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I. Introduction 

T h e  use of compu te r s  for cont ro l  a n d  mon i to r ing  of indus t r i a l  processes  has  ex- 
p a n d e d  g rea t ly  in recen t  years ,  and  will p r o b a b l y  expand  even more  d r a m a t i c a l l y  
in  t he  near  future .  Often,  t he  c o m p u t e r  used  in such an  app l i ca t ion  is sha red  be-  
tween  a ce r ta in  n u m b e r  of t ime-c r i t i ca l  cont ro l  and  m o n i t o r  funct ions  and  a non- 
t ime-c r i t i ca l  b a t c h  process ing job  s t r eam.  I n  o the r  ins ta l l a t ions ,  however ,  no 
non- t ime-c r i t i ca l  jobs  exist ,  and  efficient use of the  c o m p u t e r  can  on ly  be ach ieved  
b y  a careful  schedul ing  of t he  t ime-c r i t i ca l  cont ro l  and  m o n i t o r  funct ions  themselves .  
This  l a t t e r  group migh t  be  t e r m e d  " p u r e  process  con t ro l "  a n d  p rov ides  the  back-  
g round  for t he  combina to r i c  schedul ing  ana lyses  p resen ted  in  th is  pape r .  Two  
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scheduling algorithms for this type of programming are studied; both are priority 
driven and preemptive; meaning that the processing of any task is interrupted by 
a request for any higher priority task. The first algorithm studied uses a fixed 
priority assignment and can achieve processor utilization on the order of 70 percent 
or more. The second scheduling algorithm can achieve full processor utilization by 
means of a dynamic assignment of priorities. A combination of these two algo- 
rithms is also discussed. 

2. Background 

A process control computer performs one or more control and monitoring functions. 
The pointing of an antenna to track a spacecraft in its orbit is one example of such 
functions. Each function to be performed has associated with it a set of one or 
more tasks. Some of these tasks are executed in response to events in the equipment 
controlled or monitored by the computer. The remainder are executed in response to 
events in other tasks. None of the tasks may be executed before the event which 
requests it occurs. Each of the tasks must be completed before some fixed time has 
elapsed following the request for it. Service within this span of time must be guaran- 
teed, categorizing the environment as "hard-real-time" [1] in contrast to "soft- 
real-time" where a statistical distribution of response times is acceptable. 

Much of the available literature on multiprogramming deals with the statistical 
analysis of commercial time-sharing systems ([2] contains an extensive bibliography). 
Another subset deals with the more interesting aspects of scheduling a batch- 
processing facility or a mixed batch-time-sharing facility, usually in a multiple 
processor configuration [3-8]. A few papers directly attack the problems of "hard- 
real-time" programming. Manacher [1] derives an algorithm for the generation of 
task schedules in a hard-real-time environment, but his results are restricted to the 
somewhat unrealistic situation of only one request time for all tasks, even though 
multiple deadlines are considered. Lampson [9] discusses the software scheduling 
problem in general terms and presents a set of ALGOL multiprogramming procedures 
which could be software-implemented or designed into a special purpose scheduler. 
For the allocation of resources and for the assignment of priorities and time slots, 
he proposes a program which computes estimated response time distributions based 
on the timing information supplied for programs needing guaranteed service. He 
does not, however, describe the algorithms which such a program must use. 

The text by Martin [10] depicts the range of systems which are considered to be 
"real-time" and discusses in an orderly fashion the problems which are encountered 
in programming them. Martin's description of the tight engineering management 
control that must be maintained over real-time software development is empha- 
tically echoed in a paper by Jirauch [11] on automatic checkout system software. 
These discussions serve to emphasize the need for a more systematic approach to 
software design than is currently in use. 

3. The Environment 

To obtain any analytical results about program behavior in a hard-real-time en- 
vironment, certain assumptions must be made about that environment. Not all of 
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these assumptions are absolutely necessary, and the effects of relaxing them will be 
discussed in a later section. 

(A1) The requests for all tasks for which hard deadlines exist are periodic, with 
constant interval between requests. 

(A2) Deadlines consist of run-ability constraints only--i.e, each task must be 
completed before the next request for it occurs. 

(A3) The tasks are independent in that requests for a certain task do not depend 
on the initiation or the completion of requests for other tasks. 

(A4) Run-time for each task is constant for that task and does not vary with 
time. Run-time here refers to the time wbich is taken by a processor to execute the 
task without interruption. 

(A5) Any nonperiodic tasks in the system are special; they are initialization or 
failure-recovery routines; they displace periodic tasks while they themselves are 
being run, and do not themselves have hard, critical deadlines. 

