
1

Abstract— Antenna design is an important, yet difficult part of any

embedded system that requires wireless communication. Efforts have been

made to automate the design process with Genetic Algorithms (GAs) and

Simulated Annealing (SA). However, GAs and SA can converge slowly or

not at all. In this paper, we use Parallel Recombinative Simulated

Annealing (PRSA) along with Search Space Discretization (SSD) to create

an optimization algorithm which converges in less iterations than both GAs

and SA. We first test GAs, SA, PRSA, and PRSA-SSD with a simpler

problem to show the difference in convergence speeds. We show that SSD

does not exclude any significantly different antennas from the optimization

process, and we provide examples of using GAs, SA, PRSA, and PRSA-

SSD to optimize trace antennas.

I. INTRODUCTION

Antennas are designed by starting with a reference design

and iterating on the design until reasonable values for

impedance are reached or taking a reference design and

matching the impedance of the design to the impedance of the

source. This process is difficult, and can take multiple man-

hours for a single antenna, tying up important resources.

Automated methods for antenna design exist, especially

through genetic algorithms (GAs) [1] and simulated annealing

(SA) [2]. GAs and SA represent a class of optimization

algorithms intended for optimizing NP-hard problems, where

finding the best solution requires complete enumeration. GAs

and SA arrive at arbitrarily good solutions as determined by

the user, and if set up properly, can eventually reach the global

optimum. However, setting up GAs and SA properly is hard

and thus can converge slowly or get stuck in local optima.

Speeding up automated antenna optimization can also be

achieved by decreasing the time it takes to find a viable

solution. Most of the time it takes to optimize an antenna is

spent in simulation; reducing the number of simulations

speeds up optimization. We show that small, local variations

in antenna design have little-to-no effect on the impedance and

gain pattern of the antenna. Requiring antennas to be

significantly different from each other can decrease the

number of antennas that are effectively simulated multiple

times.

This paper presents a method of automated antenna

optimization that can provide convergence in fewer iterations

than both SA and GAs using parallel recombinative simulated

annealing (PRSA) combined with state space discretization.

Section II will cover GAs and SA, the optimization algorithms

used in previous papers. Section III will cover parallel

recombinative simulated annealing, search space

discretization, and both the problem formulation for the simple

test problem as well as the antenna optimization problem.

Section IV will cover our results, Section V will cover our

conclusions, and Section VI will cover future work to be done.

II. OPTIMIZATION ALGORITHMS

A. Genetic Algorithms

Genetic algorithms are optimization algorithms based on the

idea that better solutions can arise from a combination of other

good solutions [3]. Genetic algorithms iterate through

generations, where each generation contains a population of

individuals. Each generation is ideally better than the previous

one and this improvement is caused by each generation

performing selection, crossover, and then mutation, which

produces children that could be better than individuals that

exist in the population.

Selection is the process through which parents are chosen.

In a problem where the fitness of the solutions moves

monotonically towards the global optimum, selection would

just pick the two best parents. However, many optimization

problems have a plethora of local optima which should be

avoided, so the selection process should be capable of

selecting suboptimal parents in order to escape local minima.

Thus, the selection process randomly selects parents, but

weighting the random selection so that better individuals have

a higher chance to be selected.

 Crossover is the process where children are created from the

parents. Children are created by randomly selecting a

crossover point, and the first child takes the values of the first

parent before the crossover point and the values of the second

parent after the crossover point, as shown in Figure 1. This

creates new solutions which are combinations of the old

solutions that in theory could be better.

 Mutation is then applied to the children generated by

crossover. In mutation, each value in the children has a chance

to be replaced by a random value. Currently we aim for one

mutated value in each child, but it is a random process and

more or less could occur.

 The children then replace the two individuals in the

population with the worst fitnesses, producing a new

generation. The selection/crossover/mutation process is then

repeated until a solution with a desired fitness is found.

B. Simulated Annealing

Simulated annealing [4] is another optimization algorithm

where the ability to ignore local optima is provided by

Boltzmann trials, which govern the probability that a better

solution is accepted over a worse solution.

1 Equal contribution, order chosen by flipping a 1973 US Quarter.

Accelerating Automated Antenna Optimization with Parallel

Recombinative Simulated Annealing and Search Space Discretization

Kevin Bi and Griffin Whybra1

2

Unlike GAs, SA doesn’t have a population of solutions. SA

only optimizes a single solution, and an iteration consists of

finding a neighboring solution, computing the fitness of that

solution, and then selecting between the current solution and

the neighboring solution and decreasing the temperature.

