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ABSTRACT

Deep neural networks have become the compelling solution for the

applications such as image classification, object detection, speech

recognition, and machine translation. However, the great success

comes at the cost of excessive computation due to the over-provisioned

parameter space. To improve the computation efficiency of neural

networks, many pruning techniques have been proposed to re-

duce the amount of multiply-accumulate (MAC) operations, which

results in high sparsity in the networks.

Unfortunately, the sparse neural networks often run slower than

their dense counterparts on modern GPUs due to their poor de-

vice utilization rate. In particular, as the sophisticated hardware

primitives (e.g., Tensor Core) have been deployed to boost the per-

formance of dense matrix multiplication by an order of magnitude,

the performance of sparse neural networks lags behind significantly.

In this work, we propose an algorithm and hardware co-design

methodology to accelerate the sparse neural networks. A novel

pruning algorithm is devised to improve the workload balance

and reduce the decoding overhead of the sparse neural networks.

Meanwhile, new instructions and micro-architecture optimization

are proposed in Tensor Core to adapt to the structurally sparse

neural networks. Our experimental results show that the pruning

algorithm can achieve 63% performance gain with model accuracy

sustained. Furthermore, the hardware optimization gives an addi-

tional 58% performance gain with negligible area overhead.

CCS CONCEPTS

•Computer systems organization→ Single instruction, multiple

data.
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1 INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art per-

formance in many different tasks, such as image recognition [31,

39, 67], speech recognition [62], and natural language process-

ing [15, 36, 71]. The underlying representational power of these

neural networks comes from the huge parameter space which re-

sults in an extremely large amount of computation and memory

usage. There have been plenty of prior works to improve both

performance and energy efficiency of neural networks on various

hardware platforms, such as GPUs [9, 18, 38, 44, 60, 73, 78], FP-

GAs [19, 28, 81], and ASICs [2, 3, 11–14, 20, 21, 23, 32, 34, 35, 45, 47,

49, 54, 57, 59, 61, 63, 65, 68, 69, 75, 82, 83]. Among these prior arts,

sparsity-centric optimization techniques [4, 28–30, 56, 64], which

exploit the sparsity in weights and activations, have achieved out-

standing results for both Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs).

By leveraging the intrinsic redundancy in the weights of neural

networks, various sparsifying techniques have been discussed for

weight pruning. Those techniques can result in very high sparsity in

the weight matrices. For instance, prior work [28–30] has reported

that top-K sparsifying and retraining could result in more than 90%

sparsity with negligible impact on the model accuracy. Nonetheless,

such high sparsity does not necessarily guarantee that the sparse

neural networks can be more performant than their dense counter-

parts due to the irregularity of data layout. In particular, the sparse

neural networks can hardly obtain performance gain on Graph-

ics Processing Units (GPUs). The state-of-the-art sparse library,

CUSPARSE, encodes a sparse weight matrix to Compressed Sparse

Row (CSR) format [8]. Since a sparse weight matrix pruned by the

top-K sparsifying has a random number of non-zero elements in

a row, the CSR format often leads to poor workload balance. As a

consequence, the GPU is extremely underutilized when running

the sparse library kernels.

On the other hand, general matrix multiplication (GEMM) has

seen contiguous optimization on modern GPUs, as it is one of the
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fundamental primitives of many popular neural networks. For ex-

ample, NVIDIA has built high performance GEMM kernels with a

hand-tuned machine code entity in the state-of-the-art CUBLAS

library [51]. In addition, Tensor Core has been introduced in Volta

architecture [53] to provide 8× peak TFLOPs than the FP32 CUDA

Core (112TFLOPs v.s. 14TFLOPs). Unfortunately, Tensor Core fo-

cuses only on the acceleration of dense matrix multiplication. Since

sparse GEMM cannot take advantage of Tensor Core, we have

seen little speedup when running sparse neural networks by top-K
sparsifying on it.

To address the performance issue, structural sparsifying meth-

ods [70, 76] have been proposed by removing entire rows or columns

from a matrix. As a result, the structurally pruned matrices are

able to sustain their denseness and thus use the Tensor Core to

achieve high performance. However, such coarse-grained prun-

ing on the weight matrices has a negative impact on the model

accuracy. Although prior studies [70, 76] have reported compara-

ble accuracy of the structurally pruned networks on small datasets

(e.g., MNIST [40]), we have observed significant accuracy drop from

large-scale neural networks when the structural pruning is applied

(See Section 6 for the detail).

In this paper, we proposeVectorSparse, a SIMD (Single Instruction,

Multiple Data)-friendly sparsifying method, to tackle the problem.

VectorSparse divides a weight matrix into multiple vectors and

prunes each vector to the same sparsity. The sparse weight matri-

ces generated by VectorSparse exhibit a better workload balance

and higher parallelism than the top-K pruned weight matrices. To

further improve the performance, we extend the instruction set of

Volta to allow the VectorSparse neural networks to run on Tensor

Core. The extension requires only minor changes to enable the nec-

essary indexing to the register files. The simulation results show

that VectorSparse neural networks are faster than either the dense

or top-K sparse counterparts with negligible accuracy impact.

To the best of our knowledge, this is the first work to exploit the

efficiency of sparse neural networks on Tensor Core. The contribu-

tions of this paper include:

• We go through a comprehensive performance analysis to

demonstrate the inefficiency of GPUwhen running the sparse

neural networks.

• We propose VectorSparse as a novel sparsifying algorithm

that can achieve 63% performance improvement with negli-

gible accuracy drop.

• We further extend the instruction sets of the Volta GPU to

support the operand indexing in the register file.

• We also show the details of the micro-architecture design

to mitigate the performance bottleneck, which achieves 58%

performance gain with negligible area overhead.

2 BACKGROUND AND MOTIVATION

In this section, we first review some prior work on sparsity-centric

optimization for neural networks, and then describe the existing

sparsifying techniques in detail.

2.1 Sparsity-Centric Optimization for DNNs

Recently, DNNs have demonstrated significant redundancy in the

parameterization [17]. The over-sized parameter space results in
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(a) Generic sparsifying

(b) Unified sparsifying

Figure 1: Examples of (a) generic sparsifying and (b) unified

sparsifying. Both examples enforce 75% sparsity on a 4x4

matrix.

high sparsity in a neural network. In addition to the weight pa-

rameters, the activations of each layer of a network also possess

sparsity, a factor that stems mainly from the activation functions

(e.g. ReLU) [39].

