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Abstract— Antenna design is an important, yet difficult part of any 

embedded system that requires wireless communication. Efforts have been 

made to automate the design process with Genetic Algorithms (GAs) and 

Simulated Annealing (SA). However, GAs and SA can converge slowly or 

not at all. In this paper, we use Parallel Recombinative Simulated 

Annealing (PRSA) along with Search Space Discretization (SSD) to create 

an optimization algorithm which converges in less iterations than both GAs 

and SA. We first test GAs, SA, PRSA, and PRSA-SSD with a simpler 

problem to show the difference in convergence speeds. We show that SSD 

does not exclude any significantly different antennas from the optimization 

process, and we provide examples of using GAs, SA, PRSA, and PRSA-

SSD to optimize trace antennas.  

I. INTRODUCTION 

Antennas are designed by starting with a reference design 

and iterating on the design until reasonable values for 

impedance are reached or taking a reference design and 

matching the impedance of the design to the impedance of the 

source. This process is difficult, and can take multiple man-

hours for a single antenna, tying up important resources.  

Automated methods for antenna design exist, especially 

through genetic algorithms (GAs) [1] and simulated annealing 

(SA) [2]. GAs and SA represent a class of optimization 

algorithms intended for optimizing NP-hard problems, where 

finding the best solution requires complete enumeration. GAs 

and SA arrive at arbitrarily good solutions as determined by 

the user, and if set up properly, can eventually reach the global 

optimum. However, setting up GAs and SA properly is hard 

and thus can converge slowly or get stuck in local optima. 

Speeding up automated antenna optimization can also be 

achieved by decreasing the time it takes to find a viable 

solution. Most of the time it takes to optimize an antenna is 

spent in simulation; reducing the number of simulations 

speeds up optimization. We show that small, local variations 

in antenna design have little-to-no effect on the impedance and 

gain pattern of the antenna. Requiring antennas to be 

significantly different from each other can decrease the 

number of antennas that are effectively simulated multiple 

times. 

This paper presents a method of automated antenna 

optimization that can provide convergence in fewer iterations 

than both SA and GAs using parallel recombinative simulated 

annealing (PRSA) combined with state space discretization. 

Section II will cover GAs and SA, the optimization algorithms 

used in previous papers. Section III will cover parallel 

recombinative simulated annealing, search space 

discretization, and both the problem formulation for the simple 

 
 

 

test problem as well as the antenna optimization problem. 

Section IV will cover our results, Section V will cover our 

conclusions, and Section VI will cover future work to be done. 

II. OPTIMIZATION ALGORITHMS 

A. Genetic Algorithms 

Genetic algorithms are optimization algorithms based on the 

idea that better solutions can arise from a combination of other 

good solutions [3]. Genetic algorithms iterate through 

generations, where each generation contains a population of 

individuals. Each generation is ideally better than the previous 

one and this improvement is caused by each generation 

performing selection, crossover, and then mutation, which 

produces children that could be better than individuals that 

exist in the population. 

Selection is the process through which parents are chosen. 

In a problem where the fitness of the solutions moves 

monotonically towards the global optimum, selection would 

just pick the two best parents. However, many optimization 

problems have a plethora of local optima which should be 

avoided, so the selection process should be capable of 

selecting suboptimal parents in order to escape local minima. 

Thus, the selection process randomly selects parents, but 

weighting the random selection so that better individuals have 

a higher chance to be selected.  

 Crossover is the process where children are created from the 

parents. Children are created by randomly selecting a 

crossover point, and the first child takes the values of the first 

parent before the crossover point and the values of the second 

parent after the crossover point, as shown in Figure 1. This 

creates new solutions which are combinations of the old 

solutions that in theory could be better.  

 Mutation is then applied to the children generated by 

crossover. In mutation, each value in the children has a chance 

to be replaced by a random value. Currently we aim for one 

mutated value in each child, but it is a random process and 

more or less could occur. 

 The children then replace the two individuals in the 

population with the worst fitnesses, producing a new 

generation. The selection/crossover/mutation process is then 

repeated until a solution with a desired fitness is found. 

B. Simulated Annealing 

Simulated annealing [4] is another optimization algorithm 

where the ability to ignore local optima is provided by 

Boltzmann trials, which govern the probability that a better 

solution is accepted over a worse solution.  

1 Equal contribution, order chosen by flipping a 1973 US Quarter. 
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Unlike GAs, SA doesn’t have a population of solutions. SA 

only optimizes a single solution, and an iteration consists of 

finding a neighboring solution, computing the fitness of that 

solution, and then selecting between the current solution and 

the neighboring solution and decreasing the temperature. 

