
Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Environment

C. L. L IU

Project MAC, Massachusetts Institute of Technology

AND

JAMES W. LAYLAND

Jet Propulsion Laboratory, California Institute of Technology

ABSTR.~kCT. The problem of multiprogram scheduling on a single processor is studied from the
viewpoint of the characteristics peculiar to the program functions that need guaranteed ser-
vice. I t is shown that an optimum fixed priority scheduler possesses an upper bound to proces-
sor utihzation which may be as low as 70 percent for large task sets. I t is also shown that full
processor utilization can be achieved by dynamically assigning priorities on the basis of their
current deadhnes. A combination of these two scheduling techmques is also discussed.

KEY WORDS AND PHRASES : real-time multiprogramming, scheduling, muttiprogram scheduling,
dynamic scheduling, priority assignment, processor utdlzation, deadline driven scheduling

CR CATEGORIES; 3 .80 , 3 .82 , 3 .83 , 4 .32

I. Introduction

T h e use of compu te r s for cont ro l a n d mon i to r ing of indus t r i a l processes has ex-
p a n d e d g rea t ly in recen t years , and will p r o b a b l y expand even more d r a m a t i c a l l y
in t he near future . Often, t he c o m p u t e r used in such an app l i ca t ion is sha red be-
tween a ce r ta in n u m b e r of t ime-c r i t i ca l cont ro l and m o n i t o r funct ions and a non-
t ime-c r i t i ca l b a t c h process ing job s t r eam. I n o the r ins ta l l a t ions , however , no
non- t ime-c r i t i ca l jobs exist , and efficient use of the c o m p u t e r can on ly be ach ieved
b y a careful schedul ing of t he t ime-c r i t i ca l cont ro l and m o n i t o r funct ions themselves .
This l a t t e r group migh t be t e r m e d " p u r e process con t ro l " a n d p rov ides the back-
g round for t he combina to r i c schedul ing ana lyses p resen ted in th is pape r . Two

Copyright © 1973, Association for Computing Machinery, Inc. General permission to re-
publish, but not for profit, all or part of this material is granted, provided that reference is
made to this publication, to its date of issue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery.

This paper presents the results of one phase of research carried out at the Jet Propulsion Lab-
oratory, Califorma Insti tute of Technology, under Contract No. NAS-7-100, sponsored by the
National Aeronautics and Space Administration.

Authors' present addresses: C. L. Liu, Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL 61801; James W. Layland, Jet Propulsion Laboratory,
California Inst i tute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91103.

Journal of the Association for Computing Machinery, Vo|, 20, No. 1, January 1973, pp. 46-61.

Scheduling Algorithms for Multiprogramming 47

scheduling algorithms for this type of programming are studied; both are priority
driven and preemptive; meaning that the processing of any task is interrupted by
a request for any higher priority task. The first algorithm studied uses a fixed
priority assignment and can achieve processor utilization on the order of 70 percent
or more. The second scheduling algorithm can achieve full processor utilization by
means of a dynamic assignment of priorities. A combination of these two algo-
rithms is also discussed.

2. Background

A process control computer performs one or more control and monitoring functions.
The pointing of an antenna to track a spacecraft in its orbit is one example of such
functions. Each function to be performed has associated with it a set of one or
more tasks. Some of these tasks are executed in response to events in the equipment
controlled or monitored by the computer. The remainder are executed in response to
events in other tasks. None of the tasks may be executed before the event which
requests it occurs. Each of the tasks must be completed before some fixed time has
elapsed following the request for it. Service within this span of time must be guaran-
teed, categorizing the environment as "hard-real-time" [1] in contrast to "soft-
real-time" where a statistical distribution of response times is acceptable.

Much of the available literature on multiprogramming deals with the statistical
analysis of commercial time-sharing systems ([2] contains an extensive bibliography).
Another subset deals with the more interesting aspects of scheduling a batch-
processing facility or a mixed batch-time-sharing facility, usually in a multiple
processor configuration [3-8]. A few papers directly attack the problems of "hard-
real-time" programming. Manacher [1] derives an algorithm for the generation of
task schedules in a hard-real-time environment, but his results are restricted to the
somewhat unrealistic situation of only one request time for all tasks, even though
multiple deadlines are considered. Lampson [9] discusses the software scheduling
problem in general terms and presents a set of ALGOL multiprogramming procedures
which could be software-implemented or designed into a special purpose scheduler.
For the allocation of resources and for the assignment of priorities and time slots,
he proposes a program which computes estimated response time distributions based
on the timing information supplied for programs needing guaranteed service. He
does not, however, describe the algorithms which such a program must use.

The text by Martin [10] depicts the range of systems which are considered to be
"real-time" and discusses in an orderly fashion the problems which are encountered
in programming them. Martin's description of the tight engineering management
control that must be maintained over real-time software development is empha-
tically echoed in a paper by Jirauch [11] on automatic checkout system software.
These discussions serve to emphasize the need for a more systematic approach to
software design than is currently in use.

3. The Environment

To obtain any analytical results about program behavior in a hard-real-time en-
vironment, certain assumptions must be made about that environment. Not all of

Journal of the Assomation for Computing Machinery, Vol. 20, No. I, January 1973

48 O. L. L IU AND J. W. LAYLAND

these assumptions are absolutely necessary, and the effects of relaxing them will be
discussed in a later section.

(A1) The requests for all tasks for which hard deadlines exist are periodic, with
constant interval between requests.

(A2) Deadlines consist of run-ability constraints only--i.e, each task must be
completed before the next request for it occurs.

