
Adaptive Filesystem Compression for Embedded Systems

Lan S. Bai† Haris Lekatsas‡ Robert P. Dick†
†l-bai,dickrp@northwestern.edu ‡lekatsas@vorras.com

Northwestern University Vorras Corporation
Evanston, IL 60208 Princeton, NJ 08540

Abstract—Embedded system secondary storage size is often con-
strained, yet storage demands are growing as a result of increasing
application complexity and storage of personal data and multimedia
files. Filesystem compression offers a solution. This paper formalizes the
problem of automatic filesystem compression using multiple compression
algorithms. The average latency of on-line file accesses is optimized
under a constraint on filesystem capacity. Our solution is based on
predictive control. Predicted latency implications are used to solve the
file compression state selection problem using a multiple choice knapsack
problem formulation. This approach is evaluated on filesystem traces and
compared with other efficient heuristics. Our approach results in 34.1%
reduction in file access latency compared to a straight-forward heuristic
that decompresses frequently-accessed files and compresses least recently
used files with more aggressive compression algorithms. It reduces file
access latency by 67.7% compared to uniformly compressing files to the
shallowest level required to meet storage capacity constraints.

I. INTRODUCTION AND CONTRIBUTIONS

Embedded system size, cost, and power consumption are often
constrained. This limits the amount of secondary storage such as
flash devices or disk drives. As requirements for embedded systems
become more complex, so does the software running on them.
This increases file storage demands for both software and user
data. File compression offers a method of increasing usable storage
without increasing disk or flash device size. Most existing uses of
filesystem compression are based on filesystem such as JFFS2 [12]
or CRAMFS [2]. Such solutions use general-purpose compression
algorithms and compress all filesystem contents regardless of usage
patterns, degrading performance.

We propose to selectively compress files using a set of algorithms
that trade off speed for depth of compression. This allows the benefits
of compression to be maximized and performance degradation to
be minimized, while honoring a storage constraint. We investigate
the merits of automatically selecting compression algorithms for files
based on prediction of their future usage. We propose a predictive
control policy that estimates the latency imposed by each possible
compression level for each file and minimizes the expected total
latency subject to a filesystem size constraint. The cost minimization
problem is formulated as a multiple-choice knapsack problem.

This paper makes the following contributions. First, it is the first
to formulate the adaptive multiple-algorithm filesystem compression
problem. Second, we propose an approach to solve this problem based
on a predictive control policy.

II. RELATED WORK

This section summarizes previous work on filesystem compression.
Raita [9] proposed an automatic system for file compression that
compresses inactive files with a single compression algorithm. Re-
searchers at the Open Source Laboratory at the University of Szeged
designed a block-based filesystem compression framework for JFFS2
that supports multiple compression algorithms [4]. They provide sev-
eral compression modes to control compression algorithm selection.
For example, if the mode is set to “size”, the algorithm tentatively
compresses the block with each available compression algorithm,
picking the one permitting minimal size. As a result, selecting an
algorithm for a block can consume a lot of time and energy. Moreover,

This work was supported in part by NEC Laboratories America under the
direction of Dr. Srimat Chakradhar and in part by the NSF under award CNS-
0347941 and CSR-0720691. During much of the project, Dr. Lekatsas was
affiliated with NEC Laboratories America.

Fig. 1. Overview of adaptive filesystem compression.

the configuration cannot be automatically adjusted. E2compr [3] is
an extension of the ext2 filesystem that incorporates user-selectable
compression algorithms and requires manual reconfiguration. Cate [1]
proposed using a daemon process to compress inactive files once
per day. Their technique cannot deal with storage demands that
exceed filesystem size between inactive file compression sweeps.
Though support for multiple compression algorithms and automatic
compression/decompression have been considered in previous work,
nobody has implemented an automatic technique to adjust compres-
sion configurations on-the-fly according to storage demands while
minimizing performance penalty.