 Creating a neighboring solution is similar to the process of

mutation in a GA, where each value in the individual has a

chance to be mutated, creating an individual close to the

original one. Selection of the next solution is done by random

selection weighted by the result of the Boltzmann trials.

Equation 1 shows the formula for the Boltzmann trials. As

Figure 2 shows, if the temperature U is very high, then e(𝐽−𝐾)/𝑈

will be approximately 1, and so 𝑃𝑎 will be close to 0.5, so a

high temperature indicates that the fitness of the solution

won’t matter much and the selection of the next individual is

essentially random. If the temperature is low, then e(𝐽−𝐾)/𝑈

will be very large, and 𝑃𝑎will be either 1 or 0 so the best

solution will always be selected.

Thus, slowly decreasing the temperature slowly increases

the chance that a better solution will be selected, allowing the

solution to leave local optima early yet stay near the global

optima later on.

𝑃𝑎 =
1

1 + e(𝐽−𝐾)/𝑈

Equation 1: Probability that solution a (𝑷𝒂) wins the trial, given

solutions with costs 𝐽 and 𝐾 [6]

III. PROPOSED METHOD AND PROBLEM FORMULATIONS

We propose a combination of PRSA and SSD called PRSA-

SSD as a method of decreasing the amount of iterations to

convergence. PRSA is derived from a combination of GAs

and SA and fixes some of the problems with both, so we

expect convergence in a smaller number of iterations. SSD

decreases the search space by removing similar solutions, so

the combination should provide even faster convergence.

We intend to attempt to optimize antennas, which we can do

with an electromagnetic simulator capable of simulating

arbitrary antennas and determining their gain pattern and

impedance.

However, simulating antennas is an extremely time-

consuming process, and so we use another smaller

optimization problem to prove our methods work before

moving on to optimizing antennas.

A. Parallel Recombinative Simulated Annealing

Parallel recombinative simulated annealing [6] is a

combination of GAs and SA. PRSA can be thought of as SA

except the algorithm utilizes a population of individuals

instead of a single individual. Alternatively, PRSA can be

thought of as GAs, except some more children are created and

instead of children being automatically swapped into the

population, the children are swapped in with a probability

governed by Boltzmann trials.

The PRSA version we implemented was based on [6]. This

version iterates until a target temperature is reached, like

traditional simulated annealing, and in every iteration, children

are created through crossover, mutated, and placed back into

the population replacing their parents with a probability

determined through a Boltzmann trial. The number of children

created is equal to the population size, which is from the

original implementation in [6].

B. Search Space Discretization

SSD is based on the idea that checking individuals similar

to the individual being tested does not produce useful

information. Thus, SSD works by enforcing a minimum

difference between individuals. This idea can be expanded so

that instead of finding sufficiently different individuals during

the optimization algorithm, we discretize the search space into

sufficiently different individuals in the first place. This is done

by first selecting a minimum difference, computing the

number of values inside the valid search area, and then

randomly selecting one of the values. For example, if our valid

search space is between 0 and 2, and we choose a minimum

difference of 0.5, we would randomly pick between 0, 0.5, 1,

1.5, and 2, instead of selecting a random float between 0 and

2, transforming an infinite number of choices to 5.

This idea can be extended to antennas, as small variations in

the shape of an antenna (on the order of 0.5% of a wavelength)

have little to no effect on the gain pattern and impedance of an

antenna. Thus, when antennas are created or mutated, the

antenna needs to be different enough to create an antenna with

significantly different properties compared to previous

antennas.

C. Simple Problem Formulation

Our simple problem is attempting to recreate a black and

white image by minimizing the sum-of-squares difference in

Equation 2 between target image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 in Figure 4 and

generated image 𝐼𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 .

Figure 1: Crossover applied to two individuals. Image

taken from [5].

Figure 2: Acceptance probability 𝑷𝒂 plotted against temperature

U and cost difference J-K. Image taken from [5].

3

𝐷𝑖𝑓𝑓 = ∑ ∑(𝐼𝑡𝑎𝑟𝑔𝑒𝑡(𝑖, 𝑗) − 𝐼𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗))

𝑗𝑖

2

Equation 2: Sum-of-squares difference computed between target

image 𝑰𝒕𝒂𝒓𝒈𝒆𝒕 and generated image 𝑰𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅.

Without SSD, the pixel values created by the optimization

algorithms are allowed to be any real number between the

maximum value (255) and the minimum value (0), inclusive.

We show two types of SSD here. One discretizes the search

space to the integers between 255 and 0, inclusive, and the

other discretizes the search space to exactly the two numbers

255 and 0, as we know the image is black and white and

therefore composed only of pixels with the values 255 or 0.

