(m) + (T (t, h)− TA) ·GA(h),
(3)

where T (t, h) is the temperature of the heatsink element h
directly above core m at time t, C(m) is the capacitance of

core m, C(h) is the capacitance of heatsink element h, and

α(t, j,m) = 1 if task j is active on core m at time t. In the

above two equations, if the heatsink element h is a heatsink

overhang element, then the term (Th − Tm) ·GH(m) = 0.

The thermal conductance of core m to the heatsink element

h directly above it, Gh(m), can be computed as shown by

Serway [37]:

Gh(m) =
Aream

Rchip ·Areachip

, (4)

where Aream denotes the area of core m, Areachip represents

the area of the chip, and Rchip = thsi

Ksi ·Areachip
, thsi is the

thickness of silicon, and Ksi denotes its thermal conductivity.

In our experiments, we set thsi and Ksi to be 0.6 mm and

148 W/mK, respectively.

4

The conductance of a heatsink element h to the ambient

can be calculated in a similar manner. That is, we substitute

Aream and Areachip in Eq. 4 by the area of the heatsink

element under consideration and the area of the entire heatsink,

respectively. In addition, we replace Rchip with RHS in Eq. 4,

where RHS = Tactive−Tambient

Pchip
− Rchip , Pchip being the total

power consumption of the chip and Tactive the average active

layer temperature when all cores are busy and Tambient is the

ambient temperature. We set Tactive and Tambient to 90 ◦C

and 45 ◦C, respectively.

We compute the conductance between core m and its

neighbor core n as follows.

Gn(m,n) =
wmn · thsi ·Ksi

Lmn

, (5)

where wmn is the length of intersection between cores m and

n, Lmn is the distance between the midpoint of m and that

of n. The lateral conductance between two heatsink elements

can be computed in a similar fashion. We assume that the

heatsink is made of copper, with a thickness of 1 mm and

thermal conductivity of 400 W/mK.

II.C. Problem Definition

Consider the floorplan of a chip containing a set of cores,

M , and a set of hard real-time tasks, J as described above,

determine a static assignment of tasks to cores and a static,

non-preemptive schedule of tasks on the cores such that all

precedence constraints and real-time deadlines are met, and

the chip peak temperature, Tmax , is minimized.

III. MOTIVATING EXAMPLE

Since average power (i.e., energy) for a fixed duration and

peak power are related to chip temperature, it is natural to

question whether optimizing peak temperature can produce

significantly different results than optimizing peak power or

average power. Let us consider a task set containing two

identical tasks, j1 and j2, each with a deadline of 5 ms. For

this example, the MPSoC is arranged as shown in Figure 1(b)

(core sizes are not necessarily drawn to scale in the diagram).

Task execution times (E) and associated power consumptions

(P) are shown near the respective cores. To minimize energy,

tasks j1 and j2 are both assigned to core m2. The resultant

chip peak temperature is 65.30 ◦C. If our objective were to

minimize peak power, then task j1 would be assigned to core

m2 and task j2 to core m1, also resulting in a peak temperature

of 65.30 ◦C. However, if task j1 were executed on core m4 and

task j2 on core m1, the peak temperature would be reduced

to 65.16 ◦C, which is about 0.14 ◦C cooler. This difference is

the first point in the plot in Figure 2.

While the improvement in this case is small, the power

density of the chip in the above example is only 0.19 W/mm2.

The power density can be as high as 0.79 W/mm2 for

90 nm processors, 2.02 W/mm2 for 65 nm processors, and

7.24 W/mm2 for 45 nm processors [38]. To obtain similar

chip power densities, we repeated the previous experiment in

which the setup is explained earlier but increased each core

power consumption by factors of 2, 5, 10, 15, and 20. The

1/GA(k)

Tm

Tn

1/GH(m)

1/GH(n)

TA

1/GA(h) Th

Tg1/GA(g)

1/GNH(h,g)

Pm

Pn

+

-
1/GN(m,n)

Tk

C(m)

C(n)

CH(h)

CH(g)

(a) Equivalent circuit diagram of the ther-
mal model

m1 m2

m3 m4

P = 7W

P = 5W P = 10W

P = 10W

E = 2ms

E = 2ms

E = 3ms

E = 5ms

(b) Floorplan for the mo-
tivating example with task
execution time (E) and
power consumption (P)
for each core. Diagram not
to scale

m1 m2 m3

m6 m5 m4

16W 14W 16W

16W 14W 16W

(c) A 2×3 floorplan

Fig. 1. Circuit and floorplans

resulting chip power densities are 0.39 W/mm2, 0.97 W/mm2,

1.95 W/mm2, 2.92 W/mm2, and 3.89 W/mm2. In each case, the

heatsink conductance parameters to the ambient are adjusted

to model improved cooling solutions necessary to maintain

an average active layer temperature below the temperature

constraint.

Although task assignments and schedules are the same as

before, chip peak temperatures increase when the higher power

density cores are used. Figure 2 shows the reductions in chip

peak temperatures when the peak temperature is optimized

instead of peak power or energy for the example in Figure 1(b)

and different chip power densities mentioned above. The x-

axis shows the chip power density (in terms of factors men-

tioned previously). The y-axis shows the difference between

the peak temperature obtained from energy or peak power

minimization and that from peak temperature minimization.

As can be seen from the plot, the advantages of minimizing

the chip peak temperature directly increase with increasing

chip power density, resulting in up to 20 ◦C reduction in peak

temperature for this example.

Energy and peak power minimization suffer from the same

weakness: neither considers spatial thermal effects. In fact,

energy minimization ignores both temporal and spatial thermal

variation while peak power minimization considers temporal

thermal variation but ignore spatial thermal variation. The

peak temperature of an MPSoC is increased by crowding

the same amount of energy consumption into less time and

space. Hence, to minimize the chip peak temperature, tasks

should be assigned and scheduled in careful consideration of

thermal interaction with neighboring cores. In addition, our

example indicates that although there are many cases in which

minimizing peak power produces different (and potentially

better) results than minimizing energy, the same results are

produced for some problem instances.

IV. MILP-BASED APPROACH

In this section, we present our formal approach in solving

the problem defined in Section II-C. We also describe how

5

Fig. 2. Differences in peak temperatures: peak temperature minimization vs.
peak power and energy minimization

our model can be extended to account for leakage power,

dynamic voltage and frequency scaling (DVFS), and inter-task

communication, as well as to include a finer-grained thermal

model. A discussion on some limitations of the MILP-based

approach is given at the end of the section.

IV.A. MILP Formulation

We now present our MILP formulation for the problem

defined in Section II-C. We begin by defining the following

variables.

δ(j, m) =

{

1 if task j is assigned to core m

0 otherwise
(6)

η(j1, j2) =

{

1 if task j1 starts before task j2

0 otherwise
(7)

β(j1, j2,m) =











1 if task j2 executes on core m, precedes1,

and overlaps with task j1

0 otherwise

(8)

To enforce consistency, we let

β(j, j, m) ≡ δ(j, m). (9)

The β(j1, j2,m) variables capture the overlapping execution

of different tasks and play a key role in computing the peak

temperature. They are also useful in computing the peak power

as will be shown later. We use ts(j) and tf (j) to denote the

start and finish time of task j, respectively, yielding

tf (j) ≡ ts(j) +
∑

m∈M

δ(j, m) · E(j,m) (10)

≡ ts(j) + et(j). (11)

MILP formulations have long been proposed for modeling

the task assignment and scheduling problem in a hetero-

geneous multiprocessor environment [39]. However, energy

minimization has often been the main objective. Such solutions

ignore both temporal and spatial thermal variation. Even peak

power minimization only considers temporal thermal variation.