III. ADAPTIVE, PREDICTIVE FILESYSTEM COMPRESSION

Adaptive filesystem compression changes the compression algo-
rithms used for particular files depending on time-varying storage
requirements and file access patterns. Generally, a filesystem initially
contains few files. During use, the size can grow due to file creation
and expansion of old files, and can decrease due to file deletion and
truncation. The state of a filesystem is the mapping from available
compression algorithms to the set of files it contains. Adaptive filesys-
tem compression adjusts the effective total filesystem size to meet
demands by compressing and decompressing files. When storage
size requirements exceed filesystem size, it trades off performance
for increased available space. Compression decisions are based on
prediction of future access patterns based on previously-observed
behavior in order to minimize average file access latency.

Figure 1 gives an overview of our adaptive, predictive filesystem
compression framework. A history of file accesses is recorded and
used to predict future file access patterns. Compression decisions
are made based on these predictions and current filesystem state to
minimize average access latency while meeting storage requirements.
Filesystem state is updated according to compression decisions.
In Figure 1, the loop including filesystem state and compression
decisions indicates the interdependence of these steps and implies
that compression decisions impact future compression decisions.

III.A. Problem Formulation

In this section, we formulate the offline version of the adaptive
filesystem compression problem as an optimization problem. We then
generalize to the on-line version of the problem.

Compression algorithms are classified by compression levels. Com-

pression ratio is the compressed block size divided by the original
block size. Deep compression levels correspond to low compression
ratios, while shallow compression levels correspond to high compres-
sion ratios. We define the uncompressed state as compression at level
zero, i.e., a compression ratio of one. The problem is to determine
a sequence of filesystem states, with a change potentially occurring
after each file access event. The objective is to minimize the average
file access delay without exceeding the filesystem size constraint. We

TABLE I
DEFINITION OF τ(ǫ)a

χ(ǫ) θǫ
γ δ(γ, ǫ − 1) τ(ǫ)a

r 0 0 Tr × rǫ

r other than (T × Sǫ
γ × R

γ

δ(γ,ǫ−1)
+ Sǫ

γ × Dδ(γ,ǫ−1))

0, 0 +(θǫ
γ × (Sǫ

γ × Cδ(γ,ǫ) + Sǫ
γ × R

γ

δ(γ,ǫ)
× Tw))

w 0 0 Tw × rǫ

w other than (T × Sǫ
γ × R

γ

δ(γ,ǫ−1)
+ Sǫ

γ × Dδ(γ,ǫ−1))

0, 0 +(Sǫ
γ × Cδ(γ,ǫ) + Sǫ

γ × R
γ

δ(γ,ǫ)
× Tw)

c any any 0

d any any 0

assume that compression/decompression speed (in bytes per second)
of a compression algorithm is the same for all files.

Known:

1) F : set of all the files that ever exist in the filesystem.
2) B: absolute filesystem size.
3) E: set of all event times.
4) A: set of compression algorithms.
5) X: set of file operations. (read, write, create, delete)

X = {r, w, c, d}.
6) Sǫ

γ : original size of file γ after event ǫ. ǫ ∈ E.
7) Tw: period of data writes to storage device. (s/byte)
8) Tr: period of data reads from storage device. (s/byte)
9) Rγ

α: compression ratio of compression algorithm α on
file γ. α ∈ A.

10) Cα: compression period (s/byte) of compressor α.
11) Dα: decompression period (s/byte) of compressor α.
12) ρǫ: file accessed at event ǫ. ρǫ ∈ F .
13) χǫ: file operation at event ǫ. χ(ǫ) ∈ X .
14) rǫ: requested data size of event ǫ.

Variables:

1) δ(γ, ǫ): state of file γ after event ǫ. δ(γ, ǫ) ∈ A
2) θǫ

γ : whether file γ changes state after event ǫ. θǫ
γ is 1 if

δ(γ, ǫ) 6= δ(γ, ǫ − 1)
3) τ(ǫ)o: execution time of changing the states of files other than

the accessed file.
4) τ(ǫ)a: access time of the accessed file, including time of

changing the state of the accessed file.

