
30

High-Performance Operating System
Controlled Online Memory Compression

LEI YANG and ROBERT P. DICK

Northwestern University

HARIS LEKATSAS and SRIMAT CHAKRADHAR

NEC Laboratories America

Online memory compression is a technology that increases the amount of memory available to appli-
cations by dynamically compressing and decompressing their working datasets on demand. It has
proven extremely useful in embedded systems with tight physical RAM constraints. The technology
can be used to increase functionality, reduce size, and reduce cost, without modifying applications
or hardware. This article presents a new software-based online memory compression algorithm
for embedded systems. In comparison with the best algorithms used in online memory compres-
sion, our new algorithm has a competitive compression ratio but is twice as fast. In addition, we
describe several practical problems encountered in developing an online memory compression in-
frastructure and present solutions. We present a method of adaptively managing the uncompressed
and compressed memory regions during application execution. This memory management scheme
adapts to the predicted memory requirements of applications. It permits efficient compression for
a wide range of applications. We have evaluated our techniques on a portable embedded device
and have found that the memory available to applications can be increased by 2.5× with negligible
performance and power consumption penalties, and with no changes to hardware or applications.
Our techniques allow existing applications to execute with less physical memory. They also allow
applications with larger working datasets to execute on unchanged embedded system hardware,
thereby increasing functionality.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Virtual

memory; C.3 [Computer Systems Organization]: Special-Purpose and Application-Based Sys-
tems—Real-time and embedded systems

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Embedded system, memory, compression

L. Yang is currently affiliated with Google Inc. amd R. P. Dick is currently affiliated with the
University of Michigan.
This work was supported in part by NEC Labs America and in part by the National Science Foun-
dation under awards CNS-0721978 and CNS-0347941.
Authors’ addresses: L. Yang; email: leiyang@google.com; R. P. Dick; email: dickrp@eecs.umich.edu;
H. Lekatsas and S. Chakradhar, NEC Laboratories America, Princeton, NJ 08540; email: {lekatsas,
chak}@nec-labs.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1539-9087/2010/03-ART30 $10.00
DOI 10.1145/1721695.1721696 http://doi.acm.org/10.1145/1721695.1721696

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:2 • L. Yang et al.

ACM Reference Format:

Yang, L., Dick, R. P., Lekatsas, H., and Chakradhar, S. 2010. High-Performance operating system
controlled online memory compression. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 30 (March
2010), 28 pages. DOI = 10.1145/1721695.1721696 http://doi.acm.org/10.1145/1721695.1721696

1. INTRODUCTION

The design of modern embedded systems is a challenging task due to several
conflicting goals: size, cost, and power consumption must be minimized while
performance and functionality must be maximized. Functionality depends on
the flexibility and features of applications; increasing flexibility and features
often results in increased memory requirements. Software running on some
embedded devices, such as cellular phones and Personal Digital Assistants
(PDAs), is becoming increasingly complicated, requiring faster processors and
more memory to execute. Meanwhile, at any particular time, RAM price in-
creases superlinearly with size. For manufacturers of cellular phones and other
cost-constrained embedded systems, a $5 difference in RAM or ROM can have
a large impact on volume profits. Moreover, adding physical RAM to embed-
ded systems generally increases their cost, size, and power consumption. The
current trend is to pack more functionality in less space, while meeting per-
formance and power consumption constraints. In this article, we describe how
more functionality can be achieved using the same hardware by making better
use of physical memory via memory compression.

1.1 Memory Compression Motivation and Introduction

The desire to minimize embedded system memory requirements has led to the
design of various memory compression techniques. These techniques may help
embedded systems maintain the same software functionality while reducing
cost, or increase software functionality while keeping cost constant. Memory
compression is a complex problem that differs from file compression. Memory
compression techniques can be divided into two main categories: hardware-
based and software-based.

Numerous hardware-based memory compression techniques have been pro-
posed for reducing the amount of ROM or RAM used in embedded systems. Some
of these techniques compress application programs that are stored in ROM. In
such an architecture, a hardware decompression unit sits between processor
and ROM. Application code is compressed offline and stored in ROM, while
decompression is performed online during application execution. Other tech-
niques insert a hardware compression–decompression unit between cache and
RAM; data are stored in compressed format in RAM and remain uncompressed
in cache. These two approaches share the same prerequisite: special-purpose
compression-decompression hardware must be designed and integrated into
the target system.

Software-based compression techniques have been proposed to improve the
performance of general-purpose computing systems with hard disks. In such
techniques, a software-based compressed cache is inserted into the virtual

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:3

memory hierarchy. This cache uses part of physical RAM to store data in
compressed format. When system memory is low, before sending selected pages
to hard disks, the system first attempts to compress these pages and store them
in the software cache. Since the overhead of compression and decompression is
several orders of magnitude smaller than that of disk access, the overall perfor-
mance of the system can be improved significantly for benchmarks that have
large memory requirements.

Unlike hardware-based approaches, software-based techniques do not re-
quire the design of dedicated hardware. For software-based techniques, design,
test, and deployment of a new application-specific compression algorithm is
relatively easy because it requires no hardware changes. Therefore, software-
based memory compression generally simplifies the design process in compari-
son with hardware-based techniques, reducing time-to-market and design costs.
Consequently, they can be more easily applied to existing embedded systems
and processors.

Despite the advantages of software-based memory compression techniques,
few have been used in commercial embedded systems. The primary reason
is that the performance and power consumption penalties of software-based
online compression are generally considered too high [Benini et al. 2004]. There
are other practical issues that must be thoroughly addressed before software-
based memory compression can be deployed in real embedded systems. For
example, in hardware-assisted RAM compression architectures, data in RAM
are compressed at all times: they start compressed and remain compressed.
This simplifies hardware design, but is not necessarily optimal. Compression
generally imposes performance and energy consumption penalties. Therefore,
it should not be used when applications do not require additional memory.
In software-based approaches, data in RAM can start uncompressed and be
compressed only when necessary. This introduces the new problem of managing
migration between compressed and uncompressed portions of memory. More
specifically, it is necessary to design methods of selection and scheduling of
pages to compress and decompress and dynamic allocation and management of
compressed memory.

1.2 Background and Overview

In previous publications [Yang et al. 2005, 2006], we described our software-
based memory compression infrastructure: CRAMES. CRAMES was originally
motivated by a specific engineering problem faced by our industrial collabora-
tors at NEC during the design of a new cellphone. After hardware design, the
memory requirements of the embedded system’s applications overran the initial
estimate. There were two ways to solve this problem: redesign the embedded
system hardware, thereby dramatically increasing time-to-market and cost, or
make the system function as if RAM had been added without actually chang-
ing the hardware. The second approach was chosen, resulting in the CRAMES
infrastructure. Note that, even for embedded systems capable of functioning on
their current hardware platforms, it is often desirable to increase the number
of supported applications if the cost of doing so is small.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:4 • L. Yang et al.

Via online memory compression, CRAMES is capable of increasing the func-
tionality of embedded systems without changes to hardware or applications by
making better use of physical memory. CRAMES takes advantage of an Op-
erating System’s (OS’s) virtual memory infrastructure by storing swapped-out
pages in compressed format. It dynamically adjusts the size of the compressed
RAM area, protecting applications capable of running without it from perfor-
mance or energy consumption penalties. CRAMES has been implemented as
a loadable module for the Linux kernel and evaluated on a battery-powered
Sharp Zaurus PDA.

We performed extensive experiments using typical noninteractive and user
interactive applications on a Sharp Zaurus PDA with its original RAM size.
We found that CRAMES was capable of doubling the amount of RAM available
to applications; sets of applications that required too much RAM to execute
on the unmodified Zaurus could execute smoothly when CRAMES was used.
Moreover, the performance, power consumption, and energy consumption im-
pacts of CRAMES were negligible for applications that were able to run without
compression.

To demonstrate that CRAMES can be used to reduce the resource require-
ments of applications with negligible performance and power consumption
penalties, we artificially reduced the system RAM of a Zaurus to different sizes.
We found that with CRAMES, the system could still support existing applica-
tions while without CRAMES these applications were either unable to execute
or ran only with extreme performance degradation and instability, that is, no re-
sponse or system crash. Compared with the unmodified system, using CRAMES
to cut physical memory to 40% increased application execution time by 9.5% on
average and by 29% in the worst case. We feared that this performance penalty
might prevent CRAMES from being used in some embedded systems.

In this article, we describe two techniques to further improve the perfor-
mance of online software-based memory compression. More specifically, this
article makes the following contributions.