Assumption (A1) contrasts with the opinion of Martin [2], but appears to be valid 
for pure process control. Assumption (A2) eliminates queuing problems for the in- 
dividual tasks. For assumption (A2) to hold, a small but possibly significant amount 
of buffering hardware must exist for each peripheral function. Any control loops 
closed within the computer must be designed to allow at least an extra unit sample 
delay. Note that assumption (A3) does not exclude the situation in which the 
occurrence of a task re can only follow a certain (fixed) number, say h r, of occur- 
rences of a task r~. Such a situation can be modeled by choosing the periods of tasks 
r~ and re so that the period of re is N times the period of T, and the Nth request for 
r~ will coincide with the 1st request for re and so on. The run-time in assumption 
(A4) can be interpreted as the maximum processing time for a task. In this way the 
bookkeeping time necessary to request a successor and the costs of preemptions can 
be taken into account. Because of the existence of large main memories out of which 
programs are executed and the overlapping of transfers between main and auxiliary 
storage and program execution in modern computer systems, assumption (A4) 
should be a good approximation even if it is not exact. These assumptions allow the 
complete characterization of a task by two numbers: its request period and its 
run-time. Unless stated otherwise, throughout this paper we shall use r l ,  T2, • • • , r,~ 
to denote m periodic tasks, with their request periods being T1, T~, . . .  , T,~ and 
their run-times being C1, C2, . . .  , Cm, respectively. The request rate of a task is 
defined to be the reciprocal of its request period. 

A scheduling algorithm is a set of rules that determine the task to be executed at a 
particular moment. The scheduling algorithms to be studied in this paper are pre- 
emptive and priority driven ones. This means that whenever there is a request for a 
task that is of higher priority than the one currently being executed, the running 
task is immediately interrupted and the newly requested task is started. Thus the 
specification of such algorithms amounts to the specification of the method of 
assigning priorities to tasks. A scheduling algorithm is said to be static if priorities are 
assigned to tasks once and for all. A static scheduling algorithm is also called a fixed 
priority scheduling algorithm. A scheduling algorithm is said to be dynamic if priori- 
ties of tasks might change from request to request. A scheduling algorithm is said to 
be a mixed scheduling algorithm if the priorities of some of the tasks are fixed yet the 
priorities of the remaining tasks vary from request to request. 
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4. A Fixed Priority Scheduling Algorithm 

In  this section we derive a rule for priority assignment tha t  yields an opt imum 
static scheduling algorithm. An important  concept in determining this rule is tha t  of 
the critical instant for a task. The deadline of a request for a task is defined to be the 
t ime of the next request for the same task. For a set of tasks scheduled according to 
some scheduling algorithm, we say tha t  an overflow occurs at  t ime t if t is the deadline 
of an unfulfilled request. For a given set of tasks, a scheduling algorithm is feasible if 
the tasks are scheduled so tha t  no overflow ever occurs. We define the response time 
of a request for a certain task to be the t ime span between the request and the end of 
the response to tha t  request. A critical instant for a task is defined to be an instant  at  
which a request for that  task will have the largest response time. A critical time zone 
for a task is the time interval between a critical instant and the end of the response 
to the corresponding request of the task. We have the following theorem. 

THEOREM 1. A critical instant for any task occurs whenever the task is requested 
simultaneously with requests for all higher priority tasks. 

PROOF. Let ~'i, ~'2, • • • , Tm denote a set of priority-ordered tasks with r,~ being 
the task with the lowest priority. Consider a particular request for ~',~ tha t  occurs at  
tl. Suppose tha t  between tl and tl -~- Tm , the t ime at  which the subsequent request 
of rm occurs, requests for task T~, i ~ m, occur at  t2, t2 ~ T~, t2 "t- 2T~, • • • , t2 -P 
kT, as illustrated in Figure 1. Clearly, the preemption of T~ by  r ,  will cause a certain 
amount  of delay in the completion of the request for r,~ tha t  occurred at  t l ,  unless 
the request for ~-,~ is completed before t2. Moreover,  from Figure 1 we see imme- 
diately tha t  advancing the request t ime t2 will not speed up the completion of ~-,~. 
The completion t ime of ~'m is either unchanged or delayed by such advancement.  
Consequently, the delay in the completion of r~  is largest when t~ coincides with tl • 

Repeat ing the argument  for all T~, i = 2, • • • , m -- 1, we prove the theorem. 
One of the values of this result is tha t  a simple direct calculation can determine 

whether or not a given priority assignment will yield a feasible scheduling algorithm. 
Specifically, if the requests for all tasks at  their critical instants are fulfilled before 
their respective deadlines, then the scheduling algorithm is feasible. As an example, 
consider a set of two tasks r~ and T2 with T1 = 2, T2 = 5, and C1 ~- 1, C2 -- 1. I f  we 
let T~ be the higher priority task, then from Figure 2 (a) we see tha t  such a priority 
assignment is feasible. Moreover,  the value of C2 can be increased at  most to 2 but  
not further as illustrated in Figure 2 (b). On the other hand, if we let T2 be the higher 
priority task, then neither of the values of C~ and C2 can be increased beyond 1 as 
illustrated in Figure 2 (c). 

t 2 t2+C i t2÷ Ti t 2,.I. ZT i t 2 + k T  i 

FIG. 1. E x e c u t i o n  of r, be tween  reques t s  for  r~ 
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The result in Theorem 1 also suggests a priority assignment that is optimum in the 
sense that will be stated in Theorem 2. Let us motivate the general result by con- 
sidering the case of scheduling two tasks 72 and ~'~. Let T1 and T~ be the request 
periods of the tasks, with T~ < Te. If we let r~ be the higher priority task, then, 
according to Theorem 1, the following inequality must be satisfied :~' 2 