To take both types of thermal variation into account, we

1Precedence is not necessary but is sufficient and simplifies the test.

directly minimize the chip peak temperature, Tmax , which is

the highest temperature at any position on the chip during a

schedule of duration SL, i.e.,

Tmax = max
m∈M,t∈[0,SL]

τm(t), (12)

Using Eq. 2 and Eq. 3 to compute the temperature at each

node at any given time corresponds to dynamic or transient

thermal analysis. Unfortunately, transient thermal analysis is

computationally expensive. This makes the use of transient

thermal analysis in the MILP formulation impractical; the

MILP would only be able to solve very small problem

instances, thereby making it difficult to validate a heuristic.

For this reason, we set the capacitance values in Eq. 2 and

Eq. 3 to zero to obtain the steady-state temperature at each

node when predicting temperatures in our MILP formulation.

In Section IV-F, we indicate the situations in which the

MILP-based approach with steady-state analysis is appropriate

and inappropriate. In addition, we present a solution to the

more general problem of dynamic temperature optimization

in Section V.

From the thermal model in Section II-B, it might appear

necessary to compute the steady-state temperature, τm(t), of

a core m at every time instant t to determine Tmax . Even

if we discretize the time duration SL, this approach may

still be too costly; task execution times can vary dramatically,

resulting in some tasks executing for hundreds of thousands

or millions of time units. To overcome this difficulty, we

make the following observations: 1) core power consumptions

only change at the beginning or end of a task execution, and

2) the steady-state temperature of a core only experiences

a rapid change when the power consumption of at least

one core on the chip changes. Hence, we can significantly

reduce the number of computations needed to obtain Tmax .

Specifically, we only evaluate the temperature of each core

m immediately after every task i starts or finishes executing

on any core in the MPSoC and denote this temperature by

T (i,m). Consequently, the objective function of the MILP

can be expressed as

min Tmax , where Tmax ≥ T (i,m),∀m ∈M,∀i ∈ J. (13)

T (i,m) satisfies the constraints given in Eq. 2 and Eq. 3,

which are rewritten in Eq. 14 and Eq. 15, respectively. Note

that the capacitance values are set to zero: steady-state analysis

is used.

T (i,m) ≡ THS (i, h) +
1

GH(m)





∑

j∈J

β(i, j, m) · P (j, m)





+
1

GH(m)

∑

n∈Nm

GN (m,n) · [T (i, n)− T (i, m)]

(14)

0 = (THS (i, h)− T (i,m)) ·GH(m) + (THS (i, h)− TA)

·GA(h) +
∑

g∈Nh

(THS (i, h)− THS (i, g)) ·GNH (h, g).

(15)

Note that Eq. 14 is only linear if we can treat P (j,m) as a

constant given task j and core m. For now, we assume that

6

this is the case. We will discuss the more general case where

P (j, m) is not a constant in Section IV-B.

The following constraints are used to guarantee schedula-

bility.

1) Every task j is assigned to exactly one core m:

∀j ∈ J
∑

m∈M

δ(j,m) = 1 (16)

2) Every task j meets its deadline:

∀j ∈ J ts(j) + et(j) ≤ d(j) (17)

3) Precedence constraints are honored:

∀i, j ∈ J ts(j) ≥ tf (i) · Γi,j (18)

4) All tasks execute for their durations without overlap:

∀j1, j2 ∈ J

1 ≤ η(j1, j2) + η(j2, j1) (19)

ts(j1) ≤ ts(j2) + (1− η(j1, j2)) · Λ (20)

ts(j2) ≤ ts(j1) + η(j1, j2) · Λ (21)

∀j1, j2 ∈ J, j1 6= j2,∀m ∈M

tf (j1) ≤ (2− δ(j1,m)− δ(j2,m)) · Λ+

ts(j2) + Λ · (1− η(j1, j2)) (22)

tf (j2) ≤ (2− δ(j1,m)− δ(j2,m)) · Λ+

ts(j1) + Λ · η(j1, j2), (23)

where Λ is a constant greater than or equal to the largest

deadline in the task set. Item 20 states that task j1 must start

before task j2 if η(j1, j2) = 1. Item 22 guarantees that task

j1 finishes before task j2 starts if tasks j1 and j2 are executed

on the same processor and task j1 precedes task j2. Similar

conditions hold for Item 21 and Item 23.

Consider a situation where tasks i and j execute on cores

m and n, respectively. Further, task i precedes task j and their

executions overlap. At the start of task i, we only need to con-

sider the power consumption of core m. However, at the start

of task j, we must take into account the power consumptions

of both cores to correctly compute the chip peak temperature.

For this reason, we must ensure that β(j1, j2,m) = 1 only

when δ(j2,m) = 1 and ts(j2) ≤ ts(j1) ≤ tf (j2) − ǫ, where

ǫ is a small constant used to prevent imprecise floating point

computations from making it appear as if contiguous tasks

overlap in time. Therefore,

∀m ∈M,∀j1, j2 ∈ J, j1 6= j2

tf (j2) ≥ ts(j1) + (β(j1, j2,m)− 1) · Λ (24)

ts(j2) ≤ ts(j1) + (1− β(j1, j2,m)) · Λ (25)

1 ≥ β(j1, j2,m) + δ(j1,m) (26)

tf (j2)− ǫ− (1− η(j2, j1)) · Λ− (1− δ(j2,m)) · Λ

≤ ts(j1) + β(j1, j2,m) · Λ (27)

The above MILP formulation finds an assignment and

schedule that minimize the chip peak temperature. We would

like to point out that our formulation can readily be mod-

ified to produce an assignment and schedule that minimize

peak power. We simply substitute the objective function by

min Pmax where

Pmax ≥ ∀i∈J

∑

m∈M

∑

j∈J

β(i, j, m) · P (j, m). (28)

On the other hand, if total energy is to be minimized, the

following objective function can be used

Etotal ≥
∑

j∈J

∑

m∈M

P (j, m) · E(j, m) · δ(j,m), (29)

where Etotal denotes the total energy. We will show in Sec-

tion VII that directly minimizing peak temperature generally

yields better results than approximating it with peak power or

total energy minimization.

IV.B. Modeling Power Consumption

In Eq. 14, the parameter P (j, m) captures the power con-

sumption of core m while executing task j, and

P (j, m) = Pdyn(j, m) + Pleak (j, m) (30)

where Pdyn and Pleak are the dynamic (switching) power

and the leakage power due to executing task j on core m,

respectively.

Assuming average switching activity is used to evaluate

Pdyn(j,m), we can treat Pdyn(j,m) as a constant. The

leakage power, Pleak (j, m), however, is a superlinear function

of temperature. Simply treating Pleak (j, m) as a constant may

lead to an underestimation of the chip peak temperature,

causing hardware throttling at run-time, which may, in turns,

cause hard real-time deadlines to be missed.

