
Panappticon: Event-Based Tracing to Optimize

Mobile Application and Platform Performance

Lide Zhang†, David R. Bild†,
Robert P. Dick†, Z. Morley Mao†, and Peter Dinda‡

† Department of Electrical Engineering and Computer Science
University of Michigan

† Department of Electrical Engineering and Computer Science
Northwestern University

2 October 2013

Supported, in part, by the NSF under award CNS-1059372.

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Outline

1. Introduction

2. Algorithms and implementation

3. Findings

2 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Goal: make smartphones faster

3 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Why not make everything faster?

That could degrade

cost,

battery lifespan, or

satisfaction with user interface.

4 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Instead, make some things faster

What things?

Whenever smartphone users perceive that they are waiting for the
machine, we have an opportunity to improve user-perceived
performance.

How do we know when a smartphone user perceives that they are
waiting?

5 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

User-perceived transaction definition

The best definition

A series of operations in the system started by user input and ended
by the resulting output to the user.

A definition 1.5 graduate students can implement infrastructure for in
a reasonable amount of time

A series of operations in the system started by a screen touch or
button press and ended by the resulting display update.

6 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

How to monitor and analyze a user-perceived transaction?

Questions

When does it start and end?

What are the causal relationships among events within the
transaction?

What takes time during the transaction?

Answering these questions is hard!

The operating system and many user-level processes cooperate.

Processes synchronize and communicate in many ways.

Simultaneously running applications influence latencies of
transactions via resource contention.

Multiple ways to update the display.

7 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Panopticon

A prison that has been radially
arranged to allow a few guards to
watch any prisoner at any time.

8 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Panappticon

Smartphone infrastructure that
monitors the detailed operations of
multiple operating system and
application processes to support
identification and analysis of
user-perceived transactions.

9 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Who is Panappticon for?

Application designers: Optimize application performance.

Operating system designers: Optimize system policies.

Hardware designers: Choose the hardware changes that most improve
user-perceived transaction latencies.

10 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Motivation
Definitions

Related work

[Barham’04]: Developer-provided event semantics used for trace
analysis on servers.

[Jovic’11]: Developers identify UI input methods. Unsuitable for
multithreaded, asynchronous systems.

[Ravindranath’12]: Instruments binaries to support tracing.
Handles multiple application threads, but not other processes or
kernel.

Panappticon handles multiple threads/processes, including kernel
threads.

11 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Outline

1. Introduction

2. Algorithms and implementation

3. Findings

12 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Algorithm overview

UI thread

worker thread

Execution interval

Identify each execution interval.

Identify causal relationships between intervals.

Give intervals semantic labels.

Do resource accounting along the critical path.

13 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Algorithm overview

UI thread

worker thread

Execution interval

Submit an

asynchronous

task.

Identify each execution interval.

Identify causal relationships between intervals.

Give intervals semantic labels.

Do resource accounting along the critical path.

13 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Algorithm overview

UI thread

worker thread

Execution interval

Submit an

asynchronous

task.

User input Display update

Identify each execution interval.

Identify causal relationships between intervals.

Give intervals semantic labels.

Do resource accounting along the critical path.

13 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Algorithm overview

UI thread

worker thread

Execution interval

Submit an

asynchronous

task.

User input Display update

Identify each execution interval.

Identify causal relationships between intervals.

Give intervals semantic labels.

Do resource accounting along the critical path.

13 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Algorithm overview

UI thread

worker thread

Execution interval

Submit an

asynchronous

task.

User input Display update

IO block

Identify each execution interval.

Identify causal relationships between intervals.

Give intervals semantic labels.

Do resource accounting along the critical path.

13 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Panappticon architecture

Application Application

Dalvik VM

User logger

Dalvik VM

User logger

Kernel loggerKernel

Event

collector

 Server collector

 User transaction analyzer

Kernel-level

User-space

framework

User-space

Application

Device side

Server side

14 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Data captured

Input events: screen touch and key press.

Display update events.

Causality between execution intervals: asynchronous task,
enqueue/dequeue messages, IPC, forking a child thread (and
locking primitives).

Resource accounting events: context switches (and thread state),
blocking on IO and network.

Additional information to understand context: application name,
foreground applications.

15 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Relationship graph construction

User input, enqueues message 1 (callback function for user
input).

Dequeues message 1 and submits asynchronous task 1.

Consumes asynchronous task 1, blocks on IO, resumes, enqueues
message 2.

Dequeues message 2, triggers UI invalidate, UI display update.

16 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Approach and architecture overview
Graph construction procedure
Tracing performance overhead

Performance evaluation of Panappticon

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

asynctsak

w
orker

service

w
ebpage

k9 xw
ord

npr
brow

ser

read

U
s
e

r
tr

a
n

s
a

c
ti
o

n
 (

m
s
)

Panappticon
Android

Average performance overhead with Panappticon is 6.1%.

17 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Outline

1. Introduction

2. Algorithms and implementation

3. Findings

18 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Experimental goals

Identify application performance bugs.

Understand the impact of system policies, e.g., DVFS.

Understand the impact of hardware design decisions, e.g., multi-core
versus single core.