(1) We present PBPM, a fast compression algorithm that efficiently compresses
data pages in RAM. PBPM exploits patterns that frequently occur within
words in memory and takes advantage of the similarities among words
by keeping a small dictionary. When compressing in-RAM data, PBPM is
twice as fast as the best compression algorithms of the Lempel-Ziv fam-
ily [Ziv and Lempel 1977] and offers a competitive compression ratio. For
online software memory compression, we were unable to find any existing
algorithm with similar speed that matched the compression ratio of PBPM.
We also describe how PBPM supports some embedded processors that do
not support high-performance unaligned memory access.

(2) We present an adaptive memory management scheme that predictively al-
locates memory for compressed data to improve the effectiveness of memory
compression and preemptively avoid memory exhaustion. Experimental re-
sults show that our new preallocation method is able to further increase
available memory to applications by up to 13%, comparing to the same
system without preallocation.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:5

(3) We demonstrate that it is possible to increase available application memory
by 2.5× without changes to applications or hardware, and with negligible
performance and power consumption penalties. To the best of our knowl-
edge, this is the first work explaining a software-only memory expansion
method with approximately the same impact as a cost-free DRAM process
shrink.

1.3 Article Organization

The rest of this article is organized as follows. Section 2 summarizes related
work. Section 3 gives a brief overview of the online OS-controlled compres-
sion infrastructure that motivates and provides a realistic testing environment
for the techniques proposed in this article. Section 4 describes the proposed
software-based memory compression algorithm. Section 5 presents our method
of adaptively managing the uncompressed and compressed regions of mem-
ory. Section 6 describes the experimental setup, workloads, and experimental
results in detail. Finally, Section 7 concludes the article.

2. RELATED WORK AND CONTRIBUTIONS

There are a number of techniques that introduce compression into the mem-
ory hierarchy. Hardware-based code compression and main memory compres-
sion have been proposed to reduce ROM and RAM size in embedded systems.
Software-based RAM compression techniques have been proposed to improve
overall system performance by reducing the number of disk accesses for general-
purpose computing systems. Next, we categorize these related techniques and
summarize the primary contributions of this article.

2.1 Hardware-Based Memory Compression

Code compression techniques [Lekatsas et al. 2000; Xu et al. 2004; Shaw et al.
2003] store instructions in compressed format in ROM and decompress them
during execution. Some techniques require the compressed code to be entirely
decompressed before execution. Other techniques allow the compressed code to
be decompressed instruction by instruction during execution. Compression is
usually done offline and can be slow, while decompression is done during exe-
cution, usually by special hardware, and must be very fast. It is worth noting
that some work proposes software methods to reduce code size with runtime
decompression. For example, Lefurgy et al. [2000] presented a method of de-
compressing programs using software that relied on using a software-managed
instruction cache under control of the decompressor.

Main memory compression techniques insert a hardware compression and
decompression unit between cache and RAM. Data are stored uncompressed
in cache, and are compressed on-the-fly when transferred to memory. This
technique is usually deployed to improve the performance of general-purpose
systems, where memory bandwidth constitutes a serious bottleneck to program
execution speed. It also has the potential to reduce embedded system RAM
requirements and power consumption. However, it requires changes to the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:6 • L. Yang et al.

hardware and thus cannot be easily incorporated into existing processors and
embedded systems.

IBM MXT [Tremaine et al. 2001] is a hardware-based main memory com-
pression technique. In this technique, a large, low-latency, shared cache sits
between the processor bus and a content-compressed main memory. A hard-
ware compression unit is inserted between the cache and main memory. The
authors reported a typical main memory compression ratio1 between 16.7% and
50%, as measured in real-world system applications. This compression ratio is
consistent with that achieved by CRAMES.

Benini and Bruni [2002] proposed a similar architecture for memory energy
reduction in embedded systems. In their system, uncompressed cache lines are
compressed before they are written back to main memory, and decompressed
when data are transferred back to cache. They presented two compression algo-
rithms and their hardware implementations. Simulation results indicate that
the average energy savings of the cache–memory subsystem range from 4.2%
to 35.2%, depending on the selected compression algorithm.

Moore [2003] proposed a hardware-assisted compression infrastructure pri-
marily for the purpose of minimizing communication bandwidth requirements.
He is the first to suggest that this technique may be integrated with the virtual
memory system in embedded systems, but did not present a method of doing
this.

Kjelso et al. [1996] showed simulation results indicating that hardware-
based memory compression can substantially improve performance by elim-
inating paging due to insufficient memory. They also described the design and
hardware implementation of their compression algorithm, called X-match, for
in-memory data.

2.2 Software-Based Memory Compression

Most previous work on software-based memory compression falls into two main
categories: compressed caching and swap compression. Both have the main goal
of improving system performance and both target general-purpose systems with
hard disks.

Compressed caching [Douglis 1993; Wilson et al. 1999; Russinovich and
Cogswell 1996; Compressed Caching] introduces a software-based cache to the
virtual memory system that uses part of the memory to store data in com-
pressed format. The objective is to improve system performance by decreasing
the number of page faults that must be serviced by hard disks, which have
much longer access times than RAM. Early work by Douglis [1993] proposed a
software-based compressed cache, which uses part of the memory to store data
in LZRW1 compressed format. Russinovich and Cogswell [1996] presented a
thorough analysis of the compression algorithms used in compressed caching.

A study on compressed caching by Kjelso et al. [1999] presented a perfor-
mance model for compressed caching. It demonstrated that system performance

1Compression ratio gives a measure of the compression achieved by a compression algorithm. It is
defined as compressed data size divided by original data size. Therefore, a low compression ratio
indicates better performance than a high one.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:7

may be improved by up to a factor of two when using software-based memory
compression instead of paging, while hardware assisted memory compression
can improve performance by up to an order of magnitude. They addressed the
problem of memory management for variable-size compressed pages. Their ex-
periments used the LZRW1 compression algorithm.

Wilson et al. [1999] used simulations to prove a consistent benefit from the
use of compressed virtual memory. In addition, they proposed a new compres-
sion algorithm suited to compressing in-memory data.

Swap compression [Rizzo 1997; Tuduce and Gross 2005; Cortes et al. 2000;
Roy et al. 2001] compresses swapped pages and stores them in a memory region
that acts as a cache between memory and disk. Cortes et al. [2000] proposed a
compressed swap cache in Linux for improving swap performance and reducing
memory requirements. Their work targeted general-purpose machines with
large hard drives, for which saving space in memory was not a design objective.

Roy and Prvulovic [2001] proposed a memory compression mechanism for
Linux with the goal of improving performance. Again, their approach targets
systems with hard disks. They reported speedups from 5% to 250% depending
on the application. They did not consider the use of this technique in systems
without disks, that is, most embedded systems.

Both compressed caching and swap compression require a backing store, for
example, a hard disk. When the compressed area is filled up, its LRU pages
must be sent to the backing store so that free memory in the compressed area
can be kept above a configurable threshold. Unlike hardware-based main mem-
ory compression techniques, both compressed caching and swap compression
are unable to compress code in memory. Neither of these two techniques was
designed or evaluated for use in embedded systems. There is some evidence to
suggest they would not be appropriate for this application. For example, they
generally use compression algorithms that impose high overheads, and require
disk as a backing store.

2.3 Compression Algorithms for In-RAM Data

Compression techniques, both lossy and lossless, are widely used in all fields
of information processing. Compression ratio and compression–decompression
speed vary greatly depending on the algorithm and specific data. Online mem-
ory compression requires lossless compression algorithms. Unfortunately, many
existing lossless algorithms are not suitable for this application. There are
three main reasons for this. First, the algorithm must perform well operating
on data blocks only a few kilobytes in size. Existing algorithms are generally
only suitable for larger amounts of data as they tend to produce significant data
expansion (up to 150%) during the early stages of the compression process. Sec-
ond, to minimize performance penalty, compression and decompression must
be extremely fast. Many existing compression algorithm implementations, for
example, gzip and bzip2, provide very good compression ratios but are too slow
for use in online memory compression. Finally, the algorithm must require lit-
tle memory to operate on embedded systems with tight memory constraints.
bzip2 requires over 7MB memory to compress and over 3MB to decompress.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:8 • L. Yang et al.

These memory requirements are too high for many embedded systems, which
frequently have 32MB of RAM or less.