(A3) The tasks are independent in that requests for a certain task do not depend
on the initiation or the completion of requests for other tasks.

(A4) Run-time for each task is constant for that task and does not vary with
time. Run-time here refers to the time wbich is taken by a processor to execute the
task without interruption.

(A5) Any nonperiodic tasks in the system are special; they are initialization or
failure-recovery routines; they displace periodic tasks while they themselves are
being run, and do not themselves have hard, critical deadlines.

Assumption (A1) contrasts with the opinion of Martin [2], but appears to be valid
for pure process control. Assumption (A2) eliminates queuing problems for the in-
dividual tasks. For assumption (A2) to hold, a small but possibly significant amount
of buffering hardware must exist for each peripheral function. Any control loops
closed within the computer must be designed to allow at least an extra unit sample
delay. Note that assumption (A3) does not exclude the situation in which the
occurrence of a task re can only follow a certain (fixed) number, say h r, of occur-
rences of a task r~. Such a situation can be modeled by choosing the periods of tasks
r~ and re so that the period of re is N times the period of T, and the Nth request for
r~ will coincide with the 1st request for re and so on. The run-time in assumption
(A4) can be interpreted as the maximum processing time for a task. In this way the
bookkeeping time necessary to request a successor and the costs of preemptions can
be taken into account. Because of the existence of large main memories out of which
programs are executed and the overlapping of transfers between main and auxiliary
storage and program execution in modern computer systems, assumption (A4)
should be a good approximation even if it is not exact. These assumptions allow the
complete characterization of a task by two numbers: its request period and its
run-time. Unless stated otherwise, throughout this paper we shall use r l , T2, • • • , r,~
to denote m periodic tasks, with their request periods being T1, T~, . . . , T,~ and
their run-times being C1, C2, . . . , Cm, respectively. The request rate of a task is
defined to be the reciprocal of its request period.

A scheduling algorithm is a set of rules that determine the task to be executed at a
particular moment. The scheduling algorithms to be studied in this paper are pre-
emptive and priority driven ones. This means that whenever there is a request for a
task that is of higher priority than the one currently being executed, the running
task is immediately interrupted and the newly requested task is started. Thus the
specification of such algorithms amounts to the specification of the method of
assigning priorities to tasks. A scheduling algorithm is said to be static if priorities are
assigned to tasks once and for all. A static scheduling algorithm is also called a fixed
priority scheduling algorithm. A scheduling algorithm is said to be dynamic if priori-
ties of tasks might change from request to request. A scheduling algorithm is said to
be a mixed scheduling algorithm if the priorities of some of the tasks are fixed yet the
priorities of the remaining tasks vary from request to request.

Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973

Scheduling Algorithms for Multiprogramming 49

4. A Fixed Priority Scheduling Algorithm

In this section we derive a rule for priority assignment tha t yields an opt imum
static scheduling algorithm. An important concept in determining this rule is tha t of
the critical instant for a task. The deadline of a request for a task is defined to be the
t ime of the next request for the same task. For a set of tasks scheduled according to
some scheduling algorithm, we say tha t an overflow occurs at t ime t if t is the deadline
of an unfulfilled request. For a given set of tasks, a scheduling algorithm is feasible if
the tasks are scheduled so tha t no overflow ever occurs. We define the response time
of a request for a certain task to be the t ime span between the request and the end of
the response to tha t request. A critical instant for a task is defined to be an instant at
which a request for that task will have the largest response time. A critical time zone
for a task is the time interval between a critical instant and the end of the response
to the corresponding request of the task. We have the following theorem.

THEOREM 1. A critical instant for any task occurs whenever the task is requested
simultaneously with requests for all higher priority tasks.

PROOF. Let ~'i, ~'2, • • • , Tm denote a set of priority-ordered tasks with r,~ being
the task with the lowest priority. Consider a particular request for ~',~ tha t occurs at
tl. Suppose tha t between tl and tl -~- Tm , the t ime at which the subsequent request
of rm occurs, requests for task T~, i ~ m, occur at t2, t2 ~ T~, t2 "t- 2T~, • • • , t2 -P
kT, as illustrated in Figure 1. Clearly, the preemption of T~ by r , will cause a certain
amount of delay in the completion of the request for r,~ tha t occurred at t l , unless
the request for ~-,~ is completed before t2. Moreover, from Figure 1 we see imme-
diately tha t advancing the request t ime t2 will not speed up the completion of ~-,~.
The completion t ime of ~'m is either unchanged or delayed by such advancement.
Consequently, the delay in the completion of r~ is largest when t~ coincides with tl •

Repeat ing the argument for all T~, i = 2, • • • , m -- 1, we prove the theorem.
One of the values of this result is tha t a simple direct calculation can determine

whether or not a given priority assignment will yield a feasible scheduling algorithm.
Specifically, if the requests for all tasks at their critical instants are fulfilled before
their respective deadlines, then the scheduling algorithm is feasible. As an example,
consider a set of two tasks r~ and T2 with T1 = 2, T2 = 5, and C1 ~- 1, C2 -- 1. I f we
let T~ be the higher priority task, then from Figure 2 (a) we see tha t such a priority
assignment is feasible. Moreover, the value of C2 can be increased at most to 2 but
not further as illustrated in Figure 2 (b). On the other hand, if we let T2 be the higher
priority task, then neither of the values of C~ and C2 can be increased beyond 1 as
illustrated in Figure 2 (c).