D. Antenna Problem Formulation

The antenna is composed of a series of points. The points

are connected in order and form a series of line segments, or

physically, a microstrip trace antenna. The thickness of the

trace is fixed at the thickness of 2 oz. copper. The width of the

lines and the horizontal positions of the lines are fixed as well,

and thus the antenna is encoded as an array of floating-point

numbers representing vertical positions.

This representation of the antenna preserves spatial locality

as well. Spatial locality is the property of the solution

representation where the parts of the solution near each other

in the representation are also near each other in real life and

should interact more. In the case of the antenna, antenna

segments close to each other will affect each other. Locality is

important for GAs and PRSAs as they both use crossover,

where parts from two solutions are combined to create new

solutions.

Python is used to convert the array into a series of

instructions for GiD, a CAD preprocessing engine, which

creates a CAD model of the antenna, converts the CAD model

into a mesh, and outputs the mesh into a text file suitable for

use with the simulator.

The electromagnetic simulator we use is VirAntenn, which

takes the text file with the mesh and outputs the gain pattern

and impedance at specified frequencies. In our case, we use

2.4GHz, since it is a common frequency for wireless

communication.

An antenna is considered to be better than a different

antenna if it has a better fitness. Here, we define better as the

antenna being able to radiate more energy. Impedance

mismatch between the source (usually a wireless-enabled SoC

or similar) and the antenna will cause energy to be reflected

instead of radiated, so a better antenna will have an impedance

closer to the source impedance, which we define as 50 Ohms.

We use Equation 3 to compute the amount of energy

reflected, which we then minimize.

𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 =
√(50 − 𝑍𝑟𝑒𝑎𝑙)2 + 𝑍𝑖𝑚𝑎𝑔

2

√(50 + 𝑍𝑟𝑒𝑎𝑙)2 + 𝑍𝑖𝑚𝑎𝑔
2

Equation 3: Power reflected by the impedance mismatch between

a 50 Ohm source and an antenna with impedance 𝒁 = 𝒁𝒓𝒆𝒂𝒍 +
𝒁𝒊𝒎𝒂𝒈 ∗ 𝒋

IV. EXPERIMENTAL RESULTS

A. Gain and Impedance Changes Caused by Local Variation

We want to ensure applying SSD to the antenna problem

doesn’t remove any significantly different antennas. We

simulated 10 randomly generated antennas, and for each of the

10 randomly generated antennas, we generated 30 similar

antennas. These similar antennas were generated so that each

point in the similar antenna is no more than 0.5 away from the

original antenna. Since the unit we use is millimeters, the

maximum difference per segment is 0.5mm, and at 2.4GHz,

0.5mm is approximately 0.4% of the wavelength.

Figure 3 shows the difference in fitness versus the total

point-wise difference in mm. The fitness is computed to be the

amount of power reflected by the antenna as in Equation 3.

We see that for the majority of antennas, the difference in

power reflected is less than 2% which is acceptable, especially

for earlier iterations of the optimization functions. For further

antenna simulation with SSD, we drop the minimum

difference to 0.25mm to stay in the 2% difference range.

Figure 4: 22x22 Black and White Target Image

Figure 3: Difference in reflected power between antennas and

similar antennas.

4

B. Comparison of Convergence Speeds for the Target Image

We started by testing the convergence speeds of our various

optimization algorithms on our toy problem of optimizing

random images to look like our target image. Figure 8 shows

the fitness after a fixed 1700 iterations, and PRSA and PRSA-

SSD perform dramatically better than GAs and SA does.

However, this graph is somewhat misleading, as in each

iteration, SA does 1 fitness computation, GA does 2, and

PRSA and PRSA-SSD do 8 each. Since the computation of the

fitness is what requires the large majority of computing power,

Figure 5 shows the number of fitness computations required to

minimize the difference to a certain point. The data is

generated by running each algorithm to for the same number

of fitness computations 1000 times.

We expected PRSA-SSD to require the least computation,

followed by PRSA, then GA, then SA. However, this was not

the case. We think this is because this test problem is actually

too simple. PRSA does 8 fitness computations per iteration,

but the simplicity of the problem means that finding a better

solution is simple, and many of the 8 new solutions are valid,

and thus the computing power is somewhat wasted. In SA, if it

is simple to find a better solution, then SA operating on an

individual instead of a population of 8 means that a majority

of the time, doing a single fitness computation will provide the

same benefit as doing 8, so the SA is able to converge to a

good solution in far less computations. Thus, the computations

to convergence likely scales almost linearly with the number

of computations per iteration instead of with the number of

iterations.

We expect for more difficult problems that the

computations to convergence scales more with the number of

iterations.