LZO [Oberhumer] is a very fast general-purpose lossless compression al-
gorithm that works well on memory data. It is an asymmetric compression
algorithm: decompression is faster than compression. LZO compresses a block
of data into dictionary matches and nonmatching literals. LZO adjusts to long
matches and long literal runs so that it produces good results on highly re-
dundant data and deals acceptably with incompressible data. When dealing
with incompressible data, LZO expands the input block by a maximum of 16
bytes per 1,024 bytes of input data. LZO requires requires 64KB of memory for
compression2 and no additional memory for decompression.

Rizzo [1997] attempted to analyze the frequent patterns present in memory
data. He concluded that zero-valued data are the most frequent and that the
next frequent symbols are difficult to determine and very content-dependent.
He therefore proposed a software-based algorithm that compresses in-RAM
data by exploiting only the high frequency of zero-valued data. In order to
improve speed, the algorithm uses W -bit Huffman encoding, where W is the
size of a machine-word. Rizzo’s algorithm is faster than our proposed algorithm
presented in this article, but has a much worse compression ratio (on average
64% on our test data in comparison to 44% for PBPM) and therefore was not
considered a viable candidate for CRAMES. In Section 4.1, we will show our
analysis of in-RAM data and present other frequent patterns we have identified,
in addition to zero-valued data.

Kjelso et al. [1996] designed the X-Match hardware compression algorithm
that maintains a dictionary of previously seen data and attempts to match
the current data element with an entry in the dictionary, replacing it with a
shorter code referencing the match location. The dictionary is maintained using
a move-to-front strategy to exploit locality in the input data. An incoming word
can have all bytes match a dictionary entry (full match), or it can have at least
any two of the four bytes match exactly with a dictionary entry (partial match),
with the bytes that do not match being transmitted literally. Data elements
which do not produce a match are transmitted literally prefixed by a single bit.

IBM’s MXT technology [Tremaine et al. 2001] is a main memory compression
technique based on a parallelized hardware implementation of a derivative of
the Lempel-Ziv (LZ77) sequential algorithm [Ziv and Lempel 1977]. With this
implementation, the uncompressed data block is partitioned into a number
of equal parts, each operated on by an independent compression engine, but
with shared dictionaries. Their results show that parallel compressors with
cooperatively constructed dictionaries have compression efficiency essentially
equivalent to that of the sequential LZ77 method.

Wilson et al. [1999] presented a software-based algorithm, called WKdm,
which also used a small dictionary of recently seen words and attempts to fully
or partially match incoming data with an entry in the dictionary. In their al-
gorithm, a 32-bit word may match a complete 32-bit dictionary entry, match
only the upper 22 bits, or fail to match any dictionary entry. As a special case,

2There is also a compression level that requires 8KB memory but has a poorer compression ratio.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:9

the word is first checked to see if it is all zeroes, that is, matches a full-word
zero. Like Rizzo’s algorithm, the WKdm algorithm exploits the most frequent
pattern (all zero value); and like the X-Match algorithm, the WKdm algorithm
attempts to fully or partially match input data with dictionary entries to ex-
ploit similarities among words. However, it does not identify and exploit other
frequent patterns in the word itself and therefore has a compression ratio rang-
ing from 47% to 50% for in-RAM data. In most cases, the compression ratio of
WKdm is inferior to that of LZO.

3. OVERVIEW OF CRAMES

This section briefly introduces the design and implementation of CRAMES
to provide readers a context for the techniques presented in this article. To
increase available memory to embedded systems, CRAMES selectively com-
presses data pages when the working datasets of running processes exceed
physical RAM capacity. When data in a compressed page are later required by
a process, CRAMES locates that page, decompresses it, and copies it back to
the main memory working area, allowing the process to continue executing.
In summary, applications that would normally be unable to run to completion
on an embedded system with insufficient RAM can execute correctly with the
help of CRAMES. In addition to dataset compression, CRAMES also supports
compression of any type of in-RAM filesystem (commonly referred to as RAM
disk).

3.1 Design Challenges

The goal of CRAMES is to significantly increase available memory with minimal
performance and energy penalties, and without requiring additional hardware.
Next, we summarize the primary challenges for CRAMES and our methods of
overcoming them.

(1) Selection and scheduling of pages for compression and decompression. This
is essential to guarantee correct operation. One may view the uncompressed
memory area as a cache for the compressed memory area. Therefore, fre-
quently accessed pages should be placed in the uncompressed area rather
than the compressed area to minimize access time. Compression and de-
compression must be carefully scheduled to avoid application termination
due to memory exhaustion, which might occur when a memory request can-
not be satisfied. In summary, the Least Recently Used (LRU) pages should
be compressed when the memory usage of active processes exceeds the main
memory working area.
In order to minimize performance and energy consumption impact,
CRAMES uses the OS virtual memory swapping mechanism to decide which
data pages to compress and when to perform compression and decompres-
sion. Figure 1 illustrates the data flow path for CRAMES. Note that virtual
memory contains both uncompressed areas (white) and compressed areas
(gray). CRAMES requires a Memory Management Unit (MMU). However,
no special-purpose hardware is required.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:10 • L. Yang et al.

Operating

System
Swap

Application Application

Page Fault

CRAMES

C D

Page

Compression

Page
Decompression

Virtual Memory

Fig. 1. Overview of CRAMES.

(2) Design of an efficient compression algorithm. Compressing and decom-
pressing pages and moving them between uncompressed memory and com-
pressed memory consumes time and energy. Profiling results indicate that
compression and decompression are responsible for the main performance
penalty in CRAMES. Using a high-quality compression algorithm is thus
crucial to ensure the practical use of CRAMES. The compression algorithm
must have excellent performance and low energy consumption. It must also
provide a good compression ratio and small working space memory require-
ments, to substantially increase the amount of usable memory.
There is a trade-off between compression speed and compression ratio. In
general, slower compression algorithms have better compression ratios;
faster compression algorithms have poorer compression ratios. We com-
pared implementations of existing data compression algorithms that span
a range of compression ratios and execution times: bzip2, zlib (at level 1, 6,
and 9), LZRW1-A, LZO, and RLE (Run Length Encoding). Although bzip2
and zlib have the best compression ratios, their execution times are sig-
nificantly longer than LZO, LZRW1-A, and RLE. In addition, the memory
overheads of bzip2 and zlib are sufficient to starve applications in many
embedded systems. Among these candidates, LZO appears to be most ap-
propriate for online memory compression because of its good all-around
performance. However, as described in Section 1.2, when the system is un-
der tight memory constraints, LZO compression may degrade application
performance significantly. In Section 4, we describe our efforts to design a
compression algorithm more appropriate for use in online memory compres-
sion and demonstrate its effectiveness in reducing the performance penalty
of CRAMES.

(3) Dynamic management of the compressed memory. Since sizes of compressed
pages vary widely, efficiently distributing and locating data in compressed
memory is challenging. Compression transforms the simple problem of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:11

finding a free page in an array of uniform-size pages into the hard problem
of finding an arbitrary-size range of free bytes in an array of bytes. This
problem is closely related, but not identical, to the classical Kernel Memory

Allocation (KMA) problem [Vahalia 1996]. The compressed memory man-
ager must be fast and high quality, that is, it must minimize waste resulting
from fragmentation.
In addition to handling memory allocation, the compressed memory man-
ager must also dynamically change the size of the compressed area based
on the amount of memory required by currently executing applications.
The compressed area must be large enough to provide applications with
additional memory when necessary. However, it should stay out of the way
when the applications do not require additional memory to avoid perfor-
mance and energy consumption penalties. This can be achieved by using a
compressed memory area just barely large enough to execute the currently
running applications.
The CRAMES memory manager builds upon methods used in KMA. In
order to identify the most appropriate memory allocation method, we im-
plemented and evaluated several classical memory allocators. We decided
to use the Resource Map allocator [Vahalia 1996], which achieved the best
trade-off of allocation speed and memory usage.

(4) Minimizing the performance and memory overhead. In practice, a software-
based memory compression technique must have high performance to per-
mit use in real embedded systems. CRAMES must minimize the perfor-
mance overhead introduced by compression, decompression, and memory
management. Furthermore, compressed data pages may vary in size and
cut memory into fragments with different sizes. CRAMES must also min-
imize the memory overhead of compression, fragmentation, and indexing
compressed pages to ensure an improvement in physical memory capacity.

3.2 Implementation and Evaluation

CRAMES has been implemented as a loadable Linux kernel module for maxi-
mum portability and modularity. It can easily be ported to other modern OSs
that support virtual memory. The module is a special block device (i.e., a random
access device that stores and retrieves data in blocks) using physical memory.
It may serve as both a swap device and a storage area for filesystems.