t 2 t2+C i t2÷ Ti t 2,.I. ZT i t 2 + k T i

FIG. 1. E x e c u t i o n of r, be tween reques t s for r~

t,+ T m

I
I
I
I
I t2+ (k + l) T !
I

t

Journal of the Association for Computing Machinery, Vol. 20, No. I, January 1973

50 C. L. LIU AND J. W. LAYLAND

T,
I 2 3 4 5

Tzl I~I l

\ 2
v

C R I T I C A L T I M £ ZONE

(o)

~ t T,I
I 2 '5 4 5

Tzl l ~ l l ~ I = l
5

\ /
v

CRITICAL TIME ZONE

(b)

72 ~ l I ~ l
5

T~ (P 7 ~

2
/

v
CRITICAL TIME ZONE

(c)
F*G. 2. Schedules for two tasks

t

The result in Theorem 1 also suggests a priority assignment that is optimum in the
sense that will be stated in Theorem 2. Let us motivate the general result by con-
sidering the case of scheduling two tasks 72 and ~'~. Let T1 and T~ be the request
periods of the tasks, with T~ < Te. If we let r~ be the higher priority task, then,
according to Theorem 1, the following inequality must be satisfied :~' 2

[-T~/Ti_J Ci + C~ _< T~. (1)

If we let r2 be the higher priority task, then, the following inequality must be satis-
fied:

Cl + C2 _< T,. (2)

Since

LT2/T,_] C~ + LT~/TLI C2 _< LT2/T~.j T~ _< T2,

(2) implies (1). In other words, whenever the T, < T2 and C,, C2 are such that the
task schedule is feasible with 75 at higher priority than n , it is also feasible with n
at higher priority than 75, but the opposite is not true. Thus we should assign higher
priority to n and lower priority to vs. Hence, more generally, it seems that a
"reasonable" rule of priority assignment is to assign priorities to tasks according to
their request rates, independent of their run-times. Specifically, tasks with higher
request rates will have higher priorities. Such an assignment of priorities will be
known as the rate-monotonic priority assignment. As it turns out, such a priority
assignment is optimum in the sense that no other fixed priority assignment rule can
schedule a task set which cannot be scheduled by the rate-monotonic priority
assignment.

* I t should be pointed out t h a t (1) is necessary bu t no t sufficient to guaran tee the feasibi l i ty of
the pr ior i ty ass ignment .

L x ~ denotes the largest in teger smaller t h a n or equal to x. [-x'~ denotes the smallest in-
teger larger t h a n or equal to x.

Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973

Scheduling Algorithms for Multiprogramming 51

THEOREM 2. I f a feasible priority assignment exists for some task set, the rate-
monotonic priority assignment is feasible for that task set.

PROOF. Let r l , r2, " • , rm be a set of m tasks with a certain feasible priority
assignment. Let r~ and re be two tasks of adjacent priorities in such an assignment
with r , being the higher priority one. Suppose that T~ > T~. Let us interchange the
priorities of r~ and re . I t is not difficult to see that the resultant priority assignment
is still feasible. Since the rate-monotonic priority assignment can be obtained from
any priority ordering by a sequence of pairwise priority reorderings as above, we
prove the theorem.

5. Achievable Processor Utilization

At this point, the tools are available to determine a least upper bound to processor
utilization in fixed priority systems. We define the (processor) utilization factor to be
the fraction of processor time spent in the execution of the task set. In other words,
the utilization factor is equal to one minus the fraction of idle processor time. Since
CjT~ is the fraction of processor time spent in executing task r , , for m tasks, the
utilization factor is:

V = ~ (C,/TO.
~ 1

Although the processor utilization factor can be improved by increasing the values of
the C~'s or by decreasing the values of the T~'s it is upper bounded by the require-
ment tha t all tasks satisfy their deadlines at their critical instants. I t is clearly
uninteresting to ask how small the processor utilization factor can be. However, it is
meaningful to ask how large the processor utilization factor can be. Let us be precise
about what we mean. Corresponding to a priority assignment, a set of tasks is said to
fully utilize the processor if the priority assignment is feasible for the set and if an
increase in the run-time of any of the tasks in the set will make the priority assign-
ment infeasible. For a given fixed priority scheduling algorithm, the least upper
bound of the utilization factor is the minimum of the utilization factors over all sets
of tasks that fully utilize the processor. For all task sets whose processor utilization
factor is below this bound, there exists a fixed priority assignment which is feasible.
On the other hand, utilization above this bound can only be achieved if the T, of the
tasks are suitably related.

Since the rate-monotonic priority assignment is optimum, the utilization factor
achieved by the rate-monontonic priority assignment for a given task set is greater
than or equal to the utilization factor for any other priority assignment for that task
set. Thus, the least upper bound to be determined is the infimum of the utilization
factors corresponding to the rate-monotonic priority assignment over all possible
request periods and run-times for the tasks. The bound is first determined for two
tasks, then extended for an arbitrary number of tasks.

THEOREM 3. For a set of two tasks with fixed priority assignment, the least upper
bound to the processor utilization factor is U = 2 (2 ~ - 1).

PROOF. Let rl and r2 be two tasks with their periods being T1 and T2 and their
run-times being C1 and C~, respectively. Assume that T2 > T1. According to the
rate-monotonic priority assignment, ri has higher priority than r2. In a critical t ime

Journal of the Association for Computing Machlnery, Vol, 20, No. I, January 1973

5 2 C . L . LIU AND J. W. LAYLAND

zone of ~2, there are FT,~T1"-] requests for ~1 • Let us now adjust C2 to fully utilize
the available processor time within the critical t ime zone. Two cases occur:

Case 1. The run-time C~ is short enough that all requests for Zl within the critical
time zone of T~ are completed before the second z~ request. Tha t is,

C1 _< T~ - Tl t.TjTi.] .