As the sparsity in weight parameters does not depend on the

input data, it is often referred to as static sparsity. On the other hand,

the sparsity in the activations depends on not only the weight, but

also the input data. Therefore, such sparsity in the activations is

denoted as dynamic sparsity. In this work, we focus on exploiting

the static sparsity in neural networks to accelerate the inference

phase of applications.

Early efforts that exploit the static sparsity concentrate on prun-

ing the weights of the neural networks with top-K sparsifying [4,

28–30, 82]. The top-K pruning achieves great success in terms

of compression ratio. However, the randomness in the positions

of the non-zero elements in the top-K pruned weight matrices

makes them unable to leverage sophisticated software libraries,

e.g. CUBLAS [51], or hardware resources, e.g. Tensor Core [53] on

modern GPUs. Hence they exhibit far lower data throughput than

the corresponding dense neural networks.

To improve the efficiency of the sparse neural networks on GPUs,

some work has proposed the structural sparsifying methods [70, 76].

The structural sparsifying puts certain spatial constraints on the

non-zero elements to keep the denseness of the output matrices

after sparsifying. The generated dense weight matrices have less

parameters and can take full advantage of dense GEMM libraries.

Even though such structural sparsifying has high performance, it

incurs severe accuracy drop for large commercial models1. This is

because the restricted spatial constraints of the weights make it

hard to train the networks.

2.2 Existing Sparsifying Methods on GPUs

In general, the sparsifying methods [27, 30, 70, 76] can be classi-

fied into two categories, generic sparsifying and unified sparsifying.

The generic sparsifying method is illustrated in Figure 1(a), which

1We have also observed that small neural networks could achieve good speedup and
similar accuracy with structural sparsifying. These small models, however, are out of
our interests since they cannot be widely adopted by the industry.
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Figure 2: The normalized performance and L2 cache

throughput of generic sparseCONV layers over denseCONV

layers on a Tesla V100 GPU.

picks the largest four elements in absolute value as key elements in

the matrix (highlighted in yellow). The key elements are kept un-

changed while the rest of the elements are forced to be zero, which

results in 75% sparsity in the matrix. Note that the coordinates of

the key elements have to be kept along with the values as they can

be arbitrary due to the flexibility of sparsifying.

Although the generic sparsifying achieves a very high compres-

sion ratio, it exposes several inefficiencies on GPUs [66]. Firstly,

the variation of the row/column length of a generic sparse matrix

makes it difficult to partition the workload evenly into GPUs [43].

Secondly, the number of non-zero elements in each row is unknown

until runtime, leaving it difficult to choose an optimal tiling scheme

for data reuse. Thirdly, the computation amount of a highly sparse

matrix is not enough to hide the long memory access latency, and

therefore the benefit from the high sparsity vanishes.

To reveal the problem, we run two sparse convolutional layers

(Conv2 and Conv4) in AlexNet [39] on an NVIDIA Tesla V100

GPU. The convolution operation in these two layers is converted

to GEMM by im2col transformation [10]. The implementation of

the sparse layers is based on CUSPARSE, the state-of-the-art GPU

library for sparse linear algebra2. Figure 2 shows the performance

in GPU execution time and the read throughput of L2 cache, which

are normalized to the dense implementations on CUBLAS.

Intuitively, layers with high sparsity should have better perfor-

mance since they need less computations. However, as shown in

Figure 2, the sparse layers are less performant than dense layers.

Even when the sparsity is 96%, the sparse layers can only achieve

73% of the dense layer performance. The low L2 read throughput

indicates that the device memory bandwidth is underutilized, which

means the performance of the sparse layers is bounded by compu-

tation. We figure out that the compute units are underutilized in

this case. The low utilization is due to the poor workload balance

because we have observed better performance from Conv2 layer

when it exhibits better workload balance.

2Please refer to Section 5 for the detail of the experiment setup.
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Figure 3: Dividing a M × N matrix into L-dim vectors for lo-

cality characterization.

On the other hand, the unified sparsifying is illustrated in Figure

1(b). Distinct from generic sparsifying, 75% sparsity is achieved by

a column-wise sparsifying. The values of an entire column remain

unchanged while the rest are forced to be zero. Therefore, it is easy

to encode/decode the coordinate information. In this example, the

unified sparsifying evaluates the L2 norm of each column and picks

the column with the largest result.

A consequence of this selection process is the high probability

that some key elements that would be kept in the generic sparsify-

ing are removed in the unified sparsifying. Similar to the unified

sparsifying, coarse-grained sparsifying in large blocks [27] can even

remove an entire block out of amatrix at a time. Even though this ap-

proach allows more flexibility by adjusting the block size, it cannot

use the highly optimized dense libraries to get good performance

boost over the dense counterparts.

Therefore, we would like to see if there is an opportunity to

get the best from both worlds. That is, we try to find a sparsifying

method to achieve better performance than generic sparsifying

and meanwhile eliminate the accuracy drop brought by the unified

sparsifying. For this purpose, a highly flexible structural sparsifying

method is desirable to preserve a comparable model accuracy with

the generic sparsifying while the workload is balanced enough to

ensure high performance on modern GPUs.

2.3 The Characterization of Sparsity

To find such a sparsifying algorithm, we first characterize the spatial

locality of the non-zero values in the sparse neural networks. We

prune ResNet-18 [31] and NMT [50] with the generic sparsifying

method used in Deep Compression [30]. The two pruned networks

have more than 90% sparsity and comparable accuracy with that of

the dense references.

After a network is pruned, we split each row of its weight ma-

trices into multiple L-dim vectors. Note that the vectors do not

overlap with each other. Figure 3 shows an example of the split.

VectorV (y,x) contains the elements with row index y, and column

indices from x × L to (x + 1) × L − 1 in the M × N weight matrix

W . If N is not divisible by L, the residue vectors are padded with

zero. For each vector within the sparse weight matrix, we count the

total number of zeros in the vector (in the range [0,L]), and then

compute the local sparsity degree of each vector. The local sparsity

is defined as the number of zeros divided by L.
Figure 4 shows the cumulative distribution of local sparsity de-

gree with three vector sizes, 4, 8, and 16. As shown, only less than

30% of 4-dim vectors have ≤ 75% sparsity. As there are only 4 ele-

ments in a 4-dim vector, this result indicates that more than 70% of

the 4-dim vectors do not have any non-zero elements. Moreover,

only less than 2% of the 4-dim vectors have ≤ 25% sparsity. In other
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ber of the vectors with the sparsity not greater than x%. The

horizontal axis is the sparsity x%.

words, very few of the vectors have more than 2 non-zero elements.