The method for computing τ(ǫ)a is shown in Table I. It is divided
into six cases based on the previous compression state and whether
the next state differ. We classify the cases to permit members of each
case to share a cost function. Although we treat the uncompressed
state as compression level 0, we make exceptions for estimating the
cost at this level. If an uncompressed file is read without modifying
its state, the access delay is merely the time required to transfer
the requested data to memory. The second line shows the remaining
cases for a file read operation. Either the file is compressed or the
file’s state is updated, resulting in the whole file being read into
memory. If the file was compressed, it must also be decompressed.
This corresponds to the first parenthesized term of the equation in
the right column. The second part of the equation corresponds to the
time required to update the file’s state. It is zero when θǫ

γ is zero,
meaning that no state change occurs. The third row corresponds to
writing to an uncompressed file without modifying its state, i.e., it
is the data transfer time to the filesystem. In any other write request
case, the file must be decompressed first and written back to storage
even if its compression state does not change. When the contents of
the file are modified, the whole file must be recompressed. Create
(with zero size) and delete do not result in substantial data transfer
so their access costs are zero. Delete changes the filesystem size
requirement.

τ(ǫ)o is the sum of the costs of adjusting the states of other
files immediately after event ǫ. The computation is based on the

assumption that other files are not currently in memory. τ(ǫ)o

includes the time of transferring the files to memory, decompressing,
recompressing, and sending them back to secondary storage. The
equation for τ(ǫ)o follows:

τ(ǫ)o =
X

γ 6=ρ(ǫ),γ∈F

θǫ
γ × (Sǫ

γ × Rγ

δ(γ,ǫ−1) × Tr + Sǫ
γ

× Dδ(γ,ǫ−1) + Sǫ
γ × Cδ(γ,ǫ) + Sǫ

γ × Rγ

δ(γ,ǫ) × Tw)

Objective Function: The average access time of a given access
sequence:

T =
1

|E|

X

ǫ∈E

(τ(ǫ)a + τ(ǫ)o)

Constraint: Secondary storage usage should be no more than the
filesystem size B at all times.

∀ǫ ∈ E :
X

γ∈F

Sǫ
γ × Rγ

δ(γ,ǫ) ≤ B

The problem can be classified as a mixed integer non-linear
programming problem with linear constraints. For a problem instance
containing n files, m compression levels, and an event sequence
of length k, there are n × m × k variables and the solution space
has a size of mnk. Practical instances generally contain hundreds of
files. Therefore, this problem is intractable for existing mixed integer
programming solvers.

In the proceeding discussion, one complication was neglected. In
reality, the filesystem compression problem must be solved on-line,
without knowledge of future events.

IV. A PREDICTIVE CONTROL POLICY BASED ON COST

ESTIMATION AND COST MINIMIZATION

Optimally solving the problem defined in Section III-A is hard
because the objective function depends on events that occur in the
future and also filesystem state changes made in the future. We
propose to break this loop by decomposing the problem to two
subproblems: cost estimation and compression level selection. Cost
estimation determines an expected latency for each file at each
possible compression level based on current file state and future file
access pattern. Compression level selection chooses a compression
level for each file to minimize the total expected latency over all
files in the filesystem under the filesystem size constraint.

IV.A. Cost Estimation

In this section, we define a cost function to estimate the expected
latency of setting a file to a particular compression level. The expected
latency of a particular file state selection has two components. One
is the performance penalty paid for updating the state of the file; it is
zero if the state remains unchanged. The other is the latency of future
accesses to the file starting from the updated compression state. Note
that decompressing a file may require compressing other files to honor
the size constraint. However, this cost function considers each file
independently. The interference among different files will be handled
in the solution to the second subproblem, in which size constraints are
imposed so decompressing one file to a larger size leads to selecting
a more aggressive compression algorithm for another file. The cost
estimation function is defined as

C(γ, δ) =modify cost(γ, δ) + N × (Fw × write cost(γ, δ)

+ Fr × read cost(γ, δ)) (1)

Fw and Fr are write and read frequencies for file γ in the next
N events. N is a constant that indicates how many events into
the future are considered during optimization. It is important to
distinguish read and write operations because they have different
impacts on performance. Writing to a compressed file requires both
decompression and compression; compression is usually slower than
decompression. Therefore, it can be more beneficial to decompress

a file if it will soon be written many times and decompression may
not be necessary if the file will instead be read many times. N must
be carefully selected to accurately estimate the impact of future file
accesses. Equation 1 implies that the filesystem state stays the same
during the next N events. A very large value of N decreases the
accuracy of this assumption because the filesystem state will have
more opportunity to change. On the other hand, very small values
of N decrease accuracy as a result of underestimating the impact
of current decisions on future accesses. 500 was experimentally
determined to be a good value for N .