[-T~/Ti_J Ci + C~ _< T~. (1) 

If we let r2 be the higher priority task, then, the following inequality must be satis- 
fied: 

Cl + C2 _< T,.  (2) 

Since 

LT2/T,_] C~ + LT~/TLI C2 _< LT2/T~.j T~ _< T2, 

(2) implies (1). In other words, whenever the T, < T2 and C,,  C2 are such that the 
task schedule is feasible with 75 at higher priority than n ,  it is also feasible with n 
at higher priority than 75, but the opposite is not true. Thus we should assign higher 
priority to n and lower priority to vs. Hence, more generally, it seems that a 
"reasonable" rule of priority assignment is to assign priorities to tasks according to 
their request rates, independent of their run-times. Specifically, tasks with higher 
request rates will have higher priorities. Such an assignment of priorities will be 
known as the rate-monotonic priority assignment. As it turns out, such a priority 
assignment is optimum in the sense that no other fixed priority assignment rule can 
schedule a task set which cannot be scheduled by the rate-monotonic priority 
assignment. 

* I t  should be pointed  out  t h a t  (1) is necessary bu t  no t  sufficient to guaran tee  the  feasibi l i ty  of 
the  pr ior i ty  ass ignment .  

L x ~  denotes  the  largest  in teger  smaller  t h a n  or equal  to x. [-x'~ denotes  the  smallest  in- 
teger  larger  t h a n  or equal  to x. 
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THEOREM 2. I f  a feasible priority assignment exists for some task set, the rate- 
monotonic priority assignment is feasible for that task set. 

PROOF. Let  r l ,  r2, " • , rm be a set of m tasks with a certain feasible priority 
assignment. Let r~ and re be two tasks of adjacent priorities in such an assignment 
with r ,  being the higher priority one. Suppose that  T~ > T~. Let us interchange the 
priorities of r~ and re .  I t  is not difficult to see that  the resultant priority assignment 
is still feasible. Since the rate-monotonic priority assignment can be obtained from 
any priority ordering by a sequence of pairwise priority reorderings as above, we 
prove the theorem. 

5. Achievable Processor Utilization 

At this point, the tools are available to determine a least upper bound to processor 
utilization in fixed priority systems. We define the (processor) utilization factor to be 
the fraction of processor time spent in the execution of the task set. In other words, 
the utilization factor is equal to one minus the fraction of idle processor time. Since 
CjT~ is the fraction of processor time spent in executing task r , ,  for m tasks, the 
utilization factor is: 

V = ~ (C,/TO. 
~ 1  

Although the processor utilization factor can be improved by increasing the values of 
the C~'s or by  decreasing the values of the T~'s it is upper bounded by the require- 
ment tha t  all tasks satisfy their deadlines at their critical instants. I t  is clearly 
uninteresting to ask how small the processor utilization factor can be. However, it is 
meaningful to ask how large the processor utilization factor can be. Let  us be precise 
about what we mean. Corresponding to a priority assignment, a set of tasks is said to 
fully utilize the processor if the priority assignment is feasible for the set and if an 
increase in the run-time of any of the tasks in the set will make the priority assign- 
ment infeasible. For a given fixed priority scheduling algorithm, the least upper 
bound of the utilization factor is the minimum of the utilization factors over all sets 
of tasks that  fully utilize the processor. For all task sets whose processor utilization 
factor is below this bound, there exists a fixed priority assignment which is feasible. 
On the other hand, utilization above this bound can only be achieved if the T, of the 
tasks are suitably related. 

Since the rate-monotonic priority assignment is optimum, the utilization factor 
achieved by the rate-monontonic priority assignment for a given task set is greater 
than or equal to the utilization factor for any other priority assignment for that  task 
set. Thus, the least upper bound to be determined is the infimum of the utilization 
factors corresponding to the rate-monotonic priority assignment over all possible 
request periods and run-times for the tasks. The bound is first determined for two 
tasks, then extended for an arbitrary number of tasks. 

THEOREM 3. For a set of two tasks with fixed priority assignment, the least upper 
bound to the processor utilization factor is U = 2 (2 ~ - 1). 

PROOF. Let rl and r2 be two tasks with their periods being T1 and T2 and their 
run-times being C1 and C~, respectively. Assume that  T2 > T1. According to the 
rate-monotonic priority assignment, ri has higher priority than r2. In a critical t ime 
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zone of ~2, there are FT,~T1"-] requests for ~1 • Let  us now adjust C2 to fully utilize 
the available processor time within the critical t ime zone. Two cases occur: 

Case 1. The run-time C~ is short enough that  all requests for Zl within the critical 
time zone of T~ are completed before the second z~ request. Tha t  is, 

C1 _< T~ - Tl t.TjTi.] . 

Thus, the largest possible value of C~ is 

C2 = T~ -- Cl VT~/T , -1 .  

The corresponding processor utilization factor is 

U = 1 + Ci[(1/T1) - (I/T2) V T J T i - I  ]. 

In this case, the processor utilization factor U is monotonically decreasing in C1. 
Case 2. The execution of the VT2/T~"lth request for t~ overlaps the second 

reque st for T2 • In  this case 

C1 _> T~ -- T, LT~/Ti.J. 