Though integrated circuit (IC) leakage power is a superlin-

ear function of temperature, it is possible to approximate in

the operating temperature ranges of integrated circuits using

a piecewise linear function with only about 5% error in

leakage estimation [40]. Therefore, we can model the power

consumption required to execute a task j on core m at

temperature Tm as

P (j, m) = K1(j,m) · Tm + K2(j, m), (31)

where K1(j,m) and K2(j,m) are constants that depend on

core m and task j. Consequently, Eq. 14 can be rewritten as

T (i,m) ≡ Th(i, h) +
1

Gh(m)

∑

n∈Nm

Gn(m,n)

· [T (i, n)− T (i,m)] +
1

Gh(m)

·





∑

j∈J

β(i, j, m) · (K1(j, m) · T (i, m) + K2(j, m))



 .

(32)

To eliminate the nonlinear term β(i, j, m)·T (i,m), we replace

β(i, j, m) · T (i, m) with a new variable λ(i, j, m). In other

words,

λ(i, j, m) =

{

K1(j,m) · T (i, m) if β(i, j, m) = 1

0 otherwise,
(33)

7

We then add the following constraints to our MILP formula-

tion.

∀m ∈M,∀i, j ∈ J

λ(i, j, m) ≥ 0 (34)

λ(i, j, m) ≤ β(i, j, m) · Λ (35)

λ(i, j, m) ≥ (K1(j, m) · T (i,m))− (1− β(i, j, m)) · Λ
(36)

λ(i, j, m) ≤ (K1(j, m) · T (i,m))− (β(i, j, m)− 1) · Λ
(37)

It can readily be verified that if λ(i, j, m) satisfies Eq. 34–37,

then Eq. 33 holds, which is precisely what the term β(i, j, m)·
T (i, m) represents.

Therefore, solving the MILP instance given in Eq. 14,

Eq. 15 (with β(i, j, m) ·T (i, m) being replaced by λ(i, j, m)),
Eq. 15–27, and Eq. 34–37 leads to an exact solution to the

problem defined in Section II-C, assuming that steady-state

analysis is acceptable.

IV.C. Incorporating Dynamic Voltage Scaling

Many modern processors support dynamic voltage and

frequency scaling (DVFS). Although using DVFS to minimize

energy will generally also reduce peak temperature, energy

minimization alone is not equivalent to peak temperature

minimization. Energy minimization does not consider tempo-

ral or spatial thermal variation. It is, however, possible and

beneficial to consider DVFS in conjunction with our peak

temperature optimization technique. Our MILP formulation

from Section IV-A can be modified as follows.

For each core m, the set of discrete voltage levels, Km, must

be specified. We also redefine E(j, k,m) to be the execution

time of task j on core m at voltage level k and P (j, k,m) to

be the power consumption required to execute task j on core

m at voltage level k. The binary variables δ(j, k,m) are also

redefined to be 1 if task j is assigned to core m at voltage

level k. Consequently, from Eq. 14,
∑

j∈J

β(i, j, m) · P (j,m) =
∑

k∈K

∑

j∈J

ν(i, j, k,m) · P (j, k,m),

where

ν(j1, j2, k, m) =

{

1 if δ(j2, k,m) = 1, β(j1, j2,m) = 1

0 otherwise.

The constraints in Eq. 14–27 can be readily modified for use

in the new formulation.

IV.D. Finer-Grained Thermal Model

The thermal model (Section II-B) can further be refined

by using multiple thermal elements for each core, where each

thermal element may have different power consumption and/or

correspond to a particular functional unit of the core. We omit

this refinement due to lack of realistic benchmarks for which

power profile variations within cores are known. When such

benchmarks become available, only minor modifications to

the solution in Section IV-A will be needed. Specifically, the

binary variables δ(j,m, x) must be redefined to take the value

of 1 if j executes on core m and x is a thermal element

belonging to core m. In addition, the variables in Eq. 8 must

be modified accordingly.

It is worth noting that while a core power consumption may

vary depending on the actual instructions that are being exe-

cuted, the relative change in temperature at the functional-unit

level is rather slow due to the relatively large RC time constant

of the functional units. For this reason, the finer-grained

thermal model presented here would be accurate enough and it

is not necessary to model variation in instruction-level power

consumption [41].

IV.E. Modeling Inter-Task Communication

In some situations, communication cost for a task to send

data to its successors is not negligible. Given that the time

to send data from task i to task j using shared memory is

expressed by parameter C(i, j), our MILP formulation from

Section IV-A can be modified to capture inter-task communi-

cation by simply substituting Eq. 18 with the following

∀i, j ∈ J ts(j) ≥ (tf (i) + C(i, j)) · Γi,j . (38)

IV.F. Limitations of MILP-Based Approach

While the solution provided by the MILP formulation in

Section IV-A is optimal, there are two main limitations to

the MILP-based approach: 1) the MILP formulation cannot

be used to efficiently solve large problem instances, as the

problem defined in Section II-C is NP-hard, and 2) due to

the use of steady-state analysis, the MILP formulation may

overestimate the chip peak temperature when task execution

times are short compared to the RC thermal time constant of

the cores (i.e., the constant influencing the rate of temperature

change in response to power consumption change). That is,

steady-state analysis can be used to accurately predict the

temperature when task execution times are long compared

to the core RC time constants, though transient analysis

should otherwise be used to permit more accurate temperature

prediction, thereby allowing more aggressive scheduling of

short tasks that do not cause temperatures to converge to

steady-state values during execution.

V. ASSIGNMENT AND SCHEDULING HEURISTIC

FRAMEWORK

To trade off accuracy in temperature estimation for running

time, we propose an assignment and scheduling heuristic

framework where either steady-state or transient analysis can

be used, depending on the characteristics of the tasks under

consideration. Additionally, our heuristic framework can be

used in conjunction with any thermal modeling tool.

Our framework uses a binary search based approach to

minimize peak temperature under functionality and timing

constraints. It takes as inputs upper and lower temperature

bounds, as well as the maximum number of iterations, maxIter.

It then uses the average of the upper and lower bounds on the

peak temperatures as the target peak temperature to find an

assignment and schedule. If an assignment and schedule is

found while staying below the target temperature, the current

8

target temperature will be used as the upper temperature bound

for the next iteration of the binary search. Otherwise, it will

be used as the lower temperature bound.

We introduce the key part of our framework:

ThermalSched, a list scheduling [42] algorithm, which

is summarized in Algorithm 1. For a given task j, the

earliest start time (EST(j)) and latest start time (LST(j)) are

computed. The mobility of task j can then be calculated as the

difference between LST(j) and EST(j). A potential challenge

in computing EST(j) and LST(j) is that the execution time

of task j is unknown prior to the selection of a core. Our

solution is to use the smallest execution time of task j as

given by the fastest core when computing EST(j) and LST(j)

to maximize the mobility of task j, for all j ∈ J .

The steps for task assignment and scheduling follow. Ready

tasks are ordered in a non-decreasing order of mobility. A

ready task is a task whose predecessors have finished execut-

ing. Given a ready task j, ThermalSched selects the fastest

available core that allows the task to meet its deadline while

keeping the peak temperature below the target temperature.

The fastest available core is chosen to maximize the mobility

of the successors of task j, thereby improving schedulability.

If no core is fast enough to execute task j by its deadline,

ThermalSched terminates. (We ignore Lines 24–25 and

35–36 in Algorithm 1, and the variables currentDelay and

dMaxIter for now. Their use will be explained in the next

section.) Our search-based scheduling approach permits the

use of an efficient list scheduler without global knowledge of

temperature variation.

Observe that Algorithm 1 does not provide any details

regarding the actual computation of the thermal profile (Line

17). Since predicting highly accurate thermal profiles increases

time complexity, we propose to use two techniques based on

the observations made in Section IV-F to balance accuracy and

time complexity.

