
Non-Hierarchical Networks for Censorship-Resistant
Personal Communication

by

David Robinson Bild

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2014

Doctoral Committee:

Associate Professor Robert P. Dick, Chair
Associate Professor Jason Flinn
Associate Professor Z. Morley Mao
Professor Paul Resnick

©David Robinson Bild

2014

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor Robert P. Dick, for his advice over the duration
of my time as a graduate student. He planted the seeds from which this disseration grew.
Thanks to his broad research interests, I have had the opportunity to work on a variety of
interesting projects.
The work in this disseration was highly collaborative. Many thanks to Yue Liu for our
numerous (and lengthy) discussions. She developed an early version of the Mason test and
was instrumental in the design and implementation of Whisper, Manes, and Shout. Numer-
ous undergraduates helped with implementation as well. Special thanks to David Adrian
and Gulshan Singh for their work over several years. Thanks also to Nate Jones, Rongrong
Tao, Jonathon Tiao, Anthony Tesija, and Junzhe Zhang for their hard work. And of course,
thanks to the project advisers, Professor Robert P. Dick, Professor Z. Morley Mao, and
Professor Dan S. Wallach, for providing guidance, making suggestions, and editing many,
many paper drafts.
Thanks to Professor Jason Flinn and Professor Paul Resnick for serving on my committee.
Your suggestions greatly improved several aspects of this work.
Thanks to everyone in our research group—Lan Bai, Xi Chen, Xuejing He, Phil Knag, Yue
Liu, Yun Xiang, and Lide Zhang —not just for your professional collaboration, but your
friendship as well.
Finally, I must thank my family for their continued and unwavering support. My parents
have always encouraged my pursuits and I would not have completed this journey without
them.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vii

List of Tables . xii

Abstract . xiii

Chapter

1 Introduction . 1

1.1 Techniques for Combating Censorship and Surveillance in the Internet . . 4
1.2 Advantages of Non-Hierarchical Networks 6
1.3 MANET Architectures for Communication 6
1.4 Contributions and Organization . 7

2 Whisper . 10

2.1 Introduction . 10
2.1.1 MANETs May Offer A More Robust Supplement to the Internet . 10
2.1.2 MANET Architectures Should Exploit Application-Specific Prop-

erties . 11
2.1.3 Background on MANET Connectivity 12
2.1.4 MANET Architecture for Text-Based Personal Communication

Applications . 13
2.2 Location Profile Routing . 16

2.2.1 Introduction . 16
2.2.2 Description of Location Profile Routing 17
2.2.3 Performance Analysis . 20

2.3 Privacy and Anonymity . 25
2.3.1 Attack and Trust Model . 26
2.3.2 Desired Anonymity and Privacy Properties 27
2.3.3 Unlinkability via Reply Blocks and Pseudonyms 29

2.4 Location-Centric Network . 33
2.5 Conclusion . 35

3 Shout . 36

3.1 Introduction . 36
3.2 Overview . 40

iii

3.2.1 Threat Model . 41
3.2.2 Applications . 42
3.2.3 Design Summary . 43

3.3 Decentralized and Non-Hierarchical Architecture 45
3.3.1 Ad Hoc WiFi . 46
3.3.2 Identity Management . 47
3.3.3 Messages . 50
3.3.4 Content Sharing . 52
3.3.5 Message Management and Filtering 56

3.4 Security Analysis . 58
3.4.1 Censorship by Blocking . 58
3.4.2 Censorship by Reprisal . 60

3.5 Implementation . 61
3.5.1 Implementation for Android . 62
3.5.2 Practical Implementation Concerns for Ad Hoc WiFi 63

4 Mobile Ad Hoc Network Emulation System 65

4.1 Introduction . 65
4.2 Difficulties with Mobility Models or Why MANES? 67
4.3 Architecture . 70

4.3.1 Architecture Overview . 70
4.3.2 Problem Domain . 71
4.3.3 Desired Properties and Design Challenges 72
4.3.4 Design Choices . 73
4.3.5 Client Architecture . 75
4.3.6 Server Architecture . 76

4.4 Topology Estimation . 77
4.4.1 Received Signal Strengths of Visible WiFi Access Points 78
4.4.2 GPS Distance Measurement . 79

5 Mason Test . 81

5.1 Introduction . 81
5.2 Problem Formulation and Background 84

5.2.1 Problem Formulation . 84
5.2.2 Attack Model . 85
5.2.3 Review of Signalprints . 86

5.3 Sybil Classification From Untrusted Signalprints 87
5.3.1 Power of Falsified Observations 88
5.3.2 Terminology . 88
5.3.3 Approach Overview . 89
5.3.4 View Consistency: Selecting V if LNS = ∅ 91
5.3.5 Achieving Consistency by Eliminating LNS 93
5.3.6 Extending Consistency to Handle Noise 94

5.4 Efficient Implementation of the Selection Policy 95
5.4.1 Receiver Set Selection . 96

iv

5.4.2 Finding the Largest γn-Consistent View 97
5.4.3 Runtime in the Absence of Liars 99

5.5 Probability that Critical Conditions Hold 99
5.5.1 RSSI Unpredictability . 100
5.5.2 Optimal Attacker Strategy . 101

5.6 Detecting Mobile Attackers . 102
5.7 The Mason Test . 104

5.7.1 Collection of RSSI Observations 105
5.7.2 Sybil Classification . 106

5.8 Prototype and Evaluation . 107
5.8.1 Selection and Robustness of Thresholds 108
5.8.2 Classification Performance . 109
5.8.3 Overhead Evaluation . 111

5.9 Discussion . 112
5.10 Conclusion . 114

6 Characterization of Microblogging User Behavior and the Retweet Graph . . 116

6.1 Introduction . 116
6.2 Datasets . 119

6.2.1 2009 Social Graph . 119
6.2.2 Lifetime Contribution Dataset 119
6.2.3 SNAP Tweet Dataset . 120
6.2.4 10% Sample (Gardenhose) Dataset 120
6.2.5 Estimating Population Distributions from the 10% Sample Dataset 121

6.3 Distribution of Lifetime Tweets . 123
6.3.1 Critique of Previously-Reported Power Law Behavior 125
6.3.2 Lifetime Tweets Follow a Weibull Distribution 126
6.3.3 Interpreting the Hazard Function as Participation Momentum . . 127

6.4 Distribution of Tweet Rates . 128
6.4.1 An Analytical Approximation of the Tweet Rate Distribution . . . 129
6.4.2 The Distribution is Not Double Pareto–Lognormal 130
6.4.3 An Urn Process Generating the Tweet Rate Distribution 132
6.4.4 Distributions of Retweeter and Retweetee Rates 134

6.5 Distribution of Intertweet Durations . 135
6.6 Characteristics of the Retweet Graph . 136

6.6.1 Analyzing a Random Subsample of the Retweet Graph 138
6.6.2 Degree Distributions . 138
6.6.3 Reciprocity . 140
6.6.4 Average Shortest Path Length (Degree of Separation) 140
6.6.5 Assortativity (Node Degree Correlation) 141
6.6.6 Clustering Coefficient . 144
6.6.7 Summary . 146

6.7 Implications for the Design of Decentralized Microblogging Architectures 146
6.8 Leveraging the Retweet Graph for Spammer Detection 148

6.8.1 Possible Approaches to Spam Detection 148

v

6.8.2 Spam Detection Using the Retweet Graph 152
6.8.3 Performance on the Twitter Retweet Graph 154
6.8.4 Performance on Synthetic Retweet Graphs 155
6.8.5 Discussion of Provably Manipulation-Resistant Schemes 159

6.9 Derivation of the EM Method . 161
6.10 Conclusion . 163

7 Conclusion . 164

Bibliography . 166

vi

LIST OF FIGURES

2.1 Illustration of the main components in location profile routing [1]. 17
2.2 The probability that a user currently occupies one of his k most-common lo-

cations is well-modeled by Equation 2.1. 21
2.3 The time-dependent regularity R(t), i.e., the probability the user is in the most

common location associated with that time interval. 21
2.4 Success rate of a first-order profile versus the number of locations attempted.

Rates during maximum (night) and minimum (day) predictability are shown too. 22
2.5 PMF of the latency increase for the first packet in a stream induced by trying

multiple locations in turn. Concurrent attempts do not impact latency. 22
2.6 PMF of the traffic overhead for the first packet in a stream induced by trying

locations in turn. Concurrent attempts have a fixed overhead. 23
2.7 Pareto front of the first packet latency–traffic trade-off of a combined parallel-

series strategy for several average success rates. 23
2.8 Message flow for ordinary and multi-server reply blocks. 31
2.9 Main components of the location-centric network, with arrows representing

service relationships. 33

3.1 Shouts are broadcast to one-hop neighbors. A recipient interested in the mes-
sage can reshout, or rebroadcast, increasing the effective range. Additionally,
one can reshout after moving to a new location, reaching otherwise-isolated
portions of the network. Automatic rebroadcasts ca increase the dissemination
rate. 43

3.2 Each shout contains a user name, message, timestamp, location tag (optional),
the sender’s public key, and a self-signature. A shout intended as a comment
on a prior shout references that parent via a hash of the parent. 44

3.3 Shout is fully-decentralized so information like past shouts and one’s user pro-
file is local to each device. Only shouts one has heard are available, so each
device has a different partial view of the history. Features like lists of favorite
users must also be managed locally. 45

3.4 Zooko’s triangle [2]. A single naming scheme can include only two of the
properties. The Shout protocol uses both self-chosen usernames and public
keys to incorporate all three properties. Third identifiers can be generated
locally to provide unique names that are easy for humans to compare and re-
member. 48

vii

3.5 The three types of shouts and their relationships. Comments are restricted to
a single level so that the largest full chain (a reshout of a comment) will fit in
one WiFi frame. 50

3.6 The network packet format for a shout. The hash used to reference a shout is
also computed over this canonical form. 51

3.7 Hash tree mechanism used to reference and distribute images and other large
content in Shout. The leaf nodes are packed to the left and contain the content
is sequential order. The content descriptor includes a MIME type, so that hash
references to the tree specify both the content bit string and how it should be
interpreted. 53

3.8 Example hash tree for content four data blocks long (X1, X2, X3, and X4)
and with MIME type M . The hash H would be included in the avatar field
or Shout URI. The SHA-256 hashes, computed over the canonical network
format shown in Figure 3.9, are defined here for clarity. 54

3.9 The network packet formats for content descriptors and hash tree nodes. 54
3.10 The network packet format for content requests. 55
3.11 Architecture of Shout implementation for Android. 61
3.12 Screenshots of the Shout activities for browsing received shouts and viewing

detailed information about a specific shout. 62

4.1 Example node spatial distributions (over 20 individual traces) from the TLW [3]
and SLAW [4] models. SLAW captures the notion of “hotspots” in human lo-
cations, while TLW does not. 68

4.2 Flight length probability density functions for four different data sets, illustrat-
ing their underlying biases. 69

4.3 Overview of MANES architecture. All clients report GPS and WiFi observa-
tions, which are used to form an estimated topology. Packets are relayed via
MANES, according to this estimate. In the example, device C broadcasts a
packet that is relayed to B, D, and E. 70

4.4 Architecture of MANES client software. 76
4.5 Architecture of MANES server system. 77
4.6 Heuristic for estimating the signalstrength P between two devices from ob-

served APs. 79

5.1 Prior work [5,6] assumes trusted RSSI observations, not generally available in
ad hoc and delay-tolerant networks. We present a technique for a participant to
separate true and false observations, enabling use in ad hoc networks. (Arrows
point from transmitter to observer.) . 82

5.2 The solution framework for signalprint-based Sybil detection in ad hoc net-
works. This chapter fleshes out this concept into a safe and secure protocol,
the Mason test. 84

5.3 Sybils, A–B and D–E, occupy nearby slope-1 lines. 86
5.4 The distance threshold trades false positives for negatives. 86

viii

5.5 Illustration of Algorithm 1. All |I| size-2 receiver sets are increased to size-4
by iteratively adding a random identity from those labeled non-Sybil by the
current set. With high probability, at least one of the final sets will contain
only conforming identities. 96

5.6 Contours of probability that at least one of the receiver sets from Algorithm 1
is conforming-. 97

5.7 Distribution of RSSI variations in real-world deployment. 100
5.8 Contours of a lower bound on the probability that Condition 3 holds under an

optimal attacker strategy with the attacker’s knowledge of RSSIs modeled as
a normal distribution with standard deviation 7.3 dBm. 101

5.9 Contours showing the response time (in ms, 99th percentile) to precisely switch
between two positions required to defeat the challenge-response moving node
detection. 103

5.10 RSSI correlation as a function of the maximum device acceleration between
observations. 105

5.11 ROC curve showing the classification performance of signalprint comparison
in different environments for varying distance thresholds. Only identities that
passed the motion filter are considered. The knees of the curves all corre-
spond to the same thresholds, suggesting that the same value can be used in all
locations. 108

5.12 Confusion matrices detailing the classifier performance in the four environ-
ments tested. S means Sybil and C means conforming. Multiple tests were
conducted in each environment, so mean percentages are shown instead of
absolute counts. 109

5.13 Relative frequencies of the three causes of false positives. 110
5.14 Runtime overhead in seconds of the collection phase as a function of the num-

ber of participating identities. The stacked bars partition the cost among the
participant collection (HELLO I), RSSI measurement (HELLO II), and RSSI
observation exchange (RSST) steps. 111

5.15 Energy consumption in joules of the collection phase as a function of the num-
ber of participating identities. The stacked bars partition the cost among the
participant collection (HELLO I), RSSI measurement (HELLO II), and RSSI
observation exchange (RSST) steps. 112

5.16 Runtime and energy consumption of the classification phase. 112

6.1 Distribution of tweets per user for the scaled sample (j observed tweets maps
to 10j sent tweets) and the underlying population as estimated by the EM algo-
rithm. The differences (particularly for the range 1–100) illustrate the impor-
tance of recovering the actual distribution via, for example, our EM algorithm. 123

6.2 Distribution of total lifetime tweets. Distribution parameters (Table 6.3) were
obtained by maximum likelihood estimation. In the inset, equal-count binning
obscures the cutoff. The sparse upper tail causes a wide and thus seemingly-
outlying last bin. 124

ix

6.3 The probability that a user who has sent x tweets quits without sending an-
other, i.e., the hazard rate. The decreasing trend suggests a sort of momentum;
the more times a user has tweeted, the more likely he is to tweet again. The
power law parameters are calculated from Table 6.3, not fit to the data. 127

6.4 Distribution of tweets per user for the four month period from June through
September 2012. 129

6.5 Distribution of tweet counts over various sample periods, showing the time-
dependent cutoff. The asymptotic distribution is Pareto. Traces for the urn
model describing this effect were obtained by simulation. 133

6.6 Distributions for tweets sent, retweets sent, and times retweeted for the 1
week and 4 month samples. All categories show similar time-dependent phase
changes, suggesting the same underlying mechanism. Retweets differ from
tweets only in a lower average rate (parameter c in the urn model). 135

6.7 The interevent distributions with users grouped by number of tweets for the
three month period covering June through August 2009. The line is a best-fit
power law with exponential cutoff. 136

6.8 The interevent distributions of Figure 6.7 collapse when scaled by the group’s
average interevent duration, ∆Ta. The line is a best-fit power law with expo-
nential cutoff. 137

6.9 Distribution of number of edge weights in the retweet graph, corrected using
the EM method. A directed edge indicates that one user retweeted another and
the weight is the number of such retweets. 138

6.10 In and out degree distributions for the retweet graph. Both exhibit the double-
Pareto behavior common to evolving networks [7, 8]. In the upper tail, the
in-degree power-law exponent is 2.2 and 3.75 for the out-degree. 139

6.11 Distribution of average path length (degree of separation) in edge-sampled
retweet graph. The gray line is the estimated distribution for the full graph. . . 141

6.12 Directed assortativities r as a function of edge sampling rate. Edge sampling
does not affect assortativity because all node degrees are sampled indepen-
dently and identically. 142

6.13 Directed assortativity r of the retweet graph and the social following graph.
The retweet graph has higher assortative, more consistent with real world so-
cial networks than most online social networks. 143

6.14 The four types of open (solid edges) and closed (solid and dashed edges) di-
rected triplets used for cluster analysis. A vertex can form up to eight such
triplets with each pair of neighbors, two of each type. The clustering coeffi-
cient Cβ∈{cycle, middleman, in, out} is the fraction of β-triplets (open and closed) that
are closed. 144

6.15 The clustering coefficient estimator Ĉ , 1
α
C as a function of edge sampling

rate on the social “following” graph. Although potentially biased, the estima-
tor is quite accurate for such graphs. 145

6.16 Clustering coefficients for the social “following” graph and the retweet graph.
Clustering is significantly more prominent in the retweet graph and more con-
sistent with real-world social networks. 145

x

6.17 Portion of a retweet graph showing how spammers are less connected. Non-
spammer B is connected to non-spammer A by three independent paths, the
shortest of which has length two. Spammer S is connected by only a single
length-three path. 151

6.18 Percentage of removed and extant Twitter users as a function of distance from
benign users in the retweet graph. Most removed users are spammers, so this
graph shows that distance is highly correlated with spammer behavior. 154

6.19 Illustration of the modified R-MAT algorithm for generating synthetic retweet
graphs and a resulting adjacency matrix. Fewer edges are placed in the benign–
spam quadrant to model the lower likelihood of such retweets. Within each
quadrant, edges are cascaded in proportion to probabilities a, b, c, and d to
generate a scale-free, small-world structure. 155

6.20 Connectivity of benign pairs as a function of the benign edge density. Above
5%, almost all pairs are connected. We expect that density does not grow with
network size, so this limits the network size for which the false positive rate is
acceptable. For large networks, the technique will only work within clusters. . 157

6.21 Performance of J48 classifier over distance and connectivity attributes in the
synthetic graphs. The benign edge density (marker symbol and color) range
from 0.00002 to 0.003 and the number of B–S edges per spammer node (marker
size) ranges from 0.01 to 1. Each marker is a single point on the resulting ROC
curve. 158

xi

LIST OF TABLES

5.1 Definitions of Terms and Symbols . 90
5.2 Thresholds for Signalprint Comparison and Motion Filtering 107
5.3 Classification Performance . 108

6.1 10% Sample (Gardenhose) Dataset . 120
6.2 Power-Law Exponents for Lifetime Contributions in Various Online Commu-

nities, Computed Incorrectly Using Equal-Count Binning 125
6.3 Parameters for Distributions of Lifetime Tweets 126

xii

ABSTRACT

The Internet promises widespread access to the world’s collective information

and fast communication among people, but common government censorship and

spying undermines this potential. This censorship is facilitated by the Internet’s

hierarchical structure. Most traffic flows through routers owned by a small num-

ber of ISPs, who can be secretly coerced into aiding such efforts. Traditional

crypographic defenses are confusing to common users. This thesis advocates

direct removal of the underlying heirarchical infrastructure instead, replacing it

with non-hierarchical networks. These networks lack such chokepoints, instead

requiring would-be censors to control a substantial fraction of the participating

devices—an expensive proposition.

We take four steps towards the development of practical non-hierarchical net-

works. (1) We first describe Whisper, a non-hierarchical mobile ad hoc network

(MANET) architecture for personal communication among friends and family

that resists censorship and surveillance. At its core are two novel techniques,

an efficient routing scheme based on the predictability of human locations and

a variant of onion-routing suitable for decentralized MANETs. (2) We describe

the design and implementation of Shout, a MANET architecture for censorship-

resistant, Twitter-like public microblogging. (3) We describe the Mason test, a

method used to detect Sybil attacks in ad hoc networks in which trusted author-

ities are not available. (4) We characterize and model the aggregate behavior of

Twitter users to enable simulation-based study of systems like Shout. We use

our characterization of the retweet graph to analyze a novel spammer detection

technique for Shout.

xiii

CHAPTER 1

Introduction

The Internet promises easy access to the world’s information and communication among

people. Discovery that used to require hours browsing shelves in a library or days watching

a mailbox for materials from another institution now entails a simple web search, often com-

pleted in several minutes. Conversions with distant family members or colleagues endured

the high latency and cost of physical letters and documents1. Wide-spread distribution of a

new idea required significant capital backing, a distribution channel like a newspaper, radio

station, or television show. For the niche, controversial, or unpopular, such distribution

was often not available. The Internet, in principle, removes these limitations. Hosting and

finding content on the World Wide Web is cheap enough that anyone who so desires2 can

participate. Email, instant messaging, and voice chat are ubiquitous and essentially free of

cost.

This promise is only realized, though, when communication within the Internet is open.

Intentional blocking of some traffic, e.g., identified by content, source, or destination, can

hide specific knowledge from a significant fraction of entire populations and discourage

those affected from engaging in thoughts or discussions deemed undesirable by the censors.

Unfortunately3, such censorship is commonplace and widespread, instituted by governments

1The telephone and fax machine also addressed this type of communication. All the problems of the
Internet discussed in this thesis apply to the telephone network as well.

2This is not yet the case in severely economically-disadvantage areas, but the principle remains true. Much
ongoing work is dedicated to bringing access to these places.

3We take as an axiom that both unfettered access to willingly-shared information and the ability to privately
communicate with people of one’s choosing is fundamentally a good thing. This view is widely debated, but

1

and network providers alike.

The Chinese government is likely the most familiar Internet censor to American au-

diences. In addition to blocking some content considered harmful to individuals, e.g.,

pornography, gambling, or violence, they censor information that might influence public

opinion against the government and its actions, e.g., information about Tiananem Square

protests, Taiwanese independence, and the Fulang Gong discipline [9]. Access to foreign

news media that might report on such events like the BBC or Yahoo News is frequently

blocked. Domestic social media channels like Weibo are selectively filtered [10] and foreign

sites not implementing such filters like Facebook and Twitter are frequently blocked [11].

China is not alone. Classifications from the OpenNet Initiative [12] and Reporters

Without Borders [13] label Iran, Syria, and North Korea, among others, as employing

pervasive censorship. Other countries like Tunisia and Egypt experienced significant filtering

before or during the 2011 Arab Spring uprisings [14–16]. As an extreme example, Egypt

completely disabled Internet access for several days in February 2011 [17, 18].

Although providing historically unprecedented access to information and communi-

cation, the Internet also presents an unprecedented opportunity to surveil individuals for

possible reprisal. Internet traffic monitoring is used to determine the interests, social rela-

tionships, and daily habits of individual users. Some of this analysis can be good4, e.g.,

for recommending interesting content or better targeting advertisements, but much is also

negative.

Examples abound. In December 2008, at least 56 online journalists were imprisoned on

charges stemming from reporting on or voicing disagreement with government policies [19].

In China, citizens posting online essays criticizing government policies and exposing

corruption were censored and sentenced to jail terms [20, 21]. In the United States, recent

reports about so called warrantless wiretapping suggest that much telephone and Internet

both supporting and dissenting arguments are left to philosophers.
4It is still important to remember that even when the initial intent is good, the collected data might fall into

more nefarious hands at a later date.

2

traffic is streamed through government facilities for monitoring [22]. Even worse, large data

centers to store years worth of collected data are under construction [23, 24].

In its early years, people thought that the Internet’s resilient routing protocols would

resist censorship.

The Net interprets censorship as damage and routes around it.

(John Gilmore, 1993)

Unfortunately, this is untrue, as is now recognized.

I used to believe the Internet offered limitless opportunities for free speech;

now I believe it is becoming a smorgasbord of opportunities for authoritarian

control. (Simon Davis, 1998)

The Internet enjoyed by the West is a choice—not fate, not destiny, and not

natural law. (Jack Goldsmith and Tim Wu, 2006)

In fact, the hierarchical structure of the Internet facilitates censorship and surveillance. Most

traffic flows through a few backbone routers where filtering and monitoring is easily and

cheaply applied. In many cases, these routers are government-owned, giving authorities full

control over the traffic flowing through them. In the case of privately-owned routers, their

concentration in the hands of a small number of communication corporations simplifies the

installation of monitoring software as well. Coercing a small number of businesses into

installing monitoring software is simpler—and more easily kept out of the common public

knowledge—than a larger number.

A large body of work attempts to add censorship-resistance and surveillance to the

Internet through a variety of, usually cryptographic, means. To date, such efforts have not

seen wide-spread adoption, likely due to the difficulty of managing encryption keys 5 [26].
5Public key infrastructure has worked reasonably well for securing sensitive web transactions against

arbitrary attackers, but is, at least in its current form, highly susceptible to government attack [25]. As a
hierarchical system, a government can relatively easily coerce a widely-trusted root certificate issuer into
signing an invalid key.

3

In this thesis, we instead propose non-hierarchical communication networks comprising

the smartphones already carried by millions of people that we believe make wide-scale

surveillance and censorship economically infeasible6. Such networks do not contain choke-

points through which most traffic flows, so wide-spread censorship or surveillance would

require controlling a substantial fraction of the devices or, in the case of wireless trans-

missions, monitoring a substantial fraction of the airspace. Eliminating hierarchy does

have disadvantages—particularly in reduced bandwidth and increased latency—and the

resulting networks cannot support all types of Internet traffic. But for many important appli-

cations, like text-based communication among friends and family, the network performance

is acceptable.

1.1 Techniques for Combating Censorship and Surveillance

in the Internet

Internet traffic is subject to observation and selective blocking, due to the hierarchical

structure. Thus, methods to combat surveillance must obscure the information contained in

the traffic, referred to as privacy, and the identities of those communicating, referred to as

anonymity. Methods to combat censorship must further make the traffic indistinguishable

from that which should not be blocked, e.g., economically-vital business transactions.

Privacy is usually maintained by encryption [27]. Protocols like SSL/TLS [28] are used

for end-to-end encryption of general traffic streams, e.g., between a browser and a web

server or an email client and an IMAP server. PGP [29] and OTR [30] provide encryption of

emails or instant messages, respectively, between two parties, regardless of the intermediate

transmission or storage protocols.

Anonymity is usually provided through variants of Chaum’s mix-nets [31]. For exam-

ple, mixminion [32] anonymous remailers provide anonymous email delivery. The Tor

6If not infeasible, at least much more expensive and much more visible to the public.

4

network [33] uses onion routing to provide anonymity for arbitrary TCP streams, including

web traffic.

Others have noted that defeating censorship and surveillance does not always require

full end-to-end privacy or anonymity. Those are only necessary while the traffic is flowing

through the censor-controlled routers. For example, consider a user in Iran accessing a

website critical of the Iranian government and hosted in the United States. Only while inside

of Iran’s network must the traffic be indistinguishable from other government-approved

traffic. The recent Telex system [34] addresses traffic intended for a blocked service to

uncensored services, but cryptographically tags the content such that trusted routers outside

of the censored network can identify and redirect the packets to the intended destination.

Encryption is not a panacea, however, due to possible man-in-the-middle attacks and the

resulting key distribution problem. A method of ensuring that the key used for encryption

(public or secret) actually belongs to the intended recipient is needed. Most services, like

SSL/TLS, use some form of public key infrastructure. Centralized authorities, whose public

keys are distributed a priori and implicitly trusted, sign certificates linking identities to

public keys. Clients needing to verify the public key for a particular party can validate the

digital signature on the presented certificate. Unfortunately, the centralized nature of public

key infrastructure makes it susceptible to government control. A centralized authority can

intentionally issue false certificates due to coercion or unknowingly due to hacking [25].

Decentralized key distribution schemes are used as well. For example, PGP uses the

web of trust. Individual users can sign each others’ public key, attesting to their authenticity.

Although one may directly trust a particular key, if it is signed by someone (or several

people) that are trusted, one can choose to trust it. Systems like OTR [30] and ZRTP [35]

do not require a prior key exchange, but instead use Diffie-Hellman key exchange [36] to

establish a shared secret on first contact. OTR uses verification of arbitrary mutually-shared

information to detect man-in-the-middle attacks and ZRTP uses voice-based verification of

a shared value derived from the supposedly-shared key.

5

1.2 Advantages of Non-Hierarchical Networks

Non-hierarchical architectures have two primary advantages over their hierarchical counter-

parts.

Wide-scale censorship is nearly impossible, because it requires controlling a significant

fraction of the participating devices.7

Similarly, spying on large fractions of the network traffic requires monitoring or con-

trolling large portions of network and thus is difficult and likely prohibitively expensive.

This property is particularly useful for some anonymity techniques, like onion routing, that

are subject to traffic analysis attacks. Obtaining a broad view of the traffic patterns is much

more difficult in the non-hierarchical network.

1.3 MANET Architectures for Communication

In this thesis, we consider a particular type of non-hierarchical network called a Mobile

Ad Hoc Network (MANET). A MANET is a self-organizing network of mobile devices

that communicate directly with nearby devices via wireless radio. Messages intended for

recipients not in direct radio can hop through multiple devices to reach their destination.

Such networks are inherently non-hierarchical, as all participants have essentially equal

computational power, bandwidth, and range.

Most smartphones and latops are equipped with WiFi transceivers capable of ad hoc

communication, making such networks an economically-feasible alternative to the Internet

or cellular networks. These devices are already owned and used by a large number of people.

Missing are the network protocols and software implementations needed to use the ad hoc

capabilities for censorship and surveillance-resistant communication, a problem we begin to

address in this thesis.
7Such control is theoretically possible, for example, by mandating that all devices come with special

hardware or software, but this is disruptive, noticeable, and expensive to enforce.

6

MANETs are not without disadvantage. Bandwidth, latency, and energy consumption

scale much more poorly than in infrastructure-based, hierarchical networks. Consequently,

we focus on personal communication—email, text messaging, microblogging—whose

throughput (<500 kbps) and latency (5–10 s) requirements are achievable.

1.4 Contributions and Organization

This thesis starts from the proposition that non-hierarchical network structures are inherently

more resistant to censorship and surveillance than the hierarchical Internet8 and thus should

be designed and developed for real world use. Although promising from a censorship

perspective, wireless ad hoc networks are known to have limited scalability due to contention

of the wireless channel and the super-linear scaling of routing traffic. However, we show

that these challenges are not insurmountable, as summarized by the following statement.

Thesis Statement: Non-hierarchical network architectures, which we believe are in-

herently more resistant to censorship and surveillance than the hierarchical Internet, can

support common, useful, text-based communication applications, i.e., text-messaging and

microblogging.

Towards this end, we propose architectures for two styles of communication, develop

tools to address the difficulty of testing ad hoc networks with real users, and solve theoretical

problems underlying the proposed architectures.

• In Chapter 2, we propose Whisper, a MANET architecture for secure and anonymous

personal communication among friends and family. At the core of Whisper are two

novel techniques: (1) a variant of onion-routing suitable for ad hoc networks, in which

a set of onion routers is not available a priori, and (2) an efficient routing scheme

based on the predictability of human motion. Chapter 5 solves a particular technical

8Aside from the arguments in this introduction, this thesis does not attempt to defend this claim. The
arguments justify the contained research and development of non-hierarchical networks, but only time will tell
if these intended benefits prove true in the real world.

7

problem, identifying non-Sybil identities in a one-hop neighborhood, required by the

Whisper architecture.

• In Chapter 3, we propose Shout, a MANET architecture for censorship-resistant,

Twitter-like, public microblogging. Shout uses manual human interaction to propagate

messages, concentrating limited network bandwidth on messages of broad interest.

Chapter 6 solves a particular technical problem, identifying spammers in a fully-

decentralized network, needed for Shout to see widespread adoption.

• In Chapter 4, we describe MANES, a mobile ad hoc network emulation system

designed to allow researchers to test their ad hoc networking protocols and applications

with hundreds or thousands of real users by deploying them on standard Android

smartphones. Most research on ad hoc network protocols is based on simulation

or small-scale studies with tens of users, primarily due to the difficulty and cost of

large-scale deployment. Both Whisper and Shout depend critically on behaviors of

the underlying human users, so large-scale studies are needed. MANES emulates ad

hoc connectivity over a cellular or Internet connection, and thus can be used with any

Android phone without interfering existing WiFi usage. Further, it gives the researcher

view of and control over the network.

• In Chapter 5, we describe the Mason test, a protocol for detecting Sybil attacks

in wireless networks. The Whisper protocol requires participants to periodically

gather sets of distinct neighboring identities, for later use in mix-chains. A neighbor

conducting a Sybil attack, i.e., pretending to be multiple identities, would violate

the distinctness requirement and potentially the security of later mix-chains. Noting

that the received signal strengths of transmissions are hard to predict, the Mason test

uses the untrusted RSSI observations reported by network participants to identify

transmission originating from the same node.

• In Chapter 6, we characterize the user behavior in and the retweet graph of Twitter.

8

The resulting models are useful for driving simulation-based analysis and design

of other microblogging systems. Implications of these results are discussed. As

an example application, we develop a method for detecting spammers suitable for

decentralized microblogging systems based the connectivity of the reshout graph. The

identified properties of the retweet graph—scale-free and small-world—enable the

generation of synthetic retweet graphs to evaluate the classification performance.

9

CHAPTER 2

Whisper

2.1 Introduction

Wireless mobile ad hoc networks (MANETs) composed of volunteer, mobile devices offer

some advantages over traditional infrastructure networks because their nonhierarchical

nature eliminates critical points of failure that can be exploited by attackers to reduce

reliability and enable censorship, surveillance, and other forms of undesirable interference.

Attacks upon communication systems are easier when most network traffic is routed through

backbone networks owned by a few ISPs or a state [37]. MANETs have the potential

to significantly increase the cost of large-scale censorship or shutdowns. Unfortunately,

communication and computation capacities of individual nodes limit scalability [38] and

have, thus far, undermined general-purpose use. However, use in specific applications

remains a possibility. In particular, while MANET bandwidths and end-to-end latencies may

be insufficient to support voice conversations or video, they may support valuable services

like text messaging.

2.1.1 MANETs May Offer A More Robust Supplement to the Internet

The Net interprets censorship as damage and routes around it. — John Gilmore,

1993

10

Although the Internet has been heralded for being robust to censorship, ongoing events

in the Middle East, North Africa, Asia, and elsewhere falsify this belief; governments

can exploit the hierarchical nature of the Internet to censor news as well as limit and

monitor communication. In an extreme example, Egypt completely disabled Internet

access for several days in February 2011 by forcing their five major ISPs to withdraw

Border Gateway Protocol routes [39]. In Tunisia, where bandwidth is leased from the

government [15], Internet access is heavily filtered. Many websites (e.g., YouTube) are

blocked [15]. Others (e.g, Facebook and Twitter) are modified to steal login credentials [16].

Emails and attachments are filtered and scrubbed [15]. In all these cases, the choke-points

inherent to the Internet’s hierarchical structure help facilitate the censorship.

In contrast, mobile ad hoc networks composed of volunteer, wireless devices (e.g.,

smartphones and laptops) have the potential to be more resistant to corruption. Due to

their nonhierarchical, ad hoc structures, censoring communication requires controlling

many of the nodes in the network. When these nodes are handheld devices owned by

private individuals numbering in the tens of thousands or more, acquiring such control is

vastly more difficult and expensive than adding filtering software to a few backbone routers.

Although MANETs will not help for long-distance or transocean communication, they

have the potential to provide secure and uncensored communication within contiguously

populated local regions, which may be sufficient to support communication among friends

and family members.

2.1.2 MANET Architectures Should Exploit Application-Specific Prop-

erties

An ideal robust supplement to the Internet would support all types of traffic. Unfortunately,

poor MANET scalability precludes their use for general-purpose networking. Thus, instead

of seeking a general MANET architecture, we argue that MANET architectures must be

tailored towards specific application-classes.

11

This poor scalability stems from two primary properties. (1) The traffic forwarded by

each node increases with network size, reducing throughput for originating traffic [38]. (2)

The traffic required to maintain routing state for the mobile nodes increases with network

size, reducing available bandwidth [40]. Simulations indicate that current MANETs scale to

only a few thousand nodes, with low per-node throughput (<5 kbps) [41].

We argue that these limitations imply that useful MANET architectures must be tailored

to specific application-classes. First, the throughput and latency induced by the required

network size must be acceptable. Second, properties of the application should be leveraged

to design more efficient routing methods. In this work, we use predicted human motion

patterns to support a MANET for text-based personal communication (e.g., text messaging),

a low-bandwidth and latency-tolerant application.

2.1.3 Background on MANET Connectivity

The architecture described in this chapter requires good connectivity in the underlying

MANET. In this section, we briefly review results from Bettstetter [42] that give the node

densities for the network to be (probabilistically) connected.

Assume the participating devices are uniform randomly distributed over some geographic

area and each has a transmission range of 100 m. We would like to know the density of

devices required for the network to be connected and thus permit communication between

arbitrary devices. Bettstetter [42] derived analytical expressions for such densities. Specifi-

cally, with a device density of 538 km−2, the network is connected with 99.9% probability.

A connected network is not necessarily robust—the removal of a single device might break

the connectivity—so one can also consider the k-connectivity, where k is the number of

devices that must be removed to break connectivity. Here, a device density of 904 km−2

gives a 99.9% chance of being 5-connected. Finally, the most relevant metric is the path

probability—the probability that any pair of devices have a path between them and thus

can communicate. Although analytical results are not available for this query, Bettstetter’s

12

simulations indicate that a device density of 255 km−2 gives a path probability of 99%. Real

people are not uniformly distributed—they cluster in places like rooms and buildings—so

these densities can be viewed as lower bounds.

To put these densities in perspective, consider a college town like Ann Arbor, Michigan.

Ann Arbor has a population density1, of 1580 km−2, suggesting that one-sixth of the popula-

tion would need to participate in the network to achieve the 255 km−2 device density required

for 99% path probabilities. As mentioned, people are not uniform randomly distributed,

so higher participation would be required in areas of relatively low density to bridge the

surrounding, presumably more dense, clusters. Although not conclusive (one can easily

imagine networks partitioned by areas of low density, e.g., empty parking lots at night),

these numbers indicate that town-scale ad hoc networks are feasible—the required device

density and adoption rates are achievable.