I t  follows that  the largest possible value of C2 is 

C~ = -C1 t.TJTi.J + T1 LTdT1J 

and the corresponding utilization factor is 

U = (T~/T2) LT~/T~..J + C ~ [ ( 1 / T ~ ) -  (1/T2) t .T2/Ti .J  ]. 

In this case, U is monotonically increasing in C1. 
The minimum of U clearly occurs at the boundary between these two cases. Tha t  

is, for 

C1 = Ts- T1 LT~/Ti.J 

we have 

U = I -  (T~IT~)[ rTjT17 - (TdTi)iI(T~IT,) -- t-T~ITL_I 1. (3) 

For notational convenience, 8 let  I = [-T2/Ti_J and f = { T~/T1}. Equation (3) can 
be writ ten as 

U = 1 --f(l -- f)/ (l + f). 

Since U is monotonic increasing with I ,  minimum U occurs at the smallest possible 
value of I ,  namely, I = 1. Minimizing U over f, we determine tha t  a t f  = 2 ½ - 1, 
U attains its minimum value which is 

U = 2 ( 2 ~ -  1 ) ~ 0 . 8 3 .  

This is the relation we desired to prove. 
I t  should be noted that  the utilization factor becomes i if f = 0, i.e. if the request 

period for the lower priority task is a multiple of the other task's request period. 
We now derive the corresponding bound for an arbi t rary  number  of tasks. At  

this moment ,  let us restrict  our discussion to the case in which the ratio between 
any  two request  periods is less than  2. 

a { T1 /T~}  denotes (T~ /T~)  - L T 2 / T , . J  , i .e .  the fractional par t  of T ~ / T i  . 
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THEOREM 4. For a set of m tasks with f ixed priority order, and the restriction that 
the ratio between any two request periods is less than 2, the least upper  bound to the 
processor utilization factor is U = m (21/m - 1). 

PROOF. L e t r l , r 2 , . . . , r , , d e n o t e t h e m t a s k s .  L e t C 1 , C 2 , . . .  ,C~ be the 
run-times of the tasks tha t  fully utilize the processor and minimize the processor 
uti l ization factor. Assume tha t  T~ > Tin-1 > • • • > T2 > T1 • Let  U denote the  
processor uti l ization factor.  We wish to show tha t  

Suppose tha t  

Let  

C, = T2 - TI. 

C1 = T 2 -  T, + 4 ,  A > O. 

C,' = T~- T i  

c~' = c2+~ 
c~' =c~ \ 

/ 
C'~_, = Cm_, 

C,' = C.. 

Clearly, C,', C2', • • • , C'~_,, Cm' also fully utilize the processor. Let U' denote the 
corresponding uti l ization factor.  We have 

U -  V '  = (A /T~)  -- (A/T2) > 0. 

Alternat ively,  suppose tha t  

C, = T 2 -  T i -  A, 

Let  

4 > 0 .  

C1" = T2 - T1 
C2" = C2 - 2A 
C3 tt ~- C~ 

Cm--1 = C,,-1 

C,~" = C , , .  

Again, C1", C2", " "  , C~_1, C~" fully utilize the processor. Let  U" denote  the 
corresponding util ization factor. We have 

U - U" = - ( ~ / T 1 )  + (2A/T2) > 0. 

Therefore,  if indeed U is the minimum util ization factor,  then 

C1 = T2 - T1 

In a similar way, we can show tha t  

C2 = T3- T2 
C3 = T4- T3 

C m-1 =Tm- T.-i. 
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C o n s e q u e n t l y ,  

Cm = T,~ - 2(C1 + C2 + . . .  -t- C~_~). 

T o  s i m p l i f y  t h e  n o t a t i o n ,  le t  

T h u s  

g, = (Tin -- T , ) / T , ,  i = 1, 2, . . .  , m. 

C, = T,+i  - T ,  = g , T ,  - g , + l T , + l ,  i = 1, 2 , . . .  , m - 1 

a n d  

C~ = T,~ - 2glT1 

a n d  f inal ly ,  

g = (C~/T~) = ~ [g, - g~+i(T~+~/T,)] .% 1 --  2 g ~ ( T # T , n )  

m - - 1  

= ~ [g~ -- g~+,(g~ T 1 ) / ( g , + l  + 1)] + 1 --  2[gl/(g~ -t- 1)] 

m--1 

= 1 --t- g~[(gl -- 1 ) / (g ,  -Jr 1)] + ~ g,[ (g ,  --  g , _ , ) / ( g ,  -b 1)]. (4) 
~ 2  

J u s t  as  in  t h e  t w o - t a s k  case,  t he  u t i l i z a t i o n  b o u n d  becomes  1 if g, = 0, for  a l l  i .  
To  f ind t h e  l eas t  u p p e r  b o u n d  to  t h e  u t i l i z a t i o n  f ac to r ,  eq. (4) m u s t  be  min i -  

m i z e d  over  t h e  g , ' s .  Th i s  can  be  done  b y  s e t t i n g  t h e  f i rs t  d e r i v a t i v e  of U w i t h  
r e s p e c t  to  each  of t h e  g~'s equa l  to  zero,  a n d  so lv ing  t h e  r e s u l t a n t  d i f ference  e q u a -  
t i ons :  