Based on this observation, the spatial distribution of the non-zero

elements in the sparse neural networks are generally retained if we

only keep up to 2 non-zero elements in each vector. Instead of the

location-unaware element selection used in the generic sparsifying,

this approach generates a 50% sparse matrix with a balanced spatial

distribution of non-zero weights.

Similarly, the experimental results for 8-dim and 16-dim vectors

demonstrate that more than 95% of vectors have ≥ 75% sparsity.

The cumulative distribution shows that there are less low sparsity

vectors when the vector size is increasing. This is because the local

sparsity in a larger scope more likely resembles the global sparsity.

According to the observation, it inspires us to divide a weight

matrix into L-dim vectors so that each vector can be sparsified

independently to achieve both sparsity balance and comparable

model accuracy.

3 VECTORSPARSE PRUNING

The characterization of spatial locality opens a great opportunity

to avoid accuracy penalty by splitting weight matrices into vectors

and sparsifying each vector to the same sparsity. However, the

encoding formats for generic sparse matrices, e.g. CSR format [8],

do not contain the information associated with the vectors. In this

section, we first propose a balanced vector-wise encoding format

for sparse matrices that simplifies the workload partitioning on

GPUs. Then, we design a novel vector-wise sparsifying algorithm

to prune a trained dense network to a sparse network that can

maximize the vector-wise encoding efficiency.

3.1 Vector-wise Sparse Matrix Encoding

To improve the workload balance of the sparse neural networks

on GPUs, we propose a three-phase vector-wise encoding method

to sparsify a matrix. In the first phase, we divide a matrix into

L-dim vectors, as shown in Figure 3. An M × N matrix thus has
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Figure 5: An example of vector-wise sparse matrix encoding

with L=8 andK=2. Twonon-zero elements in a row vector are

compressed into one compact vector associated with their

indices. All row vectors are encoded to the same length. If

a row vector has less non-zero elements than the compact

vector length K , the empty entries are padded with zeros.

M × �N /L� vectors. In case N is not divisible by L, the residue

vectors are padded with zero. In the second phase, we count the

number of non-zero elements Nnz in each vector, and then denote

the maximum Nnz of all the vectors in this matrix as K (K ≤ L). In
the third phase, we compress each vector into a K-dim vector along

with their associated indices in the original vector. Note that a vector

might have less than K non-zero elements after compression. For

example, the second row vector in Figure 5 has only one non-zero

element NZ2. For such vectors, the empty entries are filled with

zeros to assure those vectors’ K-dim. The vector-wise encoding can

either be column-wise or row-wise. Without losing generality, we

use column vectors unless specifically illustrated.

Theoretically, �loд2L� bits are required to encode each index

in a L-dim vector. Consequently, the overall compression ratio of

this encoding is P×L
(P+ �loд2L�)×K

, where P stands for the number

of bits used to store the value of an element. Figure 5 shows an

example of the encoding for a 4×8 matrix, where L=8, K=2. In
this 4×8 FP16 matrix, we observe that each element of the offset

index array can be represented in only 3-bit, as the index is in the

range [0, 7]. Therefore, the compression ratio is 3.37x. As K is the

maximum number of non-zero elements in a vector, this encoding

could achieve an ideal compression ratio when all vectors have

the same number of non-zero elements. However, if the number of

non-zero elements vary too much, the compression ratio could be

far from the ideal case.

Fortunately, neural network pruning allows us to tailor the topol-

ogy of weights to achieve the spatial distribution for the ideal case of

the vector-wise encoding. Instead of pursuing high overall sparsity,

the pruning method for the vector-wise encoding tries to minimize

the maximum number of non-zero elements in a vector.

3.2 VectorSparse: a Methodology of Iterative
Vector-wise Sparsifying and Retraining

To achieve a spatially even distribution of non-zero elements in a

neural network weight matrix, we propose VectorSparse: a pruning

methodology with iterative vector-wise sparsifying and retraining

for CNNs and RNNs. The vector-wise sparsifying can be considered

as local sparsifying, which takes advantage of the aforementioned

vector-wise sparse encoding. For convolutional layers in CNNs, we

refer to the N × (CHW ) matrix generated by the im2col transfor-

mation [10] as the weight matrix, where N is the number of filters,
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Algorithm 1: VectorSparse algorithm: pruning with vector-

wise sparsifying.

input :Weight matrix of a trained NN layer,W0;

The vector size, L;
Maximum accuracy drop, Eδ .

output :Pruned vector-wise sparse weight matrix,Ws

1 W =W0;

2 DivideW into vectori, j ;

3 Nzero=0;

4 E0 = ValidationError(W );

5 E = E0;

6 while E−E0
E0
< Eδ do

7 Nzero=Nzero + 1;

8 for each i, j do

9 Sort absolute values of all elements in vector[i][j] in

ascending order and save sorted elements in

sorted[L];
10 Ti j=sorted[Nzero ];

11 for each element in vector[i][j] do

12 Remove element if abs(element ) < Ti j ;

13 end

14 end

15 Fine tune the prunedW ;

16 E = ValidationError(W );

17 end

18 Ws=W ;

C is the number of channels of each filter, and H andW are the

height and width of a filter, respectively.

The vector-wise sparsifying sorts the elements in each vector

by their absolute values. The largest K elements in absolute value

are kept unchanged while all other elements are pruned. After

this phase, all vectors have at most K non-zero elements so that

they can be encoded to K-dim vectors by our vector-wise sparsity

encoding. Although setting a small K can easily increase the overall

compression ratio, directly pruning a dense weight matrix to a small

K vector-wise encoding could lead to significant accuracy drop of

the neural networks.

To address the accuracy drop issue, we propose a progressive

pruning method by gradually decreasing K in the vector-wise spar-

sifying. Algorithm 1 shows the flow of our VectorSparse pruning.

Starting from a trained, dense neural network, our algorithm prunes

the network layer by layer. Given a dense weight matrixW0, a user-

specified vector size L as the input parameter, and the maximum

accuracy drop Eδ as the acceptable error rate, the sparsity of the

weight matrix gradually steps up (Line#7 ) until the validation error

of the pruned neural network exceeds the error rate (Line#6). Start-

ing from a dense weight matrix, VectorSparse prunes the elements

that do not fall into the Top-N absolute values within each vector.