Thus, the largest possible value of C~ is

C2 = T~ -- Cl VT~/T , -1 .

The corresponding processor utilization factor is

U = 1 + Ci[(1/T1) - (I/T2) V T J T i - I].

In this case, the processor utilization factor U is monotonically decreasing in C1.
Case 2. The execution of the VT2/T~"lth request for t~ overlaps the second

reque st for T2 • In this case

C1 _> T~ -- T, LT~/Ti.J.

I t follows that the largest possible value of C2 is

C~ = -C1 t.TJTi.J + T1 LTdT1J

and the corresponding utilization factor is

U = (T~/T2) LT~/T~..J + C ~ [(1 / T ~) - (1/T2) t .T2/Ti .J].

In this case, U is monotonically increasing in C1.
The minimum of U clearly occurs at the boundary between these two cases. Tha t

is, for

C1 = Ts- T1 LT~/Ti.J

we have

U = I - (T~IT~)[rTjT17 - (TdTi)iI(T~IT,) -- t-T~ITL_I 1. (3)

For notational convenience, 8 let I = [-T2/Ti_J and f = { T~/T1}. Equation (3) can
be writ ten as

U = 1 --f(l -- f)/ (l + f).

Since U is monotonic increasing with I , minimum U occurs at the smallest possible
value of I , namely, I = 1. Minimizing U over f, we determine tha t a t f = 2 ½ - 1,
U attains its minimum value which is

U = 2 (2 ~ - 1) ~ 0 . 8 3 .

This is the relation we desired to prove.
I t should be noted that the utilization factor becomes i if f = 0, i.e. if the request

period for the lower priority task is a multiple of the other task's request period.
We now derive the corresponding bound for an arbi t rary number of tasks. At

this moment , let us restrict our discussion to the case in which the ratio between
any two request periods is less than 2.

a { T1 /T~} denotes (T~ /T~) - L T 2 / T , . J , i .e . the fractional par t of T ~ / T i .

Journal of the Associahon for Computing Machinery, Vol 20, No, I, January 1973

Scheduling Algorithms for M ultiprogramming 53

THEOREM 4. For a set of m tasks with f ixed priority order, and the restriction that
the ratio between any two request periods is less than 2, the least upper bound to the
processor utilization factor is U = m (21/m - 1).

PROOF. L e t r l , r 2 , . . . , r , , d e n o t e t h e m t a s k s . L e t C 1 , C 2 , . . . ,C~ be the
run-times of the tasks tha t fully utilize the processor and minimize the processor
uti l ization factor. Assume tha t T~ > Tin-1 > • • • > T2 > T1 • Let U denote the
processor uti l ization factor. We wish to show tha t

Suppose tha t

Let

C, = T2 - TI.

C1 = T 2 - T, + 4 , A > O.

C,' = T~- T i

c~' = c2+~
c~' =c~ \

/
C'~_, = Cm_,

C,' = C..

Clearly, C,', C2', • • • , C'~_,, Cm' also fully utilize the processor. Let U' denote the
corresponding uti l ization factor. We have

U - V ' = (A /T~) -- (A/T2) > 0.

Alternat ively, suppose tha t

C, = T 2 - T i - A,

Let

4 > 0 .

C1" = T2 - T1
C2" = C2 - 2A
C3 tt ~- C~

Cm--1 = C,,-1

C,~" = C , , .

Again, C1", C2", " " , C~_1, C~" fully utilize the processor. Let U" denote the
corresponding util ization factor. We have

U - U" = - (~ / T 1) + (2A/T2) > 0.

Therefore, if indeed U is the minimum util ization factor, then

C1 = T2 - T1

In a similar way, we can show tha t

C2 = T3- T2
C3 = T4- T3

C m-1 =Tm- T.-i.

Journal of the Assoexation for Computing Machinery, Vol. 20, No. I, January 1973

5 4 C. L. L I U A N D J . W . L A Y L A N D

C o n s e q u e n t l y ,

Cm = T,~ - 2(C1 + C2 + . . . -t- C~_~).

T o s i m p l i f y t h e n o t a t i o n , le t

T h u s

g, = (Tin -- T ,) / T , , i = 1, 2, . . . , m.

C, = T,+i - T , = g , T , - g , + l T , + l , i = 1, 2 , . . . , m - 1

a n d

C~ = T,~ - 2glT1

a n d f inal ly ,

g = (C~/T~) = ~ [g, - g~+i(T~+~/T,)] .% 1 -- 2 g ~ (T # T , n)

m - - 1

= ~ [g~ -- g~+,(g~ T 1) / (g , + l + 1)] + 1 -- 2[gl/(g~ -t- 1)]

m--1

= 1 --t- g~[(gl -- 1) / (g , -Jr 1)] + ~ g,[(g , -- g , _ ,) / (g , -b 1)]. (4)
~ 2

J u s t as in t h e t w o - t a s k case, t he u t i l i z a t i o n b o u n d becomes 1 if g, = 0, for a l l i .
To f ind t h e l eas t u p p e r b o u n d to t h e u t i l i z a t i o n f ac to r , eq. (4) m u s t be min i -

m i z e d over t h e g , ' s . Th i s can be done b y s e t t i n g t h e f i rs t d e r i v a t i v e of U w i t h
r e s p e c t to each of t h e g~'s equa l to zero, a n d so lv ing t h e r e s u l t a n t d i f ference e q u a -
t i ons :

OU/Og, = (g7 + 2g~ - g~- l) / (g~ + 1) 2 - (g~+,)/(g~+, W 1) = 0,
j -- 1 , 2 , . . . , m - 1. (5)