OU/Og,  = (g7 + 2g~ - g~- l ) / (g~  + 1) 2 - (g~+,)/(g~+, W 1) = 0, 
j --  1 , 2 ,  . . .  , m -  1. (5) 

T h e  def in i t ion  go = 1 has  been  a d o p t e d  for  conven ience .  
T h e  genera l  so lu t i on  to  eqs. (5) can  be  shown to  be  

g~ = 2 (m-~)/m --  1, j = 0, 1, " "  , m --  1. (6) 

I t  fol lows t h a t  

U = m ( 2 1 / ~ -  1) ,  

wh ich  is t h e  r e l a t i o n  we des i r ed  to  p rove .  
F o r  m = 2, eq. (6) is t h e  s ame  b o u n d  as was f o u n d  d i r e c t l y  for  t h e  se t  of t w o  

t a s k s  w i th  no r e s t r i c t i o n s  on t h e  r e q u e s t  per iods .  F o r  m = 3, eq. (6) becomes  

U = 3(21/3) - 1 ) - ~  0.78 

a n d  for l a rge  m, U - ~  In 2. 
T h e  r e s t r i c t i o n  t h a t  t h e  l a rges t  r a t i o  b e t w e e n  r e q u e s t  pe r iod  less t h a n  2 in  

T h e o r e m  4 can  a c t u a l l y  be  r e m o v e d ,  which  we s t a t e  as :  
THEOREM 5. For  a set of  m tasks  w i th  f i xed  pr ior i t y  order, the least u p p e r  bound  

to processor u t i l i za t ion  is  U = m ( 2  i /m - -  1).  
PROOF. L e t  T~, r2 ,  • • " , r~ ,  • • • ,Tm be  a se t  of m t a s k s  t h a t  fu l ly  u t i l i ze  t h e  

processor .  L e t  U d e n o t e  t he  c o r r e s p o n d i n g  u t i l i z a t i o n  fac to r .  S u p p o s e  t h a t  for  
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somei ,  L T m / T J  > 1. To be specific, l e t T ~  = q T , + r ,  q >  l a n d r  > 0. Let  
us replace the task r~ by a task r (  such tha t  T;  = qT~ and C~' = C~, and increase 
C~ by the amount  needed to again fully utilize the processor. This increase is at  
most C~ (q - 1), the t ime within the critical t ime zone of r,~ occupied by  r ,  but  
not  by  r, ' .  Let  U' denote the utilization factor of such a set of tasks. We have 

o r  

U' < U -t- [(q - 1)C~/T,,] + (C,/T,') - (C,/T,) 

U' < U + C,(q - 1)[1/(qT, + r) - (1/qT,)]. 

Since q - 1 > 0 and [1/(qT~ ~- r)] - (1/qT~) < O, U' _< U. Therefore  we con- 
clude tha t  in determining the least upper bound of the processor utilization factor, 
we need only consider task sets in which the ratio between any two request  periods 
is less than  2. The theorem thus follows directly from Theorem 4. 

6. Relaxing the Utilization Bound 

The preceding section showed tha t  the least upper bound imposed upon proces- 
sor utilization by the requirement for real-time guaranteed service can approach 
In(2) for large task sets. I t  is desirable to find ways to improve this situation, 
since the practical costs of switching between tasks must still be counted. One of 
the simplest ways of making the utilization bound equal to 1 is to make { T,~/T~t = 
0 for i = 1, 2, • • • , m - 1. Since this cannot ahvays be done, an al ternat ive solu- 
tion is to buffer task rm and perhaps several of the lower priori ty tasks and relax 
their hard deadlines. Supposing tha t  the entire task set has a finite period and tha t  
the buffered tasks are executed in some reasonable fashion--e.g,  in a first come 
first served fashion-- then  the maximum delay times and amount  of buffering 
required can be computed under  the assumptions of this paper. 

A bet ter  solution is to assign task priorities in some dynamic fashion. The  re- 
maining sections of this paper are devoted to one part icular  method of dynamic 
priori ty assignment. This method is opt imum in the sense tha t  if a set of tasks 
can be scheduled by  some priori ty assignment, it can also be scheduled by this 
method. In other words, the least upper bound on the processor utilization factor 
is uniformly 100 percent.  

7. The Deadline Driven Scheduling Algorithm 

We turn  now to s tudy a dynamic scheduling algorithm which we call the deadline 
driven scheduling algorithm. Using this algorithm, priorities are assigned to tasks 
according to the deadlines of their current requests. A task will be assigned the 
highest priori ty if the deadline of its current  request is the nearest,  and will be 
assigned the lowest priority if the deadline of its current request is the furthest.  
At any instant,  the task with the highest priority and yet  unfulfilled request will 
be executed. Such a method of assigning priorities to the tasks is a dynamic one, in 
contrast to a static assignment in which priorities of tasks do not change with 
time. We want now to establish a necessary and sufficient condition for the feasi- 
bility of the deadline driven scheduling algorithm. 
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THEOREM 6. When  the deadline driven scheduling algorithm is used to schedule a 
set of tasks on a processor, there is no processor idle time prior to an overflow. 