2.1.4 MANET Architecture for Text-Based Personal Communication

Applications

Text-based personal communication among friends and family members is both useful to

many people (as evinced by the popularity of text and instant messaging) and particularly

suited to a town-sized MANET, as indicated by the following two properties. (1) The

required per-node throughput is low (<500 bps) and relatively high latency is acceptable

(1–5 s). (2) People frequently communicate with relatively small groups of contacts in close

geographic proximity [43], implying a short average link length, which improves scaling

properties. Furthermore, properties of human motion patterns can be leveraged to provide

efficient routing.

A MANET architecture supporting text-based personal communications should satisfy

the following requirements.

• Scalability. A useful personal communication network must cover a region of non-
1According to the 2010 U.S. Census.

13

trivial area (e.g., a small town or a university campus), providing reliable delivery for

all participants (e.g., a few thousand nodes) without imposing much computation or

battery energy overhead on participating nodes. We require a per-node throughput on

the order of 100 bps and delivery latencies on the order of 10 seconds.

• Confidentiality. The network should guarantee end-to-end message confidentiality.

Packets should therefore be protected from eavesdropping and traffic analysis as they

are relayed through arbitrary nodes untrusted by the source and destination.

• Location Privacy, defined as “the ability to prevent other parties from learning ones’

current or past location” [44]. Persistent identifiers must not be linkable to node

locations.

• Social Network Privacy. A person’s social network, i.e., the set of network peers

he communicates with, should be protected. No one (except the sender and receiver

themselves) should be able to determine both the sender and receiver of any packet

(by real identity, network identity, or location).

Meeting our scalability goals in a MANET is challenging because the route maintenance

traffic required by typical routing algorithms quickly dominates total bandwidth and energy

usage. On-demand protocols that reduce the load by delaying route-finding until necessary

can provide constant-factor reduction, but do not change the scaling behavior. Stateless

protocols try to eliminate maintenance traffic altogether by using only local information

for, e.g., geographic location, for routing. However, this merely pushes the complexity and

overhead into another domain, e.g., a distributed location service to map from node identities

to geographic locations. An end-to-end routing method with reduced traffic overhead is

needed.

In this chapter, we present the design of a location-centric MANET architecture sup-

porting text-based personal communication within town-sized regions. Properties of human

mobility patterns motivate a novel routing method, location profile routing. Geographic

routing [40] is at the core of its scalability: next-hop selection requires only local knowl-

14

edge within one-hop neighborhoods. However, to address a message the sender needs to

know the destination locations, which are traditionally provided by distributed location

services [45] that scale poorly and do not easily support confidentiality and privacy. We

observed that (1) humans have highly predictable motion patterns, spending the majority

of time in a few locations [46] and (2) the frequency of change in mobility patterns is on

the order of months and years. We propose to model location patterns as location profiles

(e.g., location–probability pairs), distributing them face-to-face, instead of real locations

via the network, to reduce overheads (see Section 2.2). Direct visibility of location profiles

is often unacceptable, so we embed the pre-shared location profiles in encrypted reply

blocks [31], thus preserving location privacy by hiding the destination from the sender (see

Section 2.3). The reply blocks also provide sender–receiver unlinkability and public key

encryption provides confidentiality (keys are shared along with the location profiles, so PKI

is not necessary).

Note that our primary goal is providing a censorship-resistant communication system

for day-to-day use, when human motion is highly routine and predictable. Our primary

target is not Internet shutdowns in an active protest or revolution scenario (à la Egypt in

February 2011) where movements may be highly varied and non-routine. However, our

system still enables communication in these scenarios, with the scalability dependent on

the extent that locations are predictable (e.g., when protesters are at home). Supporting

such communication during protests is a secondary goal. Our primary goal is therefore

supporting communication among friends and family members.

We make the following primary contributions2.

• We propose leveraging the predictability of human motion to reduce routing costs in

MANETs comprising handheld devices.

• We develop a reply block-based scheme to add location privacy to geographic-based

2This work was performed in close collaboration with several people. In particular, Yue Liu made crucial
contributions to the design of the reply block technique for anonymity. Professor Robert P. Dick suggested the
use of predictable motion patterns to reduce routing overhead and also helped design the reply block technique.

15

routing.

• We describe a location-centric MANET architecture that provides scalable and secure

text-based personal communication that resists censorship and shutdown.

The rest of the chapter presents a detailed description and justification for this architec-

ture. Section 2.2 presents location profile routing. Section 2.3 proposes the location reply

blocks used to address the security and privacy issues induced by location profiling. With

these two fundamental components developed, Section 2.4 describes the full scalable and

secure location-centric network architecture.

2.2 Location Profile Routing

2.2.1 Introduction

Traditional routing protocols rely on the sharing of global information and thus scale

poorly in mobile ad hoc networks (MANETs) with frequent changes in topology. Routing

overhead grows quadratically in the number of nodes for distance vector and link state

protocols [47] that must distribute changes to all nodes. The natural hierarchy used to reduce

the overhead traffic in networks like the Internet (e.g., CIDR) is not available. On-demand

methods [48–50] delay routing table updates until needed, but only reduce overhead by

constant factors—the scaling behavior is unchanged.3 Instead, stateless protocols that use

local information to make forwarding decisions have the potential to scale.

One stateless protocol, Greedy Perimeter Stateless Routing (GPSR) [40], uses geography

instead, requiring messages to be addressed to specific locations. Nodes already know their

own locations (e.g., via GPS), allowing each intermediate step to bring the message closer

to its destination. No global routing state is needed. Essentially though, this technique just

shifts the complexity from routing to addressing. A forwarding node only needs its own

3We assume that sender and receiver locations are not correlated; that could change the scaling behavior.

16

1) Nodes track own

 positions to

 automatically

 develop location

 profiles.

2) Location profiles are

 initially shared directly,

 face-to-face.

3) Messages are sent to the

 (possibly multiple) locations

 predicted by the location profile.

Incorrectly predicted

location

Correctly

predicted location

 4) Infrequent changes to location

 profiles are delivered

 through the network

Current location

of a node

Common, but

currently unoccupied,

location of a node

Key

Figure 2.1: Illustration of the main components in location profile routing [1].

locally-known location, but the original sender requires the current location of the recipient,

a global mapping.

Distributed location services [45, 51] can maintain this identity to location mapping,

but also have drawbacks. Hierarchy is imposed to manage scalability, but overhead still

increases super-linearly [45]. Further, locations are sensitive information, so complicated

schemes are required to protect privacy and anonymity [44]. We observe that if node

locations are predictable, the mapping can be done locally as well, reducing the scaling and

privacy concerns.

In fact, human locations are highly regular with ∼93% predictability [52]. In MANETs

of human-carried devices, predicative models of future locations can be pre-shared among

trusted participants. These models combined with GPSR allow zero-overhead addressing

and routing. Network scalability is limited by the actual traffic, not routing and location

service overhead. We name this approach location profile routing (LPR) [1] and in this

section study its performance potential. We determine the number of locations that must be

addressed to achieve the peak 93% packet delivery rate and derive the associated latency

and traffic overheads. Finally, we determine the conditions under which LPR outperforms

GHLS.

2.2.2 Description of Location Profile Routing

Location profile routing (LPR) stems from the observation that humans generally have

simple, repeated motions, spending most of their time at a few common time-dependent

17

locations [46] easily captured by a compact predictive model. For the many potential4

applications of human-carried MANETs that can tolerate the resulting reduction in de-

livery reliability or increase in latency (we previously detailed a particularly compelling

application—censorship-resistant personal communication [1]), LPR eliminates overhead

traffic for route maintenance.

Figure 2.1 illustrates the main steps of LPR. Nodes continuously monitor their positions

to build location profiles (step 1), which are then shared with potential future contacts

directly (step 2). This sharing happens out-of-band, shielding the MANET from worst-case

quadratic scaling behavior. A message is addressed to the location(s) predicted by the

corresponding profile (step 3) and delivered via GPSR. Routing fails if a receiver is not in

any of the predicted locations, but delay-tolerant delivery is a possible fallback. Changes to

the motion patterns are rare (e.g., when someone starts a new job or moves to a new home)

and can be distributed via the network (step 4).

Location Profiles: Motion patterns can be modeled in many ways, but a simple discrete

model is sufficient for our purposes. A location profile is a function P mapping a time

interval (e.g., Tuesday 15:30–15:40) to a set of location–confidence tuples, with higher

confidence indicating stronger belief in the node occupying that location at that time:

P : time 7→ {(loc1, conf1), . . . , (locn, confn)}

The precise discretization level is unimportant. Both cell-tower granularity (3 km2, 1 h)

and WiFi AP granularity (157 m2, 10 min) have similar predictabilities at 93% [52] and

92% [53].

Various implementations are possible, but for completeness we summarize the Prediction-

by-Partial-Match (PPM) approach of Burbey and Martin [53], which is sufficient. PPM is a

variable-order Markov model over a sequence S of observed time-interval–location pairs,

S = {T1L1T2L2 . . . TnLn}. This defines a probability distribution over the next location

4Ad hoc networks are not yet widely used by the general public.

18

conditioned on the prior k elements of context. In our case, prior locations are not known, so

our definition of P corresponds to the first-order variant (k = 1, i.e., context is the current

time). We briefly discuss zero- (no context) and third-order (context includes the previous

location) variants. This scheme captures most of the predictability (90% [53] vs. the 93%

reported maximum [52]).

Profile Distribution: Location profiles are disseminated a-priori and out-of-band, simi-

lar to telephone numbers or email addresses. For our envisioned applications—communication

between friends—the profiles can be exchanged face-to-face. In other cases, a centralized

service, similar to a telephone directory, might be needed. Regardless, the salient point

is that the profiles are known a-priori and thus can be exchanged outside of the network.

Although changes could be disseminated out-of-band as well, in-network propagation is

feasible because updates are infrequent and sent only to select participants (e.g., friends).

Opportunistically updating when devices are in close proximity further bounds the overhead.

Addressing Policy: The addressing policy translates the location–confidence tuples

output by the profile into a message delivery strategy specifying when and where packets

will be sent. Only one of the locations can be correct, so the order and method in which they

are tried influences the network throughput and latency trade-off. Their spatial correlations

influence the minimum cost routing strategy (e.g., Steiner tree) to reach all locations. The

primary focus of this paper is analyzing these performance characteristics and trade-offs.

Fallback Method: LPR fails outright when nodes are in unpredictable locations, i.e., at

least 7% of the time [52]. Although this may be tolerable for many applications in which

messages can be redelivered later, it is non-ideal. As this is not our focus, we omit details

here, but possible strategies include delay tolerant delivery (in-network buffering of the

message at a common location until the node’s return) or rendezvous delivery (messages are

sent to a rendezvous location which the node, when not in a predictable location, apprises

of current forwarding instructions). Such schemes allow for reliable delivery with average

overheads still drastically lower than traditional routing approaches.

19

2.2.3 Performance Analysis

We use prior empirical studies of human motion patterns to develop analytical models

suitable for studying the performance of LPR. Barabási et al. studied six-month location

traces of 100,000 European cellphone users [46, 52] at cell-tower granularity, reporting a

maximum predictability of 93%. The size and duration of the traces make this best source to

date. To confirm that locations are as predicable at WiFi granularity, we turn to Burbey and

Martin’s study [53] study of traces from 275 WiFi users at UCSD [54]. They found similar

predictability, 92%, confirming that cellular granularity is not limiting.

2.2.3.1 How Predictable are Common Locations?

A location profile returns multiple locations in order of likelihood, so delivery cost and

latency depends on how many, K, must be targeted to reach the user. Intuitively, most time

is spent in two locations—home and work—so a zero-order model (i.e., not conditioned

on current time) might be sufficient. The pmf is π̃(k) = pk
∏k−1

i=1 (1− pi), where pi is the

probability that the target is in location i. The pi’s are roughly distributed5 as pi ∝ i−1 with

proportionality constant c ≈ 0.48 [46]. K is equivalent to a beta-geometric distribution,

K ∼ Geom(L) with L ∼ Beta(c, 1− c), and has CDF

Π̃(k) = 1− 1

kB(k, 1− c)
. (2.1)

The match6 to measured data [52] is shown in Figure 2.2. The first moment diverges, but

two locations suffice only 60% of the time and ten achieve only 80% delivery. Conditioning

the model on time of day is necessary.

The first-order model (with 10 min intervals) is 90% accurate for the first location on
5A true Zipfian distribution requires a bounded domain i ∈ [1, N] with c = 1

HN
for the pi’s to total one.

The following results are for the reported empirical form, not a true distribution.
6L ∼ Beta(0.60, 0.72) yields a much tighter fit, but we lack an explanatory origin. It might result from a

mixture of different upper bounds N in the Zipfian model of the pi’s—individuals have different numbers of
common locations.

20

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

0

1

1 10 100

Π̃

Locations (k)

Song et al. [52]

Equation 2.1

Figure 2.2: The probability that a user cur-
rently occupies one of his k most-common
locations is well-modeled by Equation 2.1.

0

0.2

0.4

0.6

0.8

1

Mon Tue Wed Thu Fri Sat Sun

R
(t

)

Time Interval (t)

Song et al. [52]
Equation 2.2

Figure 2.3: The time-dependent regularity
R(t), i.e., the probability the user is in the
most common location associated with that
time interval.

the UCSD dataset [53], nearing the 93% upper bound and suggesting marginal gains for

additional guesses. A third-order model is surprisingly only slightly better at 92%. The

larger cellular dataset (with 1 h intervals) is more pessimistic. The accuracy R(t) of the

first-order model here is given by

R(t) = c1 sin

(
2π

24
t+

2π

8

)
+ c2 sin

(
2π

12
t− 2π

24

)
+ c3, (2.2)

where c1 = 0.148, c2 = 0.077, c3 = 0.657 and t ∈ [0, 167] is the hour of the week, i.e.,

t = 0 is Monday 00:00–0:59 and t = 167 is Sunday 23:00–23:59. As shown in Figure 2.3,

this form captures one-day and half-day periodicities. On weekends, the variability is lower

and the intervals of highest predictability occur later in the day The accuracy on weekdays

ranges from 55% to 90%, averaging R̄ ≈ 65%.

Assuming the power law form, pi ∝ i−1, holds during each time interval7, equations 2.1

and 2.2 can be combined as

Π̃1(k) = 1−
∫ 168

0

D(t)

kB(k, 1−R(t))
dt, (2.3)

7The number of common locations is inversely correlated with R(t) [52] (Fig. 3B), suggesting that it does.

21

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

Π̃
1

Locations (k)

R(t) = 0.90
Equation 2.3
R(t) = 0.55

Figure 2.4: Success rate of a first-order pro-
file versus the number of locations attempted.
Rates during maximum (night) and minimum
(day) predictability are shown too.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

P
M

F

Latency Increase (×)

Serial Attempts
Parallel Attempts

Figure 2.5: PMF of the latency increase for
the first packet in a stream induced by try-
ing multiple locations in turn. Concurrent
attempts do not impact latency.

where D(t) is the traffic density at time t, to yield the average probability that packet

addressed to the k-most common locations reaches the target, shown in Figure 2.4. We

assume a uniform density, D(t) = 1
168

, but other known traffic patterns can be substituted.

k = 5 achieves 85% success and 93% requires only k = 12. More locations are required

during the day and fewer at night. The exact number of locations to attempt is application-

specific, depending on the trade-off between between desired delivery rate and cost, i.e.,

increased latency and traffic overhead.

2.2.3.2 What Additional Latency and Traffic is Induced By LPR?

Some packets must be sent to multiple locations to have an adequate packet delivery rate,

increasing latency and traffic by constant factors. Note that the costs increase only for the

first packet in a stream. Subsequent packets are sent directly to the now-known current

location. The true average overhead depends on the percentage of first packets, which is low

for applications like text-messaging and email and higher for interactive applications like

voice chat. We report overheads for first packets only, which readers should scale by the

first packet percentage of their applications.

We assume that receiver common locations and sender locations are uniformly distributed

22

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

P
M

F

Traffic Overhead (×)

93% Delivery
91% Delivery
87% Delivery

Parallel–65% Delivery
Serial

Figure 2.6: PMF of the traffic overhead for
the first packet in a stream induced by trying
locations in turn. Concurrent attempts have a
fixed overhead.

1

2

3

4

5

6

7

1 2 3

T̄
(×

)

L̄ (×)

65%
81%
88%

91%
92%
93%

Figure 2.7: Pareto front of the first packet
latency–traffic trade-off of a combined
parallel-series strategy for several average
success rates.

in the network.8 Thus, we can report overheads relative to the average latency (round-trip

time) and traffic cost (round-trip hop count) for a single delivery attempt, e.g., a 2× increase.

Parallel delivery to all k common locations does not increase latency, but increases traffic

k times. Serial delivery—attempting each location only if the previous failed, using ACKs

and a timeout to determine success and failure—reduces the traffic overhead. The pmf of

the factor increase T , plotted in Figure 2.6, is

Pr[T = t] = π̃1(t), (2.4)

where π̃1 is the pmf associated with Equation 2.3. Latency increases similarly, as shown in

Figure 2.5.

A combined approach—addressing a subset of the locations in parallel—can fine-tune

the trade-off. For example, four different groupings can be used when trying three locations

(∼ 81% success rate).

1 2 3 1 2 3 1 2 3 1 2 3

All locations within a group (a box in the diagram) are tried concurrently and groups are tried

serially from left to right, as needed. Formally, a grouping G is a partition of the common

8Overheads can be lower if locations are spatially correlated, we discuss in later sections.

23

locations, G = {g1, g2, . . .}, with the property that for i < j, all locations in group gi are

more probable than those in gj . Let κ(g) denote the index of the most common location in

g, e.g., κ(g1) = 1. Then, the probability that group g is tried, i.e., that all previous groups

failed, is Φ1(g) = 1− Π̃1(κ(g)− 1). Thus, the average latency increase L̄ for a grouping G

is given by

L̄(G) =
∑
g∈G

Φ1(g) (2.5)

and the average traffic overhead T̄ by

T̄ (G) =
∑
g∈G

|g|Φ1(g). (2.6)

Figure 2.7 shows the Pareto fronts for several average success rates, i.e., the maximum

number of locations attempted. At the knees, L̄ ≈ 1.25× and T̄ ≈ 3–4×. These curves

are network averages. At runtime when a specific location profile is known, the precise

trade-offs for that instance can be computed.

2.2.3.3 Under What Conditions Does LPR Outperform Location Services?

LPR trades the cost of updating a location service as devices move for multiple transmissions

at the first packet. We use a simple analytical model to derive the network conditions under

which LPR outperforms GHLS [45], a scalable distributed location service. Let f be the

network-wide location update rate (increases with node movement), r be the network-wide

first-packet rate, s be the average number of hops between a node and its GHLS location

server, p be the average number of hops between a source and destination, and T̄ , as

previously defined, be the average number of destinations attempted by LPR. The location

update, location query, and first-packet delivery costs (i.e., transmission counts) for GHLS

are9 fs, 2rs, and 2rp. LPR has only the first-packet delivery cost, 2T̄ rp. After rearranging

9See Das et al. (Section IV) [45] for the derivation. Our s is their 1
32h−1

√
2.

24

the total costs in terms of f
r

and p
s
, we see that LPR has lower overhead when

f

r
>
p

s
(2T̄ − 2)− 2. (2.7)

When s = p (source and destination are uniformly distributed over the entire field) and

T̄ ≈ 3 (from Figure 2.7), this simplifies to f
r
> 2; LPR outperforms GHLS when the

location update rate is more than twice the first-packet rate. This bound further decreases

when sources and destinations are spatially concentrated, i.e., p < s.

2.2.3.4 Reducing Overhead Via Spanning Trees

The preceding overhead and latency analysis assumed linear routing, i.e., one transmission

from the source per attempted destination. A branching route (e.g., the Euclidean Steiner

tree containing the source and destinations) would reduce this overhead, particularly when

destinations are spatially-clustered relative to the source. Unfortunately, this works only for

dense networks in which nodes are guaranteed to exist at the branching (e.g., Steiner) points.

Many real-world networks are too irregular, and the linear approach should be used.

In dense networks, the branching approach is feasible. One desires a routing tree with

low total weight to minimize traffic but also with short source-to-destination path lengths to

minimize latency. Although seemingly conflicting, both goals are achievable. Taking n as the

size of the network, trees with weights within o(n) of the O(n)-length minimal Steiner tree

and source-to-destination path lengths within o(log n) of the O(
√
n) straight-line distances

exist [55]. We refer the reader to Aldous and Kendall for details and construction [55].

2.3 Privacy and Anonymity

MANETs are open to untrusted observation and participation, inducing several security

concerns, e.g., location and social network privacy. Furthermore, our proposed routing

scheme at first appears to require that users trust their contacts enough to share location

25

profiles, selectively giving up location privacy. Although this might be acceptable in

some applications (e.g., when one’s contacts already know the motion patterns), often it is

undesirable. We propose a reply-block- and pseudonym-based scheme that enables location

profile routing to operate without exposing location profiles (or identifying information),

even to contacts. In this section, we define the desired security properties and describe our

solution.

2.3.1 Attack and Trust Model

We assume that the attackers, in addition to participating, can observe all links in the network

and collaborate using side-channels. They may have storage and processing capabilities

exceeding those of a typical handheld device, allowing for traffic analysis of accumulated

observations, and may triangulate the position of transmitters. We do restrict their number,

assuming that economics dictates that conforming nodes will generally outnumber attacking

nodes.

We do not consider attacks using information from outside of our protocols, e.g., taking

photos of the human carrying a node for later identification. Similarly, we assume the other

protocol layers, e.g., physical and application, are secure (as defined in Subsection 2.3.2).

For example, wireless transmissions should not contain identifying analog “fingerprints”

that would allow a node to be tracked. Of course, full system security requires that all layers

have these security properties, but such provision is orthogonal across layers, so this work

focuses on the network layer. Finally, we assume the majority of nodes obey our protocols,

thus resisting routing attacks. We plan to quantify this resistance in future work.

We assume that the hardware and software platform, e.g., a smartphone and its operating

system, is trusted, i.e., it is not modified to specifically interfere with our protocols or spy

on the information transmitted. Although the hardware or software could be theoretically be

modified, China’s failed efforts to require the distribution of its Green Dam Youth Filtering

software with new computers, a much simpler approach, illustrates the practical difficulty of

26

doing so.

We also assume that the Whisper implementation is uncompromised, e.g., it does not

contain backdoors. On the assumption that servers are more easily compromised than many

individual devices, we envision phone-to-phone distribution of the software, instead of

downloads from a public server, to reduce the likelihood of compromised installations.

2.3.2 Desired Anonymity and Privacy Properties

The trust concerns in MANETs are often addressed by listing specific requirements for

privacy (the confidentiality of information) and anonymity (the confidentiality of the re-

lationship between an identity and its information, i.e., attributes or actions). We believe

this approach has two primary flaws. First, it focuses attention on the security provided,

when the security not provided is of greater importance and interest. Second, it suggests a

false separation between the attributes of an entity and its identity. In reality, the attributes

themselves often allow identification (e.g., the Netflix dataset fiasco [56]), so separating

them from a “traditional” identity (e.g., a name or social security number) is false protection.

Further, predicting which attributes could, in the hands of a clever-enough attacker, allow

identification is difficult. Therefore, we adopt a methodology that puts focus on the security

not provided and endeavors to provide complete anonymity, removing the need to attempt

to accurately distinguish identifying and non-identifying attributes.

We focus attention on the unprovided security by starting from an unrealistically strong,

but easy-to-define, security goal, and relaxing it by describing specific security properties

that it implies but we cannot yet provide. These relaxations have two sources. Type 1

relaxations are inherent to the underlying implementation technology (e.g., with wireless

communication technology, the location of the transmitter of a packet is always linkable to

the packet). These cannot be considered flaws of our protocols and must be accepted. Type 2

relaxations are those induced by our protocols (e.g., we employ per-location pseudonyms

to prevent tracking a node across space, but it remains possible to track a node in one

27

location, across time). These are clearly flaws of our protocols and are opportunities for

future improvement.

We term our unrealistically strong starting point complete anonymity and use it to address

the false separation of identity and attributes. Put simply, complete anonymity requires

that each observable attribute in the network (i.e., the act of transmission and each data

attribute within) be unlinkable to the other attributes from the same entity (i.e., node). More

precisely, in a network comprising n nodes, an observer should have belief 1
n

for each node

that a given attribute originated from that node. Equivalently, for any two attributes, an

observer will have an equal belief in their originators being the same node or different nodes.

This strong unlinkability requirement prevents the inference of identifying information. For

example, network participation is anonymous because an identifier (a set of data attributes)

is unlinkable to transmission (an action).

In MANETS, we can decompose complete anonymity into six unlinkability relation-

ships over three attributes: actions (e.g., packet transmission), traditional identifiers (e.g.,

MAC address, name, pseudonym), and locations. The following list summarizes these six

relationships, describing the Type 1 and 2 relaxations:

action–location: In a MANET, transmission location is obviously visible, so this link is an

allowed Type 1 relaxation. Actions must still be unlinkable to past or future locations of

their entity.

action–identifier: Our protocols (given in the following subsection) use visible per-location

pseudonyms, resulting in a Type 2 relaxation: each action is linkable to exactly one

pseudonym. Actions must still be unlinkable to other identifier types.

action–action: Action–location linkability induces a slight Type 1 relaxation: two actions

linkable to the same location can be linked. However, two actions at different locations must

still be unlinkable.

identifier–location: An identifier should not be linkable to the location of its entity. Again,

our solution using per-location pseudonyms will violate this slightly, resulting in a Type 2

28

relaxation: each pseudonym is linkable to exactly one location of its entity.

identifier–identifier: Two identifiers for the same entity should not be linkable. For ex-

ample, a pseudonym must be unlinkable to other identities (e.g., real name) and multiple

pseudonyms for an entity must be unlinkable. For network transmissions, this means that

the identifiers of the sender and receiver cannot be linked, providing social network privacy.

For personal communication, contacts know each other, resulting in one Type I relaxation:

communicating contacts can link each other’s identifiers. Pseudonyms induce one Type

2 relaxation: the pseudonyms of the sender and receiver for a one-hop (i.e., forwarding)

transmission are linkable.

location–location: The current, past, and future locations of a node must be unlinkable. We

allow one Type 2 relaxation: the allowed identifier–location link for per-location pseudonyms

implies that past and future locations can be linked, but only when they are the same location.

Critically, this provides location privacy, with the exception that the existence of a node at a

single location may be tracked across time.

2.3.3 Unlinkability via Reply Blocks and Pseudonyms

This section presents our reply block- and pseudonym-based solution to provide the desired

unlinkability. A formal argument that the properties are satisfied requires complete enumer-

ation of all types of actions, identifiers, and locations and lengthy analysis. Such detail is

beyond the scope of this dissertation , so instead the solutions are presented with high-level

arguments for their correctness. Roughly, the following arguments derive from the premise

that two attributes are unlinkable if (1) they are never both available in the same context and

(2) transitive application of known relationships cannot be used to link them.

Geographic routing lends itself to our unlinkability requirements, because messages

are addressed to locations, not identifiers. Identifiers are not visible in packet headers

and thus the three identifier relationships are implicitly unlinkable by third parties. The

29

sender and receiver themselves do know each other’s identifiers, so we use reply blocks, a

variant of Chaum’s mix-nets, to disassociate information available at the sender (receiver’s

identifier) from the information available at the receiver (receiver’s location and receiver’s

actions) and vice versa, explicitly protecting the identifier relationships10. A reply block

is a routing instruction that guides a message from a sender through a mix-chain leading

to the receiver. A mix-chain is composed of mix-servers, each of which disassociates the

incoming and outgoing messages by reordering them and changing their appearance via

layered decryption. Thus, observers (including the sender itself) cannot track the original

message; at any point, only the previous and next mix-servers are known. We give detailed

descriptions of applying reply block techniques in MANETs, including how senders choose

the mix-servers composing a chain, in the remaining parts of this subsection.

Action–action links are also protected. This linking would require transitive application

of other relationships: action A linked to X and action B linked to X implies A is linked

to B. Aside from the allowed Type 1 exception when X is a location, no such X exists; the

action–identifier and identifier–location relationships are unlinkable.

Location–location links are also protected. The location caches shared with a contact are

encapsulated in reply blocks, so the actual locations are not revealed to the contact. Further,

as with the action-action link, transitive linking of locations is not possible: the mix-chain

dissociates locations from other attributes.

Location-based addressing has one significant problem. The predicted locations are

inherently imprecise, so messages must be addressed to relatively large regions (several

802.11b hops in radius) and then flooded, wasting significant bandwidth and energy. To ad-

dress this, we introduce pseudonyms as secondary addresses. Messages are addressed to both

a location and a pseudonym (both encapsulated in the reply block), with the location used for

initial routing and the pseudonym used in the destination region. Different pseudonyms are

used in each location, preventing the pseudonyms from transitively linking other attributes.

10The usual caveats for mix-chains apply. Linking is possible if all nodes in the chain collaborate and global
traffic analysis can potentially reveal message flows in some special circumstances.

30

Multi-server
Ordinary

Endpoint

Mix Server

Key

Figure 2.8: Message flow for ordinary and multi-server reply blocks.

However, they still violate the strictest requirements, resulting in the previously mentioned

Type 2 relaxations. Three of these, action–pseudonym, pseudonym–location, and, for one-

hop sender–receiver links, pseudonym–pseudonym, are acceptable because the pseudonyms

map one-to-one to an already visible attribute, location, and contain no additional useful

information. The fourth though, is unfortunate. Pseudonyms persist across time and can

be used to link the times when a node is in the same location (a type of location–location

link). We are investigating possible remedies. An obvious possibility is frequently changing

pseudonyms.

2.3.3.1 Reply Block Operation and Management

The chain in Figure 2.8 illustrates the use of an ordinary reply block, specifying a two-server

mix-chain. Each transmission depends on those before, posing a deliverability problem.

Each mix-server provides a single common location, so with non-negligible probability

the server will be unreachable at the time of attempted contact. We solve this problem by

specifying multiple mix servers at each layer (also in Figure 2.8), increasing the probability

of successful delivery. Each layer of the reply block is encrypted to three servers, who each

remove an encryption layer and each forward the packet to the next three mix-nodes. Each

server remembers the previous–next hop association. The receiver sends a message back

through the fastest chain to complete, marking it as available for subsequent packets.

31

Reply blocks are location profiles anonymized by mix-chains, so managing them includes

two main tasks: location profile management and mix-pool management. Each device needs

to track its motions and keep its location profile up to date. Additionally, the mix-servers

used in one’s reply blocks also need to be valid. When there are significant changes in a

device’s location profile, or there are too many unreachable mix-servers in a reply block to

permit any valid route, the reply blocks need to be updated accordingly.

2.3.3.2 Mix-Server Pool Management

Mix-server selection is important because if all mix-servers in a chain collaborate on an

attack, the sender and receiver can be linked. Two selection requirements need to be satisfied.

(1) Servers should have high probability of protocol compliance, reducing the chance that

all servers in a chain improperly collaborate to trace a message. (2) They must be directly

reachable by locations, instead of reply blocks, to prevent an infinite chain of reply blocks.

For traditional Internet mix-chains, services are chosen from semi-trusted published lists, as

with Tor [33]. However, this method is not suitable for MANETs; no semi-trusted authority

who could publish such a list exists. A new method for choosing mix-servers is needed.

We assume that physical attacker density is limited by economic constraints, and thus

propose that each node individually maintain a pool of mix-servers chosen randomly from the

various one-hop neighbors it encounters. This density assumption could be violated by Sybil

attacks [57], in which one device pretends to be many, so we develop a technique leveraging

signal strength measurements to detect Sybil identities during pool population (Chapter 5).

As a node moves in the network, it asks one-hop neighbors to act as future potential mix-

servers. Willing neighbors respond with a single 〈common location, pseudonym〉 address

and an associated contact probability. Entire profiles are not shared to preserve location

privacy. The requester saves the information from non-Sybil neighbors in its mix-server

pool for future usage.

32

Figure 2.9: Main components of the location-centric network, with arrows representing
service relationships.

2.4 Location-Centric Network

Now that the two most important pieces—location profile routing (see Section 2.2) and reply

block-based privacy (see Section 2.3)—have been described, we present the architecture

of our location-centric network for secure personal communication. System scalability

relies on location-profile routing, into which we incorporate confidentiality and privacy

mechanisms. As illustrated in Figure 2.9, the system comprises three layers, (1) application,

(2) secure transport, and (3) network. The target application is low-bandwidth and delay-

tolerant text-based communication, e.g., email and text messaging. The secure transport

layer provides confidential and anonymous host-to-host delivery using mix-chains. The

reply blocks constructed by a host and shared during face-to-face contact act as the transport

layer addresses. The network layer delivers messages between mix-nodes using geographic

routing. A network address is a two-tuple containing a pseudonym and location. Keys

for encryption are exchanged face-to-face between contacts, so no PKI is required. In this

section, we will describe the network and secure transport layers in more detail.

Network. Geographic routing (e.g., GPSR [40]) is the backbone of the network, pro-

viding routing scalability. Location profiles are exchanged face-to-face, providing location-

distribution scalability, normally the Achilles’ heel of geographic routing. A node’s move-

33

ment within a small region prevents addressing destinations by precise coordinates, so we

propose using geographic routing for coarse delivery and reactive routing near the receiver.

Thus, a receiver is addressed by both a destination region and a pseudonym. When a mes-

sage reaches its destination region, the intermediate node at the boundary transitions from

geographic routing to local link-state routing. If a route is known, the message is delivered

along it. Otherwise, a route discovery message is broadcast to discover one. If the node is

unreachable, the message is dropped.

Secure transport. The transport layer provides host-to-host secure communication

channels. A channel is a mix-chain between the sender and the receiver, constructed

according to the receiver’s reply block, that provides the desired location privacy and sender–

receiver unlinkability. It is constructed according to the receiver’s reply blocks. End-to-end

encryption provides confidentiality.

We now describe the operation of the transport layer, responsible for delivering messages

from the application layer to the destination node. To deliver a message, the sender first

determines whether a channel to the destination is already available. If so, the message is

sent via the channel. Otherwise, the sender sends a setup message using the receiver reply

block with the highest contact probability. If the sender does not receive a response within

a constrained time, it concludes that the receiver is not at the corresponding location of

that reply block and repeats this process for the remaining reply blocks, until a response is

received or all the reply blocks have been used. Our preliminary analysis indicates that, on

average, receivers will be contacted via a reply block 93% of the time. When a response

is received, the sender marks the channel as valid, sets a timeout for it, and messages

are delivered thorough this channel. The receiver can respond via this channel as well,

although the routing is not, in general, symmetric. Messages are encrypted with a session

key established during the channel setup process.

Overhead. Energy consumption is a significant concern, especially since much of the

work is forwarding others’ traffic and does not directly benefit the user paying the cost.

34

Current 802.11 ad hoc technology is inefficient, depleting cellphone batteries in several

hours (the power save mode is only for AP networks). Implementing a periodic sleep option

for ad hoc mode will be necessary. Even with reasonable battery life, some selfish users

might refuse to forward traffic for others, but we believe they will be in the minority. Most

people derive some satisfaction from helping others, particularly at low cost (e.g., charging

ones’ phone each night instead of every other). An application feature displaying statistics

about the number of conversations relayed could encourage such altruism.

2.5 Conclusion

We have not implemented the architecture laid out in this chapter. Instead, it’s constituent

components motivate two specific areas of research. We hope this architecture (or something

similar) will be implemented, but the underlying pieces must be studied and developed first.

Specifically, it motivates two primary research directions.

Human Mobility Patterns: Predictability motion patterns can substantially improve

routing efficiency, but by how much? How predictable are human locations at the spatial

granularity of a WiFi transmission range? How large is a predictable location and how many

are non-trivially probable at a given time-of-day?

The data required to answer these questions—long duration traces of high spatial and

temporal granularity for many people—are hard to obtain. We believe some of the data

collected by the MANES system (Chapter 4) used to deploy Shout (Chapter 3) will be a

useful starting point and are investigating it now.

Mix Node Selection: Safe reply block construction requires choosing multiple, distinct,

anonymous participants chosen from among volunteering nodes. As mentioned, this is

easily defeated by a Sybil attack, in which one device pretends to be multiple participants.

Chapter 5, describes our defense against such attacks, the Mason test.

35

CHAPTER 3

Shout

3.1 Introduction

Usage statistics of services like Twitter and Weibo indicate the popularity and growing

importance of microblogging communication applications. In 2012, Twitter had over 200

million active global users [58, 59] generating over 400 million tweets per day. In China,

where Twitter is blocked by the government, the approved alternative, Weibo, reported over

36.5 million active daily users [60]. These short-form, public broadcasts have become a

natural part of daily communication for many people worldwide.

In places where traditional media sources are heavily censored or controlled, social

media has offered an excellent avenue for dissidents to educate and organize the general

populace. The 2011 Arab Spring uprisings demonstrated this value, with Twitter used to

share criticisms of the existing regimes in Tunisia and Egypt, sparking increased political

debate and participation [61]. Spikes in online activity preceding protests indicated its

usefulness in mobilizing large numbers of people and continued activity proved its ability to

report from the action [61]. In China, Weibo is used by amateur reporters to great effect,

raising public awareness of issues ranging from food safety to the extravagant lifestyles

of government officials [62]. That content can be submitted by anyone and is filtered and

judged by the general audience, not a select government official or media executive, is the

real power of these services. Posts of widespread interest or importance quickly reach many

36

people.

Naturally, oppressive governments have responded by banning and censoring such

services. In China, foreign services like Twitter are blocked, with domestic alternatives

supporting government-specified censorship demands, like Weibo, appeasing public demand.

Weibo appears to use a variety of censorship methods, including deleting posts containing

banned keywords, rejecting sensitive search queries, and banning some users [10]. Various

Arab governments similarly block access to Twitter [12, 13]. In response to protests in late

January 2011, the Egyptian government, which had not previously blocked such social media

sites, did so [14]. When that failed to stem the tide, all Internet access within the country

was disabled for several days, after the major ISPs were forced to withdraw their Border

Gateway Protocol routes [17, 18]. Given the demonstrated value of these microblogging

applications in affecting social awareness and change, methods for resisting such censorship

are needed.