Randomly switches between four configurations during deployment.

19 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Study overview

Platform Galaxy Nexus, Android 4.1.2

Users 14

Analyzed transactions 88,656

Duration One month

20 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

User-perceived transaction durations

 0

 0.5

 1

 0.0001 0.001 0.01 0.1 1 10 100

C
D

F

User transaction time (s)

Transactions last 38.6 seconds at most. 2% of the transaction lasts
longer than 1 second.

Both cores available. DVFS enabled.

21 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Application commonly waits for CPU

Reddit news: a popular news application in Android market with
millions of downloads.

Total latency (s) Network block (s) IO block (s)
Waiting

for CPU (s)

3.78 0.98 0 1.39

2.35 0.42 0.02 0.93

1.54 0.23 0 0.89

1.27 0.15 0 0.33

22 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Application commonly waits for CPU

Reddit news: a popular news application in Android market with
millions of downloads.

Total latency (s) Network block (s) IO block (s)
Waiting

for CPU (s)

3.78 0.98 0 1.39

2.35 0.42 0.02 0.93

1.54 0.23 0 0.89

1.27 0.15 0 0.33

22 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Cause of application stalls

Reddit News Network

SDCard CPU

Reddit News CPU Waiting

Reddit News CPU

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

Observations

System thread responsible for writing to SD card often preempts
critical path thread.

Network downloads temporally correlated with the SD card
thread activity.

Possible application-level solution: defer saving until after user
transaction.

23 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Transaction latency as function of DVFS policy

0.0

0.2

0.4

0.6

0.8

1.0

0.1ms 1ms 10ms 20ms 100ms 1s 10s
Transaction Latency (log scale)

E
m

pe
ric

al
 C

um
ul

at
iv

e
D

en
si

ty

DVFS Off
DVFS On

517ms additional delay at 98th percentile.

DVFS governor significantly hurts the performance of long user
transactions.

24 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Cause of DVFS policy related latency increase

Interactive governor behavior

Evaluation interval: 20ms.

Frequency increase when (1) the utilization in the window is
above 85% or (2) on user input.

Duration to stay at high frequency: 60ms.

Why does this make long transactions slow?

For shorter transactions, the frequency is boosted based user
interaction.

The frequency is allowed to drop after 60ms.

25 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Dependence of latency on transaction duration

●●●●●●●●●●
●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●

●●●●●
●●●●
●●●●●●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●
●●●●●●

●●●
●●●●●
●●●●●

●●●●●
●●●●

●●
●
●●
●●●●

●●
●

y=1.75x

y=x

60ms

1ms

10ms

100ms

1s

1ms 10ms 100ms 1s
DVFS Off

D
V

F
S

 O
n

DVFS policy doesn’t hurt
performance for
transactions < 60ms.

+75% latency for
transactions > 60ms.

26 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Impact of transaction time on DVFS policy and

transaction time

Network

IO

CPU

350 MHz

700 MHz

920 MHz

1.2 GHz

0.0 0.5 1.0 1.5 2.0
Time (s)

 R

es
ou

rc
e

 F

re
qu

en
cy

 Root cause

Disk IO forces CPU
frequency low.

Transaction latency
strongly dependent on
CPU frequency despite
low CPU utilization.

27 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Methods for improving DVFS policy behavior

Extend duration to stay at high frequency (60ms).

Have DVFS policy treat IO and network blocks as CPU activity.

28 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Comparison of single- and dual-core transaction latencies

0.0

0.2

0.4

0.6

0.8

1.0

0.1ms 1ms 10ms 20ms 100ms 1s 10s
Transaction Latency (log scale)

E
m

pe
ric

al
 C

um
ul

at
iv

e
D

en
si

ty

1 Core
2 Cores

Observation: Additional cores don’t influence latencies of long
transactions.

Implication: These applications do not have parallelized
CPU-bounded workloads for long transactions.

29 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Suggestions

Parallelize CPU-intensive smartphone applications.

Improve single-core performance.

30 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Panappticon summary

Panappticon traces relevant data to extract perceived user
transactions.

We used it briefly to find and understand some interesting
application/OS performance problems; you can do better.

31 Zhang, Bild, Dick, Mao, and Dinda Panappticon

Introduction
Algorithms and implementation

Findings

Experiment overview
Identifying inefficient application/OS design
Identifying DVFS policy related performance degradation
Impact of additional core on user-perceived transaction latency

Thanks and survey

Thank you for attending!

Try Panappticon: Guide application/OS/hardware improvements
based on user-perceived transaction latencies.

http://ziyang.eecs.umich.edu/projects/panappticon.

Informal on-site survey

Who among you plans to use the tool or ideas described in this talk?

32 Zhang, Bild, Dick, Mao, and Dinda Panappticon

http://ziyang.eecs.umich.edu/projects/panappticon

	Introduction
	Motivation
	Definitions

	Algorithms and implementation
	Approach and architecture overview
	Graph construction procedure
	Tracing performance overhead

	Findings
	Experiment overview
	Identifying inefficient application/OS design
	Identifying DVFS policy related performance degradation
	Impact of additional core on user-perceived transaction latency