PROOF. Suppose tha t  there  is processor idle t ime prior to an overflow. To be 
specific, s tart ing at t ime 0, let t3 denote the t ime at which an overflow occurs, and 
let t l ,  t~ denote the beginning and the end, respectively, of the processor idle period 
closest to t8 (i.e. there is no processor idle t ime between t2 and t3 .) The  si tuation is 
i l lustrated in Figure 3, where the times of the first request for each of the m tasks 
after  the processor idle period [tl, t2] are denoted a,b, • • • , m.  

Suppose tha t  from t2 on we move all requests of task 1 up so tha t  a will coincide 
with t~. Since there was no processor idle t ime between t2 and t~, there will be no 
processor idle t ime after a is moved up. Moreover,  an overflow will occur either at  
or before t3. Repeating the same argument  for all other  tasks, we conclude tha t  if 
all tasks are initiated at t~, there will be an overflow with no processor idle period 
prior to it. However,  this is a contradict ion to the assumption tha t  s tart ing at  
t ime 0 there is a processor idle period to an overflow. This proves Theorem 6. 

Theorem 6 will now be used to establish the following theorem: 
THEOREM 7. For a given set of m tasks, the deadline driven scheduling algorithm 

is feasible i f  and only i f  

(Cl/T~) zr (C2/T , )  + . . .  + (C,~/Tm) _< 1. 

PROOF. To show the necessity, the total  demand of computat ion t ime by  all 
tasks between t = 0 and t = TiT2 • • • T ~ ,  may be calculated to be 

(T~T3 . . .  T,~)C1 + (TiT3 . . .  TIn)Ca + . . .  + (T1T2 . . .  Tm_i )C~.  

If  the total  demand exceeds the available processor time, i.e. 

(T~T3 . . .  T~)C~ + (TIT3 . . .  T~)C~ 
+ . . .  + ( T 1 T 2 . . .  T~_i)C,~ > T ~ T ~ . . .  Tm (7) 

o r  

(C, /T1)  + ( C J T ~ )  + . . .  + (C,~/T,~) > 1, 

there is clearly no feasible scheduling algorithm. 
To show the sufficiency, assume tha t  the condition 

( C , / T , )  + ( C J T 2 )  + . . .  + (C~ /T~)  ~ 1 
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is sa t i s f ied  and  y e t  t he  s chedu l ing  a l g o r i t h m  is n o t  feas ib le .  T h a t  is, t h e r e  is an  
overf low b e t w e e n  t = 0 a n d  t = T1T2 • • • T m .  M o r e o v e r ,  a c c o r d i n g  to  T h e o r e m  6 
t h e r e  is a t = T (0 < T < T1T2 . . .  Tin) a t  which  t h e r e  is an  over f low wi th  no 
p rocessor  id le  t i m e  b e t w e e n  t = 0 a n d  t = T. To  be  specific,  le t  a l ,  a2 ,  . . .  , 
b~, bs ,  • • • , d e n o t e  t he  r eques t  t imes  of t he  m t a s k s  i m m e d i a t e l y  p r io r  to  T, whe re  
al , a2 , • • • a re  t h e  r e q u e s t  t imes  of t a s k s  wi th  dead l i ne s  s t  T, a n d  b , ,  b2, • • • a r e  
t h e  r eques t  t i m e s  of t a s k s  w i th  dead l i ne s  b e y o n d  T. Th i s  is i l l u s t r a t e d  in  F i g u r e  4. 

T w o  cases  m u s t  be  examined .  
Case  1. N o n e  of t h e  c o m p u t a t i o n s  r e q u e s t e d  a t  b , ,  b2, . .  • was  c a r r i e d  o u t  

before  T. I n  th i s  case, t h e  t o t a l  d e m a n d  of c o m p u t a t i o n  t i m e  b e t w e e n  0 a n d  T is 

LT/Ti .J  C1 + "LT/T~.J C2 + " "  + LT/T~.J  C~. 

Since  t h e r e  is no p rocesso r  id le  pe r iod ,  

LT/Ti.J Ci + LT/T~J C2 + "" LT/T~_I C~ > T. 

Also,  s ince  x _> Lx.J for  al l  x, 

(T/T1)C1 + (T/T2)C2 + . . .  + (T/T,~)C,~ > T 

a n d  

(Cl/T~) + (C~/T2) + . . .  + (Cm/T~) > 1, 

which  is a c o n t r a d i c t i o n  to  (7).  
Case  2. Some  of t h e  c o m p u t a t i o n s  r e q u e s t e d  a t  b~, b2, . . .  were  ca r r i ed  o u t  