V.A. Steady-State Analysis Based Heuristic

As explained in Section IV-F, if task execution times are

long compared to the thermal time constants of the cores,

steady-state analysis can usually predict the resultant chip

temperature in a fairly accurate manner. In such a case, the

use of steady-state analysis reduces the running time of the

heuristic.

The steady-state thermal profile can be computed by ex-

pressing Eq. 2 and Eq. 3 for all the thermal elements as

a system of linear equations of the form A · T + B = 0,

and of size |E| × |E|, where |E| is the total number of

thermal elements. Since the thermal conductance matrix A
is fixed once a floorplan is given, the inverse of the matrix

can be pre-computed once and the temperature matrix can be

updated using a constant number of multiplications in each

iteration. ThermalSched therefore has a time complexity

in O(|J |2 · |M |3). The time complexity of the steady-state

thermal analysis based heuristic (SSAB) is in O(|J |2 ·|M |3 ·
maxIter).

Algorithm 1 ThermalSched(G(V,E), targetTemp, dMaxIter)

1: compute EST(j), for all tasks // earliest start time

2: compute LST(j), for all tasks // latest start time

3: compute avgE // average execution time over all tasks and

cores

4: mobility(j) ← LST(j) - EST(j), for all tasks

5: currentTime ← 0

6: busy(m) ← 0, for all cores

7: while there are unscheduled tasks do

8: RT ← ready tasks in non-decreasing order of mobility

9: for each j ∈ RT do

10: invalidCount ← 0

11: fastestCore ← −1
12: bestExeTime ←∞
13: for each m ∈M do

14: δ(j, m)← 0

15: endTime ← E(j,m) + currentTime

16: if not busy(m) and endTime ≤ D(j) then

17: compute projected thermal profile for

[currentTime,nextIdleTime] // nextIdleTime

is the next earliest time when all cores become

idle

18: peakTemp ← maxm∈M T (j, m)
19: if peakTemp ≤ targetTemp then

20: if E(j,m) < bestExeTime then

21: fastestCore ← m

22: bestExeTime ← E(j,m)

23: currentDelay ← 0
24: else if currentTime > 0 then

25: [fastestCore, bestExeTime, currentDelay] ←
DelayInsertion(G(V,E), j, m, currentTime,

targetTemp, dMaxIter, avgE)

26: else if not busy(m) then

27: invalidCount ← invalidCount + 1

28: if invalidCount = |M | then

29: return INFEASIBLE

30: else if fastestCore 6= −1 then

31: δ(j, fastestCore)← 1 // assign j to fastestCore

32: ts(j) ← currentTime + currentDelay

33: tf(j) ← ts(j) + E(j, fastestCore)

34: busy(fastestCore) ← 1

35: if currentDelay > 0 then

36: break // allow no tasks to start executing between

currentTime and currentTime + currentDelay

37: update EST(j), for all unscheduled tasks

38: update mobility(j), for all unscheduled tasks

39: nextSchedPoint← min{tf (j) : tf (j) > currentTime+
currentDelay}

40: for each m ∈M do

41: if m becomes idle at nextSchedPoint then

42: busy(m) ← 0

43: currentTime ← nextSchedPoint

44: return FEASIBLE

9

V.B. Transient Analysis Based Heuristic

If task execution times are short, it is desirable to use tran-

sient analysis to compute the projected thermal profile, as ex-

plained in Section IV-F. Essentially, any existing thermal anal-

ysis technique can be used in our task assignment and schedul-

ing heuristic framework. To validate our transient analysis

based heuristic (TAB), we will use HotSpot [36] in our

experiments. Due to the use of transient analysis to predict

the temperatures, the transient analysis based heuristic has a

time complexity of O(|J |2·|M |·maxIter ·O(HotSpot)), where

O(HotSpot) is the worst-case running time of HotSpot.

A potential drawback of our flexible heuristic framework

is that we always try to schedule as many tasks as possible

in a given scheduling point provided that the chip peak

temperature remains within the target temperature bound. In

some situations, it may be better to schedule fewer tasks at

a time to allow the chip to cool down before executing more

tasks, potentially reducing the chip peak temperature. Based

on this observation, we now introduce the concept of delay

insertion.

VI. DELAY INSERTION

As stated previously, Algorithm 1 always tries to schedule as

many tasks as possible at every scheduling point to maximize

the mobility of later tasks. One possible consequence of this

greedy approach to task assignment and scheduling is that

the chip peak temperature may be so close to the target

temperature that no future ready task can execute without

violating the target temperature bound, thus requiring a higher

target temperature to find a feasible task assignment and

schedule. To address this weakness in our heuristic framework,

we introduce the concept of delay insertion. That is, when the

chip peak temperature is at or near the target peak temperature,

we delay the execution of the next ready task by introducing

an idle interval before the task starts to allow the chip to

cool down. This improves the probability of later tasks being

scheduled without exceeding the target temperature bound.

Since the steady-state thermal analysis assumes fast temper-

ature rises and falls, an idle time (or a delay inserted) between

task executions has no effect on the resultant peak temperature.

On the other hand, transient thermal analysis would capture

the cooling effects of delay insertions. Hence, the concept of

delay insertions applies to the TAB heuristic only.

To demonstrate the potential benefits of delay insertions,

we use the following simple example. Consider a system with

5 identical real-time tasks running on the MPSoC shown in

Figure 1(b) with the associated execution time and power con-

sumption for each core. Again, to obtain a chip power density

that is similar to the the one for the 65 nm processors [38], we

multiplied the power consumption of each core by a factor of

10. Without inserting any idle times, our TAB heuristic finds

a feasible assignment and schedule with a peak temperature

of 51.60 ◦C. Now, assume that there exists an algorithm that

can insert the appropriate delays after some task executions,

then the peak temperature could be reduced to 49.88 ◦C.

In the above example, delay insertion only reduces the chip

peak temperature by 1.72 ◦C because there are only 5 tasks

in the system with relatively short execution times. In other

words, executing these tasks on the example MPSoC does

not significantly raise the chip peak temperature. If our tasks

require 10× the original execution times, i.e., a mean of 30 ms,

then delay insertions would reduce the chip peak temperature

by 3.87 ◦C, from 66.22 ◦C to 62.35 ◦C.

We now explain the use of delay insertions in our heuristic

framework in more detail. Whenever an attempt to sched-

ule a task on a core fails because the target tempera-

ture bound is exceeded, DelayInsertion is called (Line

24–25 of Algorithm 1). If an idle time has successfully

been inserted into the schedule, our heuristic will immedi-

ately move on to the next scheduling point, i.e., by set-

ting currentTime to min{tf (j) : tf (j) > currentTime +
currentDelay} and continue the assignment and scheduling

process (Lines 35–36 and Line 39 of Algorithm 1). No other

tasks that are yet to be scheduled are allowed to run during

[currentTime, currentTime + currentDelay). This not only

simplifies the algorithm, but is also quite reasonable since it is

unlikely that when an idle time has been inserted (i.e., when

the current chip peak temperature is at or near the target

temperature), another task can execute within the interval

[currentTime, currentTime + delay) without exceeding the

target temperature itself.