C. Effectiveness of State Space Discretization

Figure 7 is a comparison for the small image problem

between standard PRSA, where the search space per pixel is

floating-point numbers between 0 and 255, PRSA-SSD, where

the search space per pixel is integers between 0 and 255, and

PRSA-BIN, where the search space per pixel are the integers 0

and 255. This data was generated by running each

optimization algorithm 1000 times, stopping at 1700 iterations

per run, after which we collected the best fitness.

This comparison shows that for standard SSD, PRSA-SSD

does converge to a slightly better solution, and PRSA-BIN

converges to a significantly better solution.

Thus, if it is possible to discretize the search space so that

an optimization algorithm doesn’t repeat effectively similar

values, it is likely worth doing so, as depending on the degree

of discretization, large speedups can be had. However, it is

important to ensure that the discretization doesn’t significantly

impact the optimization algorithm’s ability to find a good

solution, as discretizing the search space can also remove the

optimal solution from the pool of possible solutions.

Figure 7: Sum of squared difference for PRSA and PRSA with

SSD and BIN after 1700 iterations. Lower is better.
Figure 5: Sum of squared difference after 13000 fitness

computations. Lower is better.

Figure 8: Sum of squared difference after 1700 iterations. Lower

is better.

Figure 6: Fitness (power reflected) for each of the optimization

algorithms as a function of iterations.

5

D. Comparison of Convergence Speeds for Antenna Optimization

Since we had limited time, we were only able to run the

optimization algorithms once each on the antennas. The data is

shown in Figure 6. We are aware this data is not enough to

prove that our methodology works. However, the data seems

encouraging in that the SA converges slower than the rest, all

of which aren’t too far off of each other. Unfortunately, the

large amount of randomness inherent in the process makes

comparing individual runs useless, but at least these metrics

show that PRSA and PRSA-SSD are capable of optimizing

antennas.

V. CONCLUSIONS

PRSA along with SSD may allow the acceleration of

antenna optimization. In this paper, we show that SSD does

accelerate PRSA for our small image optimization task. We

also show that SSD is a valid methodology to use with

antennas, as the gain patterns and impedances of antennas

does not vary much with small variations in antenna structure.

Furthermore, we show that PRSA and PRSA-SSD are

capable of optimizing antennas, but the sample size was too

small to conclusively determine which optimization method

converged faster.

We conclude that it is possible that the combination of

PRSA and SSD is potentially capable of speeding up antenna

optimization.

VI. FUTURE WORK

As mentioned previously, running an optimization

algorithm to convergence once doesn’t provide any useful

results, given the large amount of randomness inherent in the

process, and more optimization runs should be done in the

future.

Another method of potentially speeding up antenna

optimization is replacing the simulation step with a neural

network that roughly approximates the simulation. High

accuracy doesn’t matter too much if a large solution space is

being explored; the amount that a solution is better likely

matters less than which solution is better. As the solution starts

converging, the optimization can move back to utilizing

simulation as the accuracy needs grow.

One unexplored idea in this space is alternative cooling

schedules. For PRSA and SA, we used fixed cooling

schedules, where the temperature lowers by a set percentage

after every iteration. We can use adaptive cooling schedules

that are based on the current fitness, or applying a technique

called reannealing, where after the error gets to a certain point

the temperature is raised a little to allow for more exploration

in the neighborhood of a good solution.

 Finally, in SSD, minimum difference is a variable that could

be tweaked. An adaptive minimum difference also based on

the fitness would allow the optimization algorithm to explore

solutions closer and closer to the current solution as the

solution gets better. Essentially, as the solution moves closer

to the global optimum, the solution is allowed to make smaller

steps so that it doesn’t step over the global optimum.

References

[1] G. Hornby, A. Globus, D. S. Linden, and J. D. Lohn, “Automated Antenna
Design with Evolutionary Algorithms,” Space 2006, San Jose, CA, USA,
September 19-21, 2006.

[2] J. E. Richie, C. Ababei, “Synthesis of Cylindrical Antenna Arrays Using
Simulated Annealing,” Journal of Computational Design and
Engineering, vol. 4, no. 4, pp. 249-255, October 2017.

[3] J. H. Holland, “Outline for a Logical Theory of Adaptive Systems,”
Journal of the ACM, vol. 9, iss. 3, pp. 297-314, July 1962.

[4] S. Kirkpatrick, C. D. Gelatt, Mario P. Vecchi, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[5] R. Dick, EECS 598-013 Lecture 3.

[6] S. W. Mahfoud, D.E. Goldberg, “Parallel Recombinative Simulated
Annealing: A Genetic Algorithm,” Parallel Computing, 21, pp. 1-28,
1995.