before  T. S ince  an  overf low occurs  a t  T, t h e r e  m u s t  exis t  a p o i n t  T '  such  t h a t  none  
of t he  r eques t s  a t  b~, b2, • • • was  ca r r i ed  ou t  w i th in  t h e  i n t e r v a l  T '  < t < T. I n  
o t h e r  words ,  w i t h i n  T '  < t < T, on ly  those  r eques t s  w i t h  dead l i ne s  s t  or  be fo re  T 
wil l  he  execu ted ,  as  i l l u s t r a t e d  in  F i g u r e  5. M o r e o v e r ,  t h e  f ac t  t h a t  one or  m o r e  of 
t h e  t a s k s  h a v i n g  r eques t s  a t  t h e  b, 's  is e x e c u t e d  un t i l  t = T t m e a n s  t h a t  al l  t hose  
r eques t s  i n i t i a t e d  be fore  T '  w i th  dead l ines  a t  or before  T h a v e  been  fulf i l led be fore  
T t. There fo re ,  t h e  t o t a l  d e m a n d  of p rocessor  t i m e  w i t h i n  T ~ < t _< T is less t h a n  or  
equa l  to  
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P r o c e s s i n g  ove r f l ow  a t  t i m e  T w i t h o u t  e x e c u t i o n  of {b,} f o l l o w i n g  T'  

L(T- T')/TiJ C~ + L(T- T')/T~_J C2 +... + 

T h a t  an overflow occurs at  T means tha t  

L(T - T')/T~_I C~ + L(T - T')T2J C2 +... + 

L(T - T ' ) / T , J  C,,. 

L ( T -  T')/TmJ C,,, 
> T -  T', 

which implies again 

(C1/T1) +-5 (C2/T2) + . . .--5 (Cm/Tm) > 1, 

and which is a contradict ion to (7). This proves the theorem. 
As was pointed out  above, the deadline driven scheduling algorithm is opt imum 

in the sense tha t  if a set of tasks can be scheduled by any algorithm, it can be 
scheduled by  the deadline driven scheduling algorithm. 

8. A Mixed Scheduling Algorithm 

In  this section we investigate a class of scheduling algorithms which are combina- 
tions of the rate-monotonic scheduling algorithm and the deadline driven schedul- 
ing algorithm. We call an algori thm in this class a mixed scheduling algorithm. 
The  s tudy of the mixed scheduling algorithms is mot iva ted  by the observation 
tha t  the in ter rupt  hardware  of present day computers acts as a fixed priori ty 
scheduler and does not  appear  to be compatible with a hardware dynamic sched- 
uler. On the other  hand, the cost of implementing a software scheduler for the 
slower paced tasks is not  significantly increased if these tasks are deadline driven 
instead of having a fixed priori ty assignment. To be specific, let tasks 1, 2, • • • , k, 
the k tasks of shortest  periods, be scheduled according to the fixed priori ty rate- 
monotonic scheduling algorithm, and let the remaining tasks, tasks k + 1, 
k + 2, • • • , m, be scheduled according to the deadline driven scheduling algorithm 
when the processor is not  occupied by  tasks 1, 2, • • • , k. 

Let  a (t) be a nondecreasing function of t. We say that  a (1) is sublinear if for all 
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t and all T 

a(T) < a(t + T) - a(t). 

The availabi l i ty function of a processor for a set of tasks is defined as the accumu- 
lated processor t ime from 0 to t available to this set of tasks.  Suppose t ha t  k tasks  
have  been scheduled on a processor by  a fixed pr ior i ty  scheduling algori thm. Let  
ak (t) denote the avai labi l i ty function of the processor for tasks k ~ 1, k W 2, •. • , 
m. Clearly, ak (t) is a nondecreasing function of t. Moreover ,  ak (t) can be shown to 
be sublinear by  means of the critical t ime zone argument .  We have:  

THEOREM 8. I f  a set of tasks are scheduled by the deadline driven scheduling 
algorithm on a processor whose availability function is sublinear, then there is no 
processor idle period to an overflow. 

PROOF. Similar to t ha t  of Theorem 6. 
THEOREM 9. A necessary and su~eient condition for the feasibility of the deadline 

driven scheduling algorithm with respect to a processor with availability function 
ak (t) is 

Lt/T~+iJ Ck+l + Lt/Tk+~.j Ck+~ + " "  + L t / T , J  C ,  < ak(t) 

for all t's which are multiples of Tk+l , or Tk+2, • • • , or Tm . 
PROOF. The proof is quite similar to tha t  oi Theorem 7. To show the necessity,  

observe tha t  at  any  momen t  the total  demand of processor t ime cannot  exceed the  
to ta l  available processor t ime. Thus  we mus t  have  

L.t/Tk+~.J Ck+l + L.t/Tk+~.J C~+2 + " "  + [_t/T,~.J C,~ < a~(t) 

for any t. 
To show the sufficiency, assume tha t  the condition s ta ted  in the  theorem is 

satisfied and yet  there is an overflow at  T. Examine  the two cases considered in the  
proof of Theorem 7. For  Case 1, 

LT/Tm+i_] Ck+l-~ LT/Tk+2J Ck+2 W " " - ~  LT/TmJ C,~ > a~(T), 

which is a contradict ion to the assumption.  Note  tha t  T is mult iple  of Tk+l ,  or 
Tk+2, . . .  , or T ~ .  For  Case 2, 

L(T- T')/Tk+i.J Ck+1 W t_(T- T')/Tk+2.J Ck+2-~- "'" W 
L ( T  - T')/Tm.J C,~ > a~ (T - T ' ) .  