Algorithm 2 DelayInsertion(G(V,E), j, m, currentTime, tar-

getTemp, dMaxIter, avgE)

1: upperDelay ← avgE

2: lowerDelay ← 0

3: delay ← (upperDelay + lowerDelay) / 2

4: iter ← 0
5: oldPeakT ← 0
6: newPeakT ← 0
7: while iter < dMaxIter do

8: compute projected thermal profile for

[currentTime, currentTime + delay] and

[currentTime + delay ,nextIdleTime] // nextIdleTime

is the next earliest time when all cores become idle

9: newPeakT ← maxm∈M T (j, m)
10: if targetTemp > newPeak and |oldPeakT − newPeakT|

< ǫ then

11: if E(j,m) + delay < bestExeTime and currentTime +
delay + E(j, m) ≤ D(j) then

12: fastestCore ← m

13: bestExeTime ← E(j,m)

14: return [fastestCore, bestExeTime, delay]
15: else

16: return FAILURE

17: else if targetTemp > newPeakT then

18: upperDelay ← delay

19: else

20: lowerDelay ← delay

21: oldPeakT ← newPeakT

22: delay ← (upperDelay + lowerDelay) / 2

23: iter ← iter + 1

Our delay insertion algorithm is shown in Algorithm 2. To

find the appropriate idle time to insert without sacrificing the

10

schedulability of future tasks, we use a binary search based

approach. In each iteration, Algorithm 2 attempts to schedule

the current task onto the core currently under consideration

such that the resultant peak temperature does not exceed the

target peak temperature. Should this prove to be possible,

Algorithm 2 will keep this scheduling and assignment if the

current configuration minimizes the task finish time until now.

Hence, if an assignment and schedule exists for the current

task that does not involve delay insertions, that assignment and

schedule will likely be selected (this design choice maximizes

the mobility of future tasks). Algorithm 2 will halt when

either the maximum number of iterations dMaxIer has been

reached or when an appropriate idle time has been found. The

appropriate idle time is found when the current assignment and

schedule does not exceed the target temperature and the chip

peak temperature has converged (Line 10 of Algorithm 2).

In our implementation, the search begins by setting the

upper bound on the delay to the average execution time of

all task and core combinations and the lower bound delay

to 0. We decided to use the average task execution times as

the upper bound for the following reasons: 1) if the upper

bound is too large, DelayInsertion can be unfortunately

slow, and 2) DelayInsertion is most likely invoked when

the chip temperature is near the target temperature. Inserting

an idle time similar to the average task execution time would

allow, on average, the chip to cool down enough to allow most

tasks to eventually be scheduled on the current core without

sacrificing the efficiency of the heuristic.

VII. EXPERIMENTAL RESULTS

We quantify the benefits of our proposed approach and

assess the quality of our heuristic framework in this section.

VII.A. Experimental Setup

In our experiments, we used the Embedded System Syn-

thesis Benchmarks Suite (E3S) [34]. E3S contains 17 pro-

cessing elements (PEs). From the E3S benchmarks, each PE

is associated with a size, power value, and task execution

times. Out of these 17 PEs, 12 have less than 3 W power

consumption. In our experiments, we used the following 11

cores: AMD K6-2 450, AMD K6-2E 400 Mhz/ACR, AMD

K6-2E+ 500 Mhz/ACR, AMD K6-IIIE+ 550 Mhz/ACR, IBM

PowerPC 405GP 266 Mhz, IBM PowerPC 750CX 500 MHz,

IDT32334 100 MHz, IDT79RC32V334-150, IDT79RC64575

250 MHz, Motorola MPC555 40 MHz, and TI TMS320C6203

300 MHz. (Note that we did not use all 17 cores because for

each floorplan, we attempted to use cores with similar sizes.)

The E3S task sets follow the organization of the EEMBC

benchmarks [34]. There are five benchmarks in total: Auto (24

tasks), Consumer (12 tasks), Networking (13 tasks), Office (5

tasks), and Telecom (30 tasks). Each benchmark represents an

application, as its name indicates. Each sink task, which does

not have any successors, has a hard real-time deadline.

For the E3S benchmarks, we experimented with a number

of floorplans with 2×2, 2×3, and 3×3 core arrangements.

Each benchmark has different floorplans, as specific tasks

are required to run on specific cores among the 11 cores

TABLE I
FLOORPLAN CONFIGURATIONS.

Benchmark First Row Second Row Third Row

Auto-2x2-1 14, 7 1, 7
Auto-2x2-2 1, 7 1, 7
Auto-2x3 1, 7, 7 1, 7, 7
Auto-3x3 14, 14, 14 1, 1, 1 7, 7, 7

Consumer-2x2-1 7, 7 11, 11
Consumer-2x2-2 7, 7 9, 7
Consumer-2x3 7, 7, 7 11, 11, 11
Consumer-3x3 7, 7, 7 9, 9, 9 7, 7, 7

Networking-2x2-1 2, 3 4, 5
Networking-2x2-2 5, 5 4, 4
Networking-2x3 5, 4, 5 5, 4, 5
Networking-3x3 5, 5, 5 4, 4, 4 5, 5, 5

Office-2x2-1 4, 3 4, 12
Office-2x2-2 4, 3 4, 3
Office-2x3 4, 8, 4 3, 8, 3
Office-3x3 3, 8, 3 8, 12, 8 3, 8, 3

Telecom-2x2-1 14, 7 1, 7
Telecom-2x2-2 1, 7 1, 7
Telecom-2x3 1, 7, 7 1, 7, 7
Telecom-3x3 14, 14, 14 1, 1, 1 7, 7, 7

TABLE II
CORE NAMES.

Index Core

1 AMD ElanSC520-133 MHz
2 AMD K6-2 450
3 AMD K6-2E 400Mhz/ACR
4 AMD K6-2E+ 500Mhz/ACR
5 AMD K6-IIIE+ 550Mhz/ACR
6 Analog Devices 21065L - 60 MHz
7 IBM PowerPC 405GP - 266 Mhz
8 IBM PowerPC 750CX - 500 MHz
9 IDT32334-100 MHz
10 IDT79RC32364-100
11 IDT79RC32V334-150
12 IDT79RC64575-250MHz
13 Imsys Cjip 40 Mhz
14 Motorola MPC555 - 40MHz
15 NEC VR5432 - 167 MHz
16 ST20C2 50 Mhz
17 TI TMS320C6203-300MHz

mentioned above. The specific configuration of each floorplan

is provided Table I and the corresponding core names in

Table II. The chips consist of heterogeneous cores. Since

cores with different power consumptions tend to have different

areas, the vertical and lateral thermal conductance between

neighboring cores, and between cores and heatsink elements

will vary and can be computed as described in Section II-B.

We also used TGFF [43], which is a pseudo-random task

graph generator, in our experiment to generate 10 additional

benchmarks. For each benchmark, there are up to 5 task graphs

and the total number of tasks ranges from 4 to 29 tasks (this is

similar to the number of tasks in the E3S benchmarks). Each

task has at most 3 predecessors and 2 successors. A 2×2 core

arrangement was used, with an average core width and height

of 5 mm and an average power consumption of 10 W.

VII.B. MILP Formulation Performance

In this set of experiments, we used CPLEX with AMPL to

solve instances of the MILP formulation in Section IV for

optimal peak temperature, energy, and peak power. Each E3S

11

50

55

60

65

70

75

80

85

90

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
)

Benchmarks

Temperature

Peak Power

Energy

Fig. 3. Peak temp. minimization vs. energy and peak power minimization

benchmark was run against two 2×2, one 2×3, and one 3×3

floorplan.

We first examine the temperature differences between using

peak temperature minimization as the objective in the MILP

formulation and using energy or peak power minimization.