The memory space in a CRAMES device consists of several virtually contigu-
ous memory chunks that are maintained in a linked list. Each chunk is divided
into blocks with potentially different sizes. Upon initialization, a CRAMES de-
vice requests a small contiguous memory chunk in the kernel virtual memory
space. It requests additional memory chunks as system memory requirements
grow. When all compressed blocks in a compressed chunk are free, CRAMES
frees the entire chunk to the system. Therefore, the size of a CRAMES device
dynamically increases and decreases during operation, adapting to the data
memory requirements of the currently running applications. When a CRAMES
device receives a read request for a block, it locates the block using an index
mapping table, decompresses it, and copies the original data to the request

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:12 • L. Yang et al.

buffer. When it receives a write request for a block, it locates the block, deter-
mines whether the old block with the same index may be discarded, compresses
the new block, and places it at a position decided by the CRAMES memory man-
agement system.

Freeing compressed data belonging to terminated processes posed a chal-
lenge in the design of CRAMES. A conventional swap device need not be no-
tified when processes terminate and data are freed. However, it was useful to
add a mechanism to notify CRAMES when data should be freed because they
belong to a terminated process. Otherwise, such data may remain in memory
in compressed format indefinitely, potentially degrading memory utilization
and performance. We solved this problem by making small modifications to
the Linux kernel. In particular, whenever the kernel attempts to free a page
located in the swap device, the modified swap entry free function in swapfile.c

calls a CRAMES function to eliminate that page from compressed memory, thus
ensuring the swap device only holds data that belong to nondefunct processes.

CRAMES was first evaluated on a battery-powered PDA using widely used
noninteractive benchmarks as well as interactive applications with Graphical
User Interfaces (GUIs). Experimental results show that CRAMES is capable of
dramatically increasing memory capacity with small performance and power
consumption costs. A next-generation cellphone prototype board was later used
to aid development. Using this platform, we were able to run real cellphone
applications and performed extensive testing to fine-tune CRAMES. During
the final stages of development, the memory management system of CRAMES
was greatly improved to alleviate potential fragmentation problems. A product
development team at NEC Japan took over development and did rigorous test-
ing under real network conditions. In June 2007, sales of cellphones running
CRAMES started in Europe and Japan. The first such cellphone was the NEC
FOMA 904i.

4. PATTERN-BASED PARTIAL MATCH COMPRESSION

We first considered using the LZO [Oberhumer] algorithm to compress data
in memory. LZO is significantly faster than many other general-purpose com-
pression algorithms, such as LZW series algorithms, zlib, and bzip2. However,
it is not designed for memory compression and therefore does not fully exploit
the regularities of in-RAM data. In addition, LZO requires 64KB of working
memory for compression, a significant overhead on many memory-constrained
embedded systems. LZO provides good compression ratio and performance in
many applications. However, better results are possible for online memory com-
pression. We now analyze the regularities of in-RAM data and describe a new
algorithm, named PBPM, which is extremely fast and well-suited for memory
compression.

The PBPM algorithm is designed based on the observation that frequently
encountered data patterns can be encoded with fewer bits to save space. Scan-
ning through the input data a word (32bits) at a time, PBPM exploits patterns
that occur frequently within each word of memory and searches for complete
and partial matches with dictionary entries to take advantage of the similarities

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:13

among words. More specifically, (1) very frequent patterns are encoded using
special bit sequences that are much shorter than the original data, (2) patterns
that do not fall into this category and are found in a small dictionary are en-
coded using the index of their location in dictionary, and finally (3) patterns
that do not frequently occur and cannot be found in the dictionary are stored
in dictionary for later use and the original word contents are sent to output.

We adopted a systematic approach when designing PBPM. Based on our
observations on the properties of in-RAM data, we first identified the key com-
ponents of the algorithm: exploiting data patterns, dictionary maintenance, and
pattern encoding. We then statistically analyzed the data to identify the most
frequent patterns, and developed a prototype in Python. Afterwards, we ad-
justed parameters such as the size and layout of dictionary and coding scheme
to optimize the compression ratio. Finally we implemented the algorithm in C
and used a number of software acceleration techniques to optimize its perfor-
mance. Different applications were used during the development of the algo-
rithm and its final evaluation in CRAMES. We believe this systematic approach
is useful when designing compression algorithms customized to datasets with
particular statistical properties.

4.1 In-RAM Data Patterns

Unlike general-purpose algorithms designed for text data, a special-purpose
algorithm designed for memory compression must fully exploit the regularities
of in-RAM data. For example, pages are usually zero-filled after being allocated.
Therefore, runs of zeroes are commonly encountered during memory compres-
sion. Numerical values are often small enough to be stored in 4, 8, or 16 bits,
but are normally stored in full 32-bit words. Furthermore, numerical values
tend to be similar to other values in nearby locations. Likewise, pointers often
point to adjacent objects in memory, or are similar to other pointers in nearby
locations.

In order to develop a reasonable set of frequent patterns, we experimented
with a 64MB swap data file from a workstation running SuSE Linux 9.0. Various
applications were executed to exhaust physical memory and trigger swapping.
Figure 2 shows the relative frequencies of patterns we evaluated. Next, we spec-
ify conventions for describing the data and patterns, as well as the dictionary
management scheme we considered.

We consider each 32-bit word (four bytes) as an input, and represent it with
four symbols, each representing a byte. A “z” represents a zero byte, an “x” rep-
resents an arbitrary byte, and an “m” represents a byte that matches a dictionary
entry. Following this convention, “zzzz” indicates an all-zero word; “mmmx” in-
dicates a partial match with a dictionary entry for which only the lowest byte
differs.

To allow fast search and update operations, we maintain a hash-mapped
dictionary. More specifically, the third byte of a word is hash-mapped to a 256
entry table, containing random indices within the range of the dictionary. The
decision to base hashing on the third byte was made to achieve decent hashing
quality with low computational overhead. Based on this hash function, we only

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:14 • L. Yang et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(1
6,

1)
(8

,2
)

(4
,4

)

(3
2,

1)

(1
6,

2)
(8

,4
)

(6
4,

1)

(3
2,

2)

(1
6,

4)

(1
28

,1
)

(6
4,

2)

(3
2,

4)

(2
56

,1
)

(1
28

,2
)

(6
4,

4)

Dictionary layout (size, level)

P
e
rc

e
n

ta
g

e
 %

 xmxx

 xzxz

 zxxz

 xzzx

 zxzz

 zzxz

 xzzz

 xxzz

 xxzx

 xzxx

 xxxz

 zxxx

 zzxx

 zxzx

 mmmx

 mmxx

 mmmm

 zzzx

 xxxx

 zzzz

Fig. 2. Frequent pattern histogram.

need to consider four match patterns: “mmmm” (full match), “mmmx” (highest three
bytes match), “mmxx” (highest two bytes match), and “xmxx” (only the third byte
matches). Note that neither the hash table nor the dictionary need be stored
with the compressed data. The hash table is static and the dynamic dictionary
is regenerated automatically during decompression.

We experimented with different dictionary sizes and layouts, for example, 16-
entry direct-mapped and 32-entry two-way set associative, etc. A direct hash-
mapped dictionary has the advantage of supporting fast search and update:
only a single hashing operation and lookup are required per access. However,
it has tightly limited memory. For each hash target, only the most recently
observed word is remembered; the victim to be replaced is decided entirely by
its hash target. In contrast, if a dictionary is maintained with move-to-front
strategy, its LRU entry is selected as the victim. Unfortunately, searching in
such a dictionary is slow. A set-associative dictionary provides the benefits of
both LRU replacement and speed. When a search miss followed by a dictionary
update occurs, the oldest of the dictionary entries sharing one hash target index
is replaced.

As Figure 2 illustrates, zero words, “zzzz”, are the most frequent compress-
ible pattern, followed by one byte positive sign-extended words “zzzx”. Other
zero-related patterns are relatively less frequent. As the dictionary size in-
creases, dictionary match (including partial match) frequencies do not increase
much. While a set-associative dictionary usually generates more matches
than a direct hash-mapped dictionary with the same overall size, a four-way

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:15

Table I. Pattern Encoding in PBPM

Code Pattern Output Size (bits) Frequency

00 zzzz 00 2 38.0%
01 xxxx 01BBBB 34 21.6%
10 mmmm 10bbbb 6 11.2%
1100 zzzx 1100B 12 9.3%
1101 mmxx 1101bbbbBB 24 8.9%
1110 mmmx 1110bbbbB 16 7.7%
1111 zxzx 1111BB 20 3.1%

set-associative dictionary works no better than a two-way set-associative dic-
tionary in this application.