Traditional censorship countermeasures like proxies [63, 64] and anonymous overlay

networks [33] are not ideal for microblogging applications. In particular, they (1) still route

all traffic through a few centralized chokepoints—the government- or ISP-owned routers—

facilitating advanced traffic analysis1, (2) require some level of technical sophistication for

installation and operation, impeding widespread deployment, and (3) are easily defeated

by blocking all external Internet traffic2. In this chapter, we instead argue instead for a

microblogging architecture based on ad hoc networking, which are much more difficult to

censor or surveil than the hierarchical, infrastructure-based Internet.

Certain properties of the microblogging communication style, particularly for sensitive

content likely to trigger censors and incite government response, suggest the suitability of

ad hoc networks.
1Although advanced traffic analysis does yet appear to be in wide use, its future use is likely as this

cat-and-mouse game between censors and their targets continues.
2Since such shutdowns are economically damaging and thus likely to be short, the loss of social media

access could be tolerated. But having a working Twitter-like system dissemination and organization is still
preferable.

37

• Content is deliberately public. Activists intend to inform and organize broad portions

of the public, not privately chat amongst themselves. Posts are intentionally visible to

everyone, even officials of the protested government.

• The target audience is geographically dense, i.e., concentrated within a city or town.

Whether organizing a demonstration in a public square or spreading facts about a

corrupt politician, it’s most critical that messages reach those nearby3.

• High delivery latencies, on the order of minutes or hours, are acceptable. Microblog-

ging is largely a distribution mechanism, not an avenue for interactive, back-and-forth

discussion or debate. Much interesting content is relevant for several hours or days,

so immediate delivery is not necessary.

• Content size is small. 1500 tweets—that’s more than one per minute for an entire day—

consume fewer than 500 kilobytes. At volumes reasonable for human consumption,

microblogging requires very little bandwidth.

We propose Shout, a decentralized, ad hoc network-based architecture for microblogging

designed to be difficult to censor. Shouts (tweets) and reshouts (retweets) are sent to

neighbors within the one-hop broadcast range, flowing via the geographic, rather than social,

network. This flow fits the intended distribution for censorable content well and the nature

of the application tolerates the inherent bandwidth and latency limits of ad hoc networks.

The non-hierarchical network structure is free of choke-points where censorship could be

easily applied.

Our design has several unique aspects compared to traditional microblogging applica-

tions and ad hoc network protocols that greatly reduce system complexity and improve

operation efficiency.
3We do not discount the importance of communication with the outside world. The 2011 uprisings proved

this use of Twitter as well [61]. However, only a small number of links are needed to spread content between
these separated clusters, e.g., cities or countries. Tech-savvy users comfortable with traditional proxies,
anonymity services like Tor [33], or alternatives like Speak-to-Tweet [65] can fill this roll. The primary
challenge remains dissemination among the large numbers of people concentrated within the towns or cities
close to the events.

38

Addressing: The intended audience for censor-triggering content is usually the general

public, so traditional addressing schemes are an unnecessary complication. For example, in

Twitter, tweets are addressed to followers 4. In Shout, messages are delivered to whomever

is nearby, simply and efficiently reaching the (much broader) target audience.

Content: The content is intended for public dissemination, so support for message confi-

dentiality5 is unneeded. All messages can be broadcast in plaintext.

Routing: Routing decisions are pushed onto the humans using Shout. Although messages

are intentionally broadcast to the general audience, they should still be restricted to portions

of the network with a high density of interested users. For example, content of interest only

to people in one neighborhood should not flood others. Complete, automatic identification

of regions of interest for particular messages is not yet feasible, so Shout uses human

involvement instead. Messages will naturally spread within regions where the reshout rate

is high—the content presumably interesting— and will die out in regions where it is not.

Automated reshout techniques can amplify the reshout rate to speed dissemination.

Adoption: Shout attempts to provide value to users not concerned with censorship to

increase the likelihood of widespread adoption. Rapid adoption of a new application by

the general public immediately after an increase in censorship is unrealistic. By delivering

messages based on geographic proximity, not social relationships, we hope Shout will

be useful in everyday life as well. For example, a shout mentioning leftover food in a

conference room would be implicitly sent to those near enough to get the food, as opposed

to an email to a listserv that includes people currently out of the building.

4Anyone may browse a user’s stream, unless set to private, but the intended primary delivery mechanism is
through the follower relationships.

5Confidentiality differs from sender authenticity or sender anonymity, which we discuss later.

39

3.2 Overview

Shout is designed around the premise that for censorship-resistant microblogging, the

communication style can adapt to the most natural network architecture. In particular,

a broadcast protocol is appropriate, unlike traditional systems that address messages to

particular users or groups. Second, the participants are motivated to share content, so a

user-controlled mechanism for spreading messages, similar in principle to gossip in the real

world, is appropriate.

Ad hoc networks provide good resistance to censorship, but suffer from reduced through-

put, increased latency, and poorer routing scalability. The non-hierarchical structure implies

that censoring communication would require controlling many of the participating nodes, a

task much too expensive when the devices are the smartphones already carried by many peo-

ple. But it also hurts the traditional network performance metrics. As networks grow, more

traffic must flow through devices with constrained bandwidth and each message is routed

through more devices [38]. Fortunately, for microblogging the communication structure can

be adapted to the ad hoc structure, mitigating the impact of those scalability concerns.

We have the following goals for Shout.

Unblockable: A centralized authority should not be able to selectively block most users

from sharing messages without also blocking significant, legitimate traffic. In essence,

we wish to prevent technological means for censorship. We do not explicitly attempt to

prevent self-censorship due to fear of reprisal, but describe in Subsection 3.4.2 how the

non-hierarchical structure does provide some advantage here too.

Efficient: Total network traffic should scale with message reach. The limited throughput

available in the ad hoc network should be concentrated on messages of widespread interest

or importance.

Verifiable: As an open system, anyone can send messages, good or bad, true or false. Thus,

readers must be able to verify the authorship of each message. Note that verifying the

real-world identity of an author is not necessary. Often, simply ensuring that a message

40

came from the same anonymous individual who published true, useful information in the

past is sufficient to have reasonable trust in its content.

Adoptable: Systems useful only for sharing censorable content or only during times of

extreme Internet blocking are not widely used by the general public. Providing features

useful in day-to-day life and not seen in existing applications will help with adoption.

Simple and Extendable: True solutions evolve from earlier efforts, and we hope Shout is

just one step in such a chain. Thus, it must be simple and extendable, allowing others to

invent, implement, and test future innovations and improvements.

3.2.1 Threat Model

We consider the following threat model with respect to our goal of unblockability. The censor

is assumed to be a state authority with control over infrastructure, e.g., top-level Internet

routers within the country, wanting to limit the spread of certain information, e.g. that critical

of the government. With control of the infrastructure networks, the censor can employ any

of the numerous techniques developed to detect and block potentially-objectionable content.

We assume the government allows the widespread use of WiFI-equipped computers

and smartphones, perhaps due to their significant economic benefit. WiFi transmissions

can be blocked by jamming, but we assume the censor cannot jam large portions of the

network. Doing so requires covering large geographic regions with jamming transmitters

and thus is quite expensive. Further, it seriously disrupts legitimate uses of the airwaves.

Selective jamming could block just the questionable traffic, but require specialized jamming

equipment, further increasing the cost.

Finally, we assume the censors do not control or mandate the installation of special soft-

ware on the devices running Shout, e.g., the laptops and smartphones. Although theoretically

possible, recent failed attempts, like China’s Green Dam Youth Escort initiative [66, 67],

highlight the practical difficulty.

41

3.2.2 Applications

The primary motivation for Shout is censorship-resistance, but the design supports a variety

of applications in which the independence from infrastructure or geographically-based

delivery is beneficial. Such applications may help encourage early adoption of Shout, such

that it is already in use and available when its censorship-resistance is needed. We briefly

mention a few here.

As stated before, Shout is useful for censorship-resistant microblogging. The non-

hierarchical structure is difficult to shutdown or block, as Twitter was in Egypt in early

2011 [14]. Further, messages do not flow through intermediate choke-points, eliminating

opportunities to selectively censor certain posts.

Shout is also useful whenever infrastructure is unavailable. For example, after a natural

disaster that destroys cellular towers or knocked out power, the ad hoc system would continue

to function. Authorities could broadcast safety instructions. Victims could self-report their

locations and condition to others nearby. First responders could read incoming Shouts to

assess the situation without waiting to interview bystanders.

Similarly, consider dissemination of public safety messages about ongoing gas leaks

or tornado warnings. Text-messaging is commonly used for this purpose, but people in

many buildings get poor, if any, cellular coverage. The University of Michigan Emergency

Management Team is interested in applications like Shout, that extend the reach of their

emergency broadcast system into basements and laboratories with no cellular coverage [68].

Despite a very different goal than censorship-resistance, the same architecture is an attractive

solution to this problem.

Finally, Shout has potential for day-to-day use as well6. Messages flows via a geographic

network—broadcast to other nearby users—instead of via social links. This makes Shout

ideal for an ephemeral audience determined by proximity. For example, concertgoers, sports

6Many of these ideas could be accomplished with location-aware Internet-based services as well. An ad
hoc network, though, supports them naturally and without the privacy concerns.

42

Figure 3.1: Shouts are broadcast to one-hop neighbors. A recipient interested in the message
can reshout, or rebroadcast, increasing the effective range. Additionally, one can reshout after
moving to a new location, reaching otherwise-isolated portions of the network. Automatic
rebroadcasts ca increase the dissemination rate.

fans, or conference attendees—people at a common event—would easily and naturally see

each others tweets during the event. No social relationships are required and none persist

after the event. Similar behaviors have emerged with Twitter, with groups choosing a specific

hashtag so tweets from the event are easily searchable. With Shout, even that effort is not

necessary.

Students might use Shout in various ways. For example, consider one struggling with

a general chemistry problem set in the library. He can send a message asking for help to

locate other nearby classmates willing to help—classmates that, in a class of hundreds, he

probably doesn’t already know. Or consider a pickup game of football that needs a few more

players. It’s easy to broadcast that request to nearby people, strangers included, that might

want to join.

3.2.3 Design Summary

Shout is designed for smartphones that can communicate via ad hoc WiFi. When a message

or shout is sent, it is broadcast to the one-hop neighborhood, as illustrated in Figure 3.1.

To avoid wasting limited bandwidth and energy on uninteresting content, messages are not

automatically transmitted further. Instead, much like gossip in the real world, a recipient can

43

DRBild Welcome. 11:13:58 2012/10/24 42.2708° N, -83.7264° W Pub

JohnD Hello World. 10:02:45 2012/10/24 42.2318° N, -83.7154° W Pub

Hash

Original Shout

Comment

Comment references
parent by its hash.

Figure 3.2: Each shout contains a user name, message, timestamp, location tag (optional),
the sender’s public key, and a self-signature. A shout intended as a comment on a prior
shout references that parent via a hash of the parent.

manually reshout a message to increase it’s range to his one-hop neighborhood. Reshouting

after moving to a new location can extend the reach to otherwise disconnected portions

of the network. To ensure widespread distribution, someone could act like a town crier,

intentionally moving from place to place, reshouting in each. Using manual intervention

for further broadcasts helps ensure that content only propagates through the portions of the

network with interested users. Within these regions, automatic rebroadcasts can be used to

reduce delivery latency.

Figure 3.2 illustrates the common information included in a shout. As with traditional

services, each contains a username, message, timestamp, and an optional location. Unlike

traditional services, these fields are set by the sender and thus could be falsified. As a

decentralized system, usernames are not unique, so the contents are self-signed with an

included public key. This public key serves as an unforgeable identifier, so one can determine

whether two messages claiming the same username actually came from the same source.

Finally, a shout may reference a prior shout by hash. For example, comments include a hash

of the parent shout.

Shout is a fully-decentralized system, so information is local to each device, i.e., a

user’s smartphone, as illustrated in Figure 3.3. In particular, no global database of past

shouts is maintained. Each device stores the shouts it has heard, but because users have

44

JohnD Hello World

Alice Check out t...

DRBild Welcome

Sam Free Pharm...

Shouts

Username:

Public Key:

Private Key:

DRBild

75a483...

ea2fcc...

Profile

Favorite Users
ab36a152bbe7...
e15c4efc7907...
01cf8bda9c51...

JohnD Hello World

DRBild Welcome

Hagar Free food...

Fan05 Go Blue!

Shouts

Username:

Public Key:

Private Key:

JohnD

438eb9...

56f496...

Profile

Favorite Users
b166833700b0...
552eac505d44...
ed102eae0411...

Figure 3.3: Shout is fully-decentralized so information like past shouts and one’s user
profile is local to each device. Only shouts one has heard are available, so each device
has a different partial view of the history. Features like lists of favorite users must also be
managed locally.

different location histories, most will have observed different sets of shouts. Consequently,

any analysis or “view” of the world derived from the database can vary from user to user.

Features usually performed by a central server, like spam filtering, search, or authorship

verification must instead be performed locally.

3.3 Decentralized and Non-Hierarchical Architecture

In this section, we describe the Shout architecture and protocols, paying particular attention

to why these design decisions were made. First, we justify the decision to base Shout on ad

hoc WiFi networks and describe how this informs later design decisions. Subsequently, we

discuss our solution to decentralized identity management. Then, we describe the details

of the Shout network protocols, both for sharing messages and larger content like pictures.

Finally, we briefly discuss local message management, i.e., search and filtering.

45

3.3.1 Ad Hoc WiFi

Decentralized microblogging services have been previously proposed [69–71], designed

to improve reliability and increase scalability by reducing the dependence on a centralized

provider. Unfortunately, these solutions are insufficient to address our primary concern—

censorship—because they still rely on a hierarchical delivery mechanism, the Internet. In

particular, these solutions assume that communication costs are similar between all pairs of

users. Hierarchical structures approximate this property, but non-hierarchical networks, in

which transmissions between distance nodes must pass through all the intermediate nodes,

do not [38].

Hierarchical networks are inherently susceptible to censorship, because much traffic

flows through a few centralized points at the highest levels. These chokepoints are a prime

location to efficiently effect censorship and surveillance. Instead, we use non-hierarchical

networks, for which similar behavior would require controlling many of the participating

devices or communication links. We believe such control is too expensive or economically

damaging to be of concern.

We based Shout on ad hoc WiFi, a non-hierarchical networking technology already

widely deployed. The prevalence of existing hardware support means that Shout is easily

deployed as a software installation7, significantly increasing the chances of real adoption. In

short, we chose ad hoc WiFi for its censorship-resistant, non-hierarchical structure and its

existing availability.

The choice of ad hoc WiFi influences many aspects of the design. The range of a

single transmission is short, 50–100 m and multi-hop throughput does not scale [38], so

most communication must be local. Generally, transmissions should be of interest to the

recipients, not just intermediate hops on the path to an interested receiver. Individual

7Some platforms, like Android, disable the ad hoc mode in software. These limitations are easily removed
by a software update and can be worked around by rooting the phone. We hope that apparent support for the
emerging WiFi Direct standard [72] signals that manufactures will better support ad hoc connectivity in the
future.

46

transmission sizes are limited, usually to 1500 bytes8. Typical Shout broadcasts should

fit in such packets. All transmissions are effectively broadcast, so for highest efficiency,

all messages are public and readable by any device in range of the transmitter. We do not

naïvely support encrypted messages in Shout. Finally, routing schemes do not scale with

network size, as routing table maintenance consumes an increasing fraction of network

bandwidth [40, 41]. Thus, we do not support addressing of messages—like friends and

followers in social networks—in Shout9. Messages are assumed to be intended for those

nearby—content of broader interest can propagate further via reshouting.

3.3.2 Identity Management

Identity management in a decentralized system is not trivial. In a service like Twitter, one

trusts the centralized system to ensure that usernames are unique and only the true owner of

an account can post. Without such an omnipotent authority, the desired properties must be

explicitly enumerated and incorporated into the protocol.

The first task is determining the purpose and features desired for identities in Shout. At a

high level, we wish to support the notion of authorship. Each message should be associated

with an authoring entity, so that messages from the same entity are easily grouped and those

from different entities easily separated. Further, the authorship should be verifiable. Such

verification is useful in two ways. First, it allows confirmation that a message purporting to

be from a particular person, say a friend, is not a forgery. Second, it allows the development

of anonymous entities known only by their posts. For example, confirming that a message

containing surprising, hard-to-believe information came from an otherwise-unknown entity

who has only posted true things in the past might increase one’s belief in the new message.

Thus, we desire an identification scheme that is decentralized (i.e., no central authority

8WiFi supports larger MTUs, but the the Ethernet MTU of 1500 bytes is usually used, on the assumption
that transmissions are Internet-bound and thus eventually traverse an Ethernet link.

9Shout could be easily extended to support tags on messages—much like hashtags in Twitter—-that could
be used for content-based addressing. We don’t believe this is critical for censorship-resistance and thus is left
as future work.

47

Decentralized

Secure

M
em

or
ab

le

P
ub

lic
 K

ey
s U

sernam
es

Figure 3.4: Zooko’s triangle [2]. A single naming scheme can include only two of the prop-
erties. The Shout protocol uses both self-chosen usernames and public keys to incorporate
all three properties. Third identifiers can be generated locally to provide unique names that
are easy for humans to compare and remember.

is needed to issue them), secure (i.e., authorship is not forgeable), and memorable (i.e.,

humans can easily remember and identity important names). Further, the scheme should be

simple and not require significant network resources. Unfortunately, a scheme with all three

properties is not believed possible.

These properties are known as Zooko’s triangle, illustrated in Figure 3.4, and the general

belief is that a single naming scheme can have only two of the properties [2, 73]. Thus, for

Shout, we employ two naming schemes, self-chosen usernames and public keys. In typical

situations, with most network participants behaving, the usernames, which are decentralized

and meaningful, will be sufficient. Should two nearby people pick the same name, one will

likely change to reduce confusion. Only in the case of intentional impersonation is such

duplication a serious concern. For this, Shout employ public keys, which are decentralized

and secure. Each message includes both a username and public key and is signed by the

corresponding by private key. These signatures serve to prove the authorship of a message.

Users wishing to verify authorship against real-world identities can exchange public keys

out-of-band, much like PGP.

Of course, public keys and signatures are not intended to be human-readable. Without

48

help, most users will likely rely on the username only, missing possible forgeries. We

summarize several possible solutions next.

The program could proactively warn users about duplicate usernames. When a displaying

a shout with a username used by multiple public keys (in the local set of shouts), a warning

could be display to the user. The user could then compare the shouts sent under each of

the public keys to help determine the actual author identity. This sort of solution places

significant burden on the user and is likely to be disabled or ignored.

Instead, displaying a name that spans the other leg of Zooko’s triangle—one that’s

secure and meaningful—is best. These cannot be global and thus must be local to each

user’s device. For example, consider using color as the identifier. A different color could be

locally assigned to each duplicate user and displayed as a border or background on the shout.

Textual names are perhaps more memorable. Steigler proposed a system along these lines

with his Petname system [73]. Here, one picks a local identifier, or petname, to correspond

to the global identifier, or public key, and the system translates between the two. That is, the

local petname is displayed instead of the public key. As long as the user assigns distinct

petnames, they are secure and meaningful.

Regardless, the Shout protocols are independent of these solutions. Shout supports

the two legs of the triangle possible in a decentralized system and is easily extended to

incorporate local systems for the third. Existing key-exchange and signature verification

programs, like web-of-trust and PGP, are compatible with Shout. Further, arbitrary third-

party solutions for mapping public key to local secure and memorable identifiers can be

used. We hope Shout serves as a platform to test various solutions to this problem with real

users.

Some have authors have tried to “square the triangle”, by proposing identity schemes

that claim to have all three properties [74]. For example, Namecoin [75], a distributed

DNS-alternative based on Bitcoin [76], uses hashchain-based proof of work to generate

49

Original Shout Original Shout

Reshout

Original Shout

Comment

Original Shout

Comment

Reshout

Figure 3.5: The three types of shouts and their relationships. Comments are restricted to a
single level so that the largest full chain (a reshout of a comment) will fit in one WiFi frame.

globally unique and secure mappings between public keys, URLs, and addresses10. These

schemes require that changes to the global hashchain be propagated to all users, and thus

are not suitable for limited-throughput ad hoc networks.

3.3.3 Messages

Two primary considerations directed the design of the Shout message format. First, each

transmission should be less than 1500 bytes, to fit the MTU of real-world WiFi devices.

Second, each transmission should carry the full context for the message, e.g., the prior shout

if the message is a comment. These requirements tightly constrain the information that can

be fit into a shout and the length of comment chains.

Figure 3.5 show the three types of shouts. Original shouts are stand-alone, new posts.

A comment is a new message that also references an original shout. When the comment is

broadcast, the original shout is included in the same transmission so the conversation context

is guaranteed to be available to the recipient. Comments may not reference another comment,

because the context chain would be too long. A reshout is more than just a rebroadcast of an

existing shout. It contains all information of regular shout except a message, but references

the original shout (or comment) being reshouted. Again, the full chain is transmitted.

10Under certain assumptions about the relative computational power of attackers to conforming participants.

50

Version FlagsPacket Length (max 514)

LSB (0)

MSB (7)

MSB (31)

LSB (0)

Type (0x00)

MSB (31)

LSB (0)

Public Key X Coordinate

Public Key Y Coordinate

Timestamp
Milliseconds since Unix epoch

MSB (31)

LSB (0)
Avatar Hash

Length [1–40] Sender Username (1–40 bytes) Length [0–240]

Message (0–240 bytes)

LSB (0)

MSB (7) Longitude (Optional, see Flag 4)
IEEE 754 Double

LSB (0)

MSB (7) Latitude (Optional, see Flag 4)
IEEE 754 Double

LSB (0)

MSB (7)
Parent Shout Hash (Optional, see Flag 5)

LSB (0)

MSB (7)
Signature R Value

LSB (0)

MSB (7)
Signature S Value

MSB LSB

4 Has Location Fields

5 Has Parent Field

6 Unused

7 Unused

Figure 3.6: The network packet format for a shout. The hash used to reference a shout is
also computed over this canonical form.

Each shout contains the fields one would expect for a microblogging application, as

show in Figure 3.6. The user is identified by a self-chosen username and public key, as

discussed in the preceding section. Avatar images are too large to fit in a packet and are

unlikely to change frequently, so only a hash-based reference is included. Subsection 3.3.4

describes the protocol for retrieving the actual image. A timestamp indicating the time of

sending is included, although recipients have no way to verify this time. The location from

which the shout was sent may be included, but again, it cannot be verified. The message

contents are limited to 240 bytes, to fit the 1500 byte limit. If a reshout or comment, the

parent is referenced by including its SHA-256 hash, taken over the canonical network format

of the parent. Finally, the contents are self-signed. This signature can be verified using the

public key field.

Shout uses elliptic curve cryptography for digital signatures, because keys and signatures

are shorter than for RSA. A fixed curve, secp256r1, is used so to save space—the curve

51

name does not need to be transmitted. This makes changing the curve or signature algorithm

in the future more difficult, but given the nature of our application and the forecasted lifetime

of 256-bit ECC [77], we think the tradeoff is reasonable. The public keys are included

uncompressed—both the x and y coordinates are given in full.

3.3.4 Content Sharing

Internet-based microblogging services support user avatars and the referencing of additional

content via hyperlink in the message body. References to pictures, in particular, are often

automatically dereferenced, the image displayed inline with the message. Due to their

ubiquity in the online world, we believe these features are necessary in Shout to help

adoption, but implementing them in an ad hoc network is much more involved. As already

mentioned, bandwidth is limited, so transmitting kilobytes or megabytes of image or content

with each reshout is infeasible.

To reduce the bandwidth demands, images11 are instead shared asynchronously and

on-demand. Avatars change infrequently—most users will send many shouts with the

same avatar. Thus, a particular avatar need propagate through the network only once. On

subsequent shouts, it is already available locally and need not be re-transmitted. Attached

images may not see the same reuse, but the asynchronous, on-demand sharing still ensures

that the content is transmitted only when a recipient first requires it.

To ensure integrity, images are referenced in shouts by a cryptographically-secure SHA-

256 hash. Thus, the digital signature of the shout covers the image as well. The avatar hash

has its own field in the shout message format. Other images are included as URIs in the

message body, much like hyperlinks in Twitter, in the form shout://<hash>, where

<hash> is the 64 character hexadecimal encoding of the content hash.

Were the hash reference taken directly over the image, one would have to receive the

11The described scheme can share arbitrary content, but we envision images as the most popular use. We
use image in the remainder to ease explanation.

52

Content Descriptor

Mime Type Root Hash

Inner Node

Right Child
Hash

Left Child
Hash

Inner Node

Right Child
Hash

Left Child
Hash

Inner Node

<blank>
Left Child

Hash

Leaf Node

Content Chunk

Leaf Node

Content Chunk

Leaf Node

Content Chunk

Figure 3.7: Hash tree mechanism used to reference and distribute images and other large
content in Shout. The leaf nodes are packed to the left and contain the content is sequential
order. The content descriptor includes a MIME type, so that hash references to the tree
specify both the content bit string and how it should be interpreted.

entire content to verify its correctness. This opens a possible attack. In response to a request

for the image referenced by a given hash, an attacker could respond with an arbitrarily

large amount of incorrect content and the receiver would be forced to store it all, unable

to check its correctness until all was received. Instead, the hashing scheme should allow

the correctness to be verified at each transmission, so that falsified chunks can immediately

discarded.

Shout uses a hash tree to obtain this property, as illustrated in Figure 3.7. The content is

split into chunks of no more than 1450 bytes each—with headers, this fills the 1500 byte

MTU. These form the leaves of a binary tree, with each parent node containing the hashes

of its two children. The veracity of a particular node can be checked given only the hash

contained in its parent—no other portions of the tree are necessary. The packet formats

for leaf and inner nodes are shown in Figure 3.9. Hashes are taken over the entire packet

contents, as shown in Figure 3.8.

It is important that the recipient interpret the received binary content in the intended way.

53

IH(L,R) = SHA256(0x02 | size(0x00 | L | R) | 0x00 | L | R)

LH(X) = SHA256(0x02 | size(0x10 | X) | 0x10 | X)

CDH(X,M) = SHA256(0x01 | size(0x00 | X | size(M) | M) | 0x01 | X | size(M) | M)

Content: X1 X2 X3 X4

A = LH(X1) B = LH(X2) C = LH(X3) D = LH(X4)

E = IH(A,B) F = IH(C,D)

G = IH(E,F)

H = CDH(G,M)

MimeType: M

Figure 3.8: Example hash tree for content four data blocks long (X1, X2, X3, and X4) and
with MIME type M . The hash H would be included in the avatar field or Shout URI. The
SHA-256 hashes, computed over the canonical network format shown in Figure 3.9, are
defined here for clarity.

Unused

Version FlagsType (0x01)

Length

Message (up to 255 bytes)

MSB LSBPacket Length (max 289)

MSB (31)

LSB (0)
Hash of Root of Tree

Version FlagsPacket Length (65)Type (0x02) MSB LSB

MSB (31)

LSB (0)
Left Child Hash

MSB (31)

LSB (0)
Right Child Hash

4 1 — Leaf Node

5–7 Unused

Version FlagsPacket Length (max 1451)Type (0x02) MSB LSB

Content Data Block (up to 1450 bytes)

Leaf Node Packet

Inner Node Packet

Content Descriptor Packet

4 0 — Inner Node

5–7 Unused

Figure 3.9: The network packet formats for content descriptors and hash tree nodes.

54

Unused
Version FlagsType (0x03) MSB LSBPacket Length (33)

MSB (31)

LSB (0)
Hash of Content Descriptor

Figure 3.10: The network packet format for content requests.

A bit string might be, for example, both a valid image file and a valid, but malicious, exe-

cutable. A trusted sender might reference the image and a recipient tricked into interpreting

it as an executable. To prevent this, Shout embeds a MIME type into the hash tree for each

piece of content, so that the digital signature of the shout covers not only the content, but

also how it should be interpreted. This content descriptor is illustrated in Figure 3.7 and

Figure 3.9. It contains both the MIME type of the content and the hash of the root of the

tree. The avatar field and Shout URIs reference the hash of the content descriptor.

The content descriptor and hash tree packets are transmitted on demand. When a client

tries to view an image it does not have, Shout sends a content request packet, shown in

Figure 3.10, to request it. Any one-hop neighbors with that content will respond. Responses

are randomly delayed to reduce collisions and if a valid response from another device is

overhead, the response is not sent. If no neighbor responds, the request is retried with

exponential back-off.

On the assumption that a device missing a parent node is also missing its children, the

subtree rooted at the requested node is sent proactively. For the typical case, where the

entire tree is needed, this requires only a single content request packet, instead of one for

each tree node.

The content is most easily available when the shout referencing it is first heard—the

node sending the shout likely has the content—so it is proactively requested then. Each

incoming shout is scanned for avatar and image references and those that are unavailable (or

partially unavailable—some tree nodes are missing) are requested immediately.

This system does not guarantee the availability of avatars, images, and other content,

because content is requested only from one-hop neighbors. Although this request range

55

could be extended at the cost of additional bandwidth and energy, we think the one-hop

neighborhood provides a good tradeoff between efficiency and availability.

3.3.5 Message Management and Filtering

Internet-based microblogging services employ a variety of means to help users sift through

the flood of posts for the ones they are interested in. The two most common are user

whitelisting (following in Twitter parlance) and search. All posts from whitelisted or

followed users show in one’s main feed, providing an easy way to specify the exact sources

to listen to. Search provides an easy way to find recent posts about specific events or ideas.

Hashtags, user-directed labels, facilitate such searches. Further, the services filter spam

and fraudulent posts to increase message quality. In Shout, all such filtering must be done

locally.

All overheard shouts are included in the local database, so searching and filtering is

largely independent of the Shout protocols. The local application responsible for displaying

shouts to the user can support arbitrary methods independent of other Shout users. This

makes Shout an excellent platform for experimenting with search and filtering ideas.

We believe that persistent, user-defined search queries can fulfill the same features

offered by Internet-based services. For example, a search query that selects all shouts from

a group of users is essentially equivalent to a follower-based Twitter feed12. Similarly,

persistent searches for particular keyword, hashtags, or locations offer alternative methods

of subscribing to certain shouts.

Spam is a more vexing problem. Although the follower-like search queries mentioned

previously offer a method to whitelist certain senders, effectively hiding spam, they hurt

one of the primary motivators for Shout. Shout should be useful for exchanging ideas with

nearby strangers—people one has no knowledge of or reason to whitelist. Thus, a different

12The primary difference is that such a search can return only the shouts heard, not necessarily all shouts
sent by that group of users

56

approach for spam filtering is needed.

Chapter 6 develops a spam detection technique, but we briefly describe the intuition here.

Spam filtering can be done in two ways, blocking content (spam) or senders (spammers).

We believe the first is too difficult to do automatically, as messages are short and spammers

clever [78]. Shout offers natural resistance to the spread of spam—most people will not

reshout junk and thus it will not spread—but it will still annoy people in the one-hop range

of the spammer. Thus, we focus instead on identifying and blocking spammers.

Blocking of spammers comes in two fashions, whitelisting and blacklisting. With

blacklisting, all senders are presumed innocent and only blocked after exhibiting behaviors

of a spammer. With whitelisting, all users are presumed guilty and only unblocked after

exhibiting behaviors of a non-spammer. Blacklisting is useless in Shout, because the

spammer can simply create a new identity once blacklisted13. Thus, we are forced to

consider whitelisting.

We have already ruled out explicit manual whitelisting, because strangers will not

be whitelisted. Instead, we develop an implicit whitelisting strategy based on reshouts.

Intuitively, non-spammers should be reshouted more frequently and by more users than

spammers. Consider a graph with users as nodes and a directed edges representing that one

user reshouted another. Non-spammers should be more-connected in this graph and have

shorter paths between them. Our strategy classifies spammers and non-spammers according

to their connectivity in this graph.

Spammers are free to create arbitrary connections between their own identities, altering

that portion of the graph. To combat this, the graph is rooted at the user doing the spam

filtering. The spammer identities, no matter how connected amongst themselves, should still

have low connectivity to this trusted node.

This approach requires some bootstrapping. The graph can be constructed only over the

locally-available shouts. When first joining Shout, this set is small. Instead, one can prime

13The Shout software can still support blacklisting, as it may be helpful against some advertisers or otherwise
annoying users. But it is not, on its own, a sufficient defense against spam.

57

the set by retrieving all shouts from a trusted friend or acquaintance who has been using

Shout longer.

Further, a new user joining Shout will not have been reshouted and thus will not be

connected in the reshout network. We deal with this in two ways. First, friends can manually

whitelist the new user. They will see his shouts and, if appropriate, reshout, building the

users reshout connectivity. Second, some users may wish to browse the unfiltered timeline

of shouts and, upon seeing good content, reshout it. We suspect that if the spam filtering

strategies are good, the unfiltered timeline will still be relatively spam free. (Remember that

spammers can only reach one hop, so spamming many locations is at best complex and at

worst very expensive).

3.4 Security Analysis

This section describes several attacks on Shout and its primary goal, censorship-resistance.

Censors can employ two classes of techniques against Shout. First, they could block

transmissions by technical or legal means. Second, they could fine, imprison, or otherwise

harm individuals using the system such that a fear of reprisal discourages further use. We

discuss both classes and describe how Shout defends against or mitigates these attacks.

Some of these attacks are outside of our attack model—largely because we believe them

infeasible—but are mentioned here for completeness.

3.4.1 Censorship by Blocking

The most obvious technical means to block Shout transmissions is to jamming the radio sig-

nals. Although technically feasible, Shout’s distributed nature mitigates this risk. Blocking

most Shout traffic require jamming the airwaves around most users, a very expensive and

disruptive proposition. Legitimate and economically-important business uses of WiFi would

also suffer. Practical jamming attacks will be limited to small regions and thus not a serious

58

concern for our distributed architecture.

To avoid blocking allowed traffic, censors could instead employ selective jamming,

blocking only those transmissions that appear to be Shout content. This method has even

greater expense—the airwaves around most users must be monitored and jammed using

more-sophisticated, and thus more-expensive, jamming equipment—so again we do not

find this to be a serious practical concern. Steganographic techniques for Shout traffic to

masquerade as other legitimate traffic (e.g., standard encrypted AP-based WiFi traffic) could

be developed, but we believe the costs of the increased complexity outweigh the near term

risks of selective jamming.

A potentially more cost-effective approach is to mandate that smartphones (laptops,

etc.) come equipped with software that blocks the installation or use of tools like Shout.

Again, although technically feasible, we believe this is practically difficult. This type of

cenosrship is much more publicly visible than filters on top-tier routers and requires the

direct cooperation of many people in the supply chain. Public response and disagreement

is much more likely. History supports our view. The Chinese government mandated that

by July 2009 that every computer sold in China must include the Green Dam Youth Escort

software content filter [66, 67]. The law prompted significant criticism levied at both the

moral implications of such a requirement and practical flaws in the software itself. Shortly

before it was to take effect, the mandate was postponed and, as of 2013, has not been

reinstated.

As an extreme approach, a government could ban the sale of devices containing WiFi

transceivers. Again we think this is infeasible in the long run, as wireless network access is

both extremely popular among the public and important to many businesses. China has had

some success in mandating that WiFi devices sold there support the government-approved

WLAN Authentication and Privacy Infrastructure (WAPI) protocols, custom alternatives to

the standard 802.11b and 802.11i security protocols [79]. Some devices were initially sold

without WiFi capability, but demand has lead to later models including it. Use of WAPI,

59

instead of 802.11i, appears scarce.

3.4.2 Censorship by Reprisal

A more concerning avenue for censoring Shout users is reprisal—people concerned for their

property, safety, or freedom are more likely to self-censor. Although Shout is not designed

to completely eliminate such concerns or provide a strong notion of anonymity to senders,

we describe here the extent to which such anonymity is possible in Shout.

Perhaps the most important protection is that users cannot be required to explicitly

link their real-world identities to those in Shout. China is attempting to force users to

register with Internet services using their real names [80] and Saudi Arabia is considering

similar legislation for Twitter14 [81]. In Shout, identities (usernames and public keys) are

decentralized and changed at will; no authority can mandate any structure or content. That

Shout posts do not (have to) contain directly identifying information significantly increases

the challenge of identifying those posting messages.

Senders can still be identified by the location of transmissions, albeit at much greater dif-

ficulty and expense. Triangulation methods can identity the precise location of a transmitter.

Simply observing a shout in some location reduces the anonymity set of the sender to those

within WiFi range, 50–100 m. More sophisticated traffic analysis can reduce the anonymity

sets further. For example, one could correlate the multiple locations of objectionable shouts

to find the people who frequent both locations—say home and work.

Although Shout does not directly protect against these schemes, it does reduce the risk.

Monitoring and collecting all traffic is prohibitively expensive, so such attacks are likely to

be targeted at specific individuals, not levied against the entire population by large-scale,

preemptive data analysis. For users already on government watchlists, Shout may be too

risky. For typical people, it should offer a method to communicate free of the censorship

often imposed on Internet-based services.

14How this would be implemented or enforced is unclear.

60

Content Provider

Stores all sent and
received shouts.

Activities

Browse
shouts

Write
and send
a shout

View
details

of a
shout

Background Service

Other Shouters

Receive
incoming
shouts

Respond to
content

requests

Retrieve
missing
content

Send
shouts

Future Third-Party
Activities and
Extensions...

Figure 3.11: Architecture of Shout implementation for Android.

3.5 Implementation

This section describes our implementation15 of Shout for Android smartphones. The Shout

protocol could be implemented for other platforms as well, e.g., iOS. We only require

support for device-to-device ad hoc communication. At this point in time, it is not clear

which mobile platforms will provide the best support moving forward. We chose Android

for our prototype because it is the most popular smartphone operating system [82], has good

support for background services and extensible applications, and is open-source, potentially

useful for future experimentation or research.

61

Figure 3.12: Screenshots of the Shout activities for browsing received shouts and viewing
detailed information about a specific shout.