Then the weights are tuned based on the pruned topology with the

same training dataset. After the fine tuning, the algorithm evaluates

the validation error with that of the dense network, E0. The relative
difference of the validation error between the pruned network and

the dense network is used to determine if the pruning process can

(a) (b)
Figure 6: The spatial distribution of non-zeroweights in neu-

ral networks pruned by (a) the generic method with 96%

sparsity and (b) the vector-wise approach with 75% sparsity,

respectively. Each yellow pixel represents a non-zero ele-

ment. It is clear that vector-wise pruning achieves better reg-

ularity.

continue. VectorSparse provides the flexibility to specify the accept-

able error rate, which usually varies in different applications. If an

application is more sensitive to latency rather than accuracy, the

maximum accuracy drop Eδ can be set higher to gain more sparsity.

Otherwise, the maximum accuracy drop should be set small enough

to ensure the accuracy.

Because of the additional spatial constraint, VectorSparse usually

chooses a different set of weights from the generic pruning [30]

before each fine tuning step. The prior studies have figured out that

the difference in the pruning pattern has negligible impact on the

speed of convergence when comparing to the generic pruning [22,

48, 80, 84]. On the other hand, the number of pruned synapses

between two retraining phases does affect the accuracy of a pruned

neural network. This factor is controlled by the vector size L and

the sparsity Nzero in the algorithm. Figure 6 shows the spatial

distribution of non-zero elements of pruned ResNet-50 weights by

our vector-wise pruning, which leads to better workload balance

than the generic pruning.

3.3 GPU Kernel Design

Being aware of the spatial distribution of the non-zero elements, our

vector-wise encoding method allows the sparse matrix multiplica-

tion to be efficiently mapped on GPUs with good workload balance.

Correspondingly, we make minor modification to the GPU kernel

for vector-wise sparse matrix multiplication. The vector-wise en-

coded sparse matrix multiplication kernel defines a user-interface

function similar to the standard GEMM API with two extra param-

eters, vector size L and the maximum number of non-zero element

in a vector K .
Let’s assume a general matrix multiplication,C=A×B, where the

sizes of matrices A, B, and C are 4×8, 8×6, and 4×6, respectively.

In the traditional dense matrix multiplication kernel, the product

of every row of A and every column of B needs to be computed,

Encoded A and offset
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Figure 7: An example of vector-wise sparse matrix multipli-

cation.
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Figure 8: The architecture of a streaming multiprocessor

(SM) of the Volta GPUs. Branch unit, L0 instruction cache,

and constant cache are omitted for brevity.

regardless of sparsity. In particular, the first row of matrix C needs

48(=8×6) multiplications. On the other hand, as shown in Figure 7,

after it is pruned by the VectorSparse algorithm, the 4×8 weight ma-

trix A becomes a 4×2 vector-wise sparse matrix with an associated

offset matrix of the same size. As a consequence, the vector-wise

sparse matrix multiplication kernel only needs a subset of the ele-

ments of matrix B to compute the product matrix C. For example,

since the first row of sparse matrix A has non-zero elements at

column 1 and 6, the calculation of first row �c0 in C is equivalent to

NZ0 · �b1 + NZ1 · �b6, where �b1 and �b6 stand for the corresponding

rows in B. As a result, only 12(=2×6) multiplications are executed,

resulting in a 75% multiplication reduction.

In high-performance GPU matrix multiplication kernels, tiling

is widely used for large size matrix multiplications. A warp is re-

sponsible for the computation of a tile of the product matrix C. The

proposed vector-wise sparse matrix multiplication is orthogonal to

the tiling techniques so that tiling can be applied to it as well. To

make sure the tiled multiplication performs well, the indexing of

data-dependent row in matrix B should be designed carefully. We

will cover this topic in the next section.

4 SPARSE TENSOR CORE

So far, all benefits given by the VectorSparse pruning algorithm

are in theory. As we know, generic sparse matrix suffers from the

poor workload balance and cumbersome coordinate decoding for

its overall performance. In fact, VectorSparse could present the

same issue if the hardware design is unaware of the new algorithm.

In this section, we go through the design details which make the

hardware adaptive to the algorithm. In particular, we modify the

Tensor Core in order to have full support for VectorSparse, which

we refer to sparse Tensor Core.

4.1 Baseline Tensor Core Architecture

The Tensor Core is a fast hardware functional block for dense

matrix multiplication. It was first introduced in NVIDIA’s Volta

Figure 9: The mapping of a 16×16×16 matrix multiplication

into four worktuples in a warp [58]. The computation task

for the product matrix D is evenly partitioned into four

worktuples.

architecture [53]. Each Tensor Core is able to execute a 4×4×4

matrix multiplication and addition in one cycle. The Tensor Core in

Volta GPUs provides two execution modes, FP16 mode and mixed

precision mode. In the FP16 mode, all matrices are in FP16. In the

mixed precision mode, the Tensor Core uses FP32 accumulators

and writes back the results to an FP32 matrix.

Figure 8 shows the architecture of one of the streaming multi-

processors (SMs) in Volta GPU. As illustrated, an SM consists of

four subcores. In each subcore, there is a warp scheduler, a math

dispatch unit, streaming processor arrays for multiple data types

(a.k.a. CUDA Cores), special function units (SFUs), two Tensor

Cores, LD/ST unit, and register files. The L1 data cache and shared

memory are shared among the four subcores within the SM.

During program execution, two Tensor Cores are used concur-

rently by a warp [58]. In the CUDA programming model [53], Ten-

sor Cores are exposed to programmers in the CUDAWMMA (Warp

Matrix Multiply and Accumulate) API. The WMMA API includes

dedicated matrix load and store primitives, and matrix multiply

and accumulate operations for Tensor Cores. The WMMA matrix

load and store operations are designed for moving data between

register files and the memory hierarchy.

Given A, B, C, and D are 16×16 matrices, a warp computes a

matrix multiply and accumulate, D=A×B+C. Even though NVIDIA

has not disclosed the design details of Tensor Core, some work

has revealed how the 32 threads within a warp collaborate to con-

duct the 16×16×16 matrix multiply and accumulate operation ef-

ficiently [58]. To execute a WMMA, the 32 threads in a warp are

divided into 8 threadgroups. The threadgroup Id of a given thread is

� threadId4 �. All threads in a threadgroup work together to compute

4×4 tile multiplications. Furthermore, for better data reuse, two

threadgroups work together as a worktuple. Worktuple i consists of
threadgroup i and threadgroup i + 4.