4.2 The PBPM Compression Algorithm

The PBPM compression and decompression algorithms are presented in Algo-
rithm 1. Based on our analysis, we selected the most frequent patterns and the
most effective dictionary layouts for PBPM. The patterns and coding schemes
are summarized in Table I, which also reports the actual frequencies of the
listed patterns in our swap data file. In Algorithm 1 and column “Output” of
Table I, “B” represents a byte and “b” represents a bit.

PBPM maintains a small two-way set-associative dictionary (DICT[] in
Algorithm 1) of 16 recently seen words. An incoming word can fully match a
dictionary entry, or match only the highest three or two bytes of a dictionary en-
try. These patterns occurred frequently during swap trace analysis. Although it
would be possible to consider non-byte-aligned partial matches [Tremaine et al.
2001; Wilson et al. 1999], we have experimentally determined that consider-
ing only byte-aligned partial matches is sufficient to exploit the partial sim-
ilarities among in-RAM data while permitting efficient implementation. The
PBPM algorithm compresses and decompresses 32-bit words. The compressor
scans through a page (usually 4KB), reads each word, and determines the first
of the following criteria the word meets:

(1) Is it a “zzzz”?

(2) If not, is it a “zzzx”?

(3) If not, is it a “zxzx”?

If the word does not meet any of these criteria, the compressor checks
whether the word fully or partially matches a dictionary entry. If it is a partial
match, this word is inserted into the dictionary location indicated by hash-
ing on its third byte. Note that the victim to be replaced is decided by its
age. If there is no match at all, the word is also inserted to the dictionary
according to the same replacement policy. Correspondingly, the decompres-
sor reads through the compressed output, decodes the format based on the
patterns given in Table I, and adds entries to the dictionary upon a partial
match or dictionary miss. Therefore, the dictionary can be reconstructed dur-
ing decompression and does not need to be stored together with the compressed
data.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:16 • L. Yang et al.

Algorithm 1. PBPM (a) Compression and (b) Decompression

Require: IN, OUT word stream Require: IN, OUT word stream

Require: TAPE, INDX bit stream Require: TAPE, INDX bit stream

Require: DATA byte stream Require: DATA byte stream

1: for word in range of IN do 1: Unpack(OUT)

2: if word = zzzz then 2: for code in range of TAPE do

3: TAPE ← 00 3: if code = 00 then

4: else if word = zzzx then 4: OUT ← zzzz

5: TAPE ← 1100 5: else if code = 1100 then

6: DATA ← B 6: B ← DATA

7: else if word = zxzx then 7: OUT ← zzzB

8: TAPE ← 1111 8: else if code = 1111 then

9: DATA ← BB 9: BB ← DATA

10: else 10: OUT ← zBzB

11: mmmm ← DICT[hash(word)] 11: else if code = 10 then

12: if word = mmmm then 12: bbbb ← INDX

13: TAPE ← 10 13: OUT ← DICT[bbbb]

14: INDX ← bbbb 14: else if code = 1110 then

15: else if word = mmmx then 15: bbbb ← INDX

16: TAPE ← 1110 16: mmmm ← DICT[bbbb]

17: INDX ← bbbb 17: B ← DATA

18: DATA ← B 18: OUT ← mmmB

19: Insert word to DICT 19: Insert mmmB to DICT

20: else if word = mmxx then 20: else if code = 1101 then

21: TAPE ← 1101 21: bbbb ← INDX

22: INDX ← bbbb 22: mmmm ← DICT[bbbb]

23: DATA ← BB 23: BB ← DATA

24: Insert word to DICT 24: OUT ← mmBB

25: else 25: Insert mmBB to DICT

26: TAPE ← 01 26: else if code = 01 then

27: DATA ← BBBB 27: BBBB ← DATA

28: Insert word to DICT 28: OUT ← BBBB

29: end if 29: Insert BBBB to DICT

30: end if 30: end if

31: end for 31: end for

32: OUT ← Pack(TAPE,DATA,INDX)

4.3 Software Acceleration

During the compression process, depending on different patterns, an input word
may be converted to one of the following outputs (please refer to Table I).

—Two-bit code (zzzz),

—Two-bit code followed by four-byte data (xxxx),

—Two-bit code followed by four-bit index (mmmm),

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:17

0 0 0 0 0 0 0 0Word 1

0 1 0 1 0 1 0 1Word 2

1 0 1 0 1 0 1 0Word 3

1 1 1 1 1 1 1 1Word 4

0 0100111Result

Shift

Logic OR

4 etyB3 etyB2 etyB1 etyB

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

2 bits

4 bits

6 bits

0 0100111 0 0100111 0 0100111

Fig. 3. Fast word shift operation.

—Four-bit code followed by one-byte data (zzzx),

—Four-bit code followed by four-bit index and two-byte data (mmxx),

—Four-bit code followed by four-bit index and one-byte data (mmmx), or

—Four-bit code followed by two-byte data (zxzx).

The output of all compressed words can be stored in one flat array, or tape.
For example, for pattern “mmmm”, a two-bit code is first sent to the output tape,
followed by a four-bit index. However, this may not be the most efficient im-
plementation due to alignment problems introduced by nonuniform symbol
lengths. In our implementation, we used separate tapes for code, index, and
data. Because the code length may be either two-bit or four-bit, we have two
tapes for codes, each of which consists of two-bit sequences. As a consequence,
the first two bits of a four-bit code are sent to Tcode1 and the second two bits
are sent to Tcode2; meanwhile, the four-bit codes are always sent to Tindex and
data are always sent to Tdata. To reduce the number of memory copies, we place
the data tape at a fixed position in the output buffer. Other tapes are appended
via copying to the data tape at the end of compression process to minimize
runtime. The data tape is usually the longest among all tapes. Therefore, this
arrangement of tapes results in the shortest runtime. Please note that since
data length may vary for different patterns, the data tape Tdata consists of one-
byte, two-byte, and four-byte sequences, which may cause the word alignment
problem. We will discuss this problem in more detail in Section 4.4.

To allow fast bit operations, we used the following acceleration technique
for the code tapes and the index tape. Code tapes always consist of two-bit
sequences. Therefore, during compression we store each two-bit code in the
lowest two bits of a byte. After all codes are collected, we pack the codes four
words at a time by shifting the second word by two bits, the third word by four
bits, and the fourth word by six bits. Then we perform a logical “or” of these
four words, as illustrated in Figure 3. This scheme minimizes the total number
of shifts required to pack all two-bit sequences because four-byte shifts may be
carried out in parallel on 32-bit architectures. A similar technique is applied to

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:18 • L. Yang et al.

Table II. Performance Comparison of Two Alignment Schemes

Non-aligned PBPM (μs) Separate aligned tapes (μs) Single aligned tape (μs)
Compress Decompress Compress Decompress Compress Decompress

average 12.99 10.94 14.94 10.94 16.89 18.26
stdev. 3.05 3.08 1.79 2.20 3.77 4.44

the index tape, which contains four-bit sequences. During decompression, the
procedure is reversed.

4.4 Word Alignment

Some processors (e.g., many ARM and PowerPC processors) do not support high-
performance loads or stores of nonaligned data objects; for example, an access
to a four-byte word with an address that is not evenly divisible by four may be
illegal or impose substantial performance penalties. In the best case, such ac-
cesses trigger interrupts that must be handled by the processor support library,
greatly degrading performance. As mentioned in the previous section, the data
tape consists of sequences with different lengths, that is, one-byte, two-byte, and
four-byte. This poses no problem for processors that support high-performance
misaligned accesses. However, it may impose substantial overhead for other
architectures commonly used in embedded systems. To solve this problem, we
implemented two alignment schemes and compared their performance.

(1) Separate aligned tapes. Instead of having one data tape, we maintain sepa-
rate data tapes for one-byte, two-byte, and four-byte data. One of the three
data tapes is placed at a fixed position in the output buffer. At the end of
the compression process the other two tapes are copied to the end of the
first data tape. As long as the later two tapes are short, little copying is re-
quired and the performance overhead of this approach is low. Based on our
analysis, the longest data tape is generally the four-byte data tape because
the no-match pattern is the second most frequent pattern.