3.5.1 Implementation for Android

Figure 3.11 shows the application architecture. The activities are the main interface and

display for users, the service runs in the background listening for new shouts and responding

to content requests, and the content provider stores and provides access to the received

shouts.

This architecture is intended to be extensible. The service behavior and provider contents

are largely determined by the Shout protocols, but other activities may interact with them.

We hope others experiment with, improve, extend, and maybe even replace the activity

components.

15Many people contributed to the implementation, including David Adrian, Nate Jones, Yue Liu, Gulshan
Singh, Anthony Tesija, Jonathan Tiao, and Bowen Xu

62

Activities: Screenshots of the two main activities are shown in Figure 3.12. The timeline

activity shows an ordered list of received shouts. Tapping on a shout reveals any comments

and buttons for reshouting, adding a comment, or opening the details view. The details

activity shows extended information about a shout, including when it was received, a map

of its location of those comments and reshouts, and a list of the reshouts.

Service: The service runs in the background listening for new shouts. When new shouts

arrive, they are stored in the content provider. The service manages the exponential backoff

policy for requesting missing content and responds to content requests, if that content is

available.

Content Provider: The content provider stores and provides access to the shouts. Other

applications may access the provider, so methods of displaying, filtering, or analyzing the

shouts not directly supported by our release are easily added.

3.5.2 Practical Implementation Concerns for Ad Hoc WiFi

Unfortunately, Google has disabled the ad hoc feature of WiFi, so it cannot be used without

rooting the phone. Instead, Shout is deployed on MANES (Chapter 4), a mobile ad hoc

network emulation system. MANES estimates the ad hoc topology of client devices by

monitoring their locations and visible WiFi access points. Packets intended to be broadcast

over the ad hoc WiFi are instead send to the MANES server, which relays them to the

devices estimated to be within range. Shout itself does not depend on MANES and when ad

hoc WiFi (or other solutions like QualComm’s AllJoyn [83]) is available on stock Android

phones, Shout will run on them as well.

There are two other practical difficulties with deploying ad hoc WiFi.

First, many users employ WiFi to connect to an access point and the Internet. Using the

WiFi card in ad hoc mode instead is not acceptable. Time-multiplexing methods exist to

connect to two network “simultaneously” [84–87], but these are not yet widely deployed.

The emerging WiFi-Direct standard [72] is new peer-to-peer technology based on WiFi that

63

is supported by Android. Some WiFi drivers do support simultaneous use of WiFi-Direct

and an access point, so we hope simultaneous support for the ad hoc is forthcoming as

well16.

Second, average power consumption is much higher in ad hoc mode. When connected

to an access point, WiFi transceivers may sleep most of the time, allowing the AP to buffer

incoming packets and waking up only occasionally to check this queue. In ad hoc mode, no

buffering access point exists and the device must remain listening at all times. This problem

is solvable—for instance, by synchronizing the sleep schedules of the ad hoc devices—but is

beyond the scope of Shout. Solutions needs to be incorporated into the WiFi protocols and

device drivers. As with dual use, we hope the emergence of WiFi-Direct leads this charge.

16An alternative is to use WiFi-Direct, instead of ad hoc WiFi for Shout. This direction looks promising, but
we have not pursued it yet.

64

CHAPTER 4

Mobile Ad Hoc Network Emulation System

4.1 Introduction

For ad hoc network applications like Whisper and Shout, the human participants strongly

affect performance. As device carriers, their motions define the topological characteristics of

the network, determining connectivity and influencing throughput and latency. As the users

of the applications, their interactions and interests determine the ideal information flow—

what should be sent where and when. Accurate consideration of these human properties is

paramount for ad hoc system design and optimization.

Testing and characterization is commonly done through simulation—model- or trace-

based—or small-scale deployment, but these approaches suffer some limitations. Models of

human motion don’t capture the nuance of the real world and detailed models of human–

application interaction simply do not exist. Traces can provide finer granularity, but cannot

capture the influence of modifications to the application on the human behavior. Deployment

with real people is much better, but is usually limited to small groups. Specialized hardware

and platform software impose significant per-participant costs. Larger-scale deployments

are needed.

The ubiquitous smartphone appears an excellent avenue for large-scale deployments, as

the hardware is already paid for, distributed, and in everyday use. Unfortunately, Android,

the most popular smartphone platform, disables the ad hoc functionality of the included

65

WiFi chipset, crippling its use. Further, the WiFi transceiver is usually employed for Internet

access and thus not available for ad hoc use1. Additionally, the WiFi ad hoc mode does

not use the same power-saving tricks as infrastructure mode and thus has higher power

consumption2.

Using existing smartphones still appears the easiest and cheapest path for large-scale

deployments, so we have built MANES, a mobile ad hoc network emulation system that

works around the aforementioned issues with ad hoc connectivity. The system estimates the

network topology using sensor readings provided by the client devices and relays packets

through the infrastructure network—WiFi access points or cellular towers—to the estimated,

in-range neighbors. Other efforts, like QualComm’s AllJoyn3, tackle a similar problem, but

are designed for long-term production deployments, not research. That approach, based

on peer-to-peer networking, does not offer the same controllability and observability as

MANES.

We make the following primary contributions4.

• We describe MANES, an emulation system for ad hoc 802.11 that allows researchers to

run their protocols and applications on commodity smartphones, enabling large-scale

deployments at low cost.

• We provide a production implementation of the MANES server and an Android client.

The client could be easily ported to other platforms as well. This software will be

released to the research community.

• We develop a technique to estimate ad hoc connectivity from the signal strengths of

the access points visible to both devices.
1Solutions based on time-multiplexing allowing “simultaneous” connect to multiple APs or ad hoc networks

exist [84, 85], but none ship with commodity smartphones.
2Solutions are possible here too, but would not be available on existing commodity devices.
3http://www.alljoyn.org
4MANES is very much a collaborative effort. In particular, David Adrian, Yue Liu, and Gulshan Singh

contributed to the implementation. Yue Liu and Rongrong Tao designed and implemented the topology
estimation. All portions of the system are described in this chapter for completeness.

66

4.2 Difficulties with Mobility Models or Why MANES?

When human motion patterns are the primary concern, mobility model-based simulations

may appear sufficient. Selecting an appropriate model is necessary—random waypoint is

clearly insufficient [88]—but much work has gone into developing such models and many

have been proposed [3, 4, 50, 89, 90]. Despite this plentiful supply, selecting one appropriate

for a given simulation is still rather difficult. Many of the models are incomparable (i.e.,

they model different features of human mobility), so a single “correct” model does not exist

and selecting an appropriate one is difficult.

Current human mobility models each attempt to capture various statistical features of

human motion determined from motion traces for real humans. Consequently, the models

are distinguished in two primary ways: (1) by the qualitative set of features modeled (e.g.,

distribution of flight lengths) and (2) the quantitative fits (e.g., power law distribution with

α = 2) for those features, usually inferred from human traces. Figure 4.1 illustrates the

qualitative difference by showing the spatial density of nodes for traces from two mobility

models, TLW [3], which does not model the “hotspot” nature of human locations, and

SLAW [4], which does.

The quantitative differences are more nuanced, as they depend on the traces to which a

model was “fit” and, consequently, are influenced by any biases (intentional or accidental) in

the trace populations and measurement methods. Figure 4.2 illustrates this for aggregate (i.e.,

population, not single individual) flight length distributions derived from three populations:

(1) fine-grained traces (from GPS) for students on a university campus [4], (2) coarse-grained

traces (from cell-tower locations during calls) for two populations of cell-phone users in

Europe—a set of 100,000 users and a subset of 10,000 users chosen for their frequent

and regular calling activity— [46] and (3) coarse-grained traces (from airline ticket data)

for United States travelers. All four capture the long-tailed nature of human movement,

but with three different distributions (power-law, power-law with exponential cut-off, and

exponential, respectively) and, for the two cell-phone user populations, the same cut-off

67

X position (m)

Y
 p

os
iti

on
 (

m
)

0

200

400

600

800

1000

0 200 400 600 800 1000

(a) TLW: no “hotspot”

X position (m)

Y
 p

os
iti

on
 (

m
)

0

200

400

600

800

1000

0 200 400 600 800 1000

(b) SLAW: “hotspots”

Figure 4.1: Example node spatial distributions (over 20 individual traces) from the TLW [3]
and SLAW [4] models. SLAW captures the notion of “hotspots” in human locations, while
TLW does not.

power-law distribution but with different parameters.

In theory, with enough fine-grained traces, a more comprehensive model could be

developed. Unfortunately, obtaining such traces is difficult; privacy concerns (and, before the

proliferation of GPS-equipped smartphones, technical and economic constraints) preclude

the collection and distribution of fine-grain, long-duration spatio-temporal traces for large

sample sets. Instead, the traces used for modeling are biased by reducing spatial and temporal

resolution, Thus, choosing an appropriate model requires determining both the desired

qualitative features and their quantitative instantiations, selecting one whose underlying

data-set properly captures them.

These differences raise several concerns for those using the models. How should one

select a model? How does one determine if the model correctly captures the behaviors on

which the one’s protocols are sensitive, especially when the model is used to discover those

behaviors? How much confidence should be placed in the result?

These difficulties motivated us to pursue direct, deployment-based characterization.

68

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

p
(∆

r)

∆r (km)

100000 Cellphone Users
10000 Cellphone Users

US Air Flights

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

p
(∆

r)

∆r (km)

KAIST

Figure 4.2: Flight length probability density functions for four different data sets, illustrating
their underlying biases.

69

MANES Servers

B

C

D

E

F

A

B C
D

EF

Figure 4.3: Overview of MANES architecture. All clients report GPS and WiFi observations,
which are used to form an estimated topology. Packets are relayed via MANES, according
to this estimate. In the example, device C broadcasts a packet that is relayed to B, D, and
E.

MANES is the result. Simulation is still valuable—as discussed later, MANES does not

accurately model congestion, collisions, or the detailed network timing—but for applications

where human behavior is the primary independent variable, we believe deployment is not

just better, but necessary.

4.3 Architecture

This section describes the design considerations and architecture of MANES.

4.3.1 Architecture Overview

Figure 4.3 illustrates the portions of the operation of MANES, topology estimation and

packet relaying.

Client devices report the observed signal strengths of visible WiFi access points and,

when available, the location reported by GPS. The server analyzes these reports to estimate

70

the ad hoc network topology. Intuitively, many devices that can see the same access points

will be within ad hoc range. Similarly, devices determined to be in close proximity by GPS

should be within ad hoc range. The methods used to compute scalar link qualities from

these readings are described in Section 4.4.

To broadcast a packet, a client first sends it to the MANES server. The server relays the

packet to each connected device in the estimated topology. Packets are delivered to clients

via UDP, but some may sit behind NATs or firewalls. Periodic keepalives are sent to the

server to keep the NAT mapping or firewall hole open.

4.3.2 Problem Domain

MANES is intended for deploying and testing low throughput ad hoc applications dependent

on human motion and interaction. Packets are relayed through a MANES server, over

cellular and WiFi connections with highly variably latency and bandwidth. The protocols

(and subsequent analysis) should

• tolerate occasional delivery latencies of up to several seconds, as packets traverse

cellular networks [91],

• have little total throughput, as cellular plans are often limited to several gigabytes/month

or less,

• be insensitive to collision or congestion control, as these are not modeled (most

protocols meeting the throughput requirement will meet this as well), and

• be robust to inaccuracies in topology estimation, for device pairs that are borderline.

Whisper and Shout—our applications of interest—both fit this category, but low-level

protocols may not. For example, those attempting to maximize throughput or reduce

collisions in indoor environments are not good candidates for MANES.

71

4.3.3 Desired Properties and Design Challenges

An emulation system for ad hoc network researchers should not just emulate topologies, but

also help researchers and developers create, deploy, and test their applications, eventually

migrating them to true ad hoc support. As such, we desire the following properties for

MANES.

• Accuracy: We attempt accurate estimation of link qualities, as this implies accurate

topology. As will be discussed, such estimation can be difficult. When signals are

strong or non-existent, MANES does well. Weak signals are estimated more poorly.

• Scalability: The system should handle hundreds or thousands of users, for large-scale

deployments. MANES is built to be horizontally-scalable, so the limiting factor

is server and bandwidth costs. Delivery latencies scale with neighborhood density,

which are usually bounded.

• Usability: Developers should find the system easy-to-use. MANES provides a

simple API—standard send() and receive()—methods, so applications can be easily

transitioned to other underlying transmission protocols, like pure ad hoc WiFi.

• Efficiency: Smartphone battery capacity is limited and generally needs to last at least

a day. On the author’s phone, MANES uses just 4% of battery capacity over a typical

10 hour work day5.

• Observability: Researchers need access to topology and transmission histories to

characterize performance and possibly drive trace-based simulations. MANES logs

topology changes, the raw data used to estimate the topology, and all transmissions in

flat textual files for easy analysis.

• Controllability: Researchers may want to modify the network topology, inject trans-

missions, or block others to study various effects. The centralized MANES architec-
5Energy usage increases with the traffic rate. Most of that 4% is attributable to the topology estimation, not

packet transmission.

72

ture makes this easy. As an example, with Shout, we employ “virtual” reshouters to

increase the effective density and improve connectivity during early adoption.

Satisfying these properties requires solving two primary technical challenges.

Accurate Topology Estimation: Inferring the WiFi link quality between two devices

from indirect measurements is non-trivial. We take a two-pronged approach. First, when

both devices can observe some WiFi access points, we use the signal strengths of the APs

visible to both devices. Intuitively, if both see distinct sets of APs, they are not within

WiFi range of each other. If both see the same set, they are likely nearby and within range.

The actual AP signal strengths are used to estimate a more-detailed scalar link quality,

as described in Section 4.4. On the assumption that if no WiFi access points are visible,

then devices are outdoors, the link quality is determined by the distance between them, as

reported by GPS.

Energy Efficient Topology Updates: The topology must be up-to-date to ensure pack-

ets are delivered to the correct devices. Reporting the data used for estimation is consumes

energy on the clients, so the topology update latency and client energy usage must be

balanced. The more-efficient WiFi scans are used to detect motion. This scan runs periodi-

cally, and only when the results change is the power-hungry GPS turned on. Between GPS

readings, a simple velocity model is used to predict the current location.

4.3.4 Design Choices

API: The interface provided to application and protocol developers influences how easily

applications can be switched between MANES and other transport mechanisms6. MANES

is intended to emulate the 802.11 ad hoc broadcast mode, a layer 2 networking protocol,

so we mimic that interface [92]. The frame includes both the packet contents and an L3

protocol identifier, indicating which protocol or application should handle the incoming

6Systems like AllJoyn provide much higher abstractions to application developers, reducing working at the
risk of platform lock-in.

73

packet. Unlike typical network stacks, the receive method is a blocking and called by

the application, not a callback initiated by MANES. This approach is more familiar to

application developers used to the socket abstraction.

register(int protocolId) registers the application for a particular protocol id.

send(byte[] packet) broadcasts a frame with packet contents. The protocol id

specified during registration is used.

byte[] receive() awaits (blocks for) the next incoming packet for the registered

protocol id.

Scalability: Topology estimation should be fast, regardless of the number of users.

Consider that naïve topology estimation would require O(n2) comparisons. MANES scales

through two techniques, a horizontal, distributed architecture to spread load and an efficient

O(1) topology estimation algorithm7.

The distributed architecture is backed by a horizontally-scalable, key-value database,

Voldemort [93], an implementation of Amazon’s Dynamo architecture [94]. All MANES

servers are stateless, so requests from multiple clients are easily spread among them. Topol-

ogy estimation is performed by the server handling the upload of new WiFi or GPS readings.

Thus, the latency for the topology update is independent of the client upload rate; it depends

solely on the time for one topology computation.

Topology estimation is kept efficient by only comparing AP signal strengths or locations

with those nearby. The database is used as a large hash-based index for this purpose. A

reverse mapping from AP to client id is maintained, allowing quick look up of all clients that

reported observations for a given AP. Similarly for GPS, the Earth’s surface is divided into

250 m by 250 m “squares” and a reverse mapping from grid to clients stored, allowing fast

retrieval of all clients within 250 m of a given location8. With this approach, the computation

time is independent of network size, scaling instead with network density.

7The topology estimation algorithm is actually O(d2), but d, the network density, is bounded.
8All clients in the nine squares surrounding the location must be checked for proximity. This process is still

constant time and reasonably quick, although it could be reduced through a more precise indexing scheme.

74

Packet Delivery: Packet delivery from server to smartphone client is, unfortunately,

non-trivial. The NAT and firewalls guarding many networks prevent devices from accepting

incoming messages from unknown sources—all connections must be initiated by the device

and only responses are allowed through. Instead, a persistent connection—like an open TCP

connection—to the server and initiated by the client is needed.

Managing large numbers of TCP connections takes care, because they are stateful,

occupying resources like memory and port numbers. Further, on smartphones that frequently

drop connections as network connectivity changes, they must be carefully monitored and

restarted. MANES does not require the ordering and reliability guarantees of TCP, so to

simplify, we use the stateless UDP protocol.

Each client periodically (e.g., every 30 seconds) send a UDP packet to the MANES

server. The IP address and port number are stored in the database and used when relaying any

packets. This system consumes no resources on the servers (just in the scalable database) is

implicitly resilient to changes in network state. responds to changes in network connectivity.

4.3.5 Client Architecture

Figure 4.4 shows the architecture of the client software, implemented for Android. Most

components run in background service.

Location Tracker: The location tracker collects the information needed for topology

estimation, i.e., WiFi access points signal strengths and GPS readings. When the readings

have changed, it uploads them to the MANES server so the topology can be recomputed.

Packet Manager: The packet manager accepts incoming frames from the MANES

server and routes the contained packet to the appropriate application by protocol id. Frames

with no registered application are dropped. The packet manager also takes packets from the

applications, forwarding them to the MANES server for broadcast.

Keepalive Manager: The keepalive manager sends the UDP keepalive packet every 30

seconds. Keepalives are also sent whenever the network connectivity changes—e.g., from

75

MANES
Servers

MANES Client Service
Location
Tracker

Packet
Manager

Keepalive
Manager

MANES Client Applications

ManesInterface ManesInterface ManesInterface

Application 1 Application 2 Application 3

App Code App Code App Code

send() receive() send() receive() send() receive()

Figure 4.4: Architecture of MANES client software.

WiFi to cellular—to minimize down time.

ManesInterface: Each application instantiates its own instance of ManesInterface,

which provides the register(), send(), and receive() methods mentioned earlier. This gives

developers simple API, masking the complexity of communicating with a background

service in Android.

4.3.6 Server Architecture

Figure 4.5 shows the architecture of the server.

Topology Database: The topology database is multi-server Voldemort cluster that stores

the current topology, past WiFi and GPS readings needed for future topology estimations,

and the hash-based indexes needed for efficient topology estimation.

Topology Estimator: The topology estimator servers accept location and WiFi scan

reports from clients, store them in the database, and then compute a new topology estimate.

Details of the topology estimation methods are given in the next section.

76

Topology
Estimator

Packet Relayer Virtual Nodes

Topology
DatabasePacket

Log
Topology

Log

Clients

Figure 4.5: Architecture of MANES server system.

Packet Relayer: The packet relay servers accept incoming packets, relaying them to

the clients in-range according to the current topology estimate. It also handles the keepalive

packet, storing the current IP address and port number of the client in the database.

Text-based Logs: All information, namely raw GPS and WiFi scan reports, estimated

topologies, and sent packets are logged into text-based logs for observability and later

analysis.

Virtual Nodes: The virtual nodes represent the option for controllability. This could

be a component that mimics real clients, increasing effective density, or a component that

injects specific content to study the impact. MANES is intentionally modular, so researchers

introduce the specific control they need.

4.4 Topology Estimation

MANES estimates the link quality between devices to build the topology—if these link

estimates are accurate, so is the overall topology. However, determining the link quality

77

from the limited sensors on a smartphone is non-trivial. In this section, we summarize our

approach9, which uses WiFi access point scan results and GPS readings.

We use Packet Reception Rate (PRR), the fraction of sent packets successfully received,

to quantify link qualities. MANES randomly drops packets with probability proportional to

1−PRR to model this effect. PRR cannot be directly determined from a single measurement

(it’s an average over multiple transmissions), so we instead look for measurements from

which to estimate it.

The Received Signal Strength (RSS or RSSI), a value reported by commodity WiFi

devices, fits the bill10. Experiments with Nexus One smartphones, rooted and modified

to support ad hoc WiFi, were used to determination the ground truth PRR. Pairwise RSSI

and PRR measurements were made in a 110 locations spread throughout a large academic

building, including multiple floors, hallways, offices, labs, and open spaces. RSSI correlates

well with PRR at the extremes, i.e., when the signal is weak and PRR is zero or when the

signal is strong and the PRR is one. The prediction accuracy is worse in the transition

zone—−90–−80 dBm—but is still acceptable. We use the prediction function PRR ≈

1− exp(−RSSI−97.22
4.16

).

4.4.1 Received Signal Strengths of Visible WiFi Access Points

WiFi Direct is a new technology and not yet widely supported. Thus, most devices cannot

use it to directly measure RSSI. Instead, we develop a method to estimate RSSI from those

of visible access points. Intuitively, devices observing the same APs should be physically

close and thus able to communicate directly. Further, observed AP signal strengths should

be correlated with the attenuation of that wireless environment and thus reveal something

about the inter-device signal strength.

9This method was primarily developed and analyzed by Yue Liu with the help of Rongrong Tao, but is
summarized here for completeness.

10The Signal-to-Interface plus Noise Ratio (SINR) is better proxy for PRR [95], but is not calculated or
reported by commodity hardware.

78

A B
XPA PB

P

Figure 4.6: Heuristic for estimating the signalstrength P between two devices from observed
APs.

Figure 4.6 illustrates the heuristic approach, based on this intuition. Imagine that an

access point X was on the straight line between two devices, A and B. The inter-device

attenuation can be estimated as the sum of the two device-to-AP attenuations. Thus, the

inter-device RSSI, P can be estimated from the two RSSI observations of the AP, PA and

PB:

P = −10r · log
(

10
PA
10r + 10

PB
10r

)
, (4.1)

where r is an assumed path loss exponent shared by all paths.

In reality, an AP is unlikely to sit directly on that line. Instead, we heuristically choose

the AP closest to that line, i.e., the one indicating the strongest power:

P̄ = max
i

[
−10r · log

(
10

Pi,A
10r + 10

Pi,B
10r

)]
. (4.2)

This technique accurately predicts PRR when the signals are strong (PRR = 1) or non-

existent (PRR = 0), but lacks the fidelity to determine intermediate PRRs when connectivity

is borderline.

4.4.2 GPS Distance Measurement

Some environments, particular those outdoors, may not have enough access points to support

RSSI estimation. In these scenarios, we instead fall back to location-based PRR estimation

79

using GPS. Distance and PRR is not as highly correlated as RSSI and PRR, but is still

sufficient, particularly for outdoor devices. WiFi-based estimates are preferred; GPS is used

only when WiFI is unavailable.

80

CHAPTER 5

Mason Test

5.1 Introduction

The open nature of wireless ad hoc networks (including delay-tolerant networks [96])

enables applications ranging from collaborative environmental sensing [97] to emergency

communication [98], but introduces numerous security concerns since participants are not

vetted. Solutions generally rely on a majority of the participants following a particular

protocol, an assumption that often holds because physical nodes are expensive. However,

this assumption is easily broken by a Sybil attack. A single physical entity can pretend to be

multiple participants, gaining unfair influence at low cost [57]. Newsome et al. survey Sybil

attacks against various protocols [99], illustrating the need for a practical defense.

Proposed defenses (see Levine et al. for a survey [100]) fall into two categories. Trusted

certification methods [101, 102] use a central authority to vet potential participants and thus

are not useful in open ad hoc (and delay-tolerant) networks. Resource testing methods [103–

106] verify the resources (e.g., computing capability, storage capacity, real-world social

relationships, etc.) of each physical entity. Most are easily defeated in ad hoc networks

of resource-limited mobile devices by attackers with access to greater resources, e.g.,

workstations or data centers.

One useful class of defenses is based on the natural spatial variation in the wireless

propagation channel, an implicit resource. Channel responses are uncorrelated over distances

81

I

A

B

S1

M

S2

(a) RSSI observations from
trusted APs identity the Sybils,
S1 and S2, from attacker M .

I

A

B

S1

M

S2

(b) In ad hoc networks, the par-
ticipants themselves act as ob-
servers, but can maliciously re-
port falsified values.

A

I

B

S2

S1

(c) If I believes the falsified
observations from S1 and S2,
it will incorrectly accept them
and reject A and B as Sybil.

Figure 5.1: Prior work [5, 6] assumes trusted RSSI observations, not generally available in
ad hoc and delay-tolerant networks. We present a technique for a participant to separate true
and false observations, enabling use in ad hoc networks. (Arrows point from transmitter to
observer.)

greater than half the transmission wavelength [107] (6.25 cm for 2.4 GHz 802.11), so

two transmissions with the same channel response are likely from the same location and

device [5, 108]. However, the existing Sybil defenses in this class are not directly usable in

open ad hoc networks of commodity devices.

Xiao et al. observe that in OFDM-based 802.11 the coherence bandwidth is much smaller

than the system bandwidth and thus the channel response estimates at well-spaced frequency

taps are uncorrelated, forming a vector unique to the transmitter location and robust to

changes in transmitter power [5]. Unfortunately commodity 802.11 devices do not expose

these estimates to the driver and operating system, restricting this technique to specialized

hardware and access points.

Commodity devices do expose an aggregate, scalar value, the received signal strength.

RSSI is not robust to changes in transmitter power, so a vector of observations from multiple

receivers—a signalprint—is used instead. Several authors have proposed such methods [5,

6, 109–113] assuming trusted, true observations. In open ad hoc networks, observations are

untrusted, coming from potentially-lying neighbors, as illustrated in Figure 5.1. Trust-less

82

methods have been proposed, but have various limitations (e.g., devices must be non-

mobile [114], colluding attackers can defeat the scheme [115], or are limited to outdoor

environments with predictable propagation ranges [116]). Instead, a general method to

separate true and false observations is needed.

We make two observations that enable separation. First, with high probability attackers

cannot produce false observations that make conforming identities look Sybil. Second,

nodes complying with the protocol outnumber physical attacking nodes (motivating the

Sybil attack), implying that most non-Sybil identities tell the truth.

Most past work assumes nodes are stationary, as moving attacks can easily defeat

signalprint-based detection. As noted, but not pursued, by Xiao et al., successive trans-

missions from the same node should have the same signalprint and attackers likely cannot

quickly (i.e., in milliseconds) switch between precise positions [5]. We develop a challenge–

response protocol from this idea and study its performance on real deployments.

We make the following primary contributions1.

• We prove conditions under which a participant can separate true and false RSSIs

reported by untrusted neighbors, enabling signalprint-based Sybil detection in ad hoc

networks of mutually distrusting nodes.

• We develop anO(n3) algorithm for this separation suitable for networks with hundreds

of one-hop neighbors.

• We develop a challenge-response protocol to detect attackers using motion to bypass

the signalprint-based Sybil defense.

• We describe the Mason test, a practical protocol for Sybil defense based on these

ideas. We implemented the Mason test as a Linux kernel module for 802.11 ad hoc

networks2 and characterize its performance in real-world scenarios.
1This work was performed in close collaboration with Yue Liu. She identified the initial problem, developed

an initial solution which served as a foundation for the one described within, and performed some of the
evaluation.

2http://github.com/EmbeddedAtUM/mason/

83

http://github.com/EmbeddedAtUM/mason/

A

B

C

D E

A: 12

A: 25

A: 31

A: 20

B: 19

B: 18

B: 17

B: 27

(a) Nodes record their ob-
served RSSIs of probes broad-
cast by neighbors. A and B
have sent; C, D, and E are
next.

A: 12
B: 17

A: 12
B: 17

A: 12
B: 17

A: 12
B: 17

A: 12
B: 17

A: 25
B: 18

A: 25
B: 18

A: 25
B: 18

A: 25
B: 18

A: 25
B: 18

A: 31
B: 27

A: 31
B: 27

A: 31
B: 27

A: 31
B: 27

A: 31
B: 27

A: 20
C: 16

A: 20
C: 16

A: 20
C: 16

A: 20
C: 16

A: 20
C: 16

B: 19
C: 15

B: 19
C: 15

B: 19
C: 15

B: 19
C: 15

B: 19
C: 15

A

B

C

D E

(b) RSSI observations are
shared among all participants.
Malicious nodes could lie
about their observations.

A

B

C

D E

[· · ·] A

[· · ·] D
[· · ·] E

[· · ·] C

[· · ·] B

[· · ·] D
[· · ·] E

[· · ·] C

[· · ·] A

[· · ·] D
[· · ·] E

[· · ·] B

[· · ·] A

[· · ·] C
[· · ·] D

[· · ·] B

[· · ·] A

[· · ·] C
[· · ·] E

[· · ·] B

(c) Each participant selects a
subset of the observations to
form signalprints for Sybil de-
tection.

Figure 5.2: The solution framework for signalprint-based Sybil detection in ad hoc networks.
This chapter fleshes out this concept into a safe and secure protocol, the Mason test.

5.2 Problem Formulation and Background

In this section, we define our problem, overview the solution framework, describe our attack

model, and briefly review the signalprint method.

5.2.1 Problem Formulation

Our high-level goal is to allow a wireless network participant to occasionally determine

which of its one-hop neighbors are non-Sybil. These identities may safely participate in

other protocols. In mobile networks, the process must be repeated occasionally (e.g., once

per hour) as the topology changes. Safety is more important than system performance, so

nearly all Sybil identities should be identified, but some non-Sybils may be rejected.

Prior work showed the effectiveness of signalprint techniques with trusted RSSI ob-

servations. We extend those methods to work without a priori trust in any observation.

As illustrated in Figure 5.2, we assume an arbitrary identity (or condition) starts the pro-

cess. Participants take turns broadcasting a probe packet and recording the observed RSSIs.

These observations are then shared, although malicious nodes may lie. Each participant

84

individually selects a (hopefully truthful) subset of identities for signalprint-based Sybil

classification.

This paper presents our method for truthful subset selection and fleshes out this frame-

work into a usable, safe, and secure protocol. As with any system intended for real-world

use, we had to carefully balance system complexity and potential security weaknesses.

Section 5.9 discusses these choices and related potential concerns.

5.2.2 Attack Model

We assume attackers have the following capabilities and restrictions.

1. Attackers may collude through arbitrary side channels.

2. Attackers may accumulate information, e.g., RSSIs, across multiple rounds of the

Mason test.

3. Attackers have limited ability to predict RSSI observations of other nodes, e.g., 7 dBm

uncertainty (see Section 5.5), precluding fine-grained pre-characterization.

4. Attackers can control transmit power for each packet, but not precisely or quickly

steer the output in a desired direction, e.g., beam-forming.

5. Attackers cannot quickly and precisely switch between multiple positions, e.g., they

do not have high-speed, automated electromechanical control.

These capabilities and restrictions model attacking nodes that are commodity devices,

a cheaper attack vector than distributing specialized hardware. These devices could be

obtained by compromising those owned by normal network participants or directly deployed

by the attacker.

One common denial-of-service (DOS) attack in wireless networks—jamming the channel—

cannot be defended against by commodity devices. Thus, we do not defend against other

more-complicated DOS attacks.

85

R1 (dBm)

R
2

(d
B

m
) A

B

C

D

E

R 1=
R 2

Sign
alp

rin
t

Dist
an

ce

Figure 5.3: Sybils,A–B andD–E, occupy
nearby slope-1 lines.

Signalprint Distance

D
en

si
ty

Sybil Non-Sybil

Figure 5.4: The distance threshold trades
false positives for negatives.

Notably, we assume attackers do not have per-antenna control of MIMO (Multiple-Input

and Multiple-Output) [117] devices. Such control would defeat the signalprint method

(even with trusted observers), but is not a feasible attack. Commodity MIMO devices (e.g.,

802.11n adapters) do not expose this control to software and thus are not suitable attack

vectors. Distributing specialized MIMO-capable hardware over large portions of the network

would be prohibitively expensive.

We believe that the signalprint method can be extended to MIMO systems (see our

technical report for an overview [118]), but doing so is beyond the scope of this work. Our

focus is extending signalprint-based methods for ad hoc networks of commodity devices by

removing the requirement for trusted observations.

5.2.3 Review of Signalprints

We briefly review the signalprint method. See prior work for details [5, 109]. A signalprint

is a vector of RSSIs at multiple observers for a single transmission. Ignoring noise, the

vector of received powers (in logarithmic units, e.g., dBm) at multiple receivers for a given

transmission can be modeled [107] as ~s = ~h + p~1, where p is the transmit power and ~h

is the attenuation vector, a function of the channel amplitude response and the receiver

characteristics. Transmissions from different locations have uncorrelated signalprints, as the

channel responses are likely uncorrelated. Those from the same location, however, share

86

a channel response and will be correlated. That is, for two transmissions a and b from the

same location with transmit powers pa and pb = pa + c, the signalprints ~sb = ~h + pa~1 and

~sb = ~h + (pa + c)~1 are related as ~sb = ~sa + c~1.

This is illustrated geometrically in Figure 5.3 for a two-receiver signalprint. A and B

are Sybil, while C is not. D and E are also Sybil, but due to noise the signalprints are not

perfectly correlated. Instead, signalprints occupying lines closer than some threshold are

taken to be Sybil.

Definition. The signalprint distance d(~sa,~sb) between two signalprints ~sa and ~sb is the

perpendicular distance between the slope-1 lines containing them. Letting

~w , ~sa −~sb

be the distance vector between the signalprints and

~v⊥ , ~w −
~w · ~1
‖~1‖2

~1

be the vector rejection of ~w from ~1, then

d(~sa,~sb) = ‖~v⊥‖.

As shown in Figure 5.4, the distance distributions for Sybil and non-Sybil identities

overlap, so the threshold choice trades false positives for negatives. A good threshold can

detect at least 99.9% of Sybils while accepting at least 95% of non-Sybils [5, 109].

5.3 Sybil Classification From Untrusted Signalprints

We describe our method to detect Sybils using untrusted RSSI observations. No general

solution exists, so we derive sufficient, likely conditions that enable classification.

87

5.3.1 Power of Falsified Observations

Signalprints contain observations from multiple observers (4–6 for reasonable accuracy [6]).

Since a node trusts only its own observations, those from other observers are untrusted.

Consider how falsified RSSI observations can influence Sybil detection. First, one can easily

construct false observations to make a Sybil identity look non-Sybil. To see this, recall that

two identities are considered Sybil only if all observers report the same RSSI difference.

Randomly chosen values will almost certainly not satisfy this condition. The second, making

non-Sybils look Sybil, is much harder. The RSSI difference is fixed by the initiator’s trusted

self-observation, so an attacker would have to learn or guess this difference. The method

described in this section relies on this difficulty, which is quantified in Section 5.5.

5.3.2 Terminology

I is the set of participating identities. Each is either Sybil or non-Sybil and reports either

true or false3 RSSI observations, partitioning the identities by their Sybilness (sets S and

NS) and the veracity of their reported observations (sets T and L).

LS LNS

TS C

S NS

L

T

Truthtelling, non-Sybil identities are called conforming (set C). Liars and Sybil identities are

called attacking (sets LS , LNS , and TS). Our goal is to distinguish the S and NS partitions

using the reported RSSI observations without knowing a priori the L and T partitions.

Definition. An initiator is the node performing Sybil classification4. It trusts its own RSSI

observations, but no others.
3A reported RSSI observation is considered false if signalprints containing it misclassify some identities.
4All participants perform classification individually, so each is the initiator in its own classification session.

88

Definition. A receiver set, denoted by R, is a subset of identities (R ⊆ I) whose reported

RSSI observations, with the initiator’s, form signalprints. Those with liars (R ∩ L 6= ∅)

produce incorrect classifications and those with only truthtellers (R ⊆ T) produce the

correct classification.

Definition. A view, denoted by V , is a classification of identities as Sybil and non-Sybil.

Those classified as Sybil (non-Sybil) are said to be Sybil (non-Sybil) under V and are

denoted by the subset VS (VNS). A view V obtained from the signalprints of a receiver set

R is generated by R, denoted by R 7→ V (read: R generates V), and can be written V (R).

Identities in R are considered non-Sybil, i.e., R ⊆ VNS(R). A true view, denoted by V ,

correctly labels all identities, i.e., V S = S and V NS = NS . Similarly, a false view, denoted

by V̂ , incorrectly labels some identities, i.e., V̂S 6= S and V̂NS 6= NS .

Definition. Incorrectly labeling non-Sybil identities as Sybil is called collapsing.

Assumption. To clearly illustrate the impact of intentionally-falsified observations, we first

assume that true RSSI observations are noise-free and thus always generate the true view. In

Subsection 5.3.6, we extend the method to handle real-world observations containing, for

example, random noise and discretization error.

5.3.3 Approach Overview

It is easy to see that a fully-general solution to our problem does not exist by noting that

different scenarios can result in the same reported RSSI observations (under the symmetry

of identities) and are thus indistinguishable. To illustrate, consider identities I = {A|B}

reporting observations such that

R ⊆ A 7→ V 1 = {V 1
NS = A|V 1

S = B} and

R ⊆ B 7→ V 2 = {V 2
NS = B|V 2

S = A}

89

Ta
bl

e
5.