T h e def in i t ion go = 1 has been a d o p t e d for conven ience .
T h e genera l so lu t i on to eqs. (5) can be shown to be

g~ = 2 (m-~)/m -- 1, j = 0, 1, " " , m -- 1. (6)

I t fol lows t h a t

U = m (2 1 / ~ - 1) ,

wh ich is t h e r e l a t i o n we des i r ed to p rove .
F o r m = 2, eq. (6) is t h e s ame b o u n d as was f o u n d d i r e c t l y for t h e se t of t w o

t a s k s w i th no r e s t r i c t i o n s on t h e r e q u e s t per iods . F o r m = 3, eq. (6) becomes

U = 3(21/3) - 1) - ~ 0.78

a n d for l a rge m, U - ~ In 2.
T h e r e s t r i c t i o n t h a t t h e l a rges t r a t i o b e t w e e n r e q u e s t pe r iod less t h a n 2 in

T h e o r e m 4 can a c t u a l l y be r e m o v e d , which we s t a t e as :
THEOREM 5. For a set of m tasks w i th f i xed pr ior i t y order, the least u p p e r bound

to processor u t i l i za t ion is U = m (2 i /m - - 1).
PROOF. L e t T~, r2 , • • " , r~ , • • • ,Tm be a se t of m t a s k s t h a t fu l ly u t i l i ze t h e

processor . L e t U d e n o t e t he c o r r e s p o n d i n g u t i l i z a t i o n fac to r . S u p p o s e t h a t for

Journal of the Assoclatmn for Computing Machinery, Vol 20, No 1, January 1973

Scheduling Algorithms for M ultipr ogramming 55

somei , L T m / T J > 1. To be specific, l e t T ~ = q T , + r , q > l a n d r > 0. Let
us replace the task r~ by a task r (such tha t T; = qT~ and C~' = C~, and increase
C~ by the amount needed to again fully utilize the processor. This increase is at
most C~ (q - 1), the t ime within the critical t ime zone of r,~ occupied by r , but
not by r, ' . Let U' denote the utilization factor of such a set of tasks. We have

o r

U' < U -t- [(q - 1)C~/T,,] + (C,/T,') - (C,/T,)

U' < U + C,(q - 1)[1/(qT, + r) - (1/qT,)].

Since q - 1 > 0 and [1/(qT~ ~- r)] - (1/qT~) < O, U' _< U. Therefore we con-
clude tha t in determining the least upper bound of the processor utilization factor,
we need only consider task sets in which the ratio between any two request periods
is less than 2. The theorem thus follows directly from Theorem 4.

6. Relaxing the Utilization Bound

The preceding section showed tha t the least upper bound imposed upon proces-
sor utilization by the requirement for real-time guaranteed service can approach
In(2) for large task sets. I t is desirable to find ways to improve this situation,
since the practical costs of switching between tasks must still be counted. One of
the simplest ways of making the utilization bound equal to 1 is to make { T,~/T~t =
0 for i = 1, 2, • • • , m - 1. Since this cannot ahvays be done, an al ternat ive solu-
tion is to buffer task rm and perhaps several of the lower priori ty tasks and relax
their hard deadlines. Supposing tha t the entire task set has a finite period and tha t
the buffered tasks are executed in some reasonable fashion--e.g, in a first come
first served fashion-- then the maximum delay times and amount of buffering
required can be computed under the assumptions of this paper.

A bet ter solution is to assign task priorities in some dynamic fashion. The re-
maining sections of this paper are devoted to one part icular method of dynamic
priori ty assignment. This method is opt imum in the sense tha t if a set of tasks
can be scheduled by some priori ty assignment, it can also be scheduled by this
method. In other words, the least upper bound on the processor utilization factor
is uniformly 100 percent.

7. The Deadline Driven Scheduling Algorithm

We turn now to s tudy a dynamic scheduling algorithm which we call the deadline
driven scheduling algorithm. Using this algorithm, priorities are assigned to tasks
according to the deadlines of their current requests. A task will be assigned the
highest priori ty if the deadline of its current request is the nearest, and will be
assigned the lowest priority if the deadline of its current request is the furthest.
At any instant, the task with the highest priority and yet unfulfilled request will
be executed. Such a method of assigning priorities to the tasks is a dynamic one, in
contrast to a static assignment in which priorities of tasks do not change with
time. We want now to establish a necessary and sufficient condition for the feasi-
bility of the deadline driven scheduling algorithm.

Journal of the Association for Computing Machinery, VoL 20, No 1, January 1973

5 6 C . L . L I U A N D J . W . L A Y L A N D

0
I

i
i
I

1
I

1
I
I
I
I
I

I
I

FiG. 3.

PROCESSOR
IDLE-PERIOD I t - ~ 2

,11 Q

' tl SS fl i
I
I c

L~- s n
I
I

• 1
• I
• I

I
I it m

Io;
o

Processing overflow following a processor idle

r 3
OVERFLOW

REQUESTS FOR
TASK I

-REQUESTS FOR
TASK 2

REQUESTS FOR
TASK 5

REQUESTS FOR
TASK m

period

THEOREM 6. When the deadline driven scheduling algorithm is used to schedule a
set of tasks on a processor, there is no processor idle time prior to an overflow.

PROOF. Suppose tha t there is processor idle t ime prior to an overflow. To be
specific, s tart ing at t ime 0, let t3 denote the t ime at which an overflow occurs, and
let t l , t~ denote the beginning and the end, respectively, of the processor idle period
closest to t8 (i.e. there is no processor idle t ime between t2 and t3 .) The si tuation is
i l lustrated in Figure 3, where the times of the first request for each of the m tasks
after the processor idle period [tl, t2] are denoted a,b, • • • , m.