The solutions from the MILP solver are shown in Figure 3.

The x-axis shows the different benchmarks and floorplans.

The y-axis shows the resultant peak temperatures. Some

results are unavailable due to the MILP solver running out of

memory before finding a solution. Our approach reduces peak

temperatures by up to 24.66 ◦C, and 9.19 ◦C on average, when

compared to the method that minimizes energy. Most of the

improvement results from considering the effects of temporal

thermal variations.

The results in Figure 3 do not show significant differ-

ences in peak temperatures between our approach and the

approach that minimizes peak power. This is because the

low-power embedded cores used in our benchmarks have low

power densities. For example, the floorplans for the Consumer

benchmarks resulted in a chip power density ranging from

0.27 W/mm2 to 0.36 W/mm2 with an average chip power

density of 0.32 W/mm2. As a result, little spatial temperature

variation was observed. However, spatial temperature variation

will increase when higher power density chips are used, as

explained in Section III.

To obtain chip power densities similar to those described

by Link and Vijaykrishnan [38] for 65 nm processors, we

multiplied each core’s power consumption by 10. The resultant

chip power densities ranged from 0.75 W/mm2 to 3.13 W/mm2

with an average power density of 2.28 W/mm2. As shown

in Figure 4, for these cores our method reduces peak tem-

peratures by up to 23.25 ◦C, and 9.58 ◦C on average when

compared to the method of peak power minimization and

these results prove that spatial thermal variations need to be

considered.

There exist situations where optimal peak temperature can-

not be obtained by minimizing either energy or peak power.

This situation was observed in the Networking benchmark with

a 2×3 core arrangement (depicted in Figure 1(c), diagram not

drawn to scale). Due to the characteristics of this benchmark,

at least two cores must be active simultaneously at some point

in time. In the case of energy and peak power minimization,

50

70

90

110

130

150

170

190

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

Office Consumer Networking

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
)

Benchmarks

Temperature

Peak Power

Energy

Fig. 4. Peak temp. minimization vs. energy and peak power minimization
for higher power density chips

the optimal solution consists of executing on cores m2 and m5

in parallel. This yields an optimal peak power of 28 W and an

optimal energy of 35.46 J. The peak temperature obtained in

this case is 61.45 ◦C. Using our approach, cores m3 and m4
execute simultaneously. This solution gives an optimal peak

temperature of 58.15 ◦C, which is about 3 ◦C lower than either

energy or peak power minimization. However, this solution

yields a peak power of 32 W and a total energy of 36.20 J,

which means that neither energy nor peak power minimization

can achieve this optimal peak temperature.

Even in the cases where peak power (or energy) minimiza-

tion can yield optimal peak temperature, it is still relevant

to minimize peak temperature directly. First, there is no

guarantee that an optimal peak temperature will be obtained

by minimizing peak power, as the latter considers temporal

thermal variation but ignores spatial thermal variation. Second,

there may exist a range of possible peak temperatures as a

result of a single optimal peak power. If such a range is large,

the actual peak temperature of a chip can vary significantly.

To illustrate this scenario, we performed an additional

experiment using a slightly modified Consumer benchmark.

In this version, task deadlines were modified in such a way

that at least two tasks must execute in parallel. We used a

2×3 floorplan with homogeneous processors. The experiment

was run twice. In the first run, we used the original chip

power density. The chip power density was then increased by

a factor of 10 (once again to obtain similar power densities

as described by Link and Vijaykrishnan [38]) in the second

run. For this benchmark, there exist four distinct parallel core

assignments yielding the same optimal peak power but differ-

ent peak temperatures. The left bars in Figure 5 show the peak

temperatures for each of these four assignments in the first run.

The right bars show the range of possible peak temperatures

of the chip with a higher power density. The results show that

the difference in peak temperature for the same peak power

can be over 5 ◦C for the higher power density chip. Clearly,

peak power minimization is not sufficient, especially when it is

predicted that the power density of future chips will continue

to increase, resulting in even higher spatial thermal variation.

Finally, when using the TGFF benchmarks described earlier,

the MILP solved eight out of ten problem instances. Minimiz-

12

Fig. 5. Bar plot showing a range of peak temperatures using peak power
minimization

45

50

55

60

65

70

75

80

85

90

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
)

Benchmarks

MILP

SSAB

X&H

Fig. 6. Perf. of steady-state analysis based heuristics (based on HotSpot)

ing peak temperature directly instead of minimizing energy

reduced peak temperatures by 9.41 ◦C on average and up to

24.19 ◦C. In addition, when compared to the method of peak

power minimization, peak temperature minimization reduced

peak temperatures by 1.27 ◦C on average and up to 6.71 ◦C.

The above results allow for a general conclusion to be

drawn. Average power minimization ignores both temporal and

spatial thermal variation, while peak power minimization only

considers temporal thermal variation. Peak temperature min-

imization takes both types of thermal variation into account.

In addition, task mobility given a floorplan and other tasks

in the same benchmark explain why our approach obtains a

higher peak temperature reduction for some benchmarks than

the others.

VII.C. Performance of Steady-State Analysis Based Heuristic

We assess the performance of our SSAB algorithm (Sec-

tion V) by comparing its solutions to the ones from the MILP

(Section IV-A) as well as the results from Xie’s and Hung’s

Heuristic 1 [11], which we refer to as the X&H heuristic. The

X&H heuristic calls HotSpot to compute the temperatures.

Figure 6 compares the results from the SSAB and X&H

heuristics to the optimal solution from the MILP formulation.

We used HotSpot to compare the peak temperatures for a fair

comparison. Results for benchmarks that were not successfully

solved by the X&H algorithm are omitted.

The X&H heuristic deviates from the optimal solution by

10.94 ◦C on average and 38.40 ◦C in the worst case. On the

other hand, the SSAB heuristic finds an optimal solution in

many cases while giving results that deviate by at most 3.40 ◦C

from optimality (and 0.22 ◦C on average) requiring at most 50

binary search iterations for each benchmark. Both heuristics

require similar running times, but the SSAB heuristic never

performs worse than the X&H heuristic.

When the X&H heuristic was tested against the 10 TGFF

benchmarks mentioned previously, we found that it could only

solve two of the benchmarks, with a maximum deviation from

optimality of 7.74 ◦C. On the other hand, the SSAB heuristic

could solve four, one of which was a benchmark that the

MILP solver could not find a solution to. For the three other

benchmarks, the SSAB heuristic found the same solutions as

the MILP solver.

To demonstrate that the SSAB heuristic can efficiently

solve larger problem instances, we considered a benchmark

that consists of 30 tasks and a 4×4 core arrangement of

homogeneous processors. First, we attempted to use the MILP

solver. As expected, no solution was returned, as the 3.58 GB

RAM workstation on which CPLEX was executing ran out of

memory. On the other hand, the SSAB heuristic was able to

find a solution using no more than 50 binary search iterations

within 9 seconds.

On a final note, our thermal model is a discretized Fourier

heat flow model and while it is not exactly the same model

used in HotSpot, the experiments in this section showed that on

average, the peak temperatures from the two models differed

by less than < 5 ◦C. This indirectly served as a validation of

our thermal model.

VII.D. Performance of Transient Analysis Based Heuristic

We now assess the performance of the TAB heuristic (Sec-

tion V) using the same set of benchmarks as in Section VII-A.