1:
D

efi
ni

tio
ns

of
Te

rm
s

an
d

Sy
m

bo
ls

D
efi

ni
tio

n
N

ot
es

Se
ts

of
Id

en
tit

ie
s

I
al

lp
ar

tic
ip

at
in

g
id

en
tit

ie
s

N
S

al
ln

on
-S

yb
il

id
en

tit
ie

s
I

=
{N

S
|S
}

S
al

lS
yb

il
id

en
tit

ie
s

T
al

lt
ru

th
fu

li
de

nt
iti

es
I

=
{T
|L
}

L
al

ll
yi

ng
id

en
tit

ie
s

C
al

lc
on

fo
rm

in
g,

or
tr

ut
hf

ul
,n

on
-S

yb
il,

id
en

tit
ie

s
N
S

=
{C
|L
N
S
}

L
N
S

al
ll

yi
ng

,n
on

-S
yb

il
id

en
tit

ie
s

S
=
{T

S
|L
S
}

T
S

al
lt

ru
th

fu
l,

Sy
bi

li
de

nt
iti

es
T

=
{C
|T
S
}

L
S

al
ll

yi
ng

,S
yb

il
id

en
tit

ie
s

L
=
{L

N
S
|L
S
}

V
N

S
al

li
de

nt
iti

es
la

be
le

d
no

n-
Sy

bi
lb

y
vi

ew
V

I
=
{V

N
S
|V

S
}

V
S

al
li

de
nt

iti
es

la
be

le
d

Sy
bi

lb
y

vi
ew

V

R
(r

ec
ei

ve
r

se
t)

id
en

tit
ie

s
us

ed
to

fo
rm

si
gn

al
pr

in
ts

V
ie

w
s

V
(v

ie
w

)
a

Sy
bi

l–
no

n-
Sy

bi
ll

ab
el

in
g

of
I

V
(t

ru
e

vi
ew

)
a

vi
ew

th
at

co
rr

ec
tly

la
be

ls
al

li
de

nt
iti

es
V

N
S

=
N
S

an
d
V

S
=
S

V̂
(f

al
se

vi
ew

)
a

vi
ew

th
at

in
co

rr
ec

tly
la

be
ls

so
m

e
id

en
tit

ie
s

V̂
N

S
6=

N
S

an
d
V̂

S
6=
S

V
(R

)
th

e
vi

ew
ge

ne
ra

te
d

by
re

ce
iv

er
se

tR

Te
rm

s
ge

ne
ra

te
s

(R
7→

V
)

a
re

ce
iv

er
se

tg
en

er
at

es
a

vi
ew

in
iti

at
or

no
de

pe
rf

or
m

in
g

th
e

Sy
bi

lc
la

ss
ifi

ca
tio

n
co

lla
ps

e
cl

as
si

fy
a

no
n-

Sy
bi

li
de

nt
ity

as
Sy

bi
l

90

and two different scenarios x and y such that

in x, {T x = A|Lx = B} = I and

in y, {T y = B|Ly = A} = I.

Remembering that R ⊆ T 7→ V , the true view for scenario x is V 1 and for scenario y is V 2.

Consequently, no method can always choose the correct view.

Since a general solution is not possible, we instead look for restricting conditions that

hold in situations of practical importance and permit a method to identify the true view. In

particular, we use the following two notions, formalized when needed.

• Fabricating RSSI observations that make non-Sybil identities look Sybil is difficult,

so all views will correctly classify some conforming identities.

• Conforming identities outnumber lying, non-Sybils (often the very motivation for the

Sybil attack).

Our approach stems from the idea that true observations, which all describe the same

world, are consistent. Lies, however, are often contradict themselves. We use a notion of

consistency that is quite difficult for attackers to achieve to separate the true observations.

5.3.4 View Consistency: Selecting V if LNS = ∅

This section introduces the concept of a consistent view, using the following unrealistic

restriction. In Subsection 5.3.5 we lift this restriction.

Restriction 1. All liars are Sybil, i.e., LNS = ∅, and thus all non-Sybil identities are

truthful, i.e., NS ⊆ T .

Restriction 1 endows the true view with a useful property: all receiver sets comprising

the non-Sybil identities under the true view will generate the true view. We formalize this

consistency as follows.

91

Definition. A view is view-consistent if and only if all receiver sets comprising a subset of

the non-Sybil identities under that view generate the same view, i.e., V is view-consistent iff

∀R ∈ 2VNS : R 7→ V .

Lemma 1. Under Restriction 1, the true view is view-consistent, i.e., ∀R ∈ 2V NS : R 7→ V .

Proof. Consider the true view V . By definition, V NS = NS. By Restriction 1, NS ⊆ T

and thus, V NS ⊆ T . ∀R ∈ 2T 7→ V , so ∀R ∈ 2V NS : R 7→ V .

Were all false views not consistent, then consistency could be used to identify the true

view. A fully omniscient attacker could theoretically generate a false, consistent view by

collapsing all conforming identities. However, the practical difficulty of collapsing identities

prevents this. We formalize this as follows.

Condition 1. All receiver sets correctly classify at least one conforming identity, i.e.,

∀R ∈ 2I : VNS(R) ∩ C 6= ∅.

Justification. Collapsing conforming identities requires knowing the hard-to-predict initia-

tor’s RSSI observations. Section 5.5 quantifies the probability that our required conditions

hold.

Lemma 2. Under Condition 1, a view generated by a receiver set containing a liar is not

view-consistent, i.e., R ∩ L 6= ∅ implies V (R) is not view-consistent.

Proof. Consider such a receiver set R with R ∩ L 6= ∅. By Condition 1, r , VNS(R) ∩C is

not empty and since r ⊆ C ⊆ T , r 7→ V . By the definition of a liar, V (R) 6= V and thus R

is not consistent.

Theorem 1. Under Restriction 1 and Condition 1 and assuming C 6= ∅, exactly one

consistent view is generated across all receiver sets and that view is the true view.

Proof. By Lemma 1 and Lemma 2, only the true view is consistent, so we need only show

that at least one receiver set generates the true view. C 6= ∅ and thus R = C 7→ V .

92

This result suggests a method to identify the true view—select the only consistent view.

As Restriction 1 does not hold in practice, so we develop methods to relax it.

5.3.5 Achieving Consistency by Eliminating LNS

Consider a scenario with some non-Sybil liars. The true view would be consistent were

the non-Sybil liars excluded. Similarly, a false view could be consistent were the correctly

classified conforming identities excluded. If the latter outnumber the former, this yields a

useful property: the consistent view for the largest subset of identities, i.e., that with the

fewest excluded, is the true view, as we now formalize and prove.

Condition 2. The number of conforming identities is strictly greater than the number of

non-Sybil liars, i.e., |C| > |LNS |.

Justification. This is assumed by networks whose protocol require a majority of the nodes

to behave. In others, it may hold for economic reasons—deploying as many nodes as the

conforming participants is expensive.

Condition 3. Each receiver set either correctly classifies at least |LNS | + 1 conforming

identities as non-Sybil or the resulting view, when all correctly classified conforming

identities are excluded, is not consistent, i.e., ∀R ∈ 2I : (|VNS(R)∩C| ≥ |LNS |+1)∨(∃Q ∈

2VNS(R)\C : V (Q) 6= V (R)). Note that this implies Condition 2.

Justification. This is an extension of Condition 1. Section 5.5 quantifies the probability that

it holds.

Lemma 3. Under Condition 2 and Condition 3, the largest subset of I permitting a consis-

tent view is I \ LNS .

Proof. I \ LNS permits a consistent view, per Lemma 1. Let ER , V̂NS(R) ∩ C be the

set of correctly classified conforming nodes for a lying receiver set R, i.e., R ∩ L 6= ∅.

I \ ER is the largest subset possibly permitting a consistent view under R. By Condition 3,

∀R : |ER| ≥ |LNS |+ 1.

93

Theorem 2. Under Condition 2 and Condition 3, the largest subset of I permitting a

consistent view permits just one consistent view, the true view.

Proof. This follows directly from Lemma 3 and Theorem 1.

In the next section, we extend the approach to handle the noise inherent in real-world

signalprints.

5.3.6 Extending Consistency to Handle Noise

Noise prevents true signalprints from always generating the true view. Observing from

prior work that the misclassifications are bounded (e.g., more than 99% of Sybils detected

with fewer than 5% of conforming identities collapsed [5, 109]), we extend the notion of

consistency as follows.

Definition. Let γn be the maximum fraction5 of non-Sybil identities misclassified by a

size-n receiver set. Prior work suggests γ4 = 0.05 is appropriate (for |C| > 20) [5, 109].

Definition. A view is γn-consistent if and only if all size-n receiver sets that are subsets of

the non-Sybil identities under that view generate a γn-similar view. Two views V 1 and V 2

are γn-similar if and only if

(
|V 1

NS ∩ V 2
NS|

|V 1
NS \ V 2

NS|
>

1− 2γn
γn

)∧(
|V 1

NS ∩ V 2
NS|

|V 2
NS \ V 1

NS|
>

1− 2γn
γn

)

This statement captures the intuitive notion that V 1
NS and V 2

NS should contain the same

identities up to differences expected under the γn bound. A view is γn-true if it is γn-similar

to the true view.

Lemma 4. Under Restriction 1, the view generated by any truthful receiver set of size n is

γn-consistent6.
5γn is not the probability that an individual identity is misclassified, but an upper bound on the total fraction

misclassified.
6This assumes that the false negative bound is negligible. If it is not, a similar notion of γ,σ-consistency,

94

Proof. Consider two views V 1 and V 2 generated by conforming receiver sets. Each correctly

classifies at least (1−γn) of the non-Sybil identities, so |V 1
NS∩V 2

NS| ≥ (1−2γn)|NS |. Each

misclassifies at most γn of the non-Sybil identities, so |V 1
NS \ V 2

NS| ≤ γn|NS | and similar for

V 2
NS \ V 1

NS. The ratio of these bounds is the result.

Substituting γ-consistency for pure consistency, Condition 3 still holds with high (albeit

different) probability, quantified in Section 5.5. An analogue of Theorem 2 follows.

Theorem 3. Under Condition 3, the γn-consistent view of the largest subset of I permitting

such a view is γn-true.

In Section 5.4 we describe an efficient algorithm to identify the largest subset permitting

a γ-consistent view and thus the correct (up to errors expected due to signalprint noise)

Sybil classification.

5.4 Efficient Implementation of the Selection Policy

Algorithm 1 Choose the receiver sets to consider
Require: i0 is the identity running the procedure
Require: n is the desired receiver set size

1: S ← ∅
2: for all i ∈ I do
3: R← {i0, i}
4: for cnt = 3→ n do
5: R← R ∪ {RandElement(VNS(R))}
6: end for
7: S ← S ∪ {R}
8: end for
9: return S .with high probability, S contains a truthful receiver set

Theorem 3 suggests a way to identify a γn-true view, but brute-force examination of all

2|I| receiver sets is infeasible. Instead, we give an O(|I|3) approach. The first algorithm

where σ is the false negative bound, can be used. In practice σ is quite small [5,109], so simple γn-consistency
is fine.

95

Algorithm Progression

R1 7→(i1, i0)

S NS
i3

i5
i6

i2
i4

i8...

...

R|I| 7→(i|I|, i0)

S NS
i1

i3
i5

i2
i4

i6...

...

,

,

,V (R1)

V (R|I|) ,

...

...

7→(i5 , i1, i0)

S NS
i1

i8
i6

i3
i4

i9...

...
7→(i6 , i|I|, i0)

S NS
i1

i3
i5

i2
i4

i7...

...
...

7→(i3 , i5, i1, i0)

S NS
i2

i9
i6

i8
i4

i11...

...
7→(i3 , i6, i|I|, i0)

S NS
i1

i7
i5

i2
i4

i8...

...
...

Figure 5.5: Illustration of Algorithm 1. All |I| size-2 receiver sets are increased to size-4 by
iteratively adding a random identity from those labeled non-Sybil by the current set. With
high probability, at least one of the final sets will contain only conforming identities.

picks O(|I|) receiver sets to consider and the second identifies that permitting the largest

γn-consistent subset.

5.4.1 Receiver Set Selection

The only requirement for receiver set selection is that at least one of the chosen receiver

sets must be truthful. Algorithm 1 selects |I|, size-n (we suggest n = 4) receiver sets

of which at least one is truthful with high probability. As illustrated in Figure 5.5, the

algorithm starts with all |I| size-2 receiver sets (lines 2–3) and builds each up to the full

size-n by iteratively (line 4) adding a randomly selected identity from those indicated to

be conforming at the prior lower dimensionality (line 5). At least |C| of the initial size-2

receiver sets are conforming and after increasing to size-n, at least one is still conforming

with high probability (graphed in Figure 5.6):

1−

1−
n−1∏
m=2

(1− γm) · |C| − (m− 1)

|LNS |+ (1− γm) · |C| − (m− 1)

|C|

96

0

5

10

15

20

0 5 10 15 20

#
of

Ly
in

g
N

on
-S

yb
il

Id
en

tit
ie

s
(|L

N
S
|)

of Conforming Identities (|C|)
0.

9

0.9
9

0.
5

0.9
99

0.
75

n = 4
γ4 = 0.05
|C| > n

|C| > |LNS |

Figure 5.6: Contours of probability that at least one of the receiver sets from Algorithm 1 is
conforming7.

The signalprint threshold for this process is chosen to eliminate (nearly) all false negatives,

as having a few false positives does not matter. The complexity of a straightforward

implementation is O(|I|3). Section 5.9 further discusses the runtime.

5.4.2 Finding the Largest γn-Consistent View

Given the |I| candidate receiver sets, the next task is identifying the one generating a

γn-true view, which, pursuant to Theorem 3, is that permitting the largest subset of I to

be γn-consistent. Checking consistency by examining all 2|VNS| receiver sets is infeasible,

so we make several observations leading to the O(|I|3) Algorithm 2. For each candidate

receiver set (line 2), we determine how many identities must be excluded for the view to be

γn-consistent (lines 3–17). That excluding the fewest is γn-true and the desired classification

(line 22).
7For small |C| and relatively large |LNS | the probability can be increased by building 2 · |I| or 3 · |I| or

more receiver sets instead. We omit further details due to lack of space.

97

Algorithm 2 Find receiver set permitting the largest γn-consistent subset
Require: S is the set of receivers sets generated by Algorithm 1
Require: VNS(R) for each R ∈ {size-2 receiver sets} computed by Algorithm 1
Require: s is the initiator running the algorithm

1: (C,Rmax)← (∞, null)
2: for all R ∈ S do
3: Compute RSSI ratio for each Sybil set in VS(R)
4: c← 0
5: for all i ∈ VNS(R) do
6: e← 0
7: n← number of identities whose RSSI ratios reported by i do not match that for
R

8: if |VNS(R)|+n
n

< 1−2γn
γn

then
9: e← 1

10: end if
11: if V (R) and V ({i, s}) are not γ2-similar then
12: e← 1
13: end if
14: if e = 1 then
15: c← c+ 1 . exclude i
16: end if
17: end for
18: if c < C then
19: (C,Rmax)← (c, R) . new largest γ-consistent subset found
20: end if
21: end for
22: return Rmax

98

The crux of the algorithm is lines 3–17, which use the following observations to effi-

ciently determine which identities must be excluded.

1. Adding an identity to a receiver set can change the view in one direction only—an

identity can go from Sybil to non-Sybil, but not vice versa—because uncorrelated

RSSI vectors cannot become correlated by increasing the dimension8.

2. For identities a and b, R∪ {a} 7→ V (R) and R∪ {b} 7→ V (R) implies R∪ {a, b} 7→

V (R) because a and b must have the same RSSI ratios for the Sybils as R.

From these observations, we determine the excluded identities by computing, for each

identity in VS(R), the RSSI ratio with an arbitrary sibling (line 3) and comparing against

those reported by potential non-Sybils in VNS(R) (line 7). If the number not matching is too

large (line 8), the view is not γn-consistent and the identity is excluded (line 15). Further, if

the receiver set consisting of just the supposedly non-Sybil identity and the initiator is not

γ2-similar to R (line 11).

5.4.3 Runtime in the Absence of Liars

In a typical situation with no liars, the algorithm can detect the Sybils in O(|I|2) time. Since

all identities are truthful, any chosen receiver set will be γn-consistent with no exclusions—

clearly the largest possible—and thus the other |I| − 1 also-truthful receiver sets need not

be checked. With lying attackers present, the overall runtime is O(|I|3), as each algorithm

takes O(|I|3) time.

5.5 Probability that Critical Conditions Hold

Our Sybil classification method depends on Condition 3 holding, i.e., all consistent views

must correctly classify at least |LNS |+ 1 conforming identities. In this section, we quantify
8This is not true for low dimension receiver sets affected by noise, but is for the size-(n > 4) sets considered

here.

99

-40 -20 0 20 40
RSSI

Figure 5.7: Distribution of RSSI variations in real-world deployment.

the probability that Condition 3 holds in the presence of the optimal attacker strategy.

5.5.1 RSSI Unpredictability

The probability that Condition 3 holds is directly tied to the unpredictability of RSSIs,

because collapsing identities requires knowing the RSSI observations at the initiator, as

explained in Subsection 5.3.1. Accurate guessing is difficult because the wireless channel

varies significantly with small displacements in location and orientation (spatial variation)

and environmental changes over time (temporal variation) [107, 119]. Pre-characterization

could account for spatial variation, but would be prohibitively expensive at the needed

spatial and orientation granularity (6.25 cm [120] and 3° for our test devices).

We empirically determined the RSSI variation for human-carried smartphones by deploy-

ing experimental phones to eleven graduate students in two adjacent offices and measuring

fixed-distance, pairwise RSSIs for fifteen hours. The observed distribution of deviations9,

shown in Figure 5.7, is roughly normal with a standard deviation of 7.3 dBm, in line

with other real-world measurements for spatial and orientation variations (4–12 dBm and

5.3 dBm [107]). We use this distribution to model the attacker uncertainty of RSSIs.

9For each pair of transceivers, we subtracted the mean of all their measurements to get the deviations and
aggregated all the pairwise deviations.

100

0

50

100

150

200

0 50 100 150 200

#
of

Ly
in

g
N

on
-S

yb
il

Id
en

tit
ie

s
+

1
(|L

N
S
|+

1
)

of Conforming Identities (|C|)

0.000001

0.99

0.01

0.999999

0.50

Figure 5.8: Contours of a lower bound on the probability that Condition 3 holds under
an optimal attacker strategy with the attacker’s knowledge of RSSIs modeled as a normal
distribution with standard deviation 7.3 dBm.

5.5.2 Optimal Attacker Strategy

To break Condition 3, an attacker must generate a consistent view that collapses at least

|C| − |LNS | conforming identities. We give three observations about the optimal attacker

strategy for this goal.

1. Collapsing |C| − |LNS | identities is easiest with larger |LNS |. Thus, the optimal

attacker uses only one physical node to claim Sybils—the others just lie.

2. For a particular false view to be consistent, all supposedly non-Sybil identities must

indict the same identities, e.g., have the same RSSI guesses for the collapsed con-

forming identities. The optimal attacker must divide its (mostly Sybil) identities into

groups, each using a different set of guesses.

3. More groups increases the probability of success, but decreases the number of Sybils

actually accepted, as each group is smaller.

101

We assume the optimal attacker wishes to maximize the probability of success and thus uses

minimum-sized groups (three identities, for size-4 signalprints).

For each group, the attacker must guess RSSI values for the conforming identities with

the goal of collapsing at least s , |C| − |LNS | of them. There are
(|C|
s

)
such sets and the

optimal attacker guesses values that maximize the probability of at least one (across all

groups) being correct. The first group is easy; the |C| guesses are simply the most likely

values, i.e., the expected values for the conforming identities’ RSSIs, under the uncertainty

distribution.

For the next (and subsequent) groups, the optimal attacker should pick the next most

likely RSSI values for each of the
(|C|
s

)
sets. However, the sets share elements (only |C|

RSSIs are actually guessed), so the attacker must determine the most probable sets that are

compatible. This is a non-trivial problem, so for our analysis, we assume that all sets are

compatible (e.g., one group can guess −78 dBm and −49 dBm RSSIs for nodes a and b, but

−82 dBm and −54 dBm RSSIs for nodes a and c). This is clearly impossible, but leads to

a conservative lower bound on the probability that the attacker fails—a feasible, optimal

strategy is less likely to succeed.

Figure 5.8 shows contours of this lower bound on the probability that Condition 3 holds

as a function of |C| and |LNS |. When the conforming nodes outnumber the attacker nodes

by at least 1.5×—the expected case in real networks—the condition holds with very high

probability. In practice, it will hold with even higher probability, as this is a lower bound.

5.6 Detecting Mobile Attackers

A mobile attacker can defeat signalprint comparison by changing locations or orientations

between transmissions to associate distinct signalprints with each Sybil identity. Fortunately,

in the networks we consider, most conforming nodes (e.g., human-carried smartphones and

laptops) are stationary over most short time-spans (1–2 min), due to human mobility habits.

102

2

4

6

8

10

12

14

0 50 100 150 200

#
of

B
ro

ad
ca

st
s

Pe
rI

de
nt

ity

of Identities (|I|)
40

0

10
0

10
00

1500

30
0

2000
20

050 50
0

60
0

70
0

Figure 5.9: Contours showing the response time (in ms, 99th percentile) to precisely switch
between two positions required to defeat the challenge-response moving node detection.

Thus, multiple transmissions should have the same signalprint, as noted, but not pursued, by

Xiao et al. [5]. From this observation, we develop a protocol to detect moving attackers.

Again, the lack of trusted observations is troublesome. Instead of comparing signalprints,

we compare the initiator’s observations: all transmissions from a conforming node should

have the same RSSI. As shown in Section 5.8, this simple criterion yields acceptable

detection.

The protocol collection phase (Figure 5.2a) is extended to request multiple probe packets

(e.g., 14) from each identity in a pseudo-random order (see Subsection 5.7.1). During

the classification phase (Figure 5.2c) each participant rejects all identities with large RSSI

variation across its transmissions (specifically, a standard deviation larger than 2.5 dBm). In

essence, an attacker is challenged to quickly and precisely switch between the multiple posi-

tions associated with its Sybil identities (6.25 cm location precision according to coherence

length theory [120] and 3° orientation precision according to our measurements).

Figure 5.9 plots the required response time for an attacker to pass the challenge. Given

103

human reaction times [121], reliably mounting such an attack would require specialized

hardware—precise electromechanical control or beam steering antenna arrays—that is

outside our attack model and substantially more expensive to deploy than compromised

commodity devices.

5.7 The Mason Test

This section presents the full Mason test protocol, implementing the concepts introduced in

the previous sections. Those results impose four main requirements on the protocol.

1. Conforming neighbors must be able to participate. That is, selective jamming of

conforming identities must be detectable.

2. Probe packets must be transmitted in a pseudo-random order. Further, each participant

must be able to verify that no group of identities controlled the order.

3. Moving identities are rejected, so to save energy and time, conforming nodes that are

moving when the protocol begins should not participate.

4. Attackers must not know the RSSI observations of conforming identities when com-

puting lies.

We assume a known upper bound on the number of conforming neighbors, i.e., those

within the one-hop transmission range. In most applications, a bound in the hundreds (we

use 400 in our experiments) will be acceptable. If more identities attempt to participate,

the protocol aborts and no classification is made. This appears to open a denial-of-service

attack. However, we do not attempt to prevent, instead only detect, DOS attacks, because

one such attack—simply jamming the wireless channel—is unpreventable (with commodity

hardware). See Section 5.9 for more discussion.

The rest of this section describes the two components of the protocol: collection of

RSSI observations and Sybil classification. We assume one identity, the initiator, starts the

104

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10
|C

or
re

la
tio

n|
Maximum Acceleration (m/s2)

Figure 5.10: RSSI correlation as a function of the maximum device acceleration between
observations.

protocol and leads the collection, but all identities still individually and safely perform Sybil

classification.

5.7.1 Collection of RSSI Observations

Phase I: Identity Collection. The first phase gathers participating neighbors, ensuring

that no conforming identities are jammed by attackers. The initiator sends a REQUEST

message stating its identity, e.g., a public key. All stationary neighbors respond with their

identities via HELLO-I messages, ACKed by the initiator. Unacknowledged HELLO-Is are

re-transmitted. The process terminates when the channel is idle—indicating all HELLO-

I’s were received and ACKed. If the channel does not go idle before a timeout (e.g., 15

seconds), an attacker may be selectively jamming some HELLO-Is and the protocol aborts.

The protocol also aborts if too many identities (e.g, 400) join.

Phase II: Randomized Broadcast Request: The second phase is the challenge-response

protocol to collect RSSI observations for motion detection and Sybil classification. First,

each identity contributes a random value; all are hashed together to produce a seed to

generate the random sequence of broadcast requests issued by the initiator. Specifically, it

sends a TRANSMIT message to the next participant in the random sequence, who must

105

quickly broadcast a signed HELLO-II, e.g., within 10 ms in our implementation10. Each

participant records the RSSIs of the HELLO-II messages it hears. Some identities will not

hear each other; this is acceptable because the initiator needs observations from only three

other conforming identities. |I| × s requests are issued, where s is large enough to ensure a

short minimum duration between consecutive requests for any two pairs of nodes, e.g., 14 in

our tests. An identity that fails to respond in time might be an attacker attempting to change

positions and is rejected.

Phase III: RSSI Observations Report. In the third phase, the RSSI observations are

shared. First, each identity broadcasts a hash of its observations. Then the actual values are

shared. Those not matching the respective hash are rejected, preventing attackers from using

the reported values to fabricate plausible observations. The same mechanism from Phase 1

is used to detect selective jamming.

5.7.2 Sybil Classification

Each participant performs Sybil classification individually. First, the identity verifies that its

observations were not potentially predictable from those reported in prior rounds, possibly

violating Condition 3. Correlation in RSSI values between observations decreases with

motion between observations, as shown by our experiments (Figure 5.10). Thus, a node

only performs Sybil classification if it has strong evidence the current observations are

uncorrelated with prior ones11, i.e., it has observed an acceleration of at least 2 m s−2.

Classification is a simple application of the methods of Section 5.6 and Section 5.4.

Each identity with an RSSI variance across its multiple broadcasts higher than a threshold is

rejected. Then, Algorithm 1 and Algorithm 2 are used to identify a γ-true Sybil classification

over the remaining, stationary identities.

10These packets can be signed ahead of time and cached—signatures do not need to be computed in the
10 ms interval.

11Note that although we did not encounter this case in our experiments, it is conceivable that some devices
will return to the same location and orientation after motion.

106

Table 5.2: Thresholds for Signalprint Comparison and Motion Filtering

Name Threshold (dBm)

Signalprint Distance dimension-2 0.85
dimension-3 3.6
dimension-4 1.2

RSSI Standard Deviation 2.5

5.8 Prototype and Evaluation

We implemented the Mason test as a Linux kernel module and tested its performance on

HTC Magic Android smartphones in various operating environments. It sits directly above

the 802.11 link layer, responding to requests in interrupt context, to minimize response

latency for the REQUEST–HELLO-II sequence (12 ms roundtrip time on our hardware).

For rapid prototyping, the classification algorithms are implemented in Python.

Wireless channels are environment-dependent, so we evaluated the Mason test in four

different environments.

Office I Eleven participants in two adjacent offices for fifteen hours.

Office II Eleven participants in two adjacent offices in a different building for one hour, to

determine whether performance varies across similar, but non-identical environments.

Cafeteria Eleven participants in a crowded cafeteria during lunch. This was a rapidly-

changing wireless environment due to frequent motion of the cafeteria patrons.

Outdoor Eleven participants meeting in a cold, open, grassy courtyard for one hour, cap-

turing the outdoor environment. Participants moved frequently to stay warm.

In each environment, we conducted multiple trials with one Sybil attacker12 generating 4,

20, 40, and 160 Sybil identities. The gathered traces were split into testing and training sets.

12As discussed in Section 5.3 and Section 5.5, additional physical nodes are best used as lying, non-Sybils.

107

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

Po
si

tiv
e

R
at

e
(S

en
si

tiv
ity

)

False Positive Rate (1 - Specificity)

0.9

0.92

0.94

0.96

0.98

1

0 0.02 0.04 0.06 0.08 0.1

Office I
Office II

Cafeteria
Outdoor

Figure 5.11: ROC curve showing the classification performance of signalprint comparison
in different environments for varying distance thresholds. Only identities that passed the
motion filter are considered. The knees of the curves all correspond to the same thresholds,
suggesting that the same value can be used in all locations.

5.8.1 Selection and Robustness of Thresholds

The training data were used to determine good motion filter and signalprint distance thresh-

olds, shown in Table 5.2.

The motion filter threshold was chosen such that at least 95% of the conforming partic-

ipants (averaged over all training rounds) in the low-motion Office I environment would

pass. This policy ensures that conforming smartphones, which are usually left mostly

Table 5.3: Classification Performance

Environment Sensitivity (%) Specificity (%)

Office I 99.6 96.5
Office II 100.0 87.7
Cafeteria 91.4 86.6
Outdoor 95.9 61.1

108

76.3% 0.3%

0.8% 22.6%

S C

S

C 23.4%

76.6%

77.1% 22.9% 100%

A
ct

ua
l

Predicted

Office I

77.1% 0%

2.8% 20.1%

S C

S

C 22.9%

77.1%

79.9% 20.1% 100%

A
ct

ua
l

Predicted

Office II

62.2% 5.8%

4.3% 27.7%

S C

S

C 32.0%

68.0%

66.5% 33.5% 100%

A
ct

ua
l

Predicted

Cafeteria

58.5% 2.5%

15.2% 23.8%

S C

S

C 39.0%

61.0%

73.7% 26.3% 100%

A
ct

ua
l

Predicted

Outdoor

Figure 5.12: Confusion matrices detailing the classifier performance in the four environments
tested. S means Sybil and C means conforming. Multiple tests were conducted in each
environment, so mean percentages are shown instead of absolute counts.

stationary, e.g., on desks, in purses, or in the pockets of seated people, will usually pass

the test. Devices exhibiting more motion (i.e., a standard deviation of RSSIs at the initiator

larger than 2.5 dBm)—as would be expected from an attacker trying to defeat signalprint

detection—will be rejected.

The signalprint distance thresholds were chosen by evaluating the signalprint classifica-

tion performance at various possible values. Figure 5.11 shows the ROC curves for size-4

receiver sets (a “positive” is an identity classified as Sybil). Note that the true positive and

false positive rates consider only identities that passed the motion filter, in order to isolate

the effects of the signalprint distance threshold. The curves show that a good threshold has

performance in line with prior work [5, 109], as expected.

In all environments, the knees of the curve correspond to the same thresholds, suggesting

that these values can be used in general, across environments. A possible explanation is

that despite environment differences, the signalprint distance distributions for stationary

Sybil siblings are identical. All results in this paper use these uniform thresholds, show in

Table 5.2.

5.8.2 Classification Performance

The performance of the full Mason test—motion filtering and signalprint comparison—is

detailed by the confusion matrices in Figure 5.12. Many tests were conducted in each

109

0%

20%

40%

60%

80%

100%

Office I Office II Cafeteria Outdoor

50.4%
37.5%

100% 100%

42.9% 62.5%

6.7%

Mobile
No Measurement

Collapsed

Figure 5.13: Relative frequencies of the three causes of false positives.

environment, so average percentages are shown instead of absolute counts. To evaluate the

performance, we consider two standard classification metrics derived from these matrices,

sensitivity (percentage of Sybil identities correctly identified) and specificity (percentage of

conforming identities correctly identified).

Note that 100% sensitivity is not necessary. Most protocols that would use Mason

require a majority of the participants to be conforming. The total identities are limited (e.g.,

400) so rejecting most of the Sybils and accepting most of the conforming identities is

sufficient to meet this requirement.

Table 5.3 shows the performance for all four environments. The test performs best in the

low-motion indoor environments, with over 99.5% sensitivity and over 85% specificity. The

sensitivity in the cafeteria environment is just 91.4%, likely due to the rapid and frequent

changes in the wireless environment resulting from the movement of cafeteria patrons. In

the outdoor environment, with participants moving, the specificity is 61.1% because some

conforming identities are rejected by the motion filter13.

An identity is classified as Sybil for three reasons: if it has similar signalprints with

another, the initiator has too few RSSI reports to form a signalprint, or it fails the motion filter.

Figure 5.13 shows the relative prevalence of these causes of the false positives. Interestingly,

13These moving participants normally do not participate. Including them here makes clears that they are not
identified as conforming.

110

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400
R

un
tim

e
(s

)
of Participating Identities

Total
RSST

HELLO II
HELLO I

Figure 5.14: Runtime overhead in seconds of the collection phase as a function of the
number of participating identities. The stacked bars partition the cost among the participant
collection (HELLO I), RSSI measurement (HELLO II), and RSSI observation exchange
(RSST) steps.

the first cause—collapsing—is rare, occurring only in the first office environment. Not

surprisingly, missing RSSI reports are an issue only in the environments with significant

obstructions, the indoor offices, accounting for about half of these false positives. In the

open cafeteria and outdoor environments, all false positives are due to participant motion.

5.8.3 Overhead Evaluation

Figure 5.14 and Figure 5.15 show the runtime and energy overhead for the Mason test

collection phase, with the stacked bars separating the costs by sub-phase. For a protocol

not run frequently (once every hour is often sufficient), the runtimes of 10–90 seconds are

acceptable. Likewise, energy consumption is acceptable, with the extreme 18 J consumption

for 400 identities representing 0.01% of the 17.500 J capacity of a typical smartphone

batteries.

Figure 5.16 show the classification phase overheads for 2–100 identities. At a small

fraction of the collection costs, these are also acceptable. For more than 100 participants,

costs become excessive due to the O(n3) scaling behavior14. Limiting participation to 100

identities may be necessary for energy-constrained devices, but will generally not reduce

14A native-C implementation might scale to 300–400 identities.

111

0

5

10

15

20

0 50 100 150 200 250 300 350 400
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

of Participating Identities

Initiator Total
Participant Total

RSST
HELLO II
HELLO I

Figure 5.15: Energy consumption in joules of the collection phase as a function of the
number of participating identities. The stacked bars partition the cost among the participant
collection (HELLO I), RSSI measurement (HELLO II), and RSSI observation exchange
(RSST) steps.

0

5

10

15

0 20 40 60 80 100
0

1

2

3

4

R
un

tim
e

(s
)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

of Participating Identities

Runtime (left axis)
Energy (right axis)

Figure 5.16: Runtime and energy consumption of the classification phase.

performance because having 100 non-Sybil, one-hop neighbors is rare.

The periodic accelerometer sampling used to measure motion between Mason test rounds

consumes 5.2% of battery capacity over a typical 18 h work day.

5.9 Discussion

Sybil classification from untrusted observations is difficult and the Mason test is not a

silver bullet. Not requiring trusted observations is a significant improvement, but the test’s

limitations must be carefully considered before deployment. As with any system intended

112

for real-world use, some decisions try to balance system complexity and potential security

weaknesses. In this section, we discuss these trade-offs, limitations, and related concerns.

High Computation Time: The collection phase time is governed by the 802.11b-induced

12 ms per packet latency and the classification runtime grows quickly, O(|I|3). Although

typically fast (e.g., <5 s for 5–10 nodes), the Mason test is slower in high density areas (e.g.,

40 s for 100 nodes). However, it should be run infrequently, e.g., once or twice per hour.

Topologies change slowly (most people change locations infrequently) and many protocols

requiring Sybil resistance can handle the lag—they need only know a subset of the current

non-Sybil neighbors.

Easy Denial-of-Service Attack: An attacker can force the protocol to abort by creating

many identities or jamming transmissions from the conforming identities. We cannot on

commodity 802.11 devices solve another denial-of-service attack—simply jamming the

channel—so defending against these more-complicated variants is ultimately useless. Most

locations will at most times be free of such attackers—the Mason test provides a way to

verify this condition, reject any Sybils, and let other protocols operate knowing they are

Sybil-free.

Requires Several Conforming Neighbors: The Mason test requires true RSSI observations

from some neighbors (i.e., 3) and is easily defeated otherwise. Although beyond the page

limits of this paper, protocols incorporating the Mason test can mitigate this risk by (a) a

priori estimation of the distribution of the number of conforming neighbors and (b) careful

composition of results from multiple rounds to bound the failure probability.

Limit On Total Identities: This limit (e.g., 400) is unfortunately necessary to detect when

conforming nodes are being selectively jammed while keeping the test duration short enough

that most conforming nodes remain stationary. We believe that most wireless networks have

typical node degrees well below 400 anyway.

Messages Must Be Signed: Packets sent during the collection phase are signed, which can

be very slow with public key schemes. However, this is easily mitigated by (a) pre-signing

113

the packets to keep the delay off the critical path or (b) using faster secret-key-based schemes.

Details are again omitted due to page constraints.

Pre-Characterization Reveals RSSIs: An attacker could theoretically improve its collaps-

ing probability by pre-characterizing the wireless environment. We believe such attacks are

impractical because the required spatial granularity is about 6.25 cm, the device orientation

is still unknown, and environmental changes (e.g., people moving) reduces the usefulness of

prior characterization.

Prior Rounds Reveal RSSI Information: The protocol defends against this. Conforming

nodes do not perform classification when their RSSI observations are correlated with those

from the prior rounds (see Subsection 5.7.2).

High False Positive Rates: With the motion filter, the false positive rate can be high, e.g.,

20% of conforming identities rejected in some environments. We believe this is acceptable

because most protocols requiring Sybil resistance need only a subset of honest identities.

For example, if for reliability some data is to be spread among multiple neighbors, it is

acceptable to spread it among a subset chosen from 80%, rather than all, of the non-Sybils.

5.10 Conclusion

We have described a method to use signalprints to detect Sybil attacks in open ad hoc and

delay-tolerant networks without requiring trust in any other node or authority. We use

the inherent difficulty of predicting RSSIs to separate true and false RSSI observations

reported by one-hop neighbors. Attackers using motion to defeat the signalprint technique

are detected by requiring low-latency retransmissions from the same position.

The Mason test was implemented on HTC Magic smartphones and tested with human

participants in three environments. It eliminates 99.6%–100% of Sybil identities in office

environments, 91% in a crowded high-motion cafeteria, and 96% in a high-motion open out-

door environment. It accepts 88%–97% of conforming identities in the office environments,

114

87% in the cafeteria, and 61% in the outdoor environment. The vast majority of rejected

conforming identities are removed due to motion.

115

CHAPTER 6

Characterization of Microblogging User

Behavior and the Retweet Graph

6.1 Introduction

Quantitative modeling of Twitter usage is important both for understanding human com-

munication patterns and optimizing the performance of other microblogging-esque com-

munication platforms. However, prior analysis is focused on the social graph [122–126] or

on individual information cascades that represent a small fraction of all tweets [127–131].