Suppose tha t from t2 on we move all requests of task 1 up so tha t a will coincide
with t~. Since there was no processor idle t ime between t2 and t~, there will be no
processor idle t ime after a is moved up. Moreover, an overflow will occur either at
or before t3. Repeating the same argument for all other tasks, we conclude tha t if
all tasks are initiated at t~, there will be an overflow with no processor idle period
prior to it. However, this is a contradict ion to the assumption tha t s tart ing at
t ime 0 there is a processor idle period to an overflow. This proves Theorem 6.

Theorem 6 will now be used to establish the following theorem:
THEOREM 7. For a given set of m tasks, the deadline driven scheduling algorithm

is feasible i f and only i f

(Cl/T~) zr (C2/T ,) + . . . + (C,~/Tm) _< 1.

PROOF. To show the necessity, the total demand of computat ion t ime by all
tasks between t = 0 and t = TiT2 • • • T ~ , may be calculated to be

(T~T3 . . . T,~)C1 + (TiT3 . . . TIn)Ca + . . . + (T1T2 . . . Tm_i)C~.

If the total demand exceeds the available processor time, i.e.

(T~T3 . . . T~)C~ + (TIT3 . . . T~)C~
+ . . . + (T 1 T 2 . . . T~_i)C,~ > T ~ T ~ . . . Tm (7)

o r

(C, /T1) + (C J T ~) + . . . + (C,~/T,~) > 1,

there is clearly no feasible scheduling algorithm.
To show the sufficiency, assume tha t the condition

(C , / T ,) + (C J T 2) + . . . + (C~ /T~) ~ 1

Journal of the Assoclatlon for Computing Machinery, Vol. 20, No. I, January 1973

Scheduling Algorithms for Multiprogramming 57

Ra2

(3 I

II

ma3

bl
n

B ~ ~ b2

Eb3

FIG. 4. Processing overflow at time T

L

is sa t i s f ied and y e t t he s chedu l ing a l g o r i t h m is n o t feas ib le . T h a t is, t h e r e is an
overf low b e t w e e n t = 0 a n d t = T1T2 • • • T m . M o r e o v e r , a c c o r d i n g to T h e o r e m 6
t h e r e is a t = T (0 < T < T1T2 . . . Tin) a t which t h e r e is an over f low wi th no
p rocessor id le t i m e b e t w e e n t = 0 a n d t = T. To be specific, le t a l , a2 , . . . ,
b~, bs , • • • , d e n o t e t he r eques t t imes of t he m t a s k s i m m e d i a t e l y p r io r to T, whe re
al , a2 , • • • a re t h e r e q u e s t t imes of t a s k s wi th dead l i ne s s t T, a n d b , , b2, • • • a r e
t h e r eques t t i m e s of t a s k s w i th dead l i ne s b e y o n d T. Th i s is i l l u s t r a t e d in F i g u r e 4.

T w o cases m u s t be examined .
Case 1. N o n e of t h e c o m p u t a t i o n s r e q u e s t e d a t b , , b2, . . • was c a r r i e d o u t

before T. I n th i s case, t h e t o t a l d e m a n d of c o m p u t a t i o n t i m e b e t w e e n 0 a n d T is

LT/Ti .J C1 + "LT/T~.J C2 + " " + LT/T~.J C~.

Since t h e r e is no p rocesso r id le pe r iod ,

LT/Ti.J Ci + LT/T~J C2 + "" LT/T~_I C~ > T.

Also, s ince x _> Lx.J for al l x,

(T/T1)C1 + (T/T2)C2 + . . . + (T/T,~)C,~ > T

a n d

(Cl/T~) + (C~/T2) + . . . + (Cm/T~) > 1,

which is a c o n t r a d i c t i o n to (7).
Case 2. Some of t h e c o m p u t a t i o n s r e q u e s t e d a t b~, b2, . . . were ca r r i ed o u t

before T. S ince an overf low occurs a t T, t h e r e m u s t exis t a p o i n t T ' such t h a t none
of t he r eques t s a t b~, b2, • • • was ca r r i ed ou t w i th in t h e i n t e r v a l T ' < t < T. I n
o t h e r words , w i t h i n T ' < t < T, on ly those r eques t s w i t h dead l i ne s s t or be fo re T
wil l he execu ted , as i l l u s t r a t e d in F i g u r e 5. M o r e o v e r , t h e f ac t t h a t one or m o r e of
t h e t a s k s h a v i n g r eques t s a t t h e b, 's is e x e c u t e d un t i l t = T t m e a n s t h a t al l t hose
r eques t s i n i t i a t e d be fore T ' w i th dead l ines a t or before T h a v e been fulf i l led be fore
T t. There fo re , t h e t o t a l d e m a n d of p rocessor t i m e w i t h i n T ~ < t _< T is less t h a n or
equa l to

Journal of the AssociaUon for Computing Machinery, Vol 20, No. I, January 1973

5 8 C. L. LIU AND J . "W. LAYLAND

Fro. 5.

r I

o I

R

~1 a2

~a3

l

I I
I
I I
I ~ b3 I L
1 i I

l~b'l
I
l

h

REQUESTS WITH DEADLINES AT % AND o 3
WERE FULFILLED BEFORE T'

P r o c e s s i n g ove r f l ow a t t i m e T w i t h o u t e x e c u t i o n of {b,} f o l l o w i n g T'

L(T- T')/TiJ C~ + L(T- T')/T~_J C2 +... +

T h a t an overflow occurs at T means tha t

L(T - T')/T~_I C~ + L(T - T')T2J C2 +... +

L(T - T ') / T , J C,,.