The TAB heuristic calls HotSpot to determine transient tem-

peratures. Since the original task execution times for the E3S

benchmarks tend to be short, dynamic thermal effects can be

significant. We compare the peak temperatures obtained by

the MILP solver and the TAB heuristic, as shown in Figure 7.

When compared to the results from the MILP solver, the TAB

heuristic reduces the peak temperature by up to 0.67 ◦C and

0.06 ◦C on average. This is because transient analysis can more

accurately predict temperatures when performing assignment

and scheduling.

The TAB heuristic also improves the task finish times.

Let the speedup be the ratio of the finish time of the last

task in the MILP schedule to that in the TAB schedule.

The maximum, minimum, and average speedups are 78.13×,

1.21×, and 9.02×, respectively. Such a significant speedup

results from the TAB heuristic being much less pessimistic

in estimating temperatures and hence scheduling more tasks

in parallel. However, the SSAB heuristic is more efficient

than the TAB heuristic. Specifically, the SSAB heuristic is

about 175× faster than the TAB heuristic on average for

benchmarks with short task execution times; this difference

further increases for benchmarks with longer task execution

times.

VII.E. Performance of Transient Analysis Based Heuristic

with Delay Insertions

To determine the impacts of delay insertions (Section VI)

on reducing the chip peak temperature, we once again used

13

45

46

47

48

49

50

51

52

53

54

55

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

2
x
2
v
1

2
x
2
v
2

2
x
3

3
x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
)

Benchmarks

MILP

TAB

Fig. 7. Perf. of transient analysis based heuristic (based on HotSpot)

the E3S and TGFF benchmarks. We compared the solutions

from the original TAB heuristic to those from the improved

TAB heuristic (iTAB). Once again, since the power density of

the E3S cores are quite low compared to the values described

by Link and Vijaykrishnan [38], we multiplied each core’s

power consumption by a factor of 10. The results for the E3S

benchmarks are shown in Table III. The first column shows

the benchmark names and associated floorplans. The second

main column presents the peak temperatures from the TAB

heuristic and the iTAB heuristic, as well as the differences

in peak temperatures for the original task execution times.

Finally, the last main column presents the data for the case

where task execution times are multiplied by a factor of 10.

With the original task execution times, the effect of delay

insertions is minimal for some benchmarks (e.g., networking).

In fact, for two of the telecom benchmarks, iTAB actually

performs worse than TAB. This is because iTAB always tries

to insert delays, even when it may not be optimal to do so. For

instance, if the chip is currently too hot to execute the next

ready task within the target peak temperature, iTAB would try

to insert some idle time before scheduling that task. However,

it may sometimes be better to select a different task that can

meet the target peak temperature constraint in Algorithm 1

without inserting delays.

When the execution times are increased by a factor of 10,

we see the benefits of using the iTAB heuristic. This is because

the average chip peak temperature is much higher than in the

original cases and inserting idle times between task executions

is very effective in cooling the chip down. On average, iTAB

produces solutions that reduce peak temperatures by 3.15 ◦C

on average and up to 11.92 ◦C.

iTAB did not significantly improve on the TGFF benchmark

solutions found by TAB (both found four out of ten). The

largest improvement in peak temperature was 1.71 ◦C. This

is because most tasks in the TGFF benchmarks did not have

enough slack for delay insertions to be effective.

Based on the above results, we can conclude that iTAB

reduces the peak temperature of systems with time slack.

It must be noted, however, that iTAB also requires longer

running times. On average, iTAB takes 19.2× longer to run

than the original TAB algorithm. Clearly, there is a trade-

off between solution quality and time complexity of these

TABLE III
EFFECTIVENESS OF DELAY INSERTIONS IN REDUCING CHIP PEAK

TEMPERATURES

Temperature (◦C)
Original Execution Times Execution Times × 10

Benchmark TAB iTAB Diff. TAB iTAB Diff.

Consumer
2×2-1 65.78 60.56 5.22 84.30 80.90 3.40
2×2-2 86.24 81.47 4.77 86.24 81.47 4.77
2×3 63.32 60.06 3.26 79.24 76.81 2.43
3×3 61.97 60.28 1.69 78.60 76.85 1.75

Networking
2×2-1 47.49 47.45 0.04 57.81 55.43 2.38
2×2-2 47.29 46.85 0.45 57.83 53.48 4.35
2×3 46.80 46.80 0.00 53.96 53.87 0.09
3×3 46.80 46.79 0.01 53.45 53.36 0.09

Office
2×2-1 54.22 54.22 0.00 75.96 75.96 0.00
2×2-2 54.14 54.14 0.00 75.37 75.37 0.00
2×3 54.21 54.21 0.00 67.91 67.89 0.02
3×3 54.13 54.13 0.00 67.43 57.94 9.49

Telecom
2×2-1 50.28 51.70 -1.42 72.06 65.53 6.53
2×2-2 49.48 52.79 -3.31 71.26 59.34 11.92
2×3 46.38 47.40 -1.02 51.37 51.30 0.08

algorithms.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a formal assignment and scheduling technique

that uses a mixed-integer linear program solver to optimize

IC peak temperature under precedence and hard real-time

constraints based on phased steady-state thermal analysis.

Experimental results showed a peak temperature reduction

of up to 30.75 ◦C and 10.09 ◦C on average for embedded

processors when compared to energy minimization. When

compared to peak power minimization, our approach reduced

peak temperature by up to 23.25 ◦C and 8.98 ◦C on average

for high power density chips.

To efficiently solve this NP-hard assignment and schedul-

ing problem, we also proposed a task assignment and schedul-

ing heuristic framework in which the actual method for tem-

perature prediction depends on task durations. Phased steady-

state analysis is appropriate when task execution times are

long compared to the time constants of the cores and transient

analysis should be used otherwise. Our phased steady-state

analysis based heuristic finds an optimal solution in many

cases, with a maximum deviation from optimality of 3.40 ◦C.

When compared to previous work, the heuristic achieves a

temperature reduction of 10.94 ◦C on average. The transient

analysis based heuristic models and exploits the transient

thermal effects of short tasks to further improve upon the

existing solution by 0.67 ◦C in the best case. Finally, we

showed that incorporating the concept of delay insertion into

the proposed heuristic framework results in an additional peak

temperature reduction of up to 11.92 ◦C.

Since real-time systems can exhibit great temperature varia-

tions at run-time due to the differences in actual task execution

times, we intend on exploring the peak temperature minimiza-

tion problem online to further reduce temperature and increase

system reliability.

REFERENCES

[1] E. Milchman, “Intel dual-core FAQ,” Wired News, July 2006.

14

[2] S. Y. Borkar, et al., “Platform 2015: Intel processor and platform
evolution for the next decade,” Intel Corporation, Tech. Rep., Mar. 2005.

[3] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimiza-
tion for heterogeneous chip multiprocessors,” in Proc. Int. Conf. Parallel

Architectures and Compilation Techniques, Sept. 2006, pp. 23–32.

[4] “Xbox360 Xenon,” 2006, http://domino.research.ibm.com/comm/
research projects.nsf/pages/multicore.Xbox360.html.

[5] “P4040: QorIQ Embedded Multicore Processor,” 2009,
http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=
P4040&fsrch=1.

[6] J. Srinivasan, et al., “Exploiting structural duplication for lifetime
reliability enhancement,” in Proc. Int. Symp. Computer Architecture,
June 2005, pp. 520–531.

[7] R. Viswanath, et al., “Thermal performance challenges from silicon to
systems,” Intel Technology Journal, vol. 4, no. 3, pp. 1–16, Aug. 2000.