IV.B. Prediction Model

We propose to use the read and write frequencies in a history win-
dow to predict Fr and Fw. Other prediction methods were considered
and evaluated, e.g., prediction with a weighted history window or
universal prediction model. Despite the ability of more sophisticated
prediction models to capture higher order process patterns, they do
not bring improvements in prediction accuracy for this application
compared to the proposed method. Though this prediction model
assumes the file access request is a 0th order process, it works
well with very low prediction error on real file access traces as
demonstrated in Section V. Selecting the history window size involves
a trade-off between considering sufficient history and capturing time-
varying behavior. 200 was experimentally determined to be a good
window size.

IV.C. Cost Minimization

This section describes our method of selecting the compression
states of all files in the filesystem to minimize the sum of expected
latencies over all files under a constraint on used space. We formulate
the problem as a multiple-choice knapsack problem (MCKP).

Let binary variable xi,j indicate whether to compress file i to
compression level j. Since each file can only be saved in one state,
the sum of xi,j for each file i is 1. Let Ci,j be the expected latency of
compressing file i to compression level j, and let Si,j be the effective
size of file i at compression level j. The compression state selection
problem follows:

minimize
X

i∈F

X

j∈A

Ci,j × xi,j

subject to
X

i∈F

X

j∈A

Si,j × xi,j ≤ B,

xi,j ∈ {0, 1}, ∀i ∈ F
X

j

xi,j = 1 (2)

The formulation in Equation 2 is very close to the MCKP problem.
Given a number of sets, each containing multiple items, where each
item is associated with a profit and a weight, the MCKP problem
requires the selection of one item from each set. The selection is
optimal when the total profit is maximized and the total weight of the
selected items is below a constraint. A compression level selection
problem instance can be converted to an MCKP problem instance
by considering each potential compression level to be an item. The
associated weight is the effective size of the file at this compression
level. The associated profit is the reduction in expected latency
compared to longest latency. For example, if Cij is the expected
latency for compressing file i to level j, then the corresponding profit
Pij is max{Cij , j ∈ A}−Cij . MCKP is NP-hard. Fortunately, this
problem has received substantial attention and a number of algorithms
were developed to solve it in pseudo-polynomial time [8, 10]. We
adopted Pisinger’s algorithm for the MCKP problem.

V. EXPERIMENTAL RESULTS

We evaluate the proposed filesystem compression technique on
a number of filesystem traces. First we describe our trace-driven
simulation environment based on the processor and filesystem of a

TABLE II
FILE TRACES

Trace Length Number of files Reads Writes

1 3970 132 3540 430
2 5791 156 5329 462
3 4465 139 3872 593
4 5604 109 5263 341
5 6569 225 5760 809

TABLE III
COMPRESSED FILESYSTEM ACCESS TIMES (S)

Trace
Size Random

Uniform
LRU

F MCKP
Oracle

bound Promote Promote F MCKP

1 0.6 12.51 7.83 5.09 4.28 4.26
1 0.5 22.69 7.83 5.09 4.62 4.57
1 0.4 34.90 17.16 11.75 6.47 6.17

2 0.6 23.21 28.62 17.09 16.23 16.73
2 0.5 39.17 28.62 17.12 16.30 16.81
2 0.4 120.57 60.90 37.74 22.83 21.55

3 0.6 20.12 16.66 5.84 4.23 4.22
3 0.5 32.61 16.66 6.67 5.14 4.66
3 0.4 50.99 34.41 14.24 10.79 6.01

4 0.6 31.02 24.19 12.02 8.32 7.98
4 0.5 41.35 49.15 26.00 12.20 9.90
4 0.4 100.55 49.15 44.28 21.35 16.53

5 0.6 26.62 42.61 13.00 7.62 7.64
5 0.5 51.89 81.67 27.83 11.46 10.37
5 0.4 110.43 81.67 54.82 49.43 40.58

cellphone platform. We then describe several heuristics and present
experimental results.