L (T - T')/TmJ C,,,
> T - T',

which implies again

(C1/T1) +-5 (C2/T2) + . . .--5 (Cm/Tm) > 1,

and which is a contradict ion to (7). This proves the theorem.
As was pointed out above, the deadline driven scheduling algorithm is opt imum

in the sense tha t if a set of tasks can be scheduled by any algorithm, it can be
scheduled by the deadline driven scheduling algorithm.

8. A Mixed Scheduling Algorithm

In this section we investigate a class of scheduling algorithms which are combina-
tions of the rate-monotonic scheduling algorithm and the deadline driven schedul-
ing algorithm. We call an algori thm in this class a mixed scheduling algorithm.
The s tudy of the mixed scheduling algorithms is mot iva ted by the observation
tha t the in ter rupt hardware of present day computers acts as a fixed priori ty
scheduler and does not appear to be compatible with a hardware dynamic sched-
uler. On the other hand, the cost of implementing a software scheduler for the
slower paced tasks is not significantly increased if these tasks are deadline driven
instead of having a fixed priori ty assignment. To be specific, let tasks 1, 2, • • • , k,
the k tasks of shortest periods, be scheduled according to the fixed priori ty rate-
monotonic scheduling algorithm, and let the remaining tasks, tasks k + 1,
k + 2, • • • , m, be scheduled according to the deadline driven scheduling algorithm
when the processor is not occupied by tasks 1, 2, • • • , k.

Let a (t) be a nondecreasing function of t. We say that a (1) is sublinear if for all

Journal of the Association for Computing Machinery, Vol 20, No 1, January 1973

Scheduling Algorithms for Mulliprogramming 59

t and all T

a(T) < a(t + T) - a(t).

The availabi l i ty function of a processor for a set of tasks is defined as the accumu-
lated processor t ime from 0 to t available to this set of tasks. Suppose t ha t k tasks
have been scheduled on a processor by a fixed pr ior i ty scheduling algori thm. Let
ak (t) denote the avai labi l i ty function of the processor for tasks k ~ 1, k W 2, •. • ,
m. Clearly, ak (t) is a nondecreasing function of t. Moreover , ak (t) can be shown to
be sublinear by means of the critical t ime zone argument . We have:

THEOREM 8. I f a set of tasks are scheduled by the deadline driven scheduling
algorithm on a processor whose availability function is sublinear, then there is no
processor idle period to an overflow.

PROOF. Similar to t ha t of Theorem 6.
THEOREM 9. A necessary and su~eient condition for the feasibility of the deadline

driven scheduling algorithm with respect to a processor with availability function
ak (t) is

Lt/T~+iJ Ck+l + Lt/Tk+~.j Ck+~ + " " + L t / T , J C , < ak(t)

for all t's which are multiples of Tk+l , or Tk+2, • • • , or Tm .
PROOF. The proof is quite similar to tha t oi Theorem 7. To show the necessity,

observe tha t at any momen t the total demand of processor t ime cannot exceed the
to ta l available processor t ime. Thus we mus t have

L.t/Tk+~.J Ck+l + L.t/Tk+~.J C~+2 + " " + [_t/T,~.J C,~ < a~(t)

for any t.
To show the sufficiency, assume tha t the condition s ta ted in the theorem is

satisfied and yet there is an overflow at T. Examine the two cases considered in the
proof of Theorem 7. For Case 1,

LT/Tm+i_] Ck+l-~ LT/Tk+2J Ck+2 W " " - ~ LT/TmJ C,~ > a~(T),

which is a contradict ion to the assumption. Note tha t T is mult iple of Tk+l , or
Tk+2, . . . , or T ~ . For Case 2,

L(T- T')/Tk+i.J Ck+1 W t_(T- T')/Tk+2.J Ck+2-~- "'" W
L (T - T')/Tm.J C,~ > a~ (T - T ') .

Let e be the smallest nonnegat ive number such t ha t T - T ' -- e is a mult iple of
Tk+l, or Tk+2, . . . , or Tm. Clearly,

L (T - T ' -~) /Tk+~.J = L (T - T')/T~+~_] f o r e a c h j = 1 , 2 , - . . , m - k

and thus

L (T - T ' - ~)/Tk+~J Ck+~ + L (T - - T ' - - ~)/Tk+2A C~+2+ . . . +
L.(T - T' - e)/Tm_J Cm > ak(T -- T') > ak(T -- T' - e),

which is a contradict ion to the assumption. This proves the theorem.
Although the result in Theorem 9 is a useful general result, its application in-

volves the solution of a large set of inequalities. In any specific case, it may be
advantageous to derive sufficient conditions on schedule feasibility rather than work
directly from Theorem 9. As an example, consider the special case in which three

Journal of the Association for Computing Machinery, Vol 20, No. 1, J anua ry 1973

60 C . L . LIU AND J. W. LAYLAND

tasks are scheduled by the mixed scheduling algorithm such that the task with the
shortest period is assigned a fixed and highest priority, and the other two tasks are
scheduled by the deadline driven scheduling algorithm. It may be readily verified
that if

1 - - (C1/T1) - rain [(T~ - C1)/T2, (C~/T~)] > (C~/T2) + (C~/T3),

then the mixed scheduling algorithm is feasible. I t may be also verified that if

C2 _~ al(T2), L.T3/T2_J C2 -t- Ca _< ax(L.T3/T2.J T2), and
(LT3/T2.] + 1) C2 -t- Ca _< a~(T3),

then the mixed scheduling algorithm is feasible.
The proof of these statements consists of some relatively straightforward but

extensive inequality manipulation, and may be found in Liu [13]. Unfortunately,
both of these sufficient conditions correspond to considerably lower processor
utilization than does the necessary and sufficient condition of Theorem 9.