[8] S. H. Gunther, et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, vol. 5, no. 1, pp. 1–9,
Feb. 2001.

[9] Y. Li, et al., “Performance, energy, and thermal considerations for SMT
and CMP architectures,” in Proc. Int. Symp. Computer Architecture, Feb.
2005, pp. 71–82.

[10] T. Zhou, X. Hu, and E.-M. Sha, “Probabilistic performance estimation
for real-time embedded systems,” in Int. Workshop on Timing Issues

in the Specification and Synthesis of Digital Systems, Mar. 1999, pp.
83–88.

[11] Y. Xie and W.-L. Hung, “Temperature-aware task allocation and schedul-
ing for embedded multiprocessor systems-on-chip (MPSoC) design,” J.

VLSI Signal Processing, vol. 45, no. 3, pp. 177–189, Dec. 2006.

[12] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for real-
time tasks under thermal constraints,” in Proc. Real-Time and Embedded

Technology and Applications Symp., Apr. 2009, pp. 141–150.

[13] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard
real-time systems with general task arrivals,” in Proc. Real-Time Systems

Symp., Dec. 2006, pp. 323–332.

[14] J. W. S. Liu, Real-Time Systems. Prentice-Hall, NJ, 2000.

[15] R. Mukherjee, S. Öğrenci Memik, and G. Memik, “Temperature-aware
resource allocation and binding in high-level synthesis,” in Proc. Design

Automation Conf., June 2005, pp. 196–201.

[16] P. Lim and T. Kim, “Thermal-aware high-level synthesis based on
network flow method,” in Proc. Int. Conf. Hardware/Software Codesign

and System Synthesis, Oct. 2006, pp. 124–129.

[17] R. Rao, et al., “An optimal analytical solution for processor speed control
with thermal constraints,” in Proc. Int. Symp. Low Power Electronics &

Design, Oct. 2006, pp. 292–297.

[18] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in Int. Conf. on Compilers, Architecture, and

Synthesis for Embedded Systems, Oct. 2007, pp. 257–266.

[19] A. Mutapcic, et al., “Processor speed control with thermal constraints,”
IEEE Trans. Circuits and Systems I, 2009, to appear.

[20] G. Quan, et al., “Guaranteed scheduling for repetitive hard real-time
tasks under the maximum temperature constraints,” in Proc. Int. Conf.

Hardware/Software Codesign and System Synthesis, Oct. 2008, pp. 267–
272.

[21] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to
manage energy and temperature,” in Proc. Symposium on Foundations

of Computer Science, Oct. 2004, pp. 520–529.

[22] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and
voltage scaling,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2008,
pp. 618–623.

[23] P. Gai, L. Abeni, and G. Buttazzo, “Multiprocessor DSP scheduling
in system-on-a-chip architectures,” in Proc. Euromicro Conf. Real-Time

Systems, June 2002, pp. 231–238.

[24] E. Seo, Y. Koo, and J. Lee, “Dynamic repartitioning of real-time
schedule on a multicore processor for energy efficiency,” in Proc. Int.

Conf. Embedded and Ubiquitous Computing, Aug. 2006, pp. 69–78.

[25] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Trans. Parallel & Distributed Systems, vol. 4, no. 2, pp. 175–187,
Feb. 1993.

[26] R. Rao and S. Vrudhula, “Efficient online computation of core speeds
to maximize the throughput of thermally constrained multi-core pro-
cessors,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2008, pp.
537–542.

[27] F. Mulas, et al., “Thermal balancing policy for streaming computing
on multiprocessor architectures,” in Proc. Design, Automation & Test in

Europe Conf., Mar. 2008, pp. 734–739.

[28] A. K. Coskun, T. S. Rosing, and K. Gross, “Temperature management in
multiprocessor SoCs using online learning,” in Proc. Design Automation

Conf., June 2008, pp. 890–893.
[29] A. K. Coskun, et al., “Temperature-aware MPSoC scheduling for re-

ducing hot spots and gradients,” in Proc. Asia & South Pacific Design

Automation Conf., Jan. 2008, pp. 49–54.
[30] H. Jung, P. Rong, and M. Pedram, “Stochastic modeling of a thermally-

managed multi-core system,” in Proc. Design Automation Conf., June
2008, pp. 728–733.

[31] J.-J. Chen, C.-M. Hung, and T.-W. Kuo, “On the minimization of the
instantaneous temperature for periodic real-time tasks,” in Proc. Real-

Time and Embedded Technology and Applications Symp., Apr. 2007, pp.
236–248.

[32] C. Sun, L. Shang, and R. P. Dick, “Three-dimensional multi-processor
system-on-chip thermal optimization,” in Proc. Int. Conf. Hard-

ware/Software Codesign and System Synthesis, Oct. 2007, pp. 117–122.
[33] G. Paci, et al., “Exploring “temperature-aware design” in low-power

MPSoCs,” in Proc. Design, Automation & Test in Europe Conf., Mar.
2006, pp. 838–843.

[34] “Embedded microprocessor benchmark consortium,” http://www.eembc.
org.

[35] E. L. Lawler and C. U. Martel, “Scheduling periodically occurring tasks
on multiple processors,” Information Processing Ltrs., vol. 7, pp. 9–12,
Feb. 1981.

[36] K. Skadron, et al., “Temperature-aware microarchitecture,” in Proc. Int.

Symp. Computer Architecture, June 2003, pp. 2–13.
[37] R. A. Serway, Physics for Scientists & Engineers with Modern Physics.

Saunders College Publishing, 1990.
[38] G. Link and N. Vijaykrishnan, “Thermal trends in emerging technolo-

gies,” in Proc. Int. Symp. Quality of Electronic Design, Mar. 2006, pp.
625–632.

[39] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, “Simultaneous task allocation,
scheduling and voltage assignment for multiple-processors-core systems
using mixed integer nonlinear programming,” in Prof. Int. Symp. Circuits

and Systems, May 2003, pp. 309–312.
[40] Y. Liu, et al., “Accurate temperature-dependent integrated circuit leakage

power estimation is easy,” in Proc. Design, Automation & Test in Europe

Conf., Mar. 2007, pp. 204–209.
[41] N. Allec, et al., “ThermalScope: multi-scale thermal analysis for

nanometer-scale integrated circuits,” in Proc. Int. Conf. Computer-Aided

Design, Nov. 2008.
[42] G. De Micheli, Synthesis and Optimization of Digital Circuits.

McGraw-Hill Book Company, NY, 1994.
[43] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”

in Proc. Int. Wkshp. Hardware/Software Co-Design, Mar. 1998, pp. 97–
101.

	Introduction
	Related Work
	Contributions
	Organization

	System Model and Problem Definition
	Task Model
	Thermal Model
	Problem Definition

	Motivating Example
	MILP-based Approach
	MILP Formulation
	Modeling Power Consumption
	Incorporating Dynamic Voltage Scaling
	Finer-Grained Thermal Model
	Modeling Inter-Task Communication
	Limitations of MILP-Based Approach

	Assignment and Scheduling Heuristic Framework
	Steady-State Analysis Based Heuristic
	Transient Analysis Based Heuristic

	Delay Insertion
	Experimental Results
	Experimental Setup
	MILP Formulation Performance
	Performance of Steady-State Analysis Based Heuristic
	Performance of Transient Analysis Based Heuristic
	Performance of Transient Analysis Based Heuristic with Delay Insertions

	Conclusions and Future Work
	References