(2) Single word-aligned tape. Only one flat data tape is maintained. However,
data are written into this tape in a word-aligned manner. Each word of
this tape consists of one of the following: four single bytes, two two-byte se-
quences, or one four-byte word. Three additional pointers are maintained to
record the positions of the next available one-byte, two-byte, and four-byte
locations. Data are written to the tape at the location indicated by the cor-
responding pointer depending on the length, that is, one-byte, two-byte, or
four-byte. This implies that data may be written to the tape out-of-order. The
same pointers are maintained and the same procedure is followed during
decompression. Every time data are written to the tape, the corresponding
pointer must be checked and updated, reducing performance. However, it is
never necessary to copy tapes to new positions when using this technique.

We compared these alignment techniques against the original PBPM algo-
rithm, which does not consider the alignment problem. The three versions were
executed on a Linux Workstation with a 2GHz AMD Athlon XP 2800+ proces-
sor. This processor does not require word-aligned load and store instructions
and hence does not incur exceptions on misaligned memory accesses. Table II

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:19

shows that the first technique, which maintains separate data tapes, imposes
smaller performance overhead than the second one, which maintains a single
word-aligned data tape. Compared to the original implementation of PBPM, on
average, the first technique increases compression time by 15% and does not
affect decompression time. The second technique increases compression time
by 30% and decompression time by 67%. Therefore, for architectures that suffer
high performance overheads on misaligned accesses, the copying-based alter-
native implementation should be used; otherwise, the original implementation
of PBPM should be used.

5. ADAPTIVE COMPRESSED MEMORY MANAGEMENT

As described in Section 3, CRAMES compresses the swapped-out data a page
at a time and stores them in a special compressed RAM device. Upon initializa-
tion, the compressed RAM device only requests a small memory chunk; as sys-
tem memory requirements grow, additional memory chunks are requested. The
compressed RAM device also dynamically decreases its size when compressed
pages are freed. A compressed page may be freed in two circumstances: (1) the
page only belongs to one running process and is swapped in by the kernel or
(2) the page belongs to a terminated process and the kernel attempts to over-
write this page with a newly swapped-out page. When all compressed blocks in
a compressed chunk are free, CRAMES frees the entire chunk to the system.
Therefore, the size of a compressed RAM device dynamically adjusts during
operation, adapting to the data memory requirements of the currently running
applications.

The preceding dynamic memory allocation strategy works well when the sys-
tem is not under extreme memory pressure. However, its performance degrades
when memory is dangerously low: applications and CRAMES compete for re-
maining physical memory and there is no guarantee that an allocation request
will be satisfied. If physical memory is nearly exhausted, an application may
be unable to allocate additional memory. If CRAMES were able to allocate even
one page of physical memory for its compressed memory region, it would be
able to swap out multiple pages, allowing the application to proceed. However,
CRAMES is in contention with the application, resulting in an online mem-

ory compression deadlock, that is, a situation in which both the CRAMES and
other application processes wait for memory resources that can only be made
available by progress of the other process.

We will use an example to illustrate online memory compression deadlock. In
Figure 4, assuming an embedded system with ten pages of physical RAM, pro-
cess A and process B each have four pages in the uncompressed area. CRAMES
allocates one page from the kernel for future compression usage, leaving only
one free uncompressed page available to processes A and B. (1) The working
dataset of process A starts to grow and it requests one more page. Since only
a single page of memory is now available, the kernel starts swapping. Page b1

from process B is swapped out and compressed by CRAMES. After compression,
the size of b1 is reduced to 80% of its original size. (2) Process A requests one
more page. The kernel continues its attempt to swap out pages from process B.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:20 • L. Yang et al.

Uncompressed Memory

a1 a2 a3 a4 a5 b2 b3 b4

a1 a2 a3 a4 a5 b2 b3 b4 a6

a1 a2 a3 a4 a5 b2 b3 b4 a6

a1 a2 a3 a4 b1 b2 b3 b4

Process A : 4 pages

Process B : 4 pages

Free: 1 page

Process A : 6 pages

Process B : 3 pages

Free: 0 page

Process A : 5 pages

Process B : 3 pages

Free: 1 page

Process A : 6 pages

Process B : 3 pages

Free: 0 page

b1

b1

b1

Process A requests one page

Process A requests one page

Process A requests one page

Compressed Memory

Fig. 4. Online memory compression deadlock.

Unfortunately, since the compression ratio of the last swapped-out page b1 was
high, none of the pages of process B can fit into the compressed area. Therefore,
the kernel allocates the last free page in the uncompressed area to process A.
(3) Process A requests one more page. If CRAMES were able to allocate even
a single page from the uncompressed area, it could compress multiple pages
and proceed. However, no additional free pages are available because process
A reserved the last free page in the previous step. This results in a deadlock
scenario. The allocation request from process A is in contention with CRAMES
for memory pages and neither may proceed.

To avoid online memory compression deadlock, a compressed RAM device
must predictively request additional memory, that is, it cannot wait until no
allocated chunks have space for incoming data. This subtle issue comprises one
of the differences between our technique and compressed caching as well as
swap compression, in which hard drives serve as backing store to which pages
can be moved as soon as (or even earlier than) the compressed area is full, so
that the compressed memory is always available to applications.

We propose the following scheme to prevent online memory compression
deadlock. CRAMES monitors the compressed area utilization and requests the
allocation of a new memory chunk based on the saturation of current memory
chunks. When the total amount of memory in the compressed area is above
a predefined fill ratio, CRAMES requests a new chunk from kernel. This re-
quest may be denied if the system memory is dangerously low. However, even if
this first request is denied, subsequent invocations of CRAMES will generate

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:21

Uncompressed Memory

Process A : 4 pages

Process B : 4 pages

Free: 1 page

Process A : 6 pages

Process B : 2 pages

Free: 0 page

Process A : 5 pages

Process B : 3 pages

Free: 0 page

Process A : 8 pages

Process B : 0 pages

Free: 0 page

Process A requests two pages

Process A requests one page

Process A requests one page

b1

b1 b2

b1 b2 b3 b4

a1 a2 a3 a4 b1 b2 b3 b4

a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 b3 b4

a1 a2 a3 a4 a5 b2 b3 b4

Compressed Memory

Fig. 5. Deadlock avoided.

additional requests. After low-memory conditions cause applications to swap
out pages to the compressed RAM device, more memory will be available and
the preemptive compressed RAM device allocation requests will generally suc-
ceed eventually.

Figure 5 illustrates the operation of CRAMES, which preemptively allocates
memory in order to avoid online memory compression deadlock. After the first
page b1 from process B is swapped out and compressed, CRAMES realizes that
the total compressed area is 80% full, exceeding the fill ratio. As a consequence,
CRAMES requests pages from the kernel immediately. Since this allocation
request occurs before that of process A, the last free page in the uncompressed
area is guaranteed to be allocated to CRAMES. Afterwards, when process A
requests more memory, CRAMES is able to compress the rest of the pages from
process B because the available memory in the compressed area is sufficient.
Therefore, the subsequent allocation requests from process A are successful.

We have experimented with different fill ratios and found that 7/8 is sufficient
to allow the maximum improvement in application available memory. This ratio
also results in little memory waste. Evaluation of this method on a portable
embedded system is presented in Section 6.2.

6. EVALUATION

In this section, we describe the evaluation methodology and results of the tech-
niques proposed for high-performance online memory compression. More specif-
ically, the following questions are experimentally answered.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:22 • L. Yang et al.

 0

20

40

60

80

100

120

 2048 4096 6144 8192

C
o
m

p
re

s
s
io

n
 t
im

e
 (

µ
s
e
c
)

Block size (bytes)

lzo
lzrw

pbpm

 0

 5

10

15

20

25

30

35

40

 2048 4096 6144 8192

D
e
c
o
m

p
re

s
s
io

n
 t
im

e
 (

µ
s
e
c
.)

Block size (bytes)

lzrw
pbpm

lzo

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

 2048 4096 6144 8192

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Block size (bytes)

pbpm
lzrw
lzo

Fig. 6. Compression ratios and speeds of PBPM, LZO, and LZRW.

(1) Does PBPM provide a competitive compression ratio yet have lower perfor-
mance costs than existing algorithms?

(2) Does adaptive memory management enable CRAMES to provide more
memory to applications when system RAM is tightly constrained?

(3) What is the overall performance of CRAMES using PBPM and adaptive
memory management?