Descriptions of basic behaviors are missing from the literature. For example, the qualitative

distributions of the number of followers and friends is available [122], but not the distribution

of tweet rates. Common factors of tweets that are heavily retweeted are known [127], but

propensity of users to retweet, i.e., distribution of retweet rates, is not. We begin to fill these

gaps by considering user behavior as a whole, providing quantitative descriptions of the

distributions of lifetime tweets, tweet rates, and inter-tweet times.

We are motivated by increasing interest in decentralized microblogging systems designed

to protect user privacy and resist censorship. FETHER [69], Cuckoo [70], and Litter [71]

reduce dependence on a single provider, while Shout [132] and Twister [133] are explicitly

designed to avoid censorship and reprisal by government agencies. Designing a decentralized

system capable of handling the message rates and volumes of Twitter is already a significant

challenge and is nearly impossible without a good understanding of those usage patterns.

116

Given the complexity of these systems, understanding of the trade-offs in the perfor-

mance and cost metrics—throughput, latency, energy consumption—is obtained through

simulations, but such simulations are only as accurate as the data and models driving

them. Consider fair allocation of network resources—fairness looks very different when

the expected distribution of tweets is a power law and not uniform. Or, consider measuring

delivery latencies, with messages queuing at intermediate nodes, a metric dependent on the

(non-Poisson) arrival process, i.e., the inter-tweet duration distribution. Quantitative models

of these basic behaviors are needed.

The underlying human behaviors should extend across communication platforms—tweet

rates should mirror call rates in the telephone network and total lifetime tweets should mirror

total lifetime contributions to Wikipedia or YouTube—suggesting that models of those

behaviors [134–136] be used in proxy for microblogging design. However, our analysis

of the Twitter data shows differing behavior, indicating possible faults in several of these

models. Our results for Twitter should enable future work to identify or refine further

commonalities in human communication.

Tweets generally travel via the explicit social followers graph [122], which has been

well-studied. Surprisingly, the retweet graph, in which a directed edge connects two users

if the source has retweeted the destination, has received almost no attention. This implicit

graph may be actually more relevant to information propagation in decentralized systems.

A throughput-limited system needs some way of prioritizing messages. People are usually

more selective in what they say than to whom they listen, so the retweet graph may better

encode true interest and trust relationships among users. For example, Shout1 does not

support friend/follower relationships, so the retweet graph is the only available social graph.

We conduct the first study of the retweet graph obtained from a 4-month sample of 10% of

all tweets and compare it to the social followers graph.

1Shout [132] is decentralized, geographic microblogging system in which messages are broadcast to users
within radio range of the sender. Other users may re-shout the message, extending its reach, but the protocol
does not directly support multi-hop delivery.

117

These results have wide applicability. The quantification of communication behaviors

and the social graph, beyond allowing direct comparison with other already-characterized

platforms, enables the development of generative models explaining the underlying pro-

cesses. In a more direct view, knowing the number of tweets, tweet rates, and inter-tweet

times are sufficient for simulating and optimizing microblogging platform performance and

the confirmation that the retweet graph is scale-free and small-word enables the generation of

random retweet graphs for empirical evaluation. We focus on two such applications, the de-

sign of distributed microblogging systems and the detection of spammers using connectivity

in the retweet graph.

We have the following findings.

• The distribution of lifetime tweets is discrete Weibull (type-II), generalizing a power

law form shown by Wilkinson for other online communities [134]. We conjecture

that the Weibull shape parameter reflects the average amount of (positive or negative)

feedback available to contributors. (Section 6.3)

• The distribution of tweet (and retweet) rates is asymptotically power law, but exhibits

a lognormal cutoff over finite-duration samples. Thus, high tweet rates are much more

rare in practice than the asymptotic distribution would suggest. We also discount a

double Pareto lognormal (DPLN) explanation previously advanced in the context of

call rates [135]. (Section 6.4)

• The distribution of inter-tweet durations is power law with exponential cutoff, mirror-

ing that of telephone calls [136]. (Section 6.5)

• The retweet graph is small-world and (roughly) scale-free, like the social followers

graph, but less disassortative and more highly clustered. It is more similar than the

followers graph to real-world social networks, consistent with better reflection of

real-world relationships and trust. (Section 6.6)

118

In Section 6.7, we discuss the implications of these results for decentralized microblog-

ging architectures and in Section 6.8 we consider using the structure of the retweet graph

for spammer detection.

6.2 Datasets

The Twitter API rate limits and terms of service prevent collection and sharing of a single

complete tweet dataset suitable for all our queries [137]. Our largest and most recent dataset—

10% of all tweets sent between June and September 2012—is the focus of our analysis, but

we supplement with sets from other researchers as necessary. This section summarizes these

datasets and describes our main procedure for inferring population statistics from the 10%

sample.

6.2.1 2009 Social Graph

Kwak et al.’s 2009 crawl [122] remains the largest and most complete public snapshot of

the Twitter social followers graph, covering 41.7 million users and 1.47 billion relations.

The data is dated, but still the best available. Repeating this crawl is infeasible under current

rate limits and feasible sampling strategies (e.g., snowball-sampling [138]) lead to results

that are difficult to interpret [139]. We use this social graph snapshot for all comparisons

with the retweet graph.

6.2.2 Lifetime Contribution Dataset

No tweet dataset is complete enough to compute lifetime contributions, the number of tweets

sent before quitting Twitter, but the Twitter API exposes (subject to rate limits) the necessary

information. We collected account age, date of last tweet, and total tweet count (as of June

119

Table 6.1: 10% Sample (Gardenhose) Dataset

10% Sample Actual Value†

of Tweets 4 097 787 713 41 256 584 408
of Retweets 953 457 874 9 664 691 519

of Tweeters 104 083 457 166 335 390
of Retweeters 51 319 979 84 278 086
of Retweetees 38 975 108 69 224 526

† Estimated using the described EM procedure.

2013) for 1 318 683 users selected uniformly randomly from the 2009 social graph set2.

525 779 of these users were inactive,3 i.e., had not tweeted in the prior six months [134].

Their ages and tweet counts form the lifetime contribution set used in Section 6.3.

6.2.3 SNAP Tweet Dataset

Computing inter-tweet intervals requires consecutive tweets—a random sample is insuffi-

cient4. For our inter-tweet distribution analysis in Section 6.5, we use a collection of 467

million tweets gathered by the SNAP team in 2009 [140]. The full dataset is no longer

publicly available per request from Twitter, but the authors kindly shared the inter-tweet

metadata.

6.2.4 10% Sample (Gardenhose) Dataset

Our primary dataset is a uniform random 10% sample5 of all tweets (the “gardenhose”

stream) sent in the four month period spanning June through September 2012. Table 6.1

shows the scope of the dataset, using the following definitions. A tweeter is a user that

sends a tweet, an original message. A retweeter is a user that sends a retweet, forwarding a

2The 2009 social graph dataset is the closest to a uniform random sample of Twitter users we could find.
More recent sets are biased towards users that tweet more often.

3The creation dates of protected tweets are hidden, so all users with protected tweets were excluded.
4A random sample would be sufficient if the process were Poisson, but it is not.
5More precisely, each tweet is included in this sample with 10% probability.

120

previous tweet. A retweetee is a user whose tweet was retweeted.

Retweets were identified using both Twitter-provided metadata and analysis of the

message contents for retweet syntax, e.g., “RT@”. Retweeting was not an official feature

in Twitter’s early years, but instead developed organically. A variety of syntaxes appeared

(e.g., RT@username, retweeting username, and via username) and are still

used today. We detect such retweets using the following (Java) regular expression.

Pattern.compile(

"(?:^|[\\W])(?:rt|retweet(?:ing)?|via)" +

"\\s*:?\\s*@\\s*([a-zA-Z0-9_]{1,20})" +

"(?:\$|\\W)"

)

In 2009, Twitter officially6 added support for retweeting to their backend schema and the

user interface. These retweets are identified by the Twitter API.

The sampled data poses a challenge for drawing quantitative conclusions about user

behavior and the structure of the retweet graph. For many of the distributions we wish to

quantify, the sample is biased towards users that tweeted more frequently. In fact, most users

with fewer than ten tweets will not appear at all. Much prior work in the social network and

graph analysis literature has focused on qualitatively characterizing the errors introduced by

subsampling, motivated by quicker analysis [139, 141]. We instead develop an approach to

accurately estimate quantitative population statistics from the 10% random sample.

6.2.5 Estimating Population Distributions from the 10% Sample Dataset

For simplicity, we describe the method for a concrete problem: determining the distribution

of tweets per user during the four month window. The method is trivially adapted to a variety

of such problems, including multivariate joint distributions as in Subsection 6.6.3. Similar

6https://blog.twitter.com/2009/project-retweet-phase-one

121

approaches are used in other fields [142]. We wish to determine the number of users, fi, with

i ∈ N+ tweets given the number of users, gj , with j ∈ N+ tweets observed in the sample. gj

includes some users from each fi≥j , with the binomial distribution B0.1(i, j) describing how

the users in fi are partitioned among the various gj≤i. Intuitively, a good estimate f̂ is that

which maximizes the probability of the observation g, i.e., standard maximum likelihood

estimation.

The corresponding likelihood function is not analytically tractable, so we employ an

expectation maximization algorithm [143, 144] to compute the estimate f̂ , summarized here

(see Section 6.9 for details). Let φi be the probability that a user sends i tweets conditional

on at least one of them being observed and ci,j be the probability a user with i tweets has j

of them observed conditional on j ≥ 1 (i.e., the binomial probability conditional on at least

one success). The log-likelihood function to maximize is

L(φ|f, g) =
∑

1≤j≤i

fi,j log
(
φici,j

)
, (6.1)

where φ are the parameters to estimate and f and g are the hidden and observed variables,

respectively. We compute the parameter estimate by iteratively selecting a new estimate

φk+1 that maximizes the expected likelihood under the previous estimate φk, i.e.,

φk+1 , arg max
φ

Q
(
φ, φk

)
, (6.2)

where

Q
(
φ, φk

)
, Ef |g,φk

[
L(φ|f, g)

]
. (6.3)

This process is known to converge [145]. Letting γ ,
∑

1≤j gj be the total number of

observed users, Equation 6.2 can be solved using Lagrangian multipliers to yield

φk+1
i =

1

γ
Eφk

[
fi|g
]

(6.4)

122

10-6

10-4

10-2

100

100 101 102 103 104 105 106
P

M
F

of Tweets

Scaled
Actual (EM)

Figure 6.1: Distribution of tweets per user for the scaled sample (j observed tweets maps
to 10j sent tweets) and the underlying population as estimated by the EM algorithm. The
differences (particularly for the range 1–100) illustrate the importance of recovering the
actual distribution via, for example, our EM algorithm.

and the hidden original frequencies recovered from the final estimate φ̂ as

f̂i = γφ̂i
1

1−B0.1(i, 0)
. (6.5)

Figure 6.1 shows the result using the distribution of tweets sent during our four-month

collection window as an example. The correct distribution computed via the EM algorithm

is substantially different, particularly in the lower decades, from the uncorrected or scaled

(i.e., assuming that observing j tweets implies 10j were sent) distributions.

6.3 Distribution of Lifetime Tweets

Strong regularities in participation behavior have been observed across many online peer

production systems, suggesting a common underlying dynamic. Wilkinson found that for

Bugzilla, Essembly, Wikipedia, and Digg, the probability that a user makes no further

contributions is inversely proportional to the number of contributions already made, sug-

gesting a notion of participation momentum [134]. Huberman et al. observed the same in

YouTube [146]. We look for a similar effect in Twitter.

123

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106

P
M

F

of Lifetime Tweets

10-1110-1010-910-810-710-610-510-410-310-210-1100

100101102103104105106

Data
Power Law

Discrete Weibull (Type-II)

Figure 6.2: Distribution of total lifetime tweets. Distribution parameters (Table 6.3) were
obtained by maximum likelihood estimation. In the inset, equal-count binning obscures the
cutoff. The sparse upper tail causes a wide and thus seemingly-outlying last bin.

We quantify contribution as the number of tweets sent7, so the lifetime contribution is

the tweet count when the user becomes inactive. Following Wilkinson [134], a user that has

not tweeted for six months (as of June 2013 when our lifetime contributions dataset was

collected) is inactive.

Figure 6.2 plots the logarithmically-binned [147] empirical distribution. It is heavy-

tailed, but decays more quickly in the upper tail than a true power law. The higher density

in the last bin (∼200 000 tweets) is due to Twitter’s rate limits of 1000 tweets per day and

100 tweets per hour, because users that would occupy the upper tail (>200 000 tweets) are

forced into this bin.8 YouTube exhibits the same non-power law, upper tail cutoff [146],

consistent with a common dynamic underlying both systems.

7One could instead consider retweets, replies, or direct messages, but obtaining data for these is more
difficult.

8The rate limit means that the lifetime contribution distribution can be viewed as a censored [148] version
of the “natural” distribution.

124

Table 6.2: Power-Law Exponents for Lifetime Contributions in Various Online Communities,
Computed Incorrectly Using Equal-Count Binning

Contribution Type α p-value min. k

Essembly votes† 1.47 0.59 3
Digg votes† 1.53 0.64 15
Twitter tweets 1.54 0.96 12
Bugzilla comments† 1.98 0.74 5
Essembly submissions† 2.02 0.25 7
Wikipedia edits† 2.28 0.69 10
Digg submissions† 2.40 0.04 15
Youtube submissions‡ 2.46 — —

† from Wilkinson [134]
‡ from Huberman, Romero, and Wu [146]

6.3.1 Critique of Previously-Reported Power Law Behavior

Surprisingly, the cutoff does not match the strong power law evidence reported for Bugzilla,

Essembly, Wikipedia, and Digg [134]. We believe those systems do contain a similar cutoff,

but it was obscured by the analysis methods used. We observe three weaknesses of the prior

approach. First, the equal-count binning9 method used obscures the upper tail behavior;

logarithmic binning is preferred [147]. Second, maximum likelihood estimation, not binned

regression, should be used for fitting [149]. Finally, the goodness-of-fit should be computed

against the empirical distribution function (Kolmogorov–Smirnov or Anderson–Darling

test) [149], not against binned data (the G-test).

The original datasets are unavailable10, so we tested our hypothesis by applying the

same methods to our Twitter data. As expected, equal-count binning, shown in the inset

of Figure 6.2, hides the known cutoff. The G-test for a power law fit by regression to the

improperly binned data indicates a good match (Table 6.2), despite the obvious mismatch

in the real data. Clearly, these methods can obscure any underlying cutoff. Our results

9In equal-count binning, each bin is sized to contain the same number of samples and thus the same area
under the density function. For B bins, the height of a bin bi is computed as B/w(bi), where w(bi) is the
width of bi.

10Emails to the author bounced as undeliverable.

125

Table 6.3: Parameters for Distributions of Lifetime Tweets

Distribution Parameters

Name PMF (fit by MLE)

Power Law
1

ζ(α, xmin)
· 1

xα
α 1.54
xmin 12.00

Type-II
c

x1−β

x−1∏
n=1

(
1− c

n1−β

) β 0.17
Discrete c 0.32
Weibull [150]

are consistent with Bugzilla, Essembly, Wikipedia, and Digg contributions containing the

same cutoffs as Twitter and YouTube, but the original data would be needed to prove this

conclusion.

6.3.2 Lifetime Tweets Follow a Weibull Distribution

If the distribution is not power law, what is it? Examining the hazard function, or probability

that a user who has made x contributions quits without another, provides the answer. Shown

in Figure 6.3, the hazard function is an obvious power law. Wilkinson referred to this

behavior in other online communities as participation momentum [134]; we will return to

that interpretation later.

The power law hazard function α−1
x1−β

is that of the Weibull distribution11, for continuous

support. For discrete support, the distribution with a power law hazard function is called a

Type II Discrete Weibull12 [150] and has mass function

Pr(X = x) =
α− 1

x1−β

x−1∏
n=1

(
1− α− 1

n1−β

)
. (6.6)

A maximum likelihood fit to the lifetime contribution data yields β = 0.17 and α = 1.32, as

shown in Figure 6.2. The upper tail deviates slightly, which we attribute to Twitter’s rate

11The Weibull distribution is sometimes called the stretched exponential.
12The much more common Type I Discrete Weibull [151] instead preserves the exponential form of the

complementary cumulative density function.

126

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106
P

r
(X

=
x
|X
≥
x

)
of Lifetime Tweets

Data
α−1
x(1−β)

Figure 6.3: The probability that a user who has sent x tweets quits without sending another,
i.e., the hazard rate. The decreasing trend suggests a sort of momentum; the more times
a user has tweeted, the more likely he is to tweet again. The power law parameters are
calculated from Table 6.3, not fit to the data.

limit policy. Some users that would have tweeted more than ∼200 000 times were artificially

limited to fewer tweets, increasing the weight in that portion of the upper tail.

6.3.3 Interpreting the Hazard Function as Participation Momentum

Wilkinson [134] used a notion of participation momentum to explain the power law hazard

function. For his assumed power law distribution, C 1
xα

, the hazard function is α−1
x

and α

can be seen as a metric for the effort needed to contribute. Higher required effort leads to

a higher probability of quitting. Table 6.2 shows the α’s for several systems. Intuitively,

tweeting seems more taxing than voting on Digg stories but less so than commenting on

Bugzilla reports. And indeed, we find that αDigg < αTwitter < αBugzilla.

Alternatively, the hazard function might be more directly related to account age than total

contributions. To reject this possibility, we compared the Kendall tau rank correlations [152]

between lifetime contributions, age, and average tweet rate (lifetime contributions/age).

Unsurprisingly, age (i.e., longer life) correlates with increased lifetime contributions (τ =

0.4708, p = 0.00, 95% CI [0.4690, 0.4726]). In contrast, the tweet rate is essentially

uncorrelated with lifetime contributions (τ = −0.0067, p = 0.00, 95% CI [−0.0085,

127

−0.0049]), indicating that the momentum function is not driven by age. If it were, the

correlation would be strongly positive because faster tweeters would generate more tweets

in their (independently determined) lifetimes. The strong negative relationship between

tweet rate and age (τ = −0.5687, p = 0.00, 95% CI [−0.5705, −0.5669]) further supports

this conclusion. The hazard rate is determined by the current total contributions, so users

with higher tweet rates must have shorter lifetime ages.

The hazard function we observe (α−1
x1−β

instead of Wilkinson’s α−1
x

) invites additional

thought. The new parameter β (β = 0 in Wilkinson’s model) models momentum gain—a

higher β translates to more momentum gain per contribution. For example, one could imag-

ine that β reflects the effect of feedback. Positive (negative) viewer-generated feedback like

retweets and replies in Twitter or comments and view counts in YouTube might accelerate

(decelerate) momentum gains relative to systems without such visible feedback, like Digg

votes or Wikipedia edits.13 Refinement of this interpretation is a promising area for future

work.

In summary, lifetime contributions in Twitter are driven by a power law hazard function(
α−1
x1−β

)
viewed as participation momentum. α reflects the effort needed to contribute and β

the amount of feedback provided by system. The power law momentum leads to a Type II

Discrete Weibull distribute for lifetime contributions. This dynamic holds across a variety

of online communities [134, 146].

6.4 Distribution of Tweet Rates

The distribution of tweet rates is arguably the most important statistic for microblogging

system design. An architecture designed for uniform messaging rates across the network will

struggle with a heavy-tailed rate distribution. In this section, we describe an analytical model

13Wilkinson’s reported results are consistent with this hypothesis. The contribution types with the most
visible feedback—Essembly and Digg submissions—show little support for a power law, with p-values of 0.25
and 0.04. β > 0 would explain the non-power law behavior. The distribution for YouTube by Huberman et al.
also shows a cutoff [146] consistent with a hazard function with β > 0.

128

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105 106

P
M

F

of Tweets

Data
Double Pareto Lognormal
Left Pareto Lognormal
Power Law w/ Lognormal Cutoff

Figure 6.4: Distribution of tweets per user for the four month period from June through
September 2012.

and generative mechanism for the rate distribution and reject a model previously proposed

for telephone call rates. Although we are most interested in the tweet rate distribution, we

model the easier-to-consider tweet count distribution. The former is easily recovered by

dividing out the 4-month sampling duration.

6.4.1 An Analytical Approximation of the Tweet Rate Distribution

Figure 6.4 plots the logarithmically-binned empirical tweet distribution. It is heavy-tailed,

consistent with other forms of authorship [153]. The tails form two different regimes meeting

at X = ∼2000, each heavy-tailed but with different exponents. We show in Subsection 6.4.3

that this phase change is a dynamic effect related to the sample period length (i.e., four

months)—the crossing point increases with the square of the sample period length.

Simulating microblogging performance and comparing rates across communication

systems benefits from a closed-form of the distribution. The forthcoming generative model

in Subsection 6.4.3 is not analytically tractable, so we describe an analytical approximation

129

first. Figure 6.4 suggests a cutoff power law, but the upper tail is heavier than the common

exponential cutoff [149]. Instead, the cutoff appears lognormal, suggesting the following

density function14,

p(x) = cx−βΦc

(
lnx− µ

σ

)
, (6.7)

where Φc is the complementary CDF of the standard normal distribution and c is a normaliz-

ing constant. The maximum likelihood fit is shown in Figure 6.4, with β = 1.13, µ = 7.6,

σ = 1.06, and c = 0.19. The lognormal cutoff shape is seen by noting that

Φc(z) ∝ erfc

(
z√
2

)
and erfc(z) ≈ 1√

π

e−z
2

z
for z � 1,

leading to the approximately lognormal form

Φc

(
lnx− µ

σ

)
∝∼

σ

lnx− µ
e−

(ln x−µ)2

2σ2 for
lnx− µ

σ
� 1. (6.8)

The power law exponent in the lower tail is β, the phase change to the cutoff regime occurs

at exp(µ), and the upper tail steepness is controlled by σ.

6.4.2 The Distribution is Not Double Pareto–Lognormal

At first glance, Figure 6.4 appears to be Double Pareto-Lognormal (DPLN), a recently-

discovered distribution that has found wide-spread popularity across many fields, perhaps

due to its clear generative interpretation [154]. Seshadri et al. suggested its use for commu-

nication rates, specifically call rates in a cellular network, interpreting the generative process

as evolving social wealth [135]. However, in this section we show that the DPLN does not

correctly capture the lower tail behavior of tweet rates (or call rates). In the next section, we

describe a different mechanism to explain the shape.

We first summarize the origin of the DPLN distribution [154]. Given a stochastic process

14We use a continuous model for simplicity. The integral data can be viewed as a rounded version of the
product of the true tweet rate and sampling period.

130

X evolving via Geometric Brownian motion (GBM)

dX = µX + σX dW, (6.9)

where W is the Wiener process, with lognormally distributed initial state, logX0 ∼

N (ν, τ 2), then Xt is also lognormally distributed, logXt ∼ N (ν + µ−σ2

2
t, τ 2 + σ2t).

If the observation (or killing) time t , T is exponentially distributed, T ∼ Exp(λ), then the

observed (or final) state has DPLN distribution, XT ∼ DPLN(α, β, ν, τ), where α > 0 and

−β < 0 are the roots of the characteristic equation

σ2

2
z2 +

(
µ− σ2

2

)
z − λ = 0. (6.10)

Seshadri et al. [135] proposed that the number of calls made by an individual reflects an

underlying social wealth that evolves via such a GBM. For an exponentially growing popu-

lation, the age distribution of the sampled users is exponential and the resulting distribution

of calls (or social wealth) will be DPLN. This model seems qualitatively reasonable for

Twitter as well, but cannot capture the correct power law exponent in the lower tail (see

Figure 6.4). The call distribution data exhibits a similar mismatch, challenging the model’s

suitability there as well.

The density function of DPLN(α, β, ν, τ) is

f(x) =
β

α + β
f1(x) +

α

α + β
f2(x), (6.11)

where

f1(x) = αx−α−1A(α, ν, τ)Φ

(
lnx− ν − ατ 2

τ

)
, (6.12)

f2(x) = βxβ−1A(−β, ν, τ)Φc

(
lnx− ν + βτ 2

τ

)
, (6.13)

131

A(θ, ν, τ) = exp

(
θν + θ2τ 2

2

)
, (6.14)

and Φ and Φc are the CDF and complementary CDF of the standard normal distribution. f1

and f2 are the limiting densities as α → ∞ and β → ∞, respectively, and are called the

right Pareto lognormal and left Pareto lognormal distributions.

Two observations stand out. First, the distribution is Pareto in both tails, with minimum

slope of −1 in the lower. Second, the left Pareto lognormal form is nearly equivalent to our

expression Equation 6.7, which differs only by accommodating lower tail exponents below

−1. Figure 6.4 shows maximum likelihood fits of both the DPLN and left Pareto lognormal

distributions. The lower tail is steeper than allowed by the DPLN (−1.13 < −1) and fits

poorly. The call distribution data shows a similar mismatch. Although the DPLN is widely

applicable, it does not model these communication patterns. Our model from the following

section should better fit the call data [135] as well.

In the upper tail, both distributions fit equally well (i.e., a likelihood ratio test does

not favor either fit). The data are insufficient to distinguish a lognormal from a power law

upper tail, a common issue [149]. We favor the lognormal form for Equation 6.7 because

it is simpler (i.e., has fewer parameters) and most real world “power laws” exhibit some

cutoff [149].

6.4.3 An Urn Process Generating the Tweet Rate Distribution

In this section we develop an urn process to describe tweet distribution in Figure 6.4. The

phase change is a dynamic effect governed by the sampling period. As the period increases,

the distribution approaches that of the lower tail—approximately Pareto with exponent

−1.13. In practical terms, high-rate tweeters are much rarer in a finite sample than the

asymptotic distribution would predict.

Figure 6.5 shows the distribution for two sample periods, illustrating the dynamic phase

change. The lower tail extends further with the longer period. Degree distributions in

132

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105 106

P
M

F

of Tweets

1 Week
1 Month
4 Months
Urn Model

Figure 6.5: Distribution of tweet counts over various sample periods, showing the time-
dependent cutoff. The asymptotic distribution is Pareto. Traces for the urn model describing
this effect were obtained by simulation.

growing networks evolve similarly. Although simple preferential attachment of new nodes

leads to a straight power law [155], when existing nodes also generate new edges via

preferential attachment, the distribution is double Pareto (with exponents -2 and -3) with a

time-dependent crossing point (kc = [b2t(2 + αt)]1/2) [7].15 A similar model describes the

tweet distribution.

Consider the evolution of the sample of tweets. Users join the sample upon their first

tweet (during the sample period) and then continue to produce additional tweets at some

rate. Discretize time relative to new users joining the sample, i.e., one user joins at each time

step so there are t users at time t. Let k(s, t) be the (expected) tweet count at time t for the

user first observed at time s. Assume new tweets are generated at a constant average rate c,

i.e., ct new tweets appear at each time step, distributed among existing users with frequency

proportional to A+ k(s, t)α. A is the initial attractiveness and α is the non-linearity of the

15In a network that allows self-edges, the exponents are -3/2 and -3 with crossing time kc ≈
√
ct(2 +

ct)
3/2 [156].

133

preference [157]. The resulting continuum equation16 is

∂k(s, t)

∂t
= (1 + ct)

A+ k(s, t)α∫ t
0
A+ k(u, t)α du

(6.15)

An analytical solution exists when A = 0 and α = 1 [8], but for the general case we

resort to Monte Carlo simulations. Figure 6.5 shows the close match to the empirical density

when A = 1 and α = 0.88.17 Assuming the power law form of the asymptotic density,

p(k) ∝ k−β, the power law form of the rate distribution can be recovered. Taking λ as the

tweet rate and noting that λ ∝ k−α when k � A, then

p(λ) = p(k−α) ∝ 1

α
λ−

−1+α+β
α . (6.16)

Thus, for α close to 1, the power law exponent recovered from Figure 6.4 slightly overesti-

mates that of the tweet rate.

Relating back to the analytical approximation of Equation 6.7, µ is related to ct by

µ ≈ 1.32 ln(ct) + 0.56. β = 1.13 and σ = 1.06 are constants best determined by fitting.

6.4.4 Distributions of Retweeter and Retweetee Rates

The retweet and retweetee rates show a similar dynamic behavior in Figure 6.6. The retweet

behavior differs only in the average rate c, which is about 2× lower. The retweetee distri-

bution exhibits two interesting differences. First, it extends further to the right, indicating

that retweets of popular users outnumber tweets from extensive users. Second, the slopes of

the power law regimes are more consistent with a pure preferential attachment process (i.e.,

α = 1). The retweetee rate comes directly from a preferential attachment process—initial

retweets increase exposure, begetting additional retweets—and thus should match the linear

form seen in other systems. The power law form of the tweet and retweet rates describes the

16We use the notation and continuous approximation of Dorogovtsev and Mendes [8].
17Parameters were chosen by a coarse, manual exploration of the space. Fine-tuning might further improve

the fit.

134

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105 106 107

P
M

F

of Tweets

Tweets
Retweets
Retweeted

Figure 6.6: Distributions for tweets sent, retweets sent, and times retweeted for the 1 week
and 4 month samples. All categories show similar time-dependent phase changes, suggesting
the same underlying mechanism. Retweets differ from tweets only in a lower average rate
(parameter c in the urn model).

underlying propensity to tweet, but without the same generative interpretation.

6.5 Distribution of Intertweet Durations

Arrival processes in communication systems are traditionally assumed to be Poisson [158],

but per-individual interval distributions for various activities including email, printing, and

telephone calls are heavy-tailed [136, 159, 160]. We show that this same behavior holds in

Twitter, with our analysis mirroring that of Candia et al. for telephone calls [136] to enable

easy comparison. The SNAP tweet dataset is used for this analysis.

We group the users by their total tweets to isolate the effects of differing tweet rates.

Figure 6.7 plots the empirical distributions. Scaling by the group’s average interevent time

(∆ta) collapses the distributions to a single curve, shown in Figure 6.8. This universal trait

is also found in email and telephone systems [136, 161]: the distribution is described by

135

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 102 104 106 108

P
r

(∆
T

)

∆T (seconds)

#Tweets≤4
4<#Tweets≤40
40<#Tweets≤100
100<#Tweets≤500
500<#Tweets

Figure 6.7: The interevent distributions with users grouped by number of tweets for the
three month period covering June through August 2009. The line is a best-fit power law
with exponential cutoff.

Pr(∆T) = 1
∆Ta

F
(

∆T
∆Ta

)
, where F (·) is independent of the average rate. The best-fit cutoff

power law is

Pr(∆T) ∝ (∆T)−α exp

(
−∆T

τc

)
, (6.17)

with exponent α ≈ 0.8 and cutoff τc ≈ 8.1 d, shown as the black line in Figure 6.8. ∆Ta is

taken as the whole population average here.

6.6 Characteristics of the Retweet Graph

The natural and explicit network in Twitter—the social graph in which a directed edge

represents the follower relationship—has been well-studied. Kwak et al. first reported on

basic network properties like degree distribution, reciprocity, and average path length [122],

and later works have studied these and other characteristics in more detail [123–126].

However, an alternative, implicit network—the retweet graph in which a directed edge

136

10-10

10-8

10-6

10-4

10-2

100

102

104

10-6 10-4 10-2 100 102 104

∆
T
a

P
r

(∆
T

)

∆T/∆Ta

#Tweets≤4
4<#Tweets≤40
40<#Tweets≤100
100<#Tweets≤500
500<#Tweets

Figure 6.8: The interevent distributions of Figure 6.7 collapse when scaled by the group’s
average interevent duration, ∆Ta. The line is a best-fit power law with exponential cutoff.

indicates that the source retweeted the destination—has been neglected. We conduct the first

characterization of the retweet graph and confirm that it, like many real-world networks, is

small-world and scale-free. The reported metrics are useful for generating random retweet

graphs using general parametric models like R-MAT [162] (a = 0.52, b = 0.18, c = 0.17,

d = 0.13) or other specific generative models [163].

We pay particular attention to contrasting the social following18 and retweet graphs.

Intuitively, they should be similar because retweets are usually sent by followers. However,

we conjecture that the retweet graph more closely models the real-world social and trust

relationships among users, because it derives from a more forceful action—not just listening

to others’ ideas, but forwarding them to one’s own friends. Using the follower graph as

a trust proxy has been proposed for applications ranging from spam filtering [164–166]

to Sybil detection [106, 167]. We conjecture that the retweet graph is a better choice and

provide some supporting evidence. Full treatment of this conjecture is beyond our scope.

18The social following graph is simply the social follower graph with the edge direction reversed to match
that of the retweet graph.

137

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103

E
m

pi
ric

al
C

om
pl

em
en

ta
ry

C
D

F

Edge Weight (# of Retweets)

Data
Power Law Fit

E
m

pi
ric

al
C

D
F

Figure 6.9: Distribution of number of edge weights in the retweet graph, corrected using the
EM method. A directed edge indicates that one user retweeted another and the weight is the
number of such retweets.

6.6.1 Analyzing a Random Subsample of the Retweet Graph

The retweet graph is constructed from our largest dataset, the 10% sample, and thus does

not contain all edges. An edge is included with probability proportional to the number of

retweets sent along it. However, 60% of edges have a single retweet and 98% have fewer than

10 (see Figure 6.9), so for simplicity we assume each edge is included with 10% probability.

Many measured properties in an edge-sampled graph differ from the original graph. When

possible, we use the EM-based method from Subsection 6.2.5 to correct our results. When

not, we estimate the errors using the literature on sampled graphs [139, 141, 168].

6.6.2 Degree Distributions

We begin with the in- and out-degree distributions. The in-degree kiin of a node i is the

number of unique users who retweeted i and the out-degree kiout is the number of unique

users retweeted by i. The average in-degree 〈kin〉 , N−1
∑

i∈V k
i
in = 88.4 and the similarly-

138

10-12

10-10

10-8

10-6

10-4

10-2

100

100 102 104 106 108

C
C

D
F

/P
M

F

In/Out Degree (# of Retweeters/Retweetees)

In (CCDF)
Out (CCDF)
In (PMF)
Out (PMF)

Figure 6.10: In and out degree distributions for the retweet graph. Both exhibit the double-
Pareto behavior common to evolving networks [7, 8]. In the upper tail, the in-degree
power-law exponent is 2.2 and 3.75 for the out-degree.

defined average out-degree 〈kout〉 = 74.3. V is the set of nodes and N their cardinality. In

reality 〈kin〉 = 〈kout〉; the observed difference is an artifact of the EM-based population

estimation. The degree standard deviations are σin = 4187.3 and σout = 228.4. Higher

in-degree variance is expected because, as with real-world networks [141], popularity (the

number of users who retweeted an individual) is more variable than extensivity (the number

of users an individual retweeted).

The distributions, shown in Figure 6.10, are similar to the social following graph [122].

Both are heavy-tailed and exhibit the same two-phase power law common to such networks.

Similarly to the tweet rate distribution (Subsection 6.4.3), the two phases are a dynamic

effect arising from two forms of evolution in the graph [7, 8]—the addition of new nodes

and preferentially-attached new edges between existing nodes. The outgoing (incoming)

node i for a new edge is selected with relative probability dout(i) + δout (din(i) + δin), where

δout and δin are the initial attractiveness constants and d(·) returns the node degree. Bollobás

139

et al. elucidate this process for a general context [163].

The power law exponents are determined by δout (δin). The lower tails are similar with

α ≈ 1.3. In the upper tail, αout = 3.75 and αin = 2.2. ain matches the followers graph

(2.3) [122] and is in the range of most real-world networks (2–3). αout exceeds that range

because extensivity is not inherently preferential (like popularity).

6.6.3 Reciprocity

Reciprocity is the fraction of links that are bidirectional. Many social networks have high

reciprocity—most relationships are bidirectional (68% in Flickr [169] and 84% on Yahoo!

360 [170]). In the Twitter follow graph, reciprocity is lower at just 22.1% [122]. If retweeting

is more discriminating than following, the retweet reciprocity should be lower. Indeed, it

is just 11.1%.19 Higher reciprocity in the follower graph may stem from the popularity of

follow-back schemes in which a user, in an attempt to gain followers, promises to follow

back anyone who follows him. The low reciprocity suggests that using the retweet graph

as a proxy for trust is promising. Although a malicious node can establish many outgoing

links, it has little control over the incoming structure.

6.6.4 Average Shortest Path Length (Degree of Separation)

The real-world human social network has a small average shortest path length (APL) of

about six, shown most famously by Stanley Milgram [171, 172]. Many online networks are

similar [173,174], but the social followers graph is denser with an APL of 4.12 [122]. Kwak

et al. attribute this difference to Twitter’s additional role as an information source. Edges

are more dense because users follow both social acquaintances and sources of interesting

content.
19We estimated the distribution of all non-zero pairwise edge weight tuples (the number of retweets in both

directions) from the 10% sample using the EM algorithm. The fraction that are non-zero in both directions is
the reciprocity.

140

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 10 20 30 40

0.0
0.2
0.4
0.6
0.8
1.0

0 20 40

P
M

F
Length of Path from Seed

1000 seeds
5000 seeds

lnN (1.96, 0.192)
Full Graph (est.)

C
D

F

Figure 6.11: Distribution of average path length (degree of separation) in edge-sampled
retweet graph. The gray line is the estimated distribution for the full graph.

We determined the path length distribution of the 10% edge-sampled graph by computing

all shortest paths for both 1000 and 5000 random starting nodes. The obtained distributions

(shown in Figure 6.11) overlap, indicating a sufficient sample size. Lee et al. showed that

edge sampling increases the APL by 1.5–3× (the gray range in the inset plot) depending

on the graph structure [139]. We use 1.5×, determined by sampling the followers graph20,

to estimate the full distribution (grey line in plot). The estimated APL is 4.8 and the 90th-

percentile or effective diameter [175] is 8.5. The difference from the followers graph is

within estimation error.

The best-fit distribution (solid line in plot) is log-normal21 with µ = 1.5 and σ = 0.27.

This differs from undirected Erdös-Rényi (ER) graphs, for which the limiting distribution is

Weibull [176], but we do not know of similar theoretical results for directed graphs.