Figure 9 shows the elements processed by each worktuple in

one WMMA operation. Each worktuple is responsible for com-

puting one 8×8 tile of D. For example, Worktuple 0 computes

D[0 : 7, 0 : 7]. To achieve this,Worktuple 0multipliesA[0 : 7, 0 : 15]

andB[0 : 15, 0 : 7], adds the product 8×8 tile withC[0 : 7, 0 : 7], and

saves the result to D[0 : 7, 0 : 7].

During the compilation time, a WMMA operation breaks down

into four sets of machine-level HMMA instructions [58]. In the

mixed precision mode, each set of HMMA instructions computes

the product of a 4×4 tile of A and a 4×8 tile of B. Figure 10 left shows
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SHMMA.FETCHIDX RO;
SHMMA.EXEC.F32.F32 RD, RA, RB, RC;

Figure 10: Elements processed by the threadgroups inWork-

tuple 0 in the dense mode (left) [58] and the sparse mode

(right) of a dense/sparse WMMA PTX instruction, respec-

tively.

the tiles processed by each set of HMMA instructions in Worktu-

ple 0. The four sets of HMMA instructions of Threadgroup 0 and 4

compute the product submatrices D[0 : 3, 0 : 7] and D[4 : 7, 0 : 7],

respectively. At the execution of one set of the HMMA instruc-

tions, the two threadgroups in Worktuple 0 share a 4×8 tile of B in

each set. On the other hand, the 4×4 tiles of A are private to the

threadgroups, respectively.

Figure 11 illustrates how a WMMA operation is mapped to the

Tensor Core architecture [58]. There are two octets in a Tensor

Core. Inside an octet, there are eight dot product (DP) units, each

of which can compute a 4-dim vector dot product per cycle. During

the execution, a worktuple is mapped to one octet and thus each

threadgroup takes four DP units, respectively. The octet has operand

buffers to feed the worktuple via the tiled data when executing one

set of HMMA instructions. Each threadgroup has dedicated operand

buffers for Operand A and Operand C. Each operand buffer can

hold a 4×4 tile. On the other hand, the operand buffer dedicated to

Operand B can hold a 4×8 tile and the data inside are shared by the

two threadgroups in the same worktuple.

One threadgroup computes the multiplication of a 4×4 tile by

a 4×8 tile in a set of HMMA instructions, which is 4×8=32 4-dim

dot products. Because four DP units compute four 4-dim vector

dot products per cycle, those set of HMMA instructions require at

least 8 clock cycles to finish the computing of the 4×8×4 matrix

multiplication.

4.2 The Extension of HMMA Instruction Set

With two threadgroups, a worktuple computes an 8×8×4 matrix

multiplication in a set of HMMA instructions. Such a set of the

HMMA instructions for the mixed precision mode are listed below.

Note that the four HMMA instructions must be used together and

in this particular order [53, 58].

• HMMA.884.F32.F32.STEP0 RD, RA, RB, RC;
• HMMA.884.F32.F32.STEP1 RD, RA, RB, RC;
• HMMA.884.F32.F32.STEP2 RD, RA, RB, RC;
• HMMA.884.F32.F32.STEP3 RD, RA, RB, RC;
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Figure 11: Tensor Core architecture [58].

A register name in the HMMA instructions stands for a register pair.

Each register pair contains four FP16 operands. For example, if reg-

ister RA is mapped to R28, it means the register pair, R27 and R28, is
holding the 4×4 tile of data forA. The shared 4×8 tile of B is loaded

from the RB. The result D is written back to RD. The instructions
for FP16 mode look similar, but have FP16 accumulators instead of

FP32 accumulators. Without loss of generality, we only consider

the mixed precision mode in this work, as prior profiling results

have shown that it has lower latency than the FP16 mode [58].

To run the vector-wise sparsematrixmultiplication on the Tensor

Core, we create a vector-wise sparse mode and refer to the original

execution mode as dense mode. Figure 12 shows the sparse HMMA

(SHMMA) flow on the Tensor Core to execute the vector-wise

sparse matrix multiply and accumulate operation. The matrix A is

encoded into a 16×4 matrix with the setting L=16 and K=4 so that

we map four rows of the encodedA to each worktuple. Worktuple i
computes Row 4i to Row 4i+3. Therefore, in the vector-wise sparse

mode, Tensor Core still computes a 16×16 matrix multiply and

accumulate operation at warp level. Similar to Figure 5, the 16×16

sparse matrix A is encoded to a 16×4 data matrix and an associated

16×4 offset matrix. Since all the offsets in this encoding are in the

range [0, 15], each offset only requires 4 bits in memory. Therefore,

each row of the encodedA only requires 16 bits to store the 4 offsets,

which means they can be stored in one register.

Different from the dense mode, the two threadgroups compute

the same row of A in the vector-wise sparse mode, as shown in

Figure 10 right. As illustrated in Figure 7, Row i of D is computed

by multiplying the four non-zero elements in Row i of A with the

corresponding four rows of B, respectively, and then accumulating

the results with Row i of C. The four rows of B to be multiplied are

determined by the four offset indices saved in the offset register.

To implement the vector-wise sparse mode, we extend the Tensor

Core instruction set by adding two SHMMA instructions and one

offset register :

• SHMMA.FETCHIDX RO;
• SHMMA.EXEC.F32.F32 RD, RA, RB, RC;

The instruction SHMMA.FETCHIDX fetches the offset indices of the
four elements in a row of A from RO to an implicit, dedicated offset
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Figure 12: Sparse WMMA (SWMMA) execution flow on the

Tensor Core architecture. Operand A is vector-wise encoded

to a 16×4matrix and a 16-dim offset array. Each entry of the

offset array contains the 4 offset indices of the elements in

the associated row.

register. The instruction SHMMA.EXEC first decodes the offset register
to determine which rows of B to be fetched from RB. After the data
is loaded to operand buffer B, instruction SHMMA.EXEC.F32.F32
computes the 16 4-dim dot products and accumulates the results

with C. Instead of four HMMA instructions in one set in the dense

mode, two SHMMA instructions form one set in the sparse mode,

where the two instructions must work together and in order.