 Creating a neighboring solution is similar to the process of 

mutation in a GA, where each value in the individual has a 

chance to be mutated, creating an individual close to the 

original one. Selection of the next solution is done by random 

selection weighted by the result of the Boltzmann trials. 

Equation 1 shows the formula for the Boltzmann trials. As 

Figure 2 shows, if the temperature U is very high, then e(𝐽−𝐾)/𝑈 

will be approximately 1, and so 𝑃𝑎 will be close to 0.5, so a 

high temperature indicates that the fitness of the solution 

won’t matter much and the selection of the next individual is 

essentially random. If the temperature is low, then e(𝐽−𝐾)/𝑈 

will be very large, and 𝑃𝑎will be either 1 or 0 so the best 

solution will always be selected. 

Thus, slowly decreasing the temperature slowly increases 

the chance that a better solution will be selected, allowing the 

solution to leave local optima early yet stay near the global 

optima later on.  

𝑃𝑎 =
1

1 + e(𝐽−𝐾)/𝑈
 

Equation 1: Probability that solution a (𝑷𝒂) wins the trial, given 

solutions with costs 𝐽 and 𝐾 [6] 

III. PROPOSED METHOD AND PROBLEM FORMULATIONS 

We propose a combination of PRSA and SSD called PRSA-

SSD as a method of decreasing the amount of iterations to 

convergence. PRSA is derived from a combination of GAs 

and SA and fixes some of the problems with both, so we 

expect convergence in a smaller number of iterations. SSD 

decreases the search space by removing similar solutions, so 

the combination should provide even faster convergence.  

We intend to attempt to optimize antennas, which we can do 

with an electromagnetic simulator capable of simulating 

arbitrary antennas and determining their gain pattern and 

impedance. 

However, simulating antennas is an extremely time-

consuming process, and so we use another smaller 

optimization problem to prove our methods work before 

moving on to optimizing antennas. 

A. Parallel Recombinative Simulated Annealing 

Parallel recombinative simulated annealing [6] is a 

combination of GAs and SA. PRSA can be thought of as SA 

except the algorithm utilizes a population of individuals 

instead of a single individual. Alternatively, PRSA can be 

thought of as GAs, except some more children are created and 

instead of children being automatically swapped into the 

population, the children are swapped in with a probability 

governed by Boltzmann trials. 

The PRSA version we implemented was based on [6]. This 

version iterates until a target temperature is reached, like 

traditional simulated annealing, and in every iteration, children 

are created through crossover, mutated, and placed back into 

the population replacing their parents with a probability 

determined through a Boltzmann trial. The number of children 

created is equal to the population size, which is from the 

original implementation in [6]. 

B. Search Space Discretization 

SSD is based on the idea that checking individuals similar 

to the individual being tested does not produce useful 

information. Thus, SSD works by enforcing a minimum 

difference between individuals. This idea can be expanded so 

that instead of finding sufficiently different individuals during 

the optimization algorithm, we discretize the search space into 

sufficiently different individuals in the first place. This is done 

by first selecting a minimum difference, computing the 

number of values inside the valid search area, and then 

randomly selecting one of the values. For example, if our valid 

search space is between 0 and 2, and we choose a minimum 

difference of 0.5, we would randomly pick between 0, 0.5, 1, 

1.5, and 2, instead of selecting a random float between 0 and 

2, transforming an infinite number of choices to 5. 

This idea can be extended to antennas, as small variations in 

the shape of an antenna (on the order of 0.5% of a wavelength) 

have little to no effect on the gain pattern and impedance of an 

antenna. Thus, when antennas are created or mutated, the 

antenna needs to be different enough to create an antenna with 

significantly different properties compared to previous 

antennas.  

C. Simple Problem Formulation 

Our simple problem is attempting to recreate a black and 

white image by minimizing the sum-of-squares difference in 

Equation 2 between target image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡  in Figure 4 and 

generated image 𝐼𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 . 

Figure 1: Crossover applied to two individuals. Image 

taken from [5]. 

Figure 2: Acceptance probability 𝑷𝒂  plotted against temperature 

U and cost difference J-K. Image taken from [5]. 
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𝐷𝑖𝑓𝑓 = ∑ ∑(𝐼𝑡𝑎𝑟𝑔𝑒𝑡(𝑖, 𝑗) − 𝐼𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗))

𝑗𝑖

2

 

Equation 2: Sum-of-squares difference computed between target 

image 𝑰𝒕𝒂𝒓𝒈𝒆𝒕 and generated image 𝑰𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅. 