6.6.5 Assortativity (Node Degree Correlation)

Degree assortativity—the tendency of nodes to connect with others of similar degree—

summarizes the structural characteristics that in part determine how content (e.g., retweets

or disease) spreads and resilience to node removal [177]. In an assortative network, content

20The 2009 crawl [122] is complete, so we compared the true statistic against that of a 10% subsample.
21We compared with the Weibull, Gumbel, Fréchet, and encompassing generalized extreme value distribu-

tions.

141

−0.06

−0.04

−0.02

0

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r

(A
ss

or
ta

tiv
ity

)
α (Link Sampling Rate)

r(in, out)
r(out, out)

r(in, in)
r(out, in)

Figure 6.12: Directed assortativities r as a function of edge sampling rate. Edge sam-
pling does not affect assortativity because all node degrees are sampled independently and
identically.

easily propagates through a connected component of tightly clustered, high degree nodes

that is resistant to node removal, but may not reach the low degree boundary of the network.

Conversely, a disassortative network has a larger connected component so content propagates

further, but can be partitioned by the removal of a high degree node.

For undirected networks, assortativity is simply the Pearson correlation between the

degrees of adjacent nodes. The concept generalizes to directed networks by considering all

possible directional degree pairs as separate assortativity metrics [178], r(in, in), r(in, out),

r(out, in), r(out, out), again using the Pearson correlation

r(α, β) ,
〈kiαk

j
β〉 − 〈kiα〉〈k

j
β〉

σkασkβ
(6.18)

where α, β ∈ {in, out}, kiα (kjβ) is the α-degree (β-degree) of source (destination) node

i (j), the averages 〈·〉 are taken over all directional edges (i → j), and σkα (σkβ) is the

variance of the α-degree (β-degree).

We characterize and contrast these metrics for both the Twitter social following graph [122]

and retweet graph. Edge sampling impacts the degrees of all nodes identically and thus does

not effect assortativity (see Figure 6.12) [139].

Figure 6.13 plots the assortativities for both networks. Although most real-world social

142

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r(in, in) r(in, out) r(out, in) r(out, out)
r

(A
ss

or
ta

tiv
ity

)

Retweet Graph

-0.006
0.0077

-0.039

0.043Following Graph

-0.03

-0.0089

-0.051

-0.012

Figure 6.13: Directed assortativity r of the retweet graph and the social following graph.
The retweet graph has higher assortative, more consistent with real world social networks
than most online social networks.

networks are assortative [177], online social networks are instead disassortative [179]. The

social followers graph is no exception, showing weak disassortativity across all measures.

In contrast, the retweet graph is more assortative across all measures. It is near-neutral

for both r(in, ·) metrics, indicating independence between one’s own retweet behavior

and the number of retweets received. This is consistent with the graph containing useful

trust information, because a user cannot influence the quantity of retweets received by

selectively retweeting popular (r(in, in)) or extensive (r(in, out)) users. The high (out, out)

assortativity is more consistent with real-world social networks and indicates that extensive

retweeters retweet each other. Interestingly, they are not tightly clustered (or the (in, out)-

assortativity would be higher).

In Twitter, tweets propagate to followers, so the social graph disassortativity is helpful.

The connected component is larger and tweets disseminate further more quickly. Increased

susceptibility to node failure is acceptable in a centralized system. In a decentralized system

that relies more heavily on the retweet graph for propagation, e.g., Shout [132], the resilience

to node failure implied by its neutral and positive assortativities would instead be helpful.

143

i i i i

Cycle Middleman In Out

Figure 6.14: The four types of open (solid edges) and closed (solid and dashed edges)
directed triplets used for cluster analysis. A vertex can form up to eight such triplets with
each pair of neighbors, two of each type. The clustering coefficient Cβ∈{cycle, middleman, in, out}
is the fraction of β-triplets (open and closed) that are closed.

6.6.6 Clustering Coefficient

A clustering coefficient quantifies the tendency of neighboring nodes to form highly con-

nected clusters. Many real-world networks exhibit tighter clustering than would be expected

in similar random graphs [173]. We consider the global clustering coefficient22, defined for

undirected graphs as

C ,
3N4
N3

, (6.19)

where N3 is the number of open or closed triplets (three vertices connected by two or three

edges) andN4 is the number of closed triplets (3-vertex cliques). Unlike the alternative local

clustering coefficient, this definition is suitable for networks with isolated nodes [180]. In

essence, C gives the probability that any two neighbors of a node are themselves connected.

Following the approach introduced by Fagiolo for the local clustering coefficient [181],

we extend the metric to directed graphs by separately considering the four types of directed

triplets, shown in Figure 6.14. The four clustering coefficients Cβ∈{cycle, middleman, in, out} are

the fraction of β-triplets that are closed.

An estimator from the sample clustering coefficient of an α-edge sampled graph (α = 0.1

for us) is

Ĉ ,
1

α
C, (6.20)

seen by noting that a triplet is included in the sample with α2 probability and as a closed

22Sometimes called the transitivity or transitivity ratio.

144

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 α
C

α (Link Sampling Rate)

Out
Middleman

Cycle
In

Figure 6.15: The clustering coefficient estimator Ĉ , 1
α
C as a function of edge sampling

rate on the social “following” graph. Although potentially biased, the estimator is quite
accurate for such graphs.

0

0.1

0.2

0.3

0.4

Cycle Middleman In Out

C
(C

lu
st

er
in

g
C

oe
ffi

ci
en

t) Retweet Graph
Following Graph

0.12

0.32
0.29

0.00110.015 0.017 0.027
0.00077

Figure 6.16: Clustering coefficients for the social “following” graph and the retweet graph.
Clustering is significantly more prominent in the retweet graph and more consistent with
real-world social networks.

triplet with α3 probability. This estimate is biased, because the triplets are not independent

and edges can be concentrated towards open (or closed) triplets. In practice however, it

performs well on large samples, as shown in Figure 6.15 for the social following graph.

Figure 6.16 plots the results for both the social and retweet graphs. The former has low

clustering, but clustering in the retweet graph is significant in metrics except in. Cycle is the

only fully (transitively) connected triplet type, and thus cycle-clustering should best reflect

true clustering in the underlying social groups and interest topics. The higher clustering in

the retweet graph indicates that retweet relationships are more concentrated than following

145

relationships, consistent with our hypothesis of higher trust.

Although the middleman, in, and out cycle are all rotations of the same basic non-

transitive triplet, their coefficients differ due to the non-uniform degree distribution. Cin

is low because the majority of (in, in) edge pairs are from a few popular users who are

retweeted by many otherwise-unrelated users. The high Cmiddleman and Cout coefficients

are reflections of the same phenomenon—transitive retweeting. User f retweeting user i’s

retweet of user a is recorded by Twitter as f retweeting a (hence the name middleman).

Often f will also retweet some of i’s original content, closing the triplet. In the out case,

node i plays the role of f instead of the middleman. Surprisingly, such transitive retweeting

happens frequently (Cmiddleman = 0.32 and Cout = 0.29). In other words, 30% of these

possible two-degree retweet relationships exist.

6.6.7 Summary

We have confirmed that the retweet graph is scale-free and small-world, like many social

networks. Interestingly, its clustering and assortativity are closer to real-world networks than

typical online networks, indicating that it may better capture real-world relationships and

have application as a proxy for trust. Full treatment of this conjecture is beyond our scope.

The scale-free, small-world confirmation enables the generation of random instances, e.g.,

using R-MAT [162], for empirical study. We use this approach in Section 6.8 to evaluate the

use of connectivity in the retweet graph to detect spammers.

6.7 Implications for the Design of Decentralized

Microblogging Architectures

The preceding sections characterized tweet behavior—total quantity, average rate, and

interevent time—and the retweet graph structure. Although interesting in their own right,

in this section we discuss a particular application—the implications for the design of

146

performance-constrained, decentralized microblogging platforms like Shout [132]. In such

systems, bandwidth and energy—scarce resources—must be carefully allocated to achieve

some notion of fairness. We discuss implications for such allocation strategies.

Power Law Participation Momentum: Most users quit after a few contributions, so greedy

allocation of resources to new users is wasteful. For example, a routing scheme prioritizing

messages from users with more contributions would implicitly direct bandwidth away from

temporary users.23 The known power law form of the momentum function enables the design

of optimal allocation strategies. For example, consider storing old messages by distributing

them across participating nodes. Nodes with more contributions are more reliable (less

likely to leave the network) and thus require a lower storage replication factor. These failure

probabilities can be easily modeled.

Heavy-Tailed Rate Distribution: The two-phase tweet rate distribution has implications

for short-term message delivery and long-term message storage. The message generation rate

may be modeled as lognormal—messages are naturally better-distributed in the network than

a power law would suggest, reducing points of congestion and better balancing bandwidth

use. In the long term, however, the average tweet rates follow the asymptotic power law

with its much heavier tail, posing issues for archiving and retrieval of tweets. For example,

sharding messages across nodes by author will result in a few nodes storing and serving

the majority of the archived content. The archiving system must be designed to handle the

power law distribution.

Heavy-Tailed Interevent Distribution: Simulations and other performance analysis must

use heavy-tail distributions for the interevent times. Standard Poisson distributions will

grossly underpredict these times, increasing simulated congestion and resulting in over-

provisioned designs.

Small-World, Assortative, Clustered Retweet Graph: In a centralized platform, a single

entity can moderate bad behavior, reject spammers, and ensure fair division of resources.

23We do not consider how malicious users might manipulate such schemes, but resistance to such attacks
would be important for any practical protocol.

147

Participants in a decentralized platform must perform these same tasks themselves without

implicit trust in others. The implicit retweet graph seems to encode some information

about the real-world relationships of users that could be inferred for such purposes. The

higher assortativity is more indicative of a real world network than a social network and the

high clustering implies that users have some commonalities around which they gather. We

explore this direction in the next section, using spammer detection via connectivity in the

retweet graph as an example.

6.8 Leveraging the Retweet Graph for Spammer

Detection

Spam is a problem for many communication platforms [166, 182], but seems particularly

concerning for a system like Shout. A malicious user can easily flood its one-hop neigh-

borhood with a multitude of useless or spam shouts. Twitter, a centralized service, can

decree what constitutes spam, use its full knowledge of user behavior to detect viola-

tors [164, 165, 183–187], and limit the creation of new accounts. In a decentralized system,

however, the lack of a trusted authorities implies that participants must do their own spam

filtering, either individually or collaboratively.

In this section, we use the analysis of a spam detection method as an example use case

for the preceding characterizations of the retweet graph. Specifically, we employ synthetic

graphs that mimic the structure of the retweet graph to characterize the performance of a

retweet (or reshout) graph-based spam technique.

6.8.1 Possible Approaches to Spam Detection

Although at first glance Shout appears to be highly susceptible to spammers, the underlying

distributed architecture provides some implicit protection. Shouts are carried beyond a

one-hop radius only if manually reshouted. Conforming users will not reshout spam,

148

implying that the spammers must do so themselves. As such, the cost of spreading spam is

proportional to the number of users impacted, either in time (if the spammer moves about

the network) or equipment costs (if the spammer uses multiple transmitters at different

locations). Even occasional waves of spam are still undesirable, so a method for filtering

spam from one-hop neighbors as well is needed.

Detection approaches can focus either on individual messages, spam detection, or on

the sender, spammer detection. The latter is most applicable to microblogs, because the

short message lengths—less than 250 characters—make content analysis difficult [164].

Spammer detection takes two forms differentiated by the default presumption. Blacklisting

assumes that users are not spammers until proven otherwise, while whitelisting presumes

the opposite. The former is a non-starter in Shout because blacklisted accounts are easily

and cheaply replaced. Some form of whitelisting is required.

The most obvious form of whitelisting—and one applicable to Shout—is explicit labeling

of accounts. The initial assumption of guilt implies that the first messages from a new user

will not be seen—other nodes will filter it as spam. To bootstrap around this problem, users

may explicitly whitelist accounts they wish to hear. For example, new users should ask to

be added to their friends whitelists, allowing their messages to be seen.

Explicit whitelisting is sufficient for Shout to be usable. Original content is only seen by

one’s explicitly whitelisted friends, but can still spread via reshout. Consider a user A who

has whitelisted user B who has whitelisted C. A messages from C will initially only be

seen by B (not A). If interesting enough though, B will reshout, making it visible to A as

well. This approach essentially mimics the flow of information in Twitter, i.e., along edges

in the social graph, but requires geographic proximity as well. Some initially whitelisted

nodes might later begin spamming (either as an intentional bait-and-switch or due to device

hijacking), but are easily manually blacklisted. The whitelist is built manually and thus is

relatively short, so corrective blacklisting will not be overwhelming.

Explicit whitelisting will often be overly strict, however. Interesting or useful messages

149

from geographically-proximate users outside of one’s social circle will, at best, appear only

after being retweeted by a friend, possibly after significant delay. We would like to instead

be able to automatically infer the whitelist label for such users. We require this inference to

be decentralized, so the possible approaches fall in two categories. The first uses only locally

available information, e.g., the local database of overheard shouts, to perform classification.

The second can use some form of transitive trust, e.g., the whitelists from other nodes or

implicit signals of trust like reshouts.

Many researchers have considered spam detection using (locally available, in Shout)

attributes of tweets [164, 165, 183–187]. In particular, Benevenuto studied the classification

performance of 60 tweet and tweeter attributes, ranging from hashtags per tweet to the

ratio of followers to friends. Aside from the obvious inclusion of URLs and account age24,

the most sensitive attributes were related to social behavior—ratio of followers to friends,

number of replies to messages, etc. Noting that spammers can easily alter the content of

tweets, they suggest focusing on these harder-to-manipulate attributes for detection. Their

proposed classifier has a 70% true positive rate (TPR) and a 4% false positive rate (FPR).

Other researchers have considered incorporating the classifications from other partici-

pants, a form of transitive trust. However, such protocols can be subject to Sybil attacks,

in which an attacker creates many identities reporting falsified observations to out-vote the

honest identities. As a defense, Yu et al. developed SybilGuard, a Sybil detection scheme for

social networks based on the observation that most Sybil identities will be weakly connected

to the network [105]. Most people do not “friend” fake accounts on social networks, so fake

identities receive only a limited number of connections. We consider similar graph-based

approaches for spam detection.

Song, Lee, and Kim [165] applied this observation to spam detection in Twitter using the

followers graph. In particular, they consider two metrics in the graph: distance—measured

as the shortest path between two nodes—and connectivity—measured via max-flow and

24Twitter actively removes spammer accounts, biasing the collected data.

150

A B

S

Figure 6.17: Portion of a retweet graph showing how spammers are less connected. Non-
spammer B is connected to non-spammer A by three independent paths, the shortest of
which has length two. Spammer S is connected by only a single length-three path.

random walk. A classifier over these attributes had a 95% TPR and a 4% FPR on their

dataset. Including attributes like URLs per tweet improved the performance to a 99% TPR

and 1% FPR.

Shout does not include explicit social relationships, so the followers graph cannot be

used. Instead, we consider the implicit retweet graph. Intuitively, content from spammers

will not be heavily retweeted, and thus they will be less connected to non-spammers in the

graph, as illustrated in Figure 6.17. Node A is connected to non-spammer B by three edge

independent paths, the shortest of which has length two. Spammer S, on the other hand,

is only connected via a single path of length three. A separates spammers by classifying

nodes based on their distance from and edge-independent connectivities (i.e., max-flow with

unit-weighted edges) to itself.

Unfortunately, these techniques are not manipulation-resistant. Although they perform

well on existing datasets, attackers that are aware of the classification method can adjust their

own strategies to defeat detection. In particular, an attacker can “bait-and-switch”—initially

broadcast non-spam content to gain reshouts (or followers) and then, once connected, switch

to spreading spam. Although gaining an initial reshout (or follower) takes some effort, that

one attacker account can then easily introduce more bait-and-switchers by reshouting their

initial good content. Others who see that content will reshout, forming many edges back to

151

the new attacker nodes.

More abstractly, these techniques attempt to infer trust relationships from the behavior of

the participants (e.g., reshouts) and then use transitive application of those trust relationships

to classify spammers. Formal treatments of this problem domain (motivated by the design

of recommender systems) [188–190] have revealed theoretical limitations on the power of

such techniques. First, a tradeoff exists between detecting falsified reports and believing

honest reports—any technique that limits the influence of falsified reports will also ignore

some of the honest reports [189]. Second, safely employing transitive trust relationships

implies some identities that would have been accepted as non-spammers (i.e., had a high

enough trust balance) in by a direct trust protocol will be rejected as spammers (i.e., will not

have a high enough trust balance) [190]. In Subsection 6.8.5, we summarize how our spam

detection problem can instead be treated in manipulation-resistant fashion, although still

subject to those two impossibility results.

6.8.2 Spam Detection Using the Retweet Graph

Retweet graph-based spam detection works as follows. Each participant in the system

maintains his own partial25 list of past messages sent by himself and others. A partial

retweet graph is constructed from this dataset, with one vertex per sender and directional

edges linking each retweeter to the corresponding retweetees. Denoting the participant’s

own vertex as the root26, the remaining participants are classified by two attributes, their

distance from the root and the maximum flow from the root to them. Users that are classified

as non-spammers are whitelisted.

This approach presents two bootstrapping problems. How does a new user with no

recorded history construct a retweet graph and do the messages from a new user that has

25Only some messages sent by other will be heard. E.g., in Shout [132] only those message broadcast in the
vicinity of the node will be heard and included.

26Trusting one’s own vertex as non-spammer breaks the otherwise problematic symmetry between the
non-spammer and spammer portions of the graph.

152

never been retweeted ever get seen? For the first question, a user can copy the tweet history

from a trusted friend or bootstrap by explicitly whitelisting his friends. For the second, the

user can ask his friends to whitelist him, so they can then see and retweet his messages,

linking him to the graph. We also anticipate that some (particularly bored) users will choose

to view all incoming tweets, retweeting some that are not spam.

The approach relies on the following assumptions.

• Non-spammers retweet spammers much less frequently than non-spammers.

• Spammers only send spam content; they do not bait-and-switch.

The second assumption is, of course, unrealistic. Although it appears to hold in the current

dataset, attacks would respond to the deployment of graph-based spam filtering by altering

their behavior to manipulate the classification. This method forces spammers to employ

some sort of manipulation scheme, increasing the cost of introducing spammer identities

(it takes time for the initial good messages to be reshouted) and limiting their total number

(practical concerns limit the rate at which users will reshout), but does not provably restrict

their advantage. Instead, schemes that are provably resistant to such manipulation, i.e., have

bounded attacker advantage [188, 190] could be used, as we discuss Subsection 6.8.5.

For our analysis, we also make the following assumption.

• Spammer retweet spammers and non-spammers in the same fashion that non-spammers

retweet non-spammers.

This assumption simplifies the generation of synthetic retweet graphs, but is not necessary

for the detection approach. A spammer may choose to behave differently, but doing so

simply introduces more structural differences in the retweet graph, making detection even

easier.

The following sections analyze the performance of this classification procedure on our

10% sample of the retweet graph and synthetic graphs for parameter sweeps.

153

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30 35 40 45
Distance

Extant
Removed

Figure 6.18: Percentage of removed and extant Twitter users as a function of distance from
benign users in the retweet graph. Most removed users are spammers, so this graph shows
that distance is highly correlated with spammer behavior.

6.8.3 Performance on the Twitter Retweet Graph

We first consider the performance on our 10% sample of the retweet graph. This sample is

problematic because most of the paths between non-spammers are not included (90% of

edges are missing) but is sufficient to show that the hypothesized differences exist.

We randomly chose 100 source–destination pairs of users who distances in the retweet

graph ranged from 1 to 45, for 4500 pairs in total. We obtained ground truth classification

for these 9000 users by querying the Twitter API to determine if the account had been

removed in the 18 months following the initial collection. Twitter actively seeks out and

bans spammers, so the majority of the spammers will have been removed. Some non-

spammers will have also deleted their own accounts, so we refer to these categories as

removed and extant. We believe that most removed users were spammers [182].

We consider only the pairs whose source node is extant. Figure 6.18 shows the percentage

of destination nodes in each category by the distance from their sources. Clearly, distance

in the retweet graph is correlated with spammer tendencies. A classifier over this attribute

alone achieves a TPR of 75% with an FPR of 25%.

The second attribute, connectivity, shows no correlation in the 10% sample graph because

the majority of edges are missing. Most pairs with between one and ten independent paths in

154

From

To Benign Spam

B
en

ig
n

S
pa

m

ToFrom
Benign Spam

B
en

ig
n

S
pa

m

a b

c
d

a

d

a b

c

b

dc

a b

d

a b
c

a b
c

Figure 6.19: Illustration of the modified R-MAT algorithm for generating synthetic retweet
graphs and a resulting adjacency matrix. Fewer edges are placed in the benign–spam
quadrant to model the lower likelihood of such retweets. Within each quadrant, edges are
cascaded in proportion to probabilities a, b, c, and d to generate a scale-free, small-world
structure.

the original graph contains only zero or one paths in the sampled graph, making it impossible

to distinguish a non-spam node linked by ten paths from a spam node linked by one. Instead,

we turn to synthetic retweet graphs to study the performance of the combined classifier.

6.8.4 Performance on Synthetic Retweet Graphs

The analysis in Section 6.6 showed that the retweet graph is scale-free and small-world,

enabling the generation of synthetic retweet graphs using the R-MAT (Recursive Matrix),

an algorithm designed to generate a variety of such networks [162]. Although metrics

like assortativity and clustering are not directly controllable—R-MAT cannot capture the

differences between the followers and retweet graphs 27—it is sufficient for our purposes

as we depend only on the connectivity implied by the small-world structure and limited

number of incoming edges to spammer nodes.

R-MAT produces scale-free, small-world graphs by treating edge assignment in the adja-

cency matrix as a two-dimensional binomial cascade. We modify the procedure to generate

relatively fewer edges from benign to spammer nodes (B–S) than the other possibilities

(B–B, S–S, S–B), modeling the notion that non-spammers rarely retweet spammers.

27Unfortunately, this prevents us from comparing retweet-based with follower-based spam detection. A full
sample of the retweet graph would be needed.

155

The modified R-MAT process is illustrated in Figure 6.19. We desire a graph with some

number of benign and spammer nodes, some number of non-B–S edges, and a relatively

smaller number of B–S edges. The adjacency matrix is divided into four quadrants and the

edges split among the B–B, S–S, and S–B quadrants in proportion to their areas. Within

each quadrant, the R-MAT algorithm is used to place the edges. For each edge, the sub-

quadrant in which to place the edge is chosen according to probabilities a, b, c, and d

(a + b + c + d = 1). The process recurses until a single cell is selected for the edge. The

result of the process for a small graph is shown in Figure 6.19.

The parameters a, b, c, and d are obtained via AutoMAT-fast [162], i.e., fitting the degree

distribution of the retweet graph to that of the model. The R-MAT process is essentially

a two-dimensional binomial cascade, with the out-edges assigned to the upper and lower

halves with probabilities p , a+ b and 1− p and the in-edges assigned to the left and right

halves with probabilities q , a+ c and 1− q. Letting N = 2n be the number of nodes and

E the number of edges to assign, then the expected number of nodes ck with out-degree k is

ck =
n∑
i=0

(
n

i

)
B
(
k;E, pn−i(1− p)i

)
(6.21)

where B(k; a, b) is the mass function of the binomial distribution B(a, b). The in-edge

distribution is computed similarly. Fitting to the retweet graph, we obtain a = 0.52,

b = 0.18, c = 0.17, and d = 0.13.

We fix the fraction of spam nodes to 10% and assume that spammer retweet behavior

mimics that of benign nodes retweeting each other. Differences are not in the attackers’

interest, as they would enable additional classification methods.

The performance of the classifier is primarily affected by two metrics—the fraction of

possible B–B edges that are present and the number of B–S edges per spammer vertex—so

we conduct parameter sweeps of these values.

If the B–B edge density is too low, many benign pairs will not be connected and the false

156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

Fr
ac

tio
n

of
B

en
ig

n
P

ai
rs

C
on

ne
ct

ed

edges
(# nodes)2

Figure 6.20: Connectivity of benign pairs as a function of the benign edge density. Above
5%, almost all pairs are connected. We expect that density does not grow with network
size, so this limits the network size for which the false positive rate is acceptable. For large
networks, the technique will only work within clusters.

positive rate will be high. Figure 6.20 plots this density against the fraction of benign pairs

that are connected for a variety of network sizes. Above 5%, most pairs are connected and

above 10%, essentially all pairs are connected. We expect the number of edges in a retweet

graph to (above some point) grow linearly in the number of users, so this relationship places

a limit on the network size for which the technique is usable. For larger networks (e.g., the

world population), the technique will only work within clusters for which the edge density

is high enough—users outside of one’s own cluster will be identified as spammers. For

example, the average out-degree of Twitter, 75, would support 25000 participants. However,

social relationships are clustered, so this limitation should rarely be an issue in practice.28

In a network like Shout [132], the effective community size is already limited by geography.

Figure 6.21 shows the classification performance. We use the J48 decision tree classifier

28This limitation does prevent the discovery of content from outside of one’s own group, possible with
centralized Twitter today. Content can still traverse two groups if seen and retweeted by a member of both.

157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

Po
si

tiv
e

R
at

e

False Positive Rate

0.00002
0.00006
0.00014
0.00030
0.00060
0.00300

Figure 6.21: Performance of J48 classifier over distance and connectivity attributes in the
synthetic graphs. The benign edge density (marker symbol and color) range from 0.00002
to 0.003 and the number of B–S edges per spammer node (marker size) ranges from 0.01 to
1. Each marker is a single point on the resulting ROC curve.

over both the distance and connectivity (max-flow) attributes, using 10-fold cross validation.

We sweep both the benign edge density (marker symbol and color) from 0.0002 to 0.003

and the number of B–S edges per spammer (marker size) from 0.01 to 1. To reduce clutter,

a single point29 from each resulting ROC curve is plotted. Two trends are immediately clear.

Decreasing the benign edge density increases the FPR, but an FPR below 5% requires just

a 0.3% edge density. Increasing the B–S rate (number of B–S edges per spammer node)

decreases the true positive rate. If less than one-tenth of spammers are retweeted by benign

nodes, the TPR is universally above 98%. The sensitivity to B–S rate increases with edge

density because the spammer nodes are more interconnected (we hold the S–B and S–S

densities equal to the B–B density).

This performance—98% TPR and <5% FPR—is consistent with the results observed on

29The selected points are generally near the knees of the curves, but within a class are intentionally chosen
to have similar FPRs.

158

the Twitter followers graph by Song, Lee, and Kim [165] and substantially better than the

70% TPR and 4% FPR observed by Benevenuto et al. [164] for attribute-based classification.

The false positives are due to the low edge density of in the cluster of benign nodes. Each

user only retweets an average of 75 other users, so as the node count increases, that cluster

becomes increasingly disconnected. The false negatives are due to benign nodes occasionally

retweeting spammers. A few spammers are (randomly) retweeted by enough users to become

connected to the graph. These retweets are rare and essentially random though (e.g., an

accidental press of the retweet button) and thus the false negative rate remains low.

In summary, Figure 6.18 shows that the inter-node distance in the retweet graph is

highly correlated with being a spammer, enabling detection. Simulations on the synthetic

graphs show that inter-node distance and inter-node max flow can identify spammers with

greater than 98% TPR and less than 5% FPR when fewer than one-tenth of spammers are

retweeted and at least 0.3% of possible edges between benign nodes are present. For a

community-sized network of 25000 participants, this implies an average node degree of

75, i.e., that of the Twitter retweet graph. For larger networks, the classification works best

within smaller sub-clusters where the edge density is higher.

6.8.5 Discussion of Provably Manipulation-Resistant Schemes

We have shown only that the retweet graph-based spam filtering method works against

current spammer behavior. Were the technique deployed, spammers could alter their

behavior to manipulate the structure of the graph, e.g., by initially tweeting some non-

spam content to gain retweets. Detection techniques that are provably resistant to such

manipulation would be preferred. In this section, we briefly summarize how two such

techniques, developed in the context of recommender systems but generally-applicable, can

be applied to spam detection. Full evaluation is beyond our scope and is left for future work.

We first consider the influence limiter [188], an overlay scheme to make any recom-

mender scheme provably manipulation-resistant. Here, the goal is to generate recommenda-

159

tions (over some domain of items) for a user (the target) using the ratings provided by other

users (the raters). Dishonest (and possibly Sybil) raters can submit false ratings designed to

manipulate the generated recommendations. The influence limiter computes an influence

for each rater based on the (predictive) accuracy of his ratings. Ratings that improve the

recommendation accuracy (measured by how much better the prediction matches the target’s

future ratings) increase influence and vice versa. When generating a recommendation,

ratings are weighted by their respective rater’s influence. New users are bootstrapped by

starting them with a small amount of initial influence. This formulation maps directly to

retweet-based spammer detection. The tweeters are the raters and the contents being tweeted

are the items. A tweet serves as a positive rating for that content. A retweet by a target

indicates agreement with that rating. This scheme is (n,c)-robust (the expected damage by

an attacker controlling n identities is upper bounded by c) with information loss (honest

ratings that are under-weighted during recommendation) of the some order of magnitude as

a (possibly loose) provable lower bound [189].

The influence limiter does not chain the rater reputations transitively, e.g., a target A

assigning high influence to rater B who assigned high influence to rater C does not directly

result in A assigning high influence to C. Like the retweet graph-based classifier, we can

consider transitive trust relationships, but in a manipulation-resistant fashion [190]. In this

model, each participant associates a trust balance with each other participant. These trust

balances are used to decide whether a participant should engage in an interaction (e.g., do I

have enough, possibly transitive, trust in that user to “cover” the risk of the interaction). In

our case, a user (the principal) reading a tweet from another user (the agent) is a transaction.

An (honest) principal indicates that the transaction was successful (i.e., the tweet was

useful) by retweeting it. Intuitively, the trust balances of any participants involved in an

interaction (i.e., including those used for transitive trust) should be increased (decreased)

after successful (unsuccessful) interactions between participants. The choice of trust update

protocol determines the manipulation-resistance, as attackers may lie about success (i.e.,

160

retweet spam). Specifically, we desire that the incorporation of transitive trust not give the

attacker (who can control many participants) any more advantage than he would have if only

direct trust was used. One formalization of this property is called sum-sybilproofness and is

provided by the hedged-transitive update protocol [190]. Unfortunately, it is also known

that any sum-sybilproof protocol will reject some interactions that would be allowed by a

protocol employing direct trust only, limiting the overall usefulness of indirect trust.

Spam detection based on these techniques (i.e., a manipulation-resistant recommender

system [188, 189] and sybil-sumproof incorporation of transitive trust [190]) offer a signifi-

cant improvement over the retweet-graph based approach. Their manipulation-resistance

is provably quantifiable (and tight against theoretical bounds), no matter how clever the

attacker. Future efforts towards implementing spam detection in Shout should incorporate

them.

6.9 Derivation of the EM Method

Using the same notation as Subsection 6.2.5, the likelihood to maximize is

LC(φ|f, g) = log p(f, g|φ) (6.22)

∝ log p(f |φ) (6.23)

∝ log
∏

1≤j≤i

(
φici,j

)fi,j (6.24)

=
∑

1≤j≤i

fi,j log
(
φici,j

)
. (6.25)

The expected likelihood under an estimate φk is

Q(φ, φ(k)) , Ef |g,φ(k)
[
LC(φ|f, g)

]
(6.26)

=
∑

1≤j≤i

Eφ(k)
[
fi,j|g

]
log
(
φici,j

)
(6.27)

161

and the iterative maximization step is

φ(k+1) , arg max
φ

Q(φ, φ(k)). (6.28)

The maximum is computed under the constraint
∑

1≤i φi = 1 using Lagrangian multipliers.

Defining the Lagrangian

L(φ, λ) ,
∑

1≤j≤i

Eφ(k)
[
fi,j|g

]
log
(
φici,j

)
+ λ(1−

∑
1≤i

φi), (6.29)

the associated partial derivatives are

∂L

∂φi
=

Eφ(k)
[
fi,j|g

]
φi

− λ, and (6.30)

∂L

∂λ
= 1−

∑
1≤i

φi (6.31)

Solving for

φi =
Eφ(k)

[
fi|g
]∑

1≤l Eφ(k)
[
fl|g
] (6.32)

and defining

γ ,
∑
1≤l

Eφ(k)
[
fl|g
]

=
∑
1≤l

gl (6.33)

yields

φ
(k+1)
i =

Eφ(k)
[
fi|g
]

γ
(6.34)

=
φ

(k)
i

γ

∑
j

ci,jgj∑
1≤l φ

(k)
l cl,j

. (6.35)

or in matrix form (for fast implementation on a computer)

φ(k+1) =
1

γ
× φ(k) × C · g

C> · φ(k)
. (6.36)

162

The original frequencies can be expressed as

f̂i = γφi
1

1−B0.1(i, 0)
. (6.37)

6.10 Conclusion

We have presented an initial characterization of aggregate user behavior, describing the

distributions of lifetime contributions, tweet rates, and inter-tweet durations. These behaviors

are thought to be common across communication platforms, but our results differ from

prior analysis, suggesting future study to determine the true extent of the similarities. Our

retweet graph analysis revealed structural differences from the followers graph that are more

consistent with real world social networks. Explaining the underlying causes of the observed

differences—we conjecture that retweets more closely mirror real-world relationships and

trust—is an open problem. Finally, we developed a method for detecting spammers via their

low connectivity in the retweet graph.

163

CHAPTER 7

Conclusion

This thesis has advocated the development of non-hierarchical networks to combat censor-

ship and surveillance in communication networks. Continued work is needed to ready such

systems for everyday use, but this thesis has taken the following steps.

• Private, reprisal-resistant communication for friends and family: We proposed Whis-

per, a MANET architecture that uses a novel routing scheme based on the predictability

of human motion to increase scalability. Privacy and anonymity are provided by a

novel onion-routing variant that does not require a priori selection of potential onion

routers. The Mason test was developed to enable the use of random nodes from

those encountered during daily travels for onion routing, ensuring that the proportion

of selected onion routers that are attackers is limited by the proportion of physical,

participating nodes owned by the attackers.

• Censorship-resistant public microblogging: We proposed Shout, a MANET mi-

croblogging architecture that uses geographic proximity and manual human action to

disseminate messages in a non-hierarchical fashion. To combate spam, we developed

a novel spammer detection technique based on the intuition that messages from spam-

mers will be repeated and forwarded less frequently that those from non-spammers.

We developed analytical models of user behavior in Twitter to enable simulation-based

study and optimization of Shout-like microblogging systems. We used our characteri-

164

zation of the retweet graph to generate random reshout graphs suitable for studying

the classification performance of our spammer detection technique.

The results described in this thesis represent early steps in the development of non-

hierarchical networks. Current smartphones have extremely limited battery capacities,

limiting the potential for Whisper, which relies on other devices to forward messages. Both

Whisper and Shout require a critical mass of users before messages can propagate far enough

to be useful. Centralized services will often be more convenient. The public must care about

privacy before they will tolerate the inevitable inconveniences of decentralized and non-

hierarchical alternatives. I hope that once privacy has become a first-order requirement for

the public, the methods presented here are useful in the development of privacy-preserving

communication platforms.

165

BIBLIOGRAPHY

[1] D. R. Bild, Y. Liu, R. P. Dick, Z. M. Mao, and D. Wallach, “Using predictable
mobility patterns to support scalable and secure MANETs of handheld devices,” in
Proc. Int. Wkshp. on Mobility in the Evolving Internet Architecture, June 2011, pp.
13–18.

[2] Z. Wilcox-O’Hearn, “Names: Decentralized, secure, human-meaningful:
Choose two,” https://zooko.com/uri/URI:DIR2-RO:d23ekhh2b4xashf53ycrfoynkq:
y4vpazbrt2beddyhgwcch4sduhnmmefdotlyelojxg4tyzllhb4a/distnames.html.

[3] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the Levy-walk nature of human
mobility,” in Proc. Int. Conf. Computer Communications, Apr. 2008, pp. 924–932.

[4] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: a mobility model
for human walks,” in Proc. Int. Conf. Computer Communications, Apr. 2009, pp.
855–863.

[5] L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Channel-based detec-
tion of Sybil attacks in wireless networks,” IEEE Trans. Information Forensics and
Security, vol. 4, no. 3, pp. 492–503, Sept. 2009.

[6] D. B. Faria and D. R. Cheriton, “Detecting identity-based attacks in wireless networks
using signalprints,” in Proc. Wkshp. Wireless Security, Sept. 2006, pp. 43–52.

[7] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution
of the social network of scientific collaborations,” Physica A: Statistical Mechanics
and its Applications, vol. 311, no. 3–4, pp. 590–614, Aug. 2002.

[8] S. N. Dorogovtsev and J. F. F. Mendes, “Language as an evolving word web,” Proc.
Royal Society London B, vol. 268, no. 1485, pp. 2603–2606, Dec. 2001.

[9] J. Zittrain and B. Edelman, “Internet filtering in china,” IEEE Internet Computing,
vol. 7, no. 2, pp. 70–77, Mar. 2003.

[10] T. Zhu, D. Phipps, A. Pridgen, J. R. Crandall, and D. S. Wallach, “The velocity of
censorship: High-fidelity detection of microblog post deletions,” in Proc. USENIX
Security Symp., Aug. 2013, pp. 227–240.

[11] T. Branigan, “China blocks Twitter, Flickr, and Hotmail ahead of Tiananmen anniver-
sary,” The Guardian, June 2 2009.

166

http://robertdick.org/publications/bild11jun.html
http://robertdick.org/publications/bild11jun.html
https://zooko.com/uri/URI:DIR2-RO:d23ekhh2b4xashf53ycrfoynkq:y4vpazbrt2beddyhgwcch4sduhnmmefdotlyelojxg4tyzllhb4a/distnames.html
https://zooko.com/uri/URI:DIR2-RO:d23ekhh2b4xashf53ycrfoynkq:y4vpazbrt2beddyhgwcch4sduhnmmefdotlyelojxg4tyzllhb4a/distnames.html

[12] H. Noman and J. C. York, “West censoring east: The user of western technologies by
middle east censors, 2010–2011,” OpenNet Initiative, Tech. Rep., Mar. 2011.