In the vector-wise sparse mode, each threadgroup computes 8

columns of B by a set of SHMMA instructions. Therefore, four sets

of SHMMA instructions are sufficient to complete the vector-wise

sparse WMMA operation (SWMMA), denoted as one swmma.mma
PTX instruction for sparse WMMA API. The SWMMA instructions

are shown below, where K stands for the number of non-zero el-

ements in each row of the sparse matrix A. Note that we do not

show the load instructions for dense matrix B and C as well as the

store instruction for D since they are the same as the APIs of the

dense WMMA.

• Load A: swmma.load.a.K ra, [pa];
• Load Offset: swmma.load.offset.K ro, [po];
• Math: swmma.mma.f32.f32.K rd, ra, rb, rc, ro;

4.3 Micro-architecture Design for Sparse
Tensor Core

The SHMMA instructions require somemodifications to the original

Tensor Core. We highlight the changes in Figure 11. 1 We first add

the dedicated offset registers in the register file. The offset registers

can only be implicitly accessed by the SHMMA instructions.

In the baseline Tensor Core architecture, the operand buffer

B only needs to hold 4×8 FP16 numbers as an octet loads a 4×8

tile in each set of the HMMA instructions [58]. To improve the

utilization of the DP units, 2 we not only double the buffer size to

accommodate the four rows of buffer B, but also add another buffer
to hide the load latency. In addition, 3 we enable the broadcasting

of operand buffer A to the four DP units it connects to so that all

DP units in an octet can read the same row of A. By doing this, a

threadgroup can compute the dot products of a row of A and four

columns of B per clock cycle.

We use Figure 13, i.e. the execution timeline of each mode, to

illustrate the performance benefit of SHMMA. In the dense mode

(Figure 13(a)), the operand buffers A and B are filled in 2 cycles,
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Figure 13: The execution timeline of (a) the dense mode, (b)

the vector-wise sparse mode without ping-pong buffer, and

(c) the vector-wise sparsemodewith ping-pong buffer on the

Tensor Core.

followed by the execution of HMMA instructions that takes 8(=4×2)

cycles to complete a 4×8×4 GEMM. As a result, the warp has to

take 40 cycles to complete the 16×16×16 GEMM computation in

the dense mode.

In the vector-wise sparse mode (Figure 13(b)), the instruction

SHMMA.FETCHIDX takes 1 cycle to load the offsets to the offset reg-

ister. It then takes another cycle for the register file to decode the

offset register and set up the control signals for the operand buffer

B’s datapath. As the size of operand buffer B is doubled from 4×8

to 4×16 FP16 operands, it takes 4 cycles to load data to operand

buffer B3. Thanks to the vector-wise sparsity, the computation time

is reduced to only 2 cycles. As a result, the vector-wise sparse mode

only takes 26 cycles for the computation, a 1.54× speedup.

One observation from Figure 13(a)(b) is that dense mode is

compute-bound while vector-wise sparse mode is memory-bound

(i.e., feeding data to operand buffer B). This is because the vector-
wise sparse matrix multiplication has a much lower operational

intensity (i.e., FLOPs/Byte) [77] than the dense matrix multiplica-

tion. It also explains why a even higher sparsity does not help to

reduce the latency of the inference. To further improve the perfor-

mance, we add another buffer to hide the register fetch latency. In

total, the design requires a 4× larger buffer of B. With the ping-

pong buffer design, one buffer can be read by DPs while the other

is loading data from the register file. In this way, the total latency

of the vector-wise sparse WMMA is further reduced from 26 cycles

to 20 cycles (Figure 13(c)), an additional 1.3× speedup. In fact, the

dense mode can also benefit from this larger buffer. However, since

it is compute-bound, dense mode sees moderate latency reduction,

from 40 cycles to 34 cycles. Considering the area overhead, it is not

worthy adding a ping-pong buffer for dense mode.

5 EXPERIMENTAL METHODOLOGY

The algorithm and hardware co-design aims to accelerate the infer-

ence phase of neural networks with minimal impact on the quality

of the models. To evaluate both the model accuracy and the speedup

over generic sparse neural networks and dense neural networks, we

3We assume the same buffer load bandwidth, which takes 2 cycles to fetch 4×8 FP16
numbers to the buffer.
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picked five popular neural networks in three domains: image classi-

fication, image captioning, and machine translation. We trained the

neural networks with the generic sparsifying method [30] and the

proposed VectorSparse method, respectively. The training was done

on a single DGX-1 station with four NVIDIA Tesla V100 GPUs.

To evaluate the performance of the vector-wise sparse mode

of the Tensor Core, we extended the WMMA PTX code model in

the GPGPU-Sim simulator [5, 37, 42, 58]. We added the SHMMA

instructions to the simulator with the timing parameters given in

Figure 13. We configured the simulator to model a Tesla V100 GPU

with Tensor Core [53]. The simulated V100 GPU has 80 SMs with

640 Tensor Cores and 5120 CUDA Cores inside. Equipped with

16GB HBM2 [41], V100 has 900 GB/s device memory bandwidth.

For the image classification applications, we pruned and re-

trained CNNs with the ImageNet [16] dataset, which comprises 1.2

million training examples and 50 thousand validation examples. To

verify that our vector-wise sparsifying methods can work for com-

mercial applications, we selected four popular CNNs, AlexNet [39],

VGG-16 [67], ResNet-50 [31], and ResNeXt-50 [79] on the ImageNet

ILSVRC-2012 dataset. AlexNet and VGG-16 are two popular net-

works that achieved high accuracy on the ILSVRC-2012 dataset.

ResNet-50 has residual layers which make the training process eas-

ier for very deep neural networks. Furthermore, we also evaluated

the ResNeXt-50 [79] with 32x4d configuration to show the accuracy

impact on modern networks. We used the networks in TensorFlow

model repository [26] as the reference.

In addition to CNNs, we also examined Long Short-Term Mem-

ory (LSTM) [33] as a representative of RNNs. We used the Show and

Tell model [74] for the image captioning experiment. The image

captioning model consists of an Inception V3 model [72] with an

LSTM layer attached to the last layer of the CNN. The LSTM layer

has 512 cells by default. Since our interest is only in the LSTM layer,

we used a pre-trained Inception V3 model and randomly initial-

ized the parameters of the LSTM layer similar to what was done

in the original Show and Tell work [74]. The training dataset is

MSCOCO [46] and the mini-batch size is set to 64. We trained the

model for 500K steps (about 55 epochs under default configura-

tion) in each retraining phase. To quantify the quality of generated

captions, we calculated the BLEU [55] score for each training con-

figuration on the MSCOCO test dataset. The code we used is taken

from the TensorFlow model zoo [25].