To evaluate the proposed techniques, we used a Sharp Zaurus SL-5600 PDA.
This battery-powered embedded system runs an embedded version of Linux. It
has a 400 MHz Intel XScale PXA250 processor, 32 MB of flash memory, and 32
MB of RAM. In our current system configuration, 12 MB of RAM are used for
uncompressed, battery-backed filesystem storage and 20 MB are available to
kernel and user applications. We replaced the SL-5600 battery with an Agilent
E3611A direct-current power supply. Current was computed by measuring the
voltage across a 250 m�, 5W, Ohmite Lo-Mite 15FR025 molded silicone wire
element resistor in series with the power supply. This resistor was designed
for current sensing applications. Voltage measurements were taken using a
National Instruments 6034E data acquisition board attached to the PCI bus of
a host workstation running Linux.

6.1 Quality and Speed of the PBPM Algorithm

We compared the compression ratio and speed of the PBPM algorithm with two
other compression algorithms that have been used for online memory compres-
sion: LZO and LZRW. Both LZO and LZRW have different levels of compression
that provide different compression ratios and speeds. We compared PBPM with
the fastest mode of LZO and LZRW1-A, which is among the fastest of the avail-
able LZRW algorithms.

Figure 6 illustrates the compression ratios (compressed block size divided
by original block size) and execution times of the evaluated algorithms. For
these comparisons, the source file for compression is the swap data file (divided
into uniform-sized blocks) used to identify the frequent patterns in memory.
The evaluation was performed on a Linux Workstation with a 2.40 GHz Intel
Pentium 4 processor. Note that OS-controlled online memory compression is a
symmetric application, that is, a memory page is decompressed exactly once

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:23

Total memory allocated

None CRAMES A−CRAMES

M
e

m
o

ry
 (

M
B

)

0

4

8

12

16

20

24

28

32

36

40

16

33

38

Average execution time

None CRAMES A−CRAMES

T
im

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

4.47

8.39 8.25

Fig. 7. Performance of A-CRAMES.

every time it is compressed. Therefore, the overall, symmetric performance of a
compression algorithm is the critical metric. For online memory compression,
the block size is page size, that is, 4,096 KB. At the block size of 4,096 KB,
PBPM achieves a 200% speedup over both LZO and LZRW. The compression
ratio achieved by PBPM (44%) is competitive with that of LZO (34%) and LZRW
(39%). We believe that PBPM is especially suitable for online memory compres-
sion because of its high symmetric compression speed and good compression
ratio when used on swap data.

6.2 Effectiveness of Adaptive Memory Management

In order to determine the effectiveness of adaptive memory management in
providing more memory to applications under significant memory pressure,
we designed the following experiments. We wrote a “memeater” program that
continuously requests memory in 1 MB blocks. The memory allocated is then
filled with randomized values and mixed with zero runs with similar patterns
to those observed in real swap traces. Requests repeat until a request fails.
Memeater was executed on a Zaurus with three different system settings: with-
out using CRAMES (none), using CRAMES without adaptive memory man-
agement (CRAMES), and using CRAMES with adaptive memory management
(A-CRAMES). Figure 7 presents the total memory allocated and average ex-
ecution times (from five samples) under the three system settings. Without
CRAMES, the system could only provide 16 MB of memory to memeater. With
CRAMES, 33 MB of memory were provided and the execution time was linear
to the amount of memory allocated, that is, no delay was observed. Further-
more, when adaptive memory management is enabled (A-CRAMES), 38 MB of
memory (13% more) were allocated without performance penalty. These results
support our claim in Section 5 that A-CRAMES helps to prevent online memory
compression deadlock.

6.3 Probability of Running out of Memory

The overall memory compression ratio is influenced by the running applica-
tions. It is possible that under some workloads, a set of applications will write

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:24 • L. Yang et al.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

Compression ratio

PDF of individual page compression ratio

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

Compression ratio

PDF of aggregated compression ratio

Fig. 8. PDFs of individual page compression ratios and aggregated compression ratios.

relatively incompressible data to memory, preventing CRAMES and PBPM
from achieving the predicted aggregate system-wide compression ratio. This
would prevent running applications from allocating additional memory. The
probability of this happening is equivalent to the probability of the aggregate
compression ratio of in-RAM data exceeding the target compression ratio when
deciding the amount of physical RAM in the embedded system. We have taken
two approaches to estimate the potential danger of this phenomenon. First, we
ran numerous sets of applications on the target system to determine stabil-
ity. Second, we analytically estimated the probability of the target compression
ratio being exceeded. We will now describe this analysis.

The probability of exceeding the target compression ratio can be approxi-
mated using statistical techniques. We first estimated the Probability Density
Functions (PDFs) of page compression ratios based on trace data extracted
when using CRAMES for a wide range of applications and running PBPM on
each page. As long as the correlation between the compression ratios of inde-
pendent pages is weak and the mean and variance of the random process are
finite, one can determine the aggregate system-wide compression ratio PDF
by starting from one-page compression ratio PDF and repeatedly convolving by
the same function. This process should be repeated for each page of compressed
memory in the system. In practice, the number of pages in a system is large, for
example, 16,384 4KB pages for 32MB of compressed data, assuming an aver-
age compression ratio of 50%. Note that as the number of convolutions becomes
large, the resulting probability distribution takes on an approximately Gaus-
sian distribution with low variance [Leon-Garcia 1989]. It is important to note
that the aggregate distribution will have low variance regardless of variance of
the individual pages due to the Law of Large Numbers.

Figure 8 shows the probability distribution of independent compression ratio
and aggregated compression ratio on our trace data. The results indicate that
the probability of the aggregated compression ratio exceeding our estimate is
extremely low. In fact, the probability of the aggregate compression ratio being
within 2% of 43.8% is 100.0000%. The probability of exceeding our target com-
pression ratio of 50% can be estimated as the area under the aggregate PDF
for compression ratios higher than 50%. This probability is 3.40 × 10−158. In

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:25

summary, although there can be no guarantee that a particular set of appli-
cations produce pages with an aggregate compression ratio below a particular
target compression ratio, experiments and analysis indicate that this is un-
likely to pose a problem for CRAMES and PBPM. If a problem does occur, it
will most likely be due to violation of the assumption of page compression ratio
independence. We did not encounter problems during experiments, testing, or
commercialization.

6.4 Overall Performance of CRAMES

We have experimentally demonstrated that on an embedded system with suf-
ficient RAM to support its original (sets of) applications, CRAMES is capable
of doubling the amount of available memory with negligible performance and
energy consumption penalties for existing applications [Yang et al. 2005]. This
implies that with CRAMES, the same hardware platform can easily support
new applications with larger datasets. This also implies that an embedded sys-
tem could be designed with less RAM and still support desired applications,
with some potential performance and energy consumption overheads. When
the system is under substantial memory pressure, PBPM and adaptive mem-
ory management minimize these overheads.

In order to evaluate the impact of using CRAMES to reduce physical RAM,
we artificially constrained the memory size of a Zaurus with a kernel module
that permanently reserves a certain amount of physical memory. The mem-
ory allocated to the kernel module cannot be swapped out and therefore is not
compressed by CRAMES. This allows a fair comparison. With reduced physical
RAM, we measured and compared the runtimes, power consumptions, and en-
ergy consumptions of four batch benchmarks, that is, three applications from
MediaBench [Lee et al.] (Adpcm, Jpeg, and Mpeg2) and a 512 by 512 matrix
multiplication application. Table III shows the performance numbers of bench-
marks running without compression, with LZO compression, and with PBPM
compression under different memory constraints. Note that adaptive memory
management was enabled for both LZO and PBPM to ensure a fair comparison.
In our experiments, each benchmark was executed five times; the average re-
sults are reported. The 90% confidence interval for each case ranges from 0.09%
to 19.87% of the reported values.

As shown in Table III, both LZO and PBPM impose only small power con-
sumption overheads on the applications. When the system memory is not re-
duced dramatically, the performance overheads of both compression algorithms
are insignificant. However, the performance difference between LZO and PBPM
becomes obvious when the system is under tight memory constraints. In partic-
ular, when application available RAM was reduced from 20MB to 8MB, without
CRAMES all benchmarks suffered from significant performance degradation;
the 512 by 512 matrix multiplication could not even execute due to memory con-
straints. However, with CRAMES, all benchmarks were able to execute with
only slight performance and energy consumption penalties. Compared to the
base case in which application available RAM is 20MB and CRAMES is not
used, PBPM compression results in an average performance penalty of 0.2%

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:26 • L. Yang et al.