Let  e be the smallest  nonnegat ive  number  such t ha t  T - T '  -- e is a mult iple of 
Tk+l, or Tk+2, . . .  , or Tm. Clearly, 

L ( T -  T ' -~) /Tk+~.J  = L ( T -  T')/T~+~_] f o r e a c h j  = 1 , 2 , - . .  , m - k  

and thus 

L ( T -  T ' -  ~)/Tk+~J Ck+~ + L ( T - -  T ' - -  ~)/Tk+2A C~+2+ . . .  + 
L.(T - T' - e)/Tm_J Cm > ak(T -- T') > ak(T -- T' - e), 

which is a contradict ion to the assumption.  This proves the theorem. 
Although the result in Theorem 9 is a useful general result, its application in- 

volves the solution of a large set of inequalities. In  any specific case, it may  be 
advantageous to derive sufficient conditions on schedule feasibility rather  than  work 
directly from Theorem 9. As an example, consider the special case in which three 
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tasks are scheduled by the mixed scheduling algorithm such that the task with the 
shortest period is assigned a fixed and highest priority, and the other two tasks are 
scheduled by the deadline driven scheduling algorithm. It may be readily verified 
that if 

1 - -  (C1/T1) - rain [(T~ - C1)/T2, (C~/T~)] > (C~/T2) + (C~/T3), 

then the mixed scheduling algorithm is feasible. I t  may be also verified that if 

C2 _~ al(T2), L.T3/T2_J C2 -t- Ca _< ax( L.T3/T2.J T2), and 
( LT3/T2.] + 1) C2 -t- Ca _< a~(T3), 

then the mixed scheduling algorithm is feasible. 
The proof of these statements consists of some relatively straightforward but 

extensive inequality manipulation, and may be found in Liu [13]. Unfortunately, 
both of these sufficient conditions correspond to considerably lower processor 
utilization than does the necessary and sufficient condition of Theorem 9. 

9. Comparison and Comment 

The constraints in Theorem 9 strongly suggest that 100 percent utilization is not 
achievable universally by the mixed scheduling algorithm. The following simple 
example will illustrate this. Let Ti = 3, T2 = 4, T3 = 5, and C~ = C2 = 1. Since 
al (20) = 13, it can be easily seen that the maximum allowable C3 is 2. The cor- 
responding utilization factor is 

U = i -I- ~- + ~ = 98.3%. 

If these three tasks are scheduled by the deadline driven scheduling algorithm, C2 
can increase to 2.0833-.. and achieve a 100 percent utilization. If they are all 
scheduled by the fixed priority rate-monotnic scheduling algorithm, Ca is restricted 
to 1 or less, and the utilization factor is restricted to at most 

U = ~ - t -¼- t -~  = 78.3%, 

which is only slightly greater than the worst case three task utilization bound. 
Although a closed form expression for the least upper bound to processor utiliza- 

tion has not been found for the mixed scheduling algorithm, this example strongly 
suggests that the bound is considerably less restrictive for the mixed scheduling 
algorithm than for the fixed priority rate-monotonic scheduling algorithm. The 
mixed scheduling algorithm may thus be appropriate for many applications. 

10. Conclusion 

In the initial parts of this paper, five assumptions were made to define the environ- 
ment which supported the remaining analytical work. Perhaps the most important 
and least defensible of these are (A1), that all tasks have periodic requests, and 
(A4), that run-times are constant. If these do not hold, the critical time zone for 
each task should be defined as the time zone between its request and deadline 
during which the maximum possible amount of computation is performed by the 
tasks having higher priority. Unless detailed knowledge of the run-time and request 
periods are available, run-ability constraints on task run-times would have to be 
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computed on the basis of assumed periodicity and constant run-time, using a period 
equal to the shortest request interval and a run-time equal to the longest run-time. 
None of our analytic work would remain valid under this circumstance, and a severe 
bound on processor utilization could well be imposed by  the task aperiodicity. The 
fixed priority ordering now is monotonic with the shortest span between request and 
deadline for each task instead of with the undefined request period. The same will 
be true if some of the deadlines are tighter than assumed in (A2), although the 
impact  on utilization will be slight if only the highest priority tasks are involved. I t  
would appear  tha t  the value of the implications of (A1) and (A4) are great enough 
to make them a design goal for any real-time tasks which must  receive guaranteed 
service. 

In  conclusion, this paper  has discussed some of the problems associated with 
mul t iprogramming in a hard-real-time environment typified by  process control and 
monitoring, using some assumptions which seem to characterize tha t  application. 
A scheduling algorithm which assigns priorities to tasks in a monotonic relation to 
their request rates was shown to be op t imum among the class of all fixed priority 
scheduling algorithms. The least upper  bound to processor utilization factor for this 
algorithm is on the order of 70 percent for large task sets. The dynamic deadline 
driven scheduling algorithm was then shown to be globally op t imum and capable of 
achieving full processor utilization. A combination of the two scheduling algorithms 
was then discussed; this appears to provide most  of the benefits of the deadline 
driven scheduling algorithm, and yet  may  be readily implemented in existing 
computers.  
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