9. Comparison and Comment

The constraints in Theorem 9 strongly suggest that 100 percent utilization is not
achievable universally by the mixed scheduling algorithm. The following simple
example will illustrate this. Let Ti = 3, T2 = 4, T3 = 5, and C~ = C2 = 1. Since
al (20) = 13, it can be easily seen that the maximum allowable C3 is 2. The cor-
responding utilization factor is

U = i -I- ~- + ~ = 98.3%.

If these three tasks are scheduled by the deadline driven scheduling algorithm, C2
can increase to 2.0833-.. and achieve a 100 percent utilization. If they are all
scheduled by the fixed priority rate-monotnic scheduling algorithm, Ca is restricted
to 1 or less, and the utilization factor is restricted to at most

U = ~ - t -¼- t -~ = 78.3%,

which is only slightly greater than the worst case three task utilization bound.
Although a closed form expression for the least upper bound to processor utiliza-

tion has not been found for the mixed scheduling algorithm, this example strongly
suggests that the bound is considerably less restrictive for the mixed scheduling
algorithm than for the fixed priority rate-monotonic scheduling algorithm. The
mixed scheduling algorithm may thus be appropriate for many applications.

10. Conclusion

In the initial parts of this paper, five assumptions were made to define the environ-
ment which supported the remaining analytical work. Perhaps the most important
and least defensible of these are (A1), that all tasks have periodic requests, and
(A4), that run-times are constant. If these do not hold, the critical time zone for
each task should be defined as the time zone between its request and deadline
during which the maximum possible amount of computation is performed by the
tasks having higher priority. Unless detailed knowledge of the run-time and request
periods are available, run-ability constraints on task run-times would have to be

Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973

Scheduling Algorithms for Multiprogramming 61

computed on the basis of assumed periodicity and constant run-time, using a period
equal to the shortest request interval and a run-time equal to the longest run-time.
None of our analytic work would remain valid under this circumstance, and a severe
bound on processor utilization could well be imposed by the task aperiodicity. The
fixed priority ordering now is monotonic with the shortest span between request and
deadline for each task instead of with the undefined request period. The same will
be true if some of the deadlines are tighter than assumed in (A2), although the
impact on utilization will be slight if only the highest priority tasks are involved. I t
would appear tha t the value of the implications of (A1) and (A4) are great enough
to make them a design goal for any real-time tasks which must receive guaranteed
service.

In conclusion, this paper has discussed some of the problems associated with
mul t iprogramming in a hard-real-time environment typified by process control and
monitoring, using some assumptions which seem to characterize tha t application.
A scheduling algorithm which assigns priorities to tasks in a monotonic relation to
their request rates was shown to be op t imum among the class of all fixed priority
scheduling algorithms. The least upper bound to processor utilization factor for this
algorithm is on the order of 70 percent for large task sets. The dynamic deadline
driven scheduling algorithm was then shown to be globally op t imum and capable of
achieving full processor utilization. A combination of the two scheduling algorithms
was then discussed; this appears to provide most of the benefits of the deadline
driven scheduling algorithm, and yet may be readily implemented in existing
computers.

REFERENCES

1. MANACHER, G.K. Production and stabihzation of real-time task schedules. J. ACM 14'
3 (July 1967), 439-465.

2. McKINNEY, J M. A survey of analytical time-sharing models. Computing Surveys 1,
2 (June 1969), 105-116.

3. CODD, E.F . Multiprogram scheduling. Comm ACM 8, 6, 7 (June, July 1960), 347-350;
413-418.

4. HELI~ER, J. Sequencing aspects of multiprogramming. J. ACM 8, 3 (July 1961), 426.-439.
5. GRAHAM, R.L. Bounds for certain multiprocessmg anomalies. Bell System Tech. J. 45,

9 (Nov. 1966), 1563-1581.
6. OSCHNER, B.P. Controlling a multiprocessor system. Bell Labs Record 44, 2 (Feb. 1966),

59-62.
7. MUNTZ, R. R., AND COFFM~N, E. G., JR. Preemptive scheduling of real-time tasks on

multiprocessor systems. J. ACM 17, 2 (Apr 1970), 324-338.
8. BERNSTEIN, A. J., AND SHARP, J .C. A policy-driven scheduler for a time-sharing system.

Comm. ACM 14, 2 (Feb. 1971), 74-78.
9. LAMPSON, B.W. A scheduling philosophy for multiprocessing systems. Comm. ACM 11,

5 (May, 1968), 347-360.
10. MARTIN, J. Progr~nm~ng Real-Time Computer Systems, Prentice-Hall, Englewood Cliffs,

N.J., 1965.
11. JIRAUCH, D.H. Software design techniques for automatic checkout. IEEE Trans. AES-$,

6 (Nov. 1967), 9 ~ .
12. MARTIN, J. Op. clt., p. 35 ff
13. LIu, C.L. Scheduling algorithms for hard-real-time multiprogramming of a single pro-

cessor. JPL Space Programs Summary 37-60, Vol. II, Jet Propulsion Lab., Calif. Inst.
of Tech., Pasadena, Calif., Nov. 1969.

RECEIVED MARCH 1970; REVISED JANUARY 1972

Journal of the Associatlon ior Cornputmg Machinery, Vol. 20, No. I, January 1973