 

 

 

Without SSD, the pixel values created by the optimization 

algorithms are allowed to be any real number between the 

maximum value (255) and the minimum value (0), inclusive. 

We show two types of SSD here. One discretizes the search 

space to the integers between 255 and 0, inclusive, and the 

other discretizes the search space to exactly the two numbers 

255 and 0, as we know the image is black and white and 

therefore composed only of pixels with the values 255 or 0. 

D. Antenna Problem Formulation 

The antenna is composed of a series of points. The points 

are connected in order and form a series of line segments, or 

physically, a microstrip trace antenna. The thickness of the 

trace is fixed at the thickness of 2 oz. copper. The width of the 

lines and the horizontal positions of the lines are fixed as well, 

and thus the antenna is encoded as an array of floating-point 

numbers representing vertical positions.  

This representation of the antenna preserves spatial locality 

as well. Spatial locality is the property of the solution 

representation where the parts of the solution near each other 

in the representation are also near each other in real life and 

should interact more. In the case of the antenna, antenna 

segments close to each other will affect each other. Locality is 

important for GAs and PRSAs as they both use crossover, 

where parts from two solutions are combined to create new 

solutions.  

Python is used to convert the array into a series of 

instructions for GiD, a CAD preprocessing engine, which 

creates a CAD model of the antenna, converts the CAD model 

into a mesh, and outputs the mesh into a text file suitable for 

use with the simulator. 

The electromagnetic simulator we use is VirAntenn, which 

takes the text file with the mesh and outputs the gain pattern 

and impedance at specified frequencies. In our case, we use 

2.4GHz, since it is a common frequency for wireless 

communication.   

An antenna is considered to be better than a different 

antenna if it has a better fitness. Here, we define better as the 

antenna being able to radiate more energy. Impedance 

mismatch between the source (usually a wireless-enabled SoC 

or similar) and the antenna will cause energy to be reflected 

instead of radiated, so a better antenna will have an impedance 

closer to the source impedance, which we define as 50 Ohms.  

We use Equation 3 to compute the amount of energy 

reflected, which we then minimize.  

 

𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 =
√(50 − 𝑍𝑟𝑒𝑎𝑙)2 + 𝑍𝑖𝑚𝑎𝑔

2

√(50 + 𝑍𝑟𝑒𝑎𝑙)2 + 𝑍𝑖𝑚𝑎𝑔
2

 

Equation 3: Power reflected by the impedance mismatch between 

a 50 Ohm source and an antenna with impedance 𝒁 = 𝒁𝒓𝒆𝒂𝒍 +
𝒁𝒊𝒎𝒂𝒈 ∗ 𝒋 

IV. EXPERIMENTAL RESULTS 

A. Gain and Impedance Changes Caused by Local Variation 

We want to ensure applying SSD to the antenna problem 

doesn’t remove any significantly different antennas. We 

simulated 10 randomly generated antennas, and for each of the 

10 randomly generated antennas, we generated 30 similar 

antennas. These similar antennas were generated so that each 

point in the similar antenna is no more than 0.5 away from the 

original antenna. Since the unit we use is millimeters, the 

maximum difference per segment is 0.5mm, and at 2.4GHz, 

0.5mm is approximately 0.4% of the wavelength.  

Figure 3 shows the difference in fitness versus the total 

point-wise difference in mm. The fitness is computed to be the 

amount of power reflected by the antenna as in Equation 3. 

We see that for the majority of antennas, the difference in 

power reflected is less than 2% which is acceptable, especially 

for earlier iterations of the optimization functions. For further 

antenna simulation with SSD, we drop the minimum 

difference to 0.25mm to stay in the 2% difference range. 

Figure 4: 22x22 Black and White Target Image 

Figure 3: Difference in reflected power between antennas and 

similar antennas. 
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B. Comparison of Convergence Speeds for the Target Image 

We started by testing the convergence speeds of our various 

optimization algorithms on our toy problem of optimizing 

random images to look like our target image. Figure 8 shows 

the fitness after a fixed 1700 iterations, and PRSA and PRSA-

SSD perform dramatically better than GAs and SA does. 

However, this graph is somewhat misleading, as in each 

iteration, SA does 1 fitness computation, GA does 2, and 

PRSA and PRSA-SSD do 8 each. Since the computation of the 

fitness is what requires the large majority of computing power, 

Figure 5 shows the number of fitness computations required to 

minimize the difference to a certain point. The data is 

generated by running each algorithm to for the same number 

of fitness computations 1000 times.  