Table III. Performance of CRAMES with PBPM and Adaptive Allocation

RAM Adpcm Jpeg Mpeg2 Matrix Mul.
(MB) w.o. LZO PBPM w.o. LZO PBPM w.o. LZO PBPM w.o. LZO PBPM

Execution Time (seconds)

8 4.83 1.69 1.43 0.71 0.26 0.23 79.35 80.30 77.96 n.a 39.26 38.68
9 3.69 1.35 1.26 0.44 0.21 0.21 76.80 76.83 74.04 n.a 37.40 38.24

10 1.41 1.34 1.36 0.23 0.21 0.21 79.06 76.93 75.32 59.11 39.56 37.18
11 1.37 1.40 1.40 0.26 0.25 0.21 80.57 76.81 76.83 44.44 38.42 42.65
12 1.37 1.31 1.32 0.24 0.21 0.19 76.79 76.94 76.95 41.72 38.73 43.96
20 1.31 1.30 1.30 0.23 0.21 0.22 76.60 76.77 76.76 43.02 41.41 42.97

Power Consumption (Watts)

8 2.13 2.13 2.13 2.15 2.16 2.15 2.41 2.41 2.51 n.a 2.26 2.29
9 2.10 2.10 2.13 2.15 2.02 2.07 2.41 2.40 2.50 n.a 2.26 2.29

10 2.09 2.10 2.09 2.00 1.99 2.04 2.39 2.40 2.48 2.24 2.25 2.29
11 2.12 2.09 2.13 2.05 2.04 2.07 2.40 2.40 2.50 2.26 2.25 2.29
12 2.09 2.13 2.11 2.03 2.05 2.10 2.40 2.41 2.55 2.25 2.25 2.29
20 2.11 2.09 2.18 2.15 2.02 2.24 2.42 2.43 2.57 2.28 2.27 2.29

Energy Consumption (Joules)

8 10.34 3.60 3.04 1.51 0.56 0.49 190.99 193.42 195.71 n.a 88.74 88.62
9 7.75 2.84 2.68 0.94 0.42 0.43 185.38 184.55 185.10 n.a 84.70 87.64

10 2.94 2.79 2.85 0.47 0.42 0.42 188.62 184.34 186.42 131.05 88.99 85.01
11 2.89 2.93 2.97 0.54 0.52 0.44 193.10 184.69 191.94 100.01 86.38 97.79
12 2.86 2.79 2.79 0.49 0.43 0.41 184.45 185.74 196.33 93.65 86.94 100.81
20 2.75 2.72 2.82 0.48 0.43 0.49 185.72 186.56 197.26 98.27 94.07 98.39

and a worst-case performance penalty of 9.2%. This represents a substantial
improvement over LZO, for which the average performance penalty is 9.5% and
the worst-case performance penalty can be as high as 29%.

Interestingly, we observe that when application available RAM was 20MB
and CRAMES was used, the performance of matrix multiplication was actu-
ally improved by 5% on average, comparing to the base case. We believe the
cause of the improved performance is as follows. Unlike the other three appli-
cations, the memory requirements of 512 by 512 matrix multiplication imposes
great memory pressure on the system. Without compression, to keep the avail-
able memory above a certain threshold, the kernel must reclaim memory from
buffer caches by either using clean pages or evicting dirty pages, which results
in significant performance overhead. However, CRAMES responds to reduced
memory by compressing pages with minimum overheads. Therefore, when the
matrix multiplication program is executing, compression keeps the free mem-
ory in the system high enough so that the kernel needs to do little reclamation
from buffer caches.

7. CONCLUSIONS

High-performance OS-controlled memory compression can assist embedded
system designers to optimize hardware design for typical software memory
requirements while also supporting applications with larger datasets. In this
article, we presented PBPM, an efficient compression algorithm for use in OS-
controlled memory compression. PBPM has compression ratios that are com-
petitive with existing algorithms used in online memory compression. However,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

High-Performance OS Controlled Online Memory Compression • 30:27

its performance is significantly better when system memory is under tight
constraints. We also presented an adaptive compressed memory management
scheme to prevent online memory compression deadlock, thereby further in-
creasing the amount of usable memory. Experimental results indicate that us-
ing these two techniques in our memory compression framework allows applica-
tions to execute with only slight penalties even when available RAM is reduced
to 40% of its original size. These benefits require no changes to applications or
hardware.

REFERENCES

BENINI, L., BRUNI, D., MACII, A., AND MACII, E. 2002. Hardware-Assisted data compression for
energy minimization in systems with embedded processors. In Proceedings of the Design, Au-

tomation and Test in Europe Conference.
BENINI, L., BRUNI, D., MACII, A., AND MACII, E. 2004. Memory energy minimization by data com-

pression: Algorithms, architectures and implementation. IEEE Trans. VLSI Syst. 12, 3, 255–267.
COMPRESSED CACHING. Compressed caching in Linux virtual memory.
http://linuxcompressed.sourceforge.net.

CORTES, T., BECERRA, Y., AND CERVERA, R. 2000. Swap compression: Resurrecting old ideas. Softw.

Pract. Exper. J. 30, 567–587.
DOUGLIS, F. 1993. The compression cache: Using on-line compression to extend physical memory.

In Proceedings of the USENIX Conference. 519–529.
KJELSO, M., GOOCH, M., AND JONES, S. 1996. Design and performance of a main memory hardware

data compressor. In Proceedings of the Euromicro Conference. 423–430.
KJELSO, M., GOOCH, M., AND JONES, S. 1999. Performance evaluation of computer architectures

with main memory data compression. J. Syst. Archit. 45, 571–590.
LEE, C., POTKONJAK, M., AND SMITH, W. H. M. Mediabench: A tool for evaluating and synthesizing

multimedia and communications systems. http://cares.icsl.ucla.edu/MediaBench.
LEFURGY, C., PICCININNI, E., AND MUDGE, T. N. 2000. Reducing code size with run-time decompres-

sion. In Proceedings of the International Symposium on High-Performance Computer Architec-

ture. 218.
LEKATSAS, H., HENKEL, J., AND WOLF, W. 2000. Code compression for low power embedded system

design. In Proceedings of the Design Automation Conference. 294–299.
LEON-GARCIA, A. 1989. Probability and Random Processes for Electrical Engineering. Addison-

Wesley.
MOORE, K. E. 2003. Compressing memory management in a device. U.S. patent, Hewlett-Packard

Development Company, LP. May.
OBERHUMER, M. F. LZO real-time data compression library.
http://www.oberhumer.com/opensource/lzo.

RIZZO, L. 1997. A very fast algorithm for RAM compression. Oper. Syst. Rev. 31, 2, 36–45.
ROY, S., KUMAR, R., AND PRVULOVIC, M. 2001. Improving system performance with compressed

memory. In Proceedings of the Parallel and Distributed Processing Symposium.
RUSSINOVICH, M. AND COGSWELL, B. 1996. RAM compression analysis.
http://ftp.uni-mannheim.de/info/OReilly/windows/win95.update/model.html.

SHAW, C., CHATTERJI, D., SEN, P. M. S., ROY, B. N., AND CHAUDURI, P. P. 2003. A pipeline architecture
for encompression (encryption + compression) technology. In Proceedings of the International

Conference on VLSI Design.
TREMAINE, B., FRANASZEK, P. A., ROBINSON, J. T., SCHULZ, C. O., SMITH, T. B., WAZLOWSKI, M., AND BLAND,

P. M. 2001. IBM memory expansion technology. IBM J. Res. Devel. 45, 2, 271–285.
TUDUCE, I. C. AND GROSS, T. 2005. Adaptive main memory compression. In Proceedings of the

USENIX Conference 237–250.
VAHALIA, U. 1996. UNIX Internals: The New Frontiers. Prentice-Hall, NJ.
WILSON, P. R., KAPLAN, S. F., AND SMARAGDAKIS, Y. 1999. The case for compressed caching in virtual

memory systems. In Proceedings of the USENIX Conference. 101–116.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

30:28 • L. Yang et al.

XU, X. H., CLARKE, C. T., AND JONES, S. R. 2004. High performance code compression architec-
ture for the embedded ARM/Thumb processor. In Proceedings of the Conference on Computing

Frontiers. 451–456.
YANG, L., DICK, R. P., LEKATSAS, H., AND CHAKRADHAR, S. 2005. CRAMES: Compressed RAM for

embedded systems. In Proceedings of the International Conference Hardware/Software Codesign

and System Synthesis.
YANG, L., LEKATSAS, H., AND DICK, R. P. 2006. High-performance operating system controlled mem-

ory compression. In Proceedings of the Design Automation Conference. 701–704.
ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Trans.

Inf. Theory 23, 3, 337–343.

Received February 2007; revised July 2007; accepted July 2008

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 30, Publication date: March 2010.