[13] Reports Without Borders, “Enemies of the internet report 2012,” pp. 1–71, Mar. 2012.

[14] E. Schonfeld, “Twitter is blocked in Egypt amidst rising protests,” TechCrunch, Jan.
25 2011, http://www.techcrunch.com/2011/01/25/twitter-blocked-egypt.

[15] OpenNet Initiative, “Internet filtering in Tunisia,” 2009, http://opennet.net/research/
profiles/tunisia.

[16] N. Anderson, “Tweeting tyrants out of Tunisia: Global Internet at its best,” Wired.com,
Jan. 14 2011, http://www.wired.com/threatlevel/2011/01/tunisia.

[17] The Wall Street Journal, “Egypt communications cut ahead of further protests,” Jan.
28 2011, http://online.wsj.com/article/BT-CO-20110128-706943.html.

[18] J. Cowie, “Egypt leaves the Internet,” Renesys Blog, Jan. 27 2011,
http://www.webcitation.org/query?url=www.renesys.com/blog/2011/01/
egypt-leaves-the-internet.shtml.

[19] C. to Protect Journalists, “Committee to protect journalists 2008 prison
census: Online and in jail,” Dec. 2008, http://www.cpj.org/imprisoned/
cpjs-2008-census-online-journalists-now-jailed-mor.php.

[20] J. Goldsmith and T. Wu, Who Controls the Internet? Oxford University Press, 2006.

[21] R. Marquand, “The ’mouse’ that caused an uproar,” Nov. 2003.

[22] J. Risen and E. Lichtblau, “Bush lets U.S. spy on callers without courts,” N.Y. Times,
Dec. 16 2005.

[23] L. Davidson and A. J. O’Donoghue, “Utah will host new $1.9 billion NSA spy center,”
Deseret News, Jul. 3 2009.

[24] M. D. Laplante, “Spies like us: NSA to build huge facility in Utah,” The Salt Lake
Tribune, Jul. 1 2009.

[25] H. Hoogstraaten, et al., “Black tulip: Report of the investigation into the DigiNotar
certificate authority breach,” Fox-IT, Tech. Rep., Aug. 2012.

[26] A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0,” in Proc. USENIX Security Symp., Aug. 1999, pp. 169–184.

[27] B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.

[28] E. Rescorla, SSL and TLS: Designing and Building Secure Systems. Addison-Wesley
Professional, 2000.

[29] P. R. Zimmermann, The official PGP user’s guide. MIT Press, 1995.

167

http://www.techcrunch.com/2011/01/25/twitter-blocked-egypt
http://opennet.net/research/profiles/tunisia
http://opennet.net/research/profiles/tunisia
http://www.wired.com/threatlevel/2011/01/tunisia
http://online.wsj.com/article/BT-CO-20110128-706943.html
http://www.webcitation.org/query?url=www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.webcitation.org/query?url=www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.cpj.org/imprisoned/cpjs-2008-census-online-journalists-now-jailed-mor.php
http://www.cpj.org/imprisoned/cpjs-2008-census-online-journalists-now-jailed-mor.php

[30] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record communication, or, why not
to use PGP,” in Proc. Wkshp. Privacy in the Electronic Society, Oct. 2004, pp. 77–84.

[31] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”
Communications of the ACM, vol. 24, no. 2, pp. 84–88, Feb. 1981.

[32] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a type III
anonymous remailer protocol,” in Proc. Symp. Security and Privacy, May 2003, pp.
2–15.

[33] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-generation onion
router,” in Proc. USENIX Security Symp., Aug. 2004, p. 21.

[34] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex: Anticensorship
in the network infrastructure,” in Proc. USENIX Security Symp., Aug. 2011, pp. 1–15.

[35] P. Zimmermann, A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for
Unicast Secure RTP,” RFC 6189 (Informational), Internet Engineering Task Force,
Apr. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6189.txt

[36] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Informa-
tion Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[37] J. Wu, Y. Zhang, Z. M. Mao, and K. Shin, “Internet routing resilience to failures:
Analysis and implications,” in Proc. Int. Conf. Emerging Networking Experiments &
Technologies, Dec. 2007, pp. 1–12.

[38] F. Xue and P. Kumar, Scaling Laws for Ad Hoc Wireless Networks: An Information
Theoretic Approach. NOW Publishers, 2006.

[39] R. Pike, “More unrest in the Middle East results in Internet disruptions,” TechieIn-
sider.com, Feb. 19 2011, http://www.webcitation.org/query?url=www.techieinsider.
com/news/6485&date=2011-03-17.

[40] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for wireless net-
works,” in Proc. Int. Conf. Mobile Computing and Networking, Aug. 2000, pp.
243–254.

[41] R. Barr, Z. J. Haas, and R. van Renesse, “Scalable wireless ad hoc network simulation,”
in Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless,
and Peer-to-Peer Networks, J. Wu, Ed. CRC Press, 2005, ch. 19, pp. 297–311.

[42] C. Bettstetter, “On the connectivity of ad hoc networks,” The Computer Journal,
vol. 47, no. 4, pp. 432–447, 2004.

[43] C. Cortes and D. Pregibon, “Signature-based methods for data streams,” Data Mining
and Knowledge Discovery, vol. 5, no. 3, pp. 167–182, July 2001.

[44] A. Beresford and F. Stajano, “Location privacy in pervasive computing,” IEEE
Pervasive Computing, vol. 2, pp. 46–55, Jan. 2003.

168

http://www.ietf.org/rfc/rfc6189.txt
http://www.webcitation.org/query?url=www.techieinsider.com/news/6485&date=2011-03-17
http://www.webcitation.org/query?url=www.techieinsider.com/news/6485&date=2011-03-17

[45] S. M. Das, H. Pucha, and Y. C. Hu, “Performance comparison of scalable location ser-
vices for geographic ad hoc routing,” in Proc. Int. Conf. Computer Communications,
Mar. 2005, pp. 1228–1239.

[46] M. C. González, C. A. Hidalgo, and A.-L. Barabási, “Understanding individual
human mobility patterns,” Nature, vol. 453, pp. 778–782, June 2008.

[47] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized link state routing protocol for ad hoc networks,” in Proc. Int. Multi-Topic
Conf., Dec. 2001, pp. 62–68.

[48] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing protocols for
mobile ad hoc networks,” Ad Hoc Networks, vol. 2, no. 1, pp. 1–22, Jan. 2004.

[49] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Proc.
Wkshp. on Mobile Computing Systems and Applications, Feb. 1999, pp. 90–100.

[50] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,”
Mobile Computing, vol. 353, pp. 153–181, 1996.

[51] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris, “A scalable location
service for geographic ad hoc routing,” in Proc. Int. Conf. Mobile Computing and
Networking, Aug. 2000.

[52] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human
motion,” Science, vol. 327, pp. 1018–2021, Feb. 2010.

[53] I. Burbey and T. L. Martin, “Predicting future locations using prediction-by-partial-
match,” in Proc. Int. Wkshp. Mobile Entity Localization and Tracking in GPS-less
Environments, Sept. 2008, pp. 1–6.

[54] M. McNett and G. M. Voelker, “Access and mobility of wireless PDA users,” Mobile
Computing Communications Review, vol. 9, no. 2, pp. 40–55, Apr. 2005. [Online].
Available: http://sysnet.ucsd.edu/wtd/

[55] D. J. Aldous and W. S. Kendall, “Short-length routes in low-cost networks via Poisson
line patterns,” Advances in Applied Probability, vol. 40, no. 1, pp. 1–21, Mar. 2008.

[56] B. Schneier, “Why ‘anonymous data’ sometimes isn’t,” Wired.com, Dec.
13 2007, http://www.webcitation.org/query?url=www.wired.com/politics/security/
commentary/securitymatters/2007/12/securitymatters_1213&date=2011-04-27.

[57] J. Douceur, “The Sybil attack,” in Proc. Int. Wkshp. Peer-to-Peer Systems, Mar. 2002,
pp. 251–260.

[58] @Twitter, https://twitter.com/twitter/status/281051652235087872.

[59] D. Etherington, “Twitter passes 200M monthly active users, a 42% increase
over 9 months,” TechCrunch, Dec. 18 2012, http://techcrunch.com/2012/12/18/
twitter-passes-200m-monthly-active-users-a-42-increase-over-9-months/.

169

http://sysnet.ucsd.edu/wtd/
http://www.webcitation.org/query?url=www.wired.com/politics/security/commentary/securitymatters/2007/12/securitymatters_1213&date=2011-04-27
http://www.webcitation.org/query?url=www.wired.com/politics/security/commentary/securitymatters/2007/12/securitymatters_1213&date=2011-04-27
https://twitter.com/twitter/status/281051652235087872
http://techcrunch.com/2012/12/18/twitter-passes-200m-monthly-active-users-a-42-increase-over-9-months/
http://techcrunch.com/2012/12/18/twitter-passes-200m-monthly-active-users-a-42-increase-over-9-months/

[60] S. Millward, “Sina reveals Q3 financials, announces Weibo has passed 400 mil-
lion registered users,” Tech In Asia, Nov. 16 2012, http://www.techinasia.com/
sina-weibo-400-million-registered-users/.

[61] P. N. Howard, A. Duffy, D. Freelon, M. Hussain, W. Mari, and M. Mazaid, “Opening
closed regimes: What was the role of social media during the Arab Spring,” Project
on Information Technology & Political Islam, Sept. 2011.

[62] A. Harjani, “This could sparks China’s Arab Spring,” CNBC, Mar. 7 2013, http:
//www.cnbc.com/id/100535405.

[63] “Dynaweb proxy,” http://www.dit-inc.us/dynaweb.

[64] “Ultrasurf proxy,” https://ultrasurf.us/.

[65] “Speak to tweet,” https://twitter.com/speak2tweet.

[66] R. Faris, H. Roberts, and S. Wang, “China’s green dam,” OpenNet Initiative, 2009.

[67] S. Wolchok, R. Yao, and J. A. Halderman, “Analysis of the Green Dam censorware
system,” Computer Science and Engineering Division, University of Michigan, Tech.
Rep. 18, 2009.

[68] U. of Michigan Emergency Management Team, Personal Communication.

[69] D. R. Sandler and D. S. Wallach, “Birds of a FETHR: Open, decentralized micropub-
lishing,” in Proc. Int. Wkshp. Peer-to-Peer Systems, Apr. 2009, pp. 1–6.

[70] T. Xu, Y. Chen, J. Zhao, and X. Fu, “Cuckoo: Towards decentralized, socio-aware
online microblogging services and data measurements,” in Proc. HotPlanet Wkshp.,
June 2010, pp. 1–6.

[71] P. St Juste, D. Wolinsky, P. O. Boykin, and R. J. Figueiredo, “Litter: A lightweight
peer-to-peer microblogging service,” in Proc. Int. Conf. Privacy, Security, Risk and
Trust, Oct. 2011, pp. 900–903.

[72] “Wi-fi direct,” www.wi-fi.org/discover-and-learn/wi-fi-direct.

[73] M. Stiegler, “An introduction to petname systems,” Feb. 2005, http://www.skyhunter.
com/marcs/petnames/IntroPetNames.html.

[74] A. Swartz, “Squaring the triangle: Secure, decentralized, human-readable names,”
Jan. 2011, http://www.aaronsw.com/weblog/squarezooko.

[75] “Namecoin,” http://namecoin.info.

[76] “Bitcoin,” http://bitcoin.org.

[77] NIST, “Recommendation for key management—part 1: General (revision 3),”
July 2012, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_
general.pdf.

170

http://www.techinasia.com/sina-weibo-400-million-registered-users/
http://www.techinasia.com/sina-weibo-400-million-registered-users/
http://www.cnbc.com/id/100535405
http://www.cnbc.com/id/100535405
http://www.dit-inc.us/dynaweb
https://ultrasurf.us/
https://twitter.com/speak2tweet
www.wi-fi.org/discover-and-learn/wi-fi-direct
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.aaronsw.com/weblog/squarezooko
http://namecoin.info
http://bitcoin.org
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

[78] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detecting spammers on
twitter,” in Proc. Collaboration, Electronic Messaging, Anti-Abuse and Spam Conf.,
July 2011, pp. 1–9.

[79] O. Fletcher, “Years on, China pushes WAPI in mobile phones,” CIO, May 2009.

[80] C. Shu, “Proposed Chinese law may force Sina Weibo to implement real-
name registration,” TechCrunch, Dec. 2012, http://techcrunch.com/2012/12/23/
proposed-chinese-law-may-force-sina-weibo-to-implement-real-name-registration/.

[81] A. Abuy, “Twitter users in Saudi Arabia maybe required to use their
real name,” Kabayan Tech, Mar. 2013, http://kabayantech.com/2013/03/
twiter-users-in-saudi-arabia-maybe-required-to-use-their-real-name/.

[82] “Market share: Mobile communication devices by region and country, 3Q11,” Gartner,
Nov. 2011.

[83] “Alljoyn,” http://www.alljoyn.org.

[84] A. J. Nicholson, S. Wolchok, and B. D. Noble, “Juggler: Virtual networks for fun
and profit,” IEEE Trans. Mobile Computing, vol. 9, no. 1, pp. 31–43, Jan. 2010.

[85] “Juggler: An open-source virtual link layer for Linux,”
http://www.eecs.umich.edu/∼tonynich/juggler/.

[86] R. Chandra, P. Bahl, and P. Bahl, “MultiNet: connecting to multiple IEEE 802.11
networks using a single wireless card,” in Proc. Int. Conf. Computer Communications,
vol. 2, Mar. 2004, pp. 882–893.

[87] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi, “FatVAP: Aggregating AP
backhaul capacity to maximize throughput,” in Proc. USENIX Symp. Networked
Systems Design and Implementation, Apr. 2008.

[88] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,” in Proc. Int.
Conf. Computer Communications, Mar. 2003, pp. 1312–1321.

[89] D. R. Choffnes and F. E. Bustamante, “An integrated mobility and traffic model for
vehicular wireless networks,” in Proc. Int. Wkshp. Vehicular Ad Hoc Networks, Sept.
2005, pp. 69–78.

[90] C. Boldrini and A. Passarella, “HCMM: modelling spatial and temporal properties
of human mobility driven by users’ social relationships,” Computer Communication,
vol. 33, no. 9, pp. 1056–1074, June 2010.

[91] Y.-C. Chen, E. M. Nahum, R. J. Gibbens, D. Towsley, and Y. sup Lim, “Characterizing
4G and 3G networks: Supporting mobility with multi-path TCP,” School of Computer
Science, University of Massachusetts Amherst, Tech. Rep. 22, 2012.

[92] C. Benvenuti, Understanding Linux Network Internals, 1st ed. O’Reilly Media, Jan.
2006.

171

http://techcrunch.com/2012/12/23/proposed-chinese-law-may-force-sina-weibo-to-implement-real-name-registration/
http://techcrunch.com/2012/12/23/proposed-chinese-law-may-force-sina-weibo-to-implement-real-name-registration/
http://kabayantech.com/2013/03/twiter-users-in-saudi-arabia-maybe-required-to-use-their-real-name/
http://kabayantech.com/2013/03/twiter-users-in-saudi-arabia-maybe-required-to-use-their-real-name/
http://www.alljoyn.org
http://www.eecs.umich.edu/~tonynich/juggler/

[93] “Project voldemort,” http://www.project-voldemort.com/voldemort/.

[94] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly-
available key-value store,” in Proc. Symp. Operating Systems Principles, Oct. 2007,
pp. 205–220.

[95] R. Maheshwari, S. Jain, and S. R. Das, “A measurement study of interference mod-
eling and scheduling in low-power wireless networks,” in Proc. Conf. Embedded
Network Sensor Systems, Nov. 2008, pp. 1–14.

[96] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE rap: Social-based forwarding in delay
tolerant networks,” IEEE Trans. Mobile Computing, vol. 10, no. 11, pp. 1576–1589,
Nov. 2011.

[97] Y. Xiang, L. S. Bai, R. Piedrahita, R. P. Dick, Q. Lv, M. P. Hannigan, and L. Shang,
“Collaborative calibration and sensor placement for mobile sensor networks,” in Proc.
Int. Conf. Information Processing in Sensor Networks, Apr. 2012, pp. 73–84.

[98] P. Gardner-Stephen, “The Serval project: Practical wireless ad-hoc mobile telecom-
munications,” Flinders University, Adelaide, South Australia, Tech. Rep., Aug. 2011.

[99] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil attack in sensor networks:
Analysis & defenses,” in Proc. Int. Conf. Information Processing in Sensor Networks,
Apr. 2004, pp. 259–268.

[100] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions to the Sybil
attack,” Department of Computer Science, University of Massachusetts Amherst,
Amherst, MA, Tech. Rep., Oct. 2006.

[101] H. Zhou, M. Mutka, and L. Ni, “Multiple-key cryptography-based distributed cer-
tificate authority in mobile ad-hoc networks,” in Proc. Global Telecommunications
Conf., Nov. 2005.

[102] M. Ramkumar and N. Memon, “An efficient key predistribution scheme for ad hoc
network security,” IEEE J. Selected Areas in Communications, vol. 23, pp. 611–621,
Mar. 2005.

[103] N. Borisov, “Computational puzzles as Sybil defenses,” in Proc. Int. Conf. Peer-to-
Peer Computing, Sept. 2006, pp. 171–176.

[104] F. Li, P. Mittal, M. Caesar, and N. Borisov, “SybilControl: Practical Sybil defense
with computational puzzles,” in Proc. Wkshp. Scalable Trusted Computing, Oct. 2012.

[105] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard: defending
against Sybil attacks via social networks,” in Proc. ACM SIGCOMM Computer
Communication Review, Sept. 2006, pp. 267–278.

172

http://www.project-voldemort.com/voldemort/
http://robertdick.org/publications/xiang12apr.html

[106] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A near-optimal social
network defense against Sybil attacks,” in Proc. Symp. Security and Privacy, May
2008, pp. 3–17.

[107] T. S. Rappaport, Wireless Communications: Principles & Practice. Prentice-Hall,
NJ, 2002.

[108] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki,
“Practical robust localization over large-scale 802.11 wireless networks,” in Proc. Int.
Conf. Mobile Computing and Networking, Sept. 2004, pp. 70–84.

[109] M. Demirbas and Y. Song, “An RSSI-based scheme for Sybil attack detection in
wireless sensor networks,” in Proc. Int. Symp. on a World of Wireless, Mobile, and
Multimedia, June 2006, pp. 564–570.

[110] Z. Li, W. Xu, R. Miller, and W. Trappe, “Securing wireless systems via lower layer
enforcements,” in Proc. Wkshp. Wireless Security, Sept. 2006, pp. 33–42.

[111] Q. Li and W. Trappe, “Detecting spoofing and anomalous traffic in wireless networks
via forge-resistant relationships,” IEEE Trans. Information Forensics and Security,
vol. 2, no. 4, pp. 793–803, Dec. 2007.

[112] Y. Chen, J. Yang, W. Trappe, and R. P. Martin, “Detecting and localizing identity-
based attacks in wireless and sensor networks,” IEEE Trans. Vehicular Technology,
vol. 5, no. 5, pp. 2418–2434, June 2010.

[113] T. Suen and A. Yasinsac, “Peer identification in wireless and sensor networks using
signal properties,” in Proc. Int. Conf. Mobile Adhoc and Sensor Systems, Nov. 2005,
pp. 826–833.

[114] S. Lv, X. Wang, X. Zhao, and X. Zhou, “Detecting the Sybil attack coorperatively
in wireless sensor networks,” in Proc. Int. Conf. Computational Intelligence and
Security, Dec. 2008, pp. 442–446.

[115] S. Abbas, M. Merabti, and D. Llewellyn-Jones, “Signal strength based Sybil attack
detection in wireless ad hoc networks,” in Proc. Int. Conf. Developments in eSytems
Engineering, Dec. 2009, pp. 22–33.

[116] M. S. Bouassida, G. Guette, M. Shawky, and B. Ducourthial, “Sybil nodes detection
basedon received strength variations within VANET,” Int. J. Network Security, vol. 9,
no. 1, pp. 22–33, July 2009.

[117] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, “From theory to practice:
An overview of MIMO space–time coded wireless systems,” IEEE J. Selected Areas
in Communications, vol. 21, no. 3, pp. 281–302, Apr. 2003.

[118] Y. Liu, D. R. Bild, and R. P. Dick, “Extending channel comparison based Sybil detec-
tion to MIMO systems,” Dept. of Electrical Engineering and Computer Science, Uni-
versity of Michigan, Tech. Rep., http://www.davidbild.org/publications/liu13dec.pdf.

173

http://www.davidbild.org/publications/liu13dec.pdf

[119] H. Hashemi, D. Lee, and D. Ehman, “Statistical modeling of the indoor radio prop-
agation channel – part II,” in Proc. Vehicular Technology Conf., May 1992, pp.
839–843.

[120] T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical channel impulse
response models for factory and open plan building radio communication system
design,” IEEE Trans. on Communications, vol. 39, no. 5, pp. 794–806, May 1991.

[121] “Reaction time statistics,” http://www.humanbenchmark.com/tests/reactiontime/stats.
php.

[122] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or a news
media?” in Proc. Int. World Wide Web Conf., Apr. 2010, pp. 591–600. [Online].
Available: http://an.kaist.ac.kr/traces/WWW2010.html

[123] C. A. Bliss, I. M. Kloumann, K. D. Harrison, C. M. Danforth, and P. S. Dodds,
“Twitter reciprocal reply networks exhibit assortativity with respect to happiness,” J.
Computational Science, vol. 3, pp. 388–397, Sept. 2012.

[124] A. R. M. Teutle, “Twitter: Network properties analysis,” in Proc. Int. Conf. Electron-
ics, Communications, and Computer, Feb. 2010, pp. 180–186.

[125] M. Gabielkov and A. Legout, “The complete picture of the Twitter social graph,” in
Proc. Int. Conf. Emerging Networking Experiments and Technologies Student Wkshp.,
Dec. 2012, pp. 19–20.

[126] S. Ghosh, A. Srivastava, and N. Ganguly, “Effects of a soft cut-off on node-degree in
the Twitter social network,” Computer Communications, vol. 35, no. 7, pp. 784–795,
Apr. 2012.

[127] B. Suh, L. Hong, P. Pirolli, and E. H. Chi, “Want to be retweeted? Large scale
analytics on factors impacting retweet in Twitter network,” in Proc. Int. Conf. Social
Computing, Aug. 2010, pp. 177–184.

[128] A. Java, X. Song, T. Finin, and B. Tseng, “Why we Twitter: Understanding microblog-
ging usage and communitites,” in Proc. Wkshp. Web Mining and Social Network
Analysis, Aug. 2007, pp. 56–65.

[129] S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts, “Who says what to whom on
Twitter,” in Proc. Int. World Wide Web Conf., Mar. 2011, pp. 705–714.

[130] G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce, and D. Boyd, “The revolutions
were tweeted: Information flows during the 2011 Tunisian and Egyptian revolutions,”
Int. J. Communication, vol. 5, pp. 1375–1405, 2011.

[131] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and W. Kellerer, “Outtweeting
the Twitterers - predicting information cascades in microblogs,” in Proc. Wkshp.
Online Social Networks, June 2010.

174

http://www.humanbenchmark.com/tests/reactiontime/stats.php
http://www.humanbenchmark.com/tests/reactiontime/stats.php
http://an.kaist.ac.kr/traces/WWW2010.html

[132] “Shout: Censorship-resistant microblogging,” 2013. [Online]. Available: http:
//whispercomm.org/shout/

[133] M. Freitas, “Twister: Peer-to-peer microblogging,” 2013. [Online]. Available:
http://twister.net.co/

[134] D. M. Wilkinson, “Strong regularities in online peer production,” in Proc. Conf.
Electronic Commerce, July 2008, pp. 302–309.

[135] M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos, and J. Leskovec,
“Mobile call graphs: Beyond power-law and lognormal distributions,” in Proc. Int.
Conf. Knowledge Discovery and Data Mining, Aug. 2008, pp. 596–604.

[136] J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey, and A.-L. Barabási,
“Uncovering individual and collective human dynamics from mobile phone records,”
J. of Physics A: Mathematical and Theoretical, vol. 41, no. 22, p. 224015, June 2008.

[137] A. Watters, “How recent changes to Twitter’s terms of service might hurt
academic research,” Mar. 2011, http://readwrite.com/2011/03/03/how_recent_
changes_to_twitters_terms_of_service_mi. [Online]. Available: http://webcitation.
org/6MgAFaaMi

[138] L. A. Goodman, “Snowball sampling,” Annals Mathematical Statistics, vol. 32, no. 1,
pp. 148–170, Mar. 1961.

[139] S. H. Lee, P.-J. Kim, and H. Jeong, “Statistical properties of sampled networks,” APS
Physical Review E, vol. 73, no. 1, pp. 016 102:1–7, Jan. 2006.

[140] J. Yang and J. Leskovec, “Patterns of temporal variation in online media,” in Proc.
Int. Conf. Web Search and Data Mining, Feb. 2011, pp. 177–186.

[141] S.-W. Son, C. Christensen, G. Bizhani, D. V. Foster, P. Grassberger, and M. Paczuski,
“Sampling properties of directed networks,” APS Physical Review E, vol. 86, no. 4,
pp. 046 104:1–12, Oct. 2012.

[142] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions from sampled
flow statistics,” IEEE Trans. Networking, vol. 13, no. 5, pp. 933–946, Oct. 2005.

[143] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” J. Royal Statistical Society, Series B, vol. 39, no. 1, pp.
1–38, 1977.

[144] S. Borman, “The expectation maximization algorithm: A short tutorial,” pp. 1–9, Jan.
2009. [Online]. Available: http://www.seanborman.com/publications/EM_algorithm.
pdf

[145] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, 2nd ed. John
Wiley & Sons, 2008.

175

http://whispercomm.org/shout/
http://whispercomm.org/shout/
http://twister.net.co/
http://readwrite.com/2011/03/03/how_recent_changes_to_twitters_terms_of_service_mi
http://readwrite.com/2011/03/03/how_recent_changes_to_twitters_terms_of_service_mi
http://webcitation.org/6MgAFaaMi
http://webcitation.org/6MgAFaaMi
http://www.seanborman.com/publications/EM_algorithm.pdf
http://www.seanborman.com/publications/EM_algorithm.pdf

[146] B. A. Huberman, D. M. Romero, and F. Wu, “Crowdsourcing, attention and produc-
tivity,” J. Information Science, vol. 35, no. 6, pp. 758–765, Dec. 2009.

[147] S. Milojević, “Power-law distributions in information science — making the case for
logarithmic binning,” J. American Society for Information Science and Technology,
vol. 61, no. 12, pp. 2417–2425, Dec. 2010.

[148] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions, 3rd ed.
John Wiley & Sons, Inc., 2005, sec. 1.2.13.

[149] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical
data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.

[150] W. E. Stein and R. Dattero, “A new discrete Weibull distribution,” IEEE Trans.
Reliability, vol. R-33, no. 2, pp. 196–197, June 1984.

[151] T. Nakagawa and S. Osaki, “The discrete Weibull distribution,” IEEE Trans. Reliabil-
ity, vol. R-24, no. 5, pp. 300–301, Dec. 1975.

[152] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1–2, pp.
81–93, June 1938.

[153] A. J. Lotka, “The frequency distribution of scientific productivity,” J. Washington
Academy of Sciences, vol. 16, no. 12, pp. 317–324, 1926.

[154] W. J. Reed and M. Jorgensen, “The double pareto-lognormal distribution—a new
parametric model for size distributions,” Communications in Statistics - Theory and
Methods, vol. 33, no. 8, pp. 1733–1753, Apr. 2004.

[155] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 590–512, Oct. 1999.

[156] S. N. Dorogovtsev and J. F. F. Mendes, “Scaling behavior of developing and decaying
networks,” Europhysics Ltrs., vol. 52, pp. 33–39, Oct. 2000.

[157] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks,” Advances in Physics,
vol. 51, no. 4, pp. 1079–1187, June 2002.

[158] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao,
“Statistical analysis of a telephone call center,” J. American Statistical Association,
vol. 100, no. 469, pp. 36–50, 2005.

[159] A.-L. Barabási and J. G. Oliveira, “Human dynamics: Darwin and Einstein corre-
spondence patterns,” Nature, vol. 437, no. 7063, p. 1251, Oct. 2005.

[160] U. Harder and M. Paczuski, “Correlated dynamics in human printing behavior,”
Physica A: Statistical Mechanics and its Applications, vol. 361, no. 1, pp. 329–336,
Feb. 2006.

176

[161] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex systems,” Euro-
physics Ltrs., vol. 81, no. 4, p. 48002, Feb. 2008.

[162] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for graph
mining,” in Proc. Int. Conf. Data Mining, Apr. 2004, pp. 442–446.

[163] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, “Directed scale-free graphs,” in
Proc. Symp. Discrete Algorithms, Jan. 2003, pp. 132–139.

[164] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detecting spammers on
Twitter,” in Proc. Collaboration, Electronic Messaging, Anti-Abuse and Spam Conf.,
July 2010, pp. 1–9.

[165] J. Song, S. Lee, and J. Kim, “Spam filtering in Twitter using sender–receiver relation-
ship,” in Proc. Int. Symp. Recent Advances in Intrusion Detection, Sept. 2011, pp.
301–317.

[166] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing spammer’s social
networks for fun and profit: A case study of cyber criminal ecosystem on Twitter,” in
Proc. Int. World Wide Web Conf., Apr. 2012.

[167] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard: Defending
against Sybil attacks via social networks,” IEEE Trans. Networking, vol. 16, no. 3,
pp. 576–589, June 2008.

[168] M. P. H. Stumpf, C. Wiuf, and R. M. May, “Subnets of scale-free networks are not
scale-free: Sampling properties of networks,” Proc. National Academy of Sciences of
the United States of America, vol. 102, no. 12, pp. 4221–4224, Mar. 2005.

[169] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven analysis of infor-
mation propagation in the Flickr social network,” in Proc. Int. World Wide Web Conf.,
Apr. 2009, pp. 721–730.

[170] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online social
networks,” in Proc. Int. Conf. Knowledge Discovery and Data Mining, Aug. 2006, pp.
611–617.

[171] S. Milgram, “The small-world problem,” Psychology Today, vol. 1, no. 1, pp. 61–67,
May 1967.

[172] J. Travers and S. Milgram, “An experimental study of the small world problem,”
Sociometry, vol. 32, no. 4, pp. 425–443, Dec. 1969.

[173] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440–442, June 1998.

[174] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-messaging
network,” in Proc. Int. World Wide Web Conf., Apr. 2008, pp. 915–924.

177

[175] C. R. Palmer, G. Siganos, M. Faloutsos, C. Faloutsos, and P. B. Gibbons, “The
connectivity and fault-tolerance of the Internet topology,” in Proc. Wkshp. Network-
Related Data Management, May 2001, pp. 1–6.

[176] C. Bauckhage, K. Kersting, and B. Rastegarpanah, “The Weibull as a model of
shortest path distributions in random networks,” in Proc. Wkshp. Mining and Learning
with Graphs, Aug. 2013, pp. 1–6.

[177] M. E. J. Newman, “Assortative mixing in networks,” Physical Review Ltrs., vol. 89,
no. 20, pp. 208 701:1–4, Nov. 2002.

[178] J. G. Foster, D. V. Foster, P. Grassberger, and M. Paczuski, “Edge direction and the
structure of networks,” Proc. National Academy of Sciences of the United States of
America, vol. 107, no. 24, pp. 10 815–10 820, June 2010.

[179] H.-B. Hu and X.-F. Wong, “Disassortative mixing in online social networks,” Euro-
physics Ltrs., vol. 86, no. 1, pp. 18 003:1–6, Apr. 2009.

[180] M. Kaiser, “Mean clustering coefficients: the role of isolated nodes and leafs on
clustering measures for small-world networks,” New J. Physics, vol. 10, no. 8, pp.
083 042:1–12, Aug. 2008.

[181] G. Fagiolo, “Clustering in complex directed networks,” APS Physical Review E,
vol. 76, pp. 026 107:1–8, Aug. 2007.

[182] K. Thomas, C. Grier, D. Song, and V. Paxson, “Suspended accounts in retrospect:
An analysis of Twitter spam,” in Proc. Internet Measurement Conf., Nov. 2011, pp.
243–256.

[183] X. Chen, R. Chandramouli, and K. Subbalakshmi, “Scam detection in Twitter,” in
Proc. Text Mining Wkshp., Apr. 2011, pp. 1–10.

[184] M. McCord and M. Chuah, “Spam detection on Twitter using traditional classifiers,”
in Proc. Int. Conf. Automatic and Trusted Computing, Sept. 2011, pp. 175–186.

[185] K. Thomas, C. Grier, and V. Paxson, “Adapting social spam infrastructure for political
censorship,” in Proc. Wkshp. Large-Scale Exploits and Emergent Threats, Apr. 2012.

[186] A. H. Wang, “Don’t follow me: Spam detection in Twitter,” in Proc. Int. Conf.
Security and Cryptography, July 2010, pp. 1–10.

[187] C. Yang, R. C. Harkreader, and G. Gu, “Die free or live hard? empirical evaluation
and new design for fighting evolving Twitter spammers,” in Proc. Int. Symp. Recent
Advances in Intrusion Detection, Sept. 2011, pp. 318–337.

[188] P. Resnick and R. Sami, “The influence limiter: Provably manipulation-resistant
recommender systems,” in Proc. Conf. Recommender Systems, Oct. 2007, pp. 25–32.

[189] P. Resnick and R. Sami, “The information cost of manipulation-resistance in recom-
mender systems,” in Proc. Conf. Recommender Systems, Oct. 2008, pp. 147–154.

178

[190] P. Resnick and R. Sami, “Sybilproof transitive trust protocols,” in Proc. Conf. Elec-
tronic Commerce, July 2009, pp. 345–354.

179

	Introduction
	Techniques for Combating Censorship and Surveillance in the Internet
	Advantages of Non-Hierarchical Networks
	MANET Architectures for Communication
	Contributions and Organization

	Whisper
	Introduction
	MANETs May Offer A More Robust Supplement to the Internet
	MANET Architectures Should Exploit Application-Specific Properties
	Background on MANET Connectivity
	MANET Architecture for Text-Based Personal Communication Applications

	Location Profile Routing
	Introduction
	Description of Location Profile Routing
	Performance Analysis
	How Predictable are Common Locations?
	What Additional Latency and Traffic is Induced By LPR?
	Under What Conditions Does LPR Outperform Location Services?
	Reducing Overhead Via Spanning Trees

	Privacy and Anonymity
	Attack and Trust Model
	Desired Anonymity and Privacy Properties
	Unlinkability via Reply Blocks and Pseudonyms
	Reply Block Operation and Management
	Mix-Server Pool Management

	Location-Centric Network
	Conclusion

	Shout
	Introduction
	Overview
	Threat Model
	Applications
	Design Summary

	Decentralized and Non-Hierarchical Architecture
	Ad Hoc WiFi
	Identity Management
	Messages
	Content Sharing
	Message Management and Filtering

	Security Analysis
	Censorship by Blocking
	Censorship by Reprisal

	Implementation
	Implementation for Android
	Practical Implementation Concerns for Ad Hoc WiFi

	Mobile Ad Hoc Network Emulation System
	Introduction
	Difficulties with Mobility Models or Why MANES?
	Architecture
	Architecture Overview
	Problem Domain
	Desired Properties and Design Challenges
	Design Choices
	Client Architecture
	Server Architecture

	Topology Estimation
	Received Signal Strengths of Visible WiFi Access Points
	GPS Distance Measurement

	Mason Test
	Introduction
	Problem Formulation and Background
	Problem Formulation
	Attack Model
	Review of Signalprints

	Sybil Classification From Untrusted Signalprints
	Power of Falsified Observations
	Terminology
	Approach Overview
	View Consistency: Selecting V if LNS =
	Achieving Consistency by Eliminating LNS
	Extending Consistency to Handle Noise

	Efficient Implementation of the Selection Policy
	Receiver Set Selection
	Finding the Largest n-Consistent View
	Runtime in the Absence of Liars

	Probability that Critical Conditions Hold
	RSSI Unpredictability
	Optimal Attacker Strategy

	Detecting Mobile Attackers
	The Mason Test
	Collection of RSSI Observations
	Sybil Classification

	Prototype and Evaluation
	Selection and Robustness of Thresholds
	Classification Performance
	Overhead Evaluation

	Discussion
	Conclusion

	Characterization of Microblogging User Behavior and the Retweet Graph
	Introduction
	Datasets
	2009 Social Graph
	Lifetime Contribution Dataset
	SNAP Tweet Dataset
	10% Sample (Gardenhose) Dataset
	Estimating Population Distributions from the 10% Sample Dataset

	Distribution of Lifetime Tweets
	Critique of Previously-Reported Power Law Behavior
	Lifetime Tweets Follow a Weibull Distribution
	Interpreting the Hazard Function as Participation Momentum

	Distribution of Tweet Rates
	An Analytical Approximation of the Tweet Rate Distribution
	The Distribution is Not Double Pareto–Lognormal
	An Urn Process Generating the Tweet Rate Distribution
	Distributions of Retweeter and Retweetee Rates

	Distribution of Intertweet Durations
	Characteristics of the Retweet Graph
	Analyzing a Random Subsample of the Retweet Graph
	Degree Distributions
	Reciprocity
	Average Shortest Path Length (Degree of Separation)
	Assortativity (Node Degree Correlation)
	Clustering Coefficient
	Summary

	Implications for the Design of Decentralized Microblogging Architectures
	Leveraging the Retweet Graph for Spammer Detection
	Possible Approaches to Spam Detection
	Spam Detection Using the Retweet Graph
	Performance on the Twitter Retweet Graph
	Performance on Synthetic Retweet Graphs
	Discussion of Provably Manipulation-Resistant Schemes

	Derivation of the EM Method
	Conclusion

	Conclusion
	Bibliography