For the machine translation application, we trained an encoder-

decoder architecture with an attention mechanism to perform Neu-

ral Machine Translation (NMT) [7, 50]. We use an architecture with

a 2-layer LSTM encoder, a 4-layer LSTM decoder, and an attention

module. The first layer of the LSTM encoder is bidirectional while

the rest of LSTM layers are unidirectional. Both the unidirectional

and bidirectional layers have 512 LSTM cells. In the experiments,

we also used the BLEU score [55] as the metric for the neural ma-

chine translation model. The WMT 16 English-German dataset [1]

is used for training. We followed the instructions to reproduce the

NMT training with an open source framework [24], except that

only 16 epochs are used in the retraining phases. This simplification

stems from our observation that the validation BLEU score becomes

stable after 12 epochs.

In our experiments, the workloads were first trained with their

default training methods to achieve the reference model accuracy.

Then we applied our VectorSparse pruning method to the refer-

ence dense models. We use FP32 for the weights, activations, and

gradients in the training process and CUDA Core based inference

kernels. For Tensor Core based kernels, we dynamically downsized

the FP32 weights and input activations to FP16 in each layer to

avoid accuracy loss. Since we use the mixed precision mode, the

output activations are still in FP32.

On the software side, we implemented vector-wise sparse ma-

trix multiplication kernels based on CUTLASS [52], rather than

CUBLAS due to the unavailability of its source code. CUTLASS is

an open-source high-performance GEMM template library. It can

achieve near-CUBLAS performance for most GEMM problems [52].

This library provides C++ GEMM interfaces and allows the data

streams to be customized for GEMM-like computation. The CUDA

Core based vector-wise sparse matrix multiplication kernels are

built on the SGEMM kernels. The sparse Tensor Core based kernels

are similar to the WMMA-GEMM kernels, but we call our sparse

WMMA API instead of the dense WMMA API. The convolution

operations in the CNN workloads are converted to GEMM by the

im2col [10] method.

Besides the dense baseline, we also trained the workloads with

the unified pruning method [76] and compared it against our Vec-

torSparse method. For the sake of a fair comparison, we iteratively

reduced the number of columns or channels of the weights and

retrained the networks with the same setting as our VectorSparse

method used. Then we evaluated the test accuracy of the trained

neural network models.

6 EXPERIMENTAL RESULTS
To validate the proposed vector-wise pruning method, we first

present the accuracy of the models pruned by our VectorSparse

method with various configurations. And then we show the perfor-

mance gain of the pruned vector-wise sparse networks with sparse

Tensor Core design. Finally, we do the design overhead analysis on

the sparse Tensor Core.

6.1 Impact on Accuracy

To demonstrate the generality of our work, we applied our Vec-

torSparse pruning to various workloads. Figure 14 and 15 show

the validation accuracy of the CNN and RNN models pruned by

VectorSparse with L=16, the generic pruning method, and the uni-

fied pruning method, respectively. We also add the result of L=8 to
show how badly the model accuracy drops for each workload when

sparsity increases. In fact, we also run experiments with L >16 and
found a marginal impact on the accuracy, regardless of the spar-

sity. Since the accuracy is insensitive to the vector size once L is

greater than 16, we choose L=16 as the optimal size, which requires

only 4 bits for storing the offset indices and enables finer-grained

tiling strategies. During the pruning and retraining process of the

VectorSparse pruning and the unified pruning, we recorded the

validation accuracy of each step. The accuracy is represented in the

relative deviation from the reference dense models.

As illustrated in Figure 14, all CNN models pruned with Vec-

torSparse with L=16 can retain their accuracy until the sparsity

reaches 80%. Similarly, the accuracy of the RNNs is comparable

to the reference model when the sparsity does not exceed 75%, as
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Figure 14: Accuracy vs. sparsity in the weight matrices of

CNN workloads. Each workload runs with generic and uni-

fied pruning as described in Section 2.2. VectorSparse prun-

ing is run with L=8 and 16, respectively. All accuracy results

are normalized to the dense baseline.

shown in Figure 15. Although the generic pruning method outper-

forms the VectorSparse with L=16 when the sparsity is higher than

80%, the generic sparse matrix is not necessarily able to be encoded

into a vector-wise sparse format, if top-K elements concentrate on

a few rows.

On the other hand, if vector size is set to L=8, the model accuracy

drops more quickly than that of L=16. At the point of 75% sparsity,

the L=8 scheme suffers more than 2% accuracy loss, which is usually

unacceptable in many applications. This is because L=8 puts too
much spatial constraint on the element removal. Figure 15 shows

that RNNs are more resilient to the L=8 pruning than the CNNs.

However, their accuracy of L=8 pruning is still incomparable to

that of L=16.
Based on the results, it is clear that there is a trade-off between

sparsity and accuracy. Given a vector size L, higher sparsity can

achieve better performance by sacrificing the accuracy. In this

work, the accuracy is the first-order metric so we opt out the L=8
scheme. However, we do believe that L=8 can be useful in some

application domains. Even though it is out of the scope of this paper,

we recommend that the trade-off should be done case by case.

Another observation is that unified pruning incurs the most

significant accuracy drop for both CNNs and RNNs. By cutting the

number of weight columns by half, the CNN and RNN models see

more than 2% accuracy loss at the point of 50% sparsity. Due to

the spatial constraint, the unified pruning has too few options for

removing weights in each step of the retraining process. The lack of

flexibility in turn limits the representative power of the network. In

contrast, the vector-wise pruning has more freedom on removing

weights so that it can even result in a similar topology to the generic

pruning when L is not extremely small.
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Figure 15: BLEU score vs. sparsity in the weight matrices of

RNN workloads.

In summary, with L=16 vector-wise pruning, 75% sparsity is

good enough to assure the accuracy. In other words, we can keep

only 4 non-zero elements in each 16-dim vector. Since the warp

size 32 is a multiple of 164, letting L=16 is also favorable for CUDA

Cores. Therefore, we choose L=16 and 75% sparsity as the optimal

configuration in the performance evaluation.