We expected PRSA-SSD to require the least computation, 

followed by PRSA, then GA, then SA. However, this was not 

the case. We think this is because this test problem is actually 

too simple. PRSA does 8 fitness computations per iteration, 

but the simplicity of the problem means that finding a better 

solution is simple, and many of the 8 new solutions are valid, 

and thus the computing power is somewhat wasted. In SA, if it 

is simple to find a better solution, then SA operating on an 

individual instead of a population of 8 means that a majority 

of the time, doing a single fitness computation will provide the 

same benefit as doing 8, so the SA is able to converge to a 

good solution in far less computations. Thus, the computations 

to convergence likely scales almost linearly with the number 

of computations per iteration instead of with the number of 

iterations.  

We expect for more difficult problems that the 

computations to convergence scales more with the number of 

iterations. 

C. Effectiveness of State Space Discretization 

Figure 7 is a comparison for the small image problem 

between standard PRSA, where the search space per pixel is 

floating-point numbers between 0 and 255, PRSA-SSD, where 

the search space per pixel is integers between 0 and 255, and 

PRSA-BIN, where the search space per pixel are the integers 0 

and 255. This data was generated by running each 

optimization algorithm 1000 times, stopping at 1700 iterations 

per run, after which we collected the best fitness.  

This comparison shows that for standard SSD, PRSA-SSD 

does converge to a slightly better solution, and PRSA-BIN 

converges to a significantly better solution.  

Thus, if it is possible to discretize the search space so that 

an optimization algorithm doesn’t repeat effectively similar 

values, it is likely worth doing so, as depending on the degree 

of discretization, large speedups can be had. However, it is 

important to ensure that the discretization doesn’t significantly 

impact the optimization algorithm’s ability to find a good 

solution, as discretizing the search space can also remove the 

optimal solution from the pool of possible solutions. 

Figure 7: Sum of squared difference for PRSA and PRSA with 

SSD and BIN after 1700 iterations. Lower is better. 
Figure 5: Sum of squared difference after 13000 fitness 

computations. Lower is better. 

Figure 8: Sum of squared difference after 1700 iterations. Lower 

is better. 

Figure 6: Fitness (power reflected) for each of the optimization 

algorithms as a function of iterations. 
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D. Comparison of Convergence Speeds for Antenna Optimization 

Since we had limited time, we were only able to run the 

optimization algorithms once each on the antennas. The data is 

shown in Figure 6. We are aware this data is not enough to 

prove that our methodology works. However, the data seems 

encouraging in that the SA converges slower than the rest, all 

of which aren’t too far off of each other. Unfortunately, the 

large amount of randomness inherent in the process makes 

comparing individual runs useless, but at least these metrics 

show that PRSA and PRSA-SSD are capable of optimizing 

antennas. 

V. CONCLUSIONS 

PRSA along with SSD may allow the acceleration of 

antenna optimization. In this paper, we show that SSD does 

accelerate PRSA for our small image optimization task. We 

also show that SSD is a valid methodology to use with 

antennas, as the gain patterns and impedances of antennas 

does not vary much with small variations in antenna structure. 

Furthermore, we show that PRSA and PRSA-SSD are 

capable of optimizing antennas, but the sample size was too 

small to conclusively determine which optimization method 

converged faster. 

We conclude that it is possible that the combination of 

PRSA and SSD is potentially capable of speeding up antenna 

optimization. 

VI. FUTURE WORK 

As mentioned previously, running an optimization 

algorithm to convergence once doesn’t provide any useful 

results, given the large amount of randomness inherent in the 

process, and more optimization runs should be done in the 

future.  

Another method of potentially speeding up antenna 

optimization is replacing the simulation step with a neural 

network that roughly approximates the simulation. High 

accuracy doesn’t matter too much if a large solution space is 

being explored; the amount that a solution is better likely 

matters less than which solution is better. As the solution starts 

converging, the optimization can move back to utilizing 

simulation as the accuracy needs grow. 

One unexplored idea in this space is alternative cooling 

schedules. For PRSA and SA, we used fixed cooling 

schedules, where the temperature lowers by a set percentage 

after every iteration. We can use adaptive cooling schedules 

that are based on the current fitness, or applying a technique 

called reannealing, where after the error gets to a certain point 

the temperature is raised a little to allow for more exploration 

in the neighborhood of a good solution.  

 Finally, in SSD, minimum difference is a variable that could 

be tweaked. An adaptive minimum difference also based on 

the fitness would allow the optimization algorithm to explore 

solutions closer and closer to the current solution as the 

solution gets better. Essentially, as the solution moves closer 

to the global optimum, the solution is allowed to make smaller 

steps so that it doesn’t step over the global optimum. 
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