V.A. Evaluation Environment / Experimental Setup

We used file access traces as our benchmarks. A trace is a sequence
of filesystem operations. Each record contains information such as
file path, file size, file operation, etc. Unfortunately, there are no
publicly-available file traces collected from embedded systems. We
therefore used trace data from DFSTrace [6]. We chose one set of
their traces, mozart, which provide system-level information. The
properties of the five parsed traces are shown in Table II. The
five dominant file types appearing in real cellular phone filesystems
were considered: executable, image, bitmap, configuration file, and
English text. We assigned each file in the trace a type according
to the file type distribution from the filesystem on a cellular phone
prototype. To determine the initial compression levels of all files, we
compressed all files to the shallowest level permitting the capacity
restriction to be met. We considered three compression algorithms:
LZO, GZIP, and Burrows-Wheeler transform (BWT). We tested their
performances on an embedded system with a 400 MHz Intel XScale
processor. The average compression ratio for each type of file was
experimentally measured. Flash read and write rates were determined
to be 9 MB/s and 6 MB/s respectively based on data given in flash
memory datasheets [5, 11]. We wrote a program to parse the trace,
implement the evaluated heuristics, and compute the average access
latency. The original MCKP code [7] solved self-generated random
test cases. We modified it to accept problem instances from our
filesystem prediction infrastructure.

V.B. Accuracy of Frequency Prediction Technique

To evaluate the effectiveness of our file access frequency prediction
method, we compute the absolute prediction error defined as

e =

P

ǫ∈E,γ∈F (|fr(γ, ǫ) − fr′(γ, ǫ)| + |fw(γ, ǫ) − fw′(γ, ǫ)|)

N × M

fr(γ, ǫ) and fw(γ, ǫ) are the actual frequencies of reads and writes to
file γ. fr′(γ, ǫ) and fw′(γ, ǫ) are the predicted values. N is number
of events in each file trace. M is the number of files. As can be
seen from the results in Table IV, the average error is 0.0045. This
indicates that our prediction method is very accurate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Random Uniform LRU_Promote F_MCKP

Fig. 2. Access latencies of heuristics relative to proposed technique.

TABLE IV
ABSOLUTE FREQUENCY PREDICTION ERROR

Trace number 1 2 3 4 5

Error 0.0053 0.0051 0.0048 0.0039 0.0032

V.C. Evaluation of Heuristics on Filesystem Access Traces

We compare the proposed heuristics with a base case in which a
single compression algorithm is used for all files. We introduce three
straight-forward heuristics, and the proposed efficient but low-latency
technique, for filesystem compression with multiple compression
levels. We also test our approach with an oracle cost estimator that
knows future accesses to investigate the impact of prediction error
on decision quality. The compared cases are listed below.

1) Uniform: Use the shallowest compression level necessary to
honor the size constraint. All files are compressed.

2) Random Promote: Always decompress the accessed file. If
this would cause a storage space violation, randomly select
other files and incrementally deepen their compression levels
until the filesystem size constraint is met.

3) LRU Promote: Decompress the accessed file if it has been
used more frequently than a pre-defined threshold. Iteratively
deepen the compression levels of LRU files until the filesystem
size constraint is honored.

4) F MCKP: Our approach. Choose file compression levels that
minimize the expected access latency.

5) Oracle F MCKP: F MCKP with oracle knowledge of the
future file access sequence.