6.2 Performance Evaluation

We run the workloads under six different configurations to evaluate

the performance of VectorSparse pruning method and the hardware

design in Tensor Core. The baseline is CUDA Core Dense, where the

dense NN workloads are running on the FP32 CUDA Cores. We also

evaluate CUDA Core Generic and CUDA Core Unified, where NN

workloads are pruned by generic and unified sparsifying method,

respectively. The CUDA Core Generic has 96% sparsity and CUDA

Core Unified has 50% sparsity. Then, we examine Tensor Core Dense,

where the dense NNs are running on the Tensor Core. In this case,

the weights and input activations are dynamically converted to

FP16 in each layer while the accumulators are still in FP32. The

conversion causes negligible accuracy impact.

Furthermore,CUDACore Vector-wise Sparse is evaluated to justify

the VectorSparse pruning method. Finally, we evaluate Tensor Core

Vector-wise Sparse as our proposal, where vector-wise sparse NNs

are running on sparse Tensor Core. Since Tensor Core does not

support generic or unified sparse GEMMs, we opt out the options of

running generic or unified sparse NNs on Tensor Core. Both CUDA

Core Vector-wise Sparse and Tensor Core Vector-wise Sparse have

75% sparsity. Note that even with the relatively high sparsity, the

accuracy, or BLEU score, of Vector-wise Sparse is still higher than

CUDA Core Unified.

Figure 16 shows the inference performance after the CNNs and

RNNs have been trained and pruned (if necessary). All results are

normalized to CUDA Core Dense. Unsurprisingly, Tensor Core

4AMD uses a different terminology called wavefront. One wavefront consists of 64
threads, which is still a multiple of 16.
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Figure 16: Normalized speedup over CUDACore based dense

NNs on V100 GPU. The vector-wise sparse NNs have 75%

sparsity. The generic pruned sparse NNs have 96% spar-

sity. The unified pruned sparse NNs have 50% sparsity. All

the vector-wise sparse NNs have better accuracy than the

generic pruned NNs and the unified pruned NNs as shown

in Figures 14 and 15.

Dense is faster than CUDA Core Dense since Tensor Core has

higher TFLOPs than CUDA Core [53]. On the other hand, CUDA

Core Generic is 18% slower than CUDA Core Dense, even if the

former has 96% sparsity (i.e., only 4% computation is needed). The

slowdown testifies the inefficiency of GPU to support generic sparse

NNs, which is the motivation for this work. Alternatively, CUDA

Core Unified on average has 1.50× speedup over CUDA Core Dense.

The gain mainly comes from the half size of the dense WMMA

operations.

On average, Tensor Core Vector-wise Sparse can achieve 2.57×

speedup over the baseline. The root cause of the performance gain

is two fold. First, with a relaxed spatial constraint, our vector-wise

sparse NNs benefit from the high sparsity so that CUDA Core

Vector-wise Sparse has 63% performance gain than the baseline.

Secondly, with the customized SHMMA instructions and micro-

architecture design, these sparse vector-wise NNs can take advan-

tage of the powerful Tensor Core, which contributes an additional

58% performance improvement versus the CUDA Core Vector-wise

Sparse. Also note that Tensor Core Vector-wise sparse has 1.49×

speedup over Tensor Core Dense.

6.3 Design Overhead Analysis

In the vector-wise sparse mode of the Tensor Core, the hardware

design requires a 4× large buffer for Operand B to hold 4×16 FP16

numbers and enable the ping-pong buffer. To support the row in-

dexing for Operand B, an offset register is added for each octet.

The original size of Operand B buffer in each octet is 512b

(=4×8×16b), and each Tensor Core has two octets, which makes the

buffer size 1Kb. Our vector-wise sparse mode requires a 4× large B
buffer so that a 4Kb buffer is added to each Tensor Core. As each

SM has 8 Tensor Cores, it needs a 4KB buffer. We use CACTI7 [6]

to evaluate the timing and area overhead shown in Table 1. A 4KB

SRAM takes 0.019mm2 at 22nm process node. The 0.4ns cycle time

is smaller than V100’s nominal cycle period (0.65ns at 1530MHz),

which does not incur any timing overhead.

Table 1: Design Overhead Analysis via CACTI7 [6]

Process SRAM Size Area Cycle Time

22nm 4KB 0.019mm2 (0.069×0.275) 0.4ns

As V100 is fabricated in 12nm, we further scale the area down

to 0.007mm2. In addition, a Tensor Core needs two extra registers

serving as the offset register for the two octets, so an SM needs 16

extra offset registers to fetch the operands to buffer B. Given V100’s

area is 815mm2, the overall area overhead is negligible.

6.4 Summary and Discussion

The experimental results show that our VectorSparse pruningmethod

could be used in the same way as the generic pruning. Although

the sparsity is lower than the generic sparse NNs, the vector-wise

sparse NNs enable modern GPUs to efficiently exploit the benefit

from the weight pruning. Compared to the CSR format, our vector-

wise encoding eliminates the row indices and allows each row to

be split evenly in order to guarantee thread-level parallelism.

The evaluation of the vector-wise pruned networks also shows

that the vector-wise sparse NNs with L=16 and 75% sparsity have

negligible accuracy drop and promising speedup over their dense

counterparts. To further boost the performance of these NNs, we

added hardware support to the Tensor Core to enable the vector-

wise sparse matrix multiplication. Though we suggest L=16 and
K=4 as the current solution, the vector-wise sparse Tensor Core
can be easily extended into many variants. As the quick evolution

of the neural networks, it is possible that the sparse Tensor Core

will become compute-bound again. We would like to leave this as

our future work.

7 CONCLUSION

In this work, we observe that the generic sparse neural networks

can hardly beat the dense neural networks on modern GPUs be-

cause of the highly optimized software and hardware support for

dense GEMM. To efficiently exploit the intrinsic redundancy of the

neural networks, we propose VectorSparse, a vector-wise pruning

method that guarantees the pruned networks to have a balanced

workload. The encoding for the vector-wise sparse matrices re-

quires only 1-dim, fixed-length offset indices, instead of the 2-dim,

variable-length indices for the generic sparse matrices. With the

VectorSparse pruning method, we can prune a neural network to

have 75% sparsity with negligible impact on the model accuracy.

The good workload balance in the vector-wise sparse matrix multi-

plication makes it 63% faster than the dense counterparts on the

GPU CUDA Cores. To further improve the performance of the

vector-wise sparse matrix multiplication, we enabled it to run on

the Tensor Core by adding a sparse mode with extended instruc-

tion set and hardware support. With negligible area overhead, our

sparse Tensor Core can achieve 1.49× speedup over the dense mode

of the Tensor Core with comparable model accuracy.
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