Table III shows the total access times for five traces with different
compression approaches. The total access time is composed of time to
(1) access files in the trace and (2) update file compression states. The
performance penalty of the compression selection algorithm itself is
not included. The second column indicates the ratio between storage
size and total file size, it is a measure of the filesystem size constraint.
The following conclusions can be derived:

1) Oracle F MCKP generally produces the best results. In three
of the 15 cases, F MCKP outperforms Oracle F MCKP.
This may seem counterintuitive because Oracle F MCKP

has no file access trace prediction error. However, Ora-

cle F MCKP assumes that the filesystem state is constant
during future accesses. This assumption does not hold in prac-
tice because filesystem state changes in the future depending
on the decisions made by Oracle F MCKP. This error in
filesystem state prediction can either be exaggerated or offset by
inaccuracies in file access prediction introduced by F MCKP.
As a result, on rare occasions F MCKP produces slightly
better results than Oracle F MCKP. Despite its reliance on
prediction, the total delay resulting from F MCKP is always
within 1.8× that of Oracle F MCKP.

2) The worst results are generated by Random Promote and
Uniform, which ignore access patterns.

3) All methods supporting multiple compression levels but Ran-

dom Promote always beat Uniform. This demonstrates the
potential to improve performance by using more than one
compression algorithm.

Figure 2 summarizes the improvement of F MCKP over the other
three heuristics. Oracle F MCKP is not present in the figure since
it requires knowledge of future events. F MCKP is normalized to
1. Each entry gives the normalized geometric mean over all traces
and filesystem constraint values shown in Table III. In addition to
considering flash, we have also evaluated these cases with a disk-
equipped embedded system. The results are similar, and are omitted
due to the space constraint. Given that the energy consumption
proportional to the total file access delay, the impact on energy
consumption would be similar.

The proposed solution may impose some computational burden
and may increase file access latency when implemented on moderate-
performance embedded processors. We have tested the performance
of the MCKP solver with problem instances generated from the
file traces. The average duration is 1.19 ms on an 400 MHz In-
tel XScale PXA250 processor. The average frequency of calling
the MCKP solver is 6.0% given a filesystem size constraint of
0.5. The average file access latency with F MCKP is 1.81 ms.
For the same trace and filesystem size constraint, the average file
access latency with Uniform is 6.37 ms. Therefore, on a ARM-
class embedded processor, the reduction in average access latency
of our approach compared with uniformly compressing every file is
[6.37 − (1.81 + 1.19 × 0.06)]/6.37 = 70.5%.

VI. CONCLUSIONS

Filesystem compression with adaptively controlled compression
levels can permit good performance and increased usable filesystem
size. We have formulated the problem of adaptive filesystem compres-
sion with multiple compression algorithms and proposed a solution to
the on-line version of the problem based on access latency estimation
and optimization. Compared with the alternative of compressing the
entire filesystem with a single compression algorithm, our technique
reduces average file access latency by 67.7%. Compared with a
heuristic based on promoting LRU files to deeper compression levels,
our technique reduces file access latency by 34.1%.

REFERENCES

[1] Vincent Cate and Thomas Gross. Combining the concepts of
compression and caching for a two-level filesystem. In Proc.

Int. Conf. Architectural Support for Programming Languages

and Operating Systems, pages 200–211, 1991.

[2] Cramfs: Cram a filesystem onto a small ROM.
http://sourceforge.net/projects/cramfs.

[3] Transparent compression for the ext2 filesystem.
http://e2compr.sourceforge.net.

[4] JFFS2 improvement project.
http://www.inf.u-szeged.hu/jffs2/compression.php.

[5] Kingston flash memory. http://www.kingston.com/flash/.

[6] L. Mummert and M. Satyanarayanan. Long term distributed
file reference tracing: Implementation and experience.
Software–Practice and Experience, pages 705–736, 1996.

[7] David Pisinger. MCKP code.
http://www.diku.dk/∼pisinger/mcknap.c.

[8] David Pisinger. A minimal algorithm for the multiple-choice
knapsack problem. European J. of Operational Research,
pages 394–410, 1995.

[9] T. Raita. An automatic system for file compression. The

Computer J., 30(1):80–86, 1987.

[10] Prabhakant Sinha. The multiple-choice knapsack problem.
Operations Research, 27(3), 1979.

[11] Toshiba flash memory. http://www.toshiba.com/taec/Catalog.

[12] David Woodhouse. JFFS: The journalling flash file system. In
Ottawa Linux Symp. RedHat Inc., 2001.

