
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021 3579

Distributed Learning in Wireless Networks:
Recent Progress and Future Challenges

Mingzhe Chen , Member, IEEE, Deniz Gündüz , Senior Member, IEEE, Kaibin Huang , Fellow, IEEE,

Walid Saad , Fellow, IEEE, Mehdi Bennis , Fellow, IEEE, Aneta Vulgarakis Feljan, Member, IEEE,

and H. Vincent Poor , Life Fellow, IEEE

Abstract— The next-generation of wireless networks will enable
many machine learning (ML) tools and applications to efficiently
analyze various types of data collected by edge devices for
inference, autonomy, and decision making purposes. However,
due to resource constraints, delay limitations, and privacy
challenges, edge devices cannot offload their entire collected
datasets to a cloud server for centrally training their ML
models or inference purposes. To overcome these challenges,
distributed learning and inference techniques have been proposed
as a means to enable edge devices to collaboratively train
ML models without raw data exchanges, thus reducing the
communication overhead and latency as well as improving data
privacy. However, deploying distributed learning over wireless
networks faces several challenges including the uncertain wireless
environment (e.g., dynamic channel and interference), limited
wireless resources (e.g., transmit power and radio spectrum),
and hardware resources (e.g., computational power). This paper
provides a comprehensive study of how distributed learning
can be efficiently and effectively deployed over wireless edge
networks. We present a detailed overview of several emerging
distributed learning paradigms, including federated learning,
federated distillation, distributed inference, and multi-agent

Manuscript received April 23, 2021; revised June 7, 2021; accepted
August 17, 2021. Date of publication October 6, 2021; date of current version
November 22, 2021. The work of Mingzhe Chen and H. Vincent Poor was sup-
ported by the U.S. National Science Foundation under Grant CCF-1908308.
The work of Deniz Gündüz was supported in part by the European Research
Council (ERC) through the Starting Grant BEACON 677854 and in part by the
U.K. Engineering and Physical Sciences Research Council (EPSRC) through
the CHIST-ERA Program under Grant EP/T023600/1. The work of Walid Saad
was supported by the Office of Naval Research (ONR) under MURI Grant
N00014-19-1-2621. The work of Mehdi Bennis was supported in part by the
Academy of Finland 6G Flagship under Grant 318927, in part by the project
SMARTER, in part by the projects EU-ICT IntellIoT and EUCHISTERA
LearningEdge, and in part by CONNECT, Infotech-NOOR, and NEGEIN.
(Corresponding author: Mingzhe Chen.)

Mingzhe Chen and H. Vincent Poor are with the Department of Electrical
and Computer Engineering, Princeton University, Princeton, NJ 08544 USA
(e-mail: mingzhec@princeton.edu; poor@princeton.edu).

Deniz Gündüz is with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
d.gunduz@imperial.ac.uk).

Kaibin Huang is with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong (e-mail:
huangkb@eee.hku.hk).

Walid Saad was with the Department of Computer Science and Engineering,
Kyung Hee University, Yongin 17104, South Korea. He is now with the Wire-
less@VT, The Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24060 USA (e-mail: walids@vt.edu).

Mehdi Bennis is with the Department of Communications Engineering,
University of Oulu, 90014 Oulu, Finland (e-mail: mehdi.bennis@oulu.fi).

Aneta Vulgarakis Feljan is with Ericsson Research, 16483 Stockholm,
Sweden (e-mail: aneta.vulgarakis@ericsson.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3118346.

Digital Object Identifier 10.1109/JSAC.2021.3118346

reinforcement learning. For each learning framework, we first
introduce the motivation for deploying it over wireless networks.
Then, we present a detailed literature review on the use of
communication techniques for its efficient deployment. We then
introduce an illustrative example to show how to optimize wireless
networks to improve its performance. Finally, we introduce
future research opportunities. In a nutshell, this paper provides
a holistic set of guidelines on how to deploy a broad range
of distributed learning frameworks over real-world wireless
communication networks.

Index Terms— Distributed learning, wireless edge networks,
federated learning, federated distillation, distributed inference,
multi-agent reinforcement learning.

I. INTRODUCTION

A. Motivation of Distributed Learning

OVER the past five years, the field of machine learn-
ing (ML) has witnessed a major shift from the so-called

“big data” paradigm, in which large volumes of data are
collected and processed at a central cloud, towards a “small
data” paradigm [1]–[3], in which a set of agents or devices
distributively process their data at the edge of a mobile
network. The main motivation of this paradigm shift is to
allow edge devices to rapidly access real-time data for fast ML
model training. This in turn endows on the devices human-like
intelligence to respond to real-time events [4]–[9].

This paradigm shift is driven by two trends in the evolu-
tion of computing. First, as computer chips become cheaper,
computers are built into tens of billions of devices. They are
connected to form Internet-of-Things (IoT) networks, which
provide platforms for executing large-scale tasks but also
generate very large amounts of useful data. Second, the spread
of computing from the cloud towards the network edge enables
the deployment of ML algorithms in the proximity of edge
devices to distill their collected data into intelligence. This par-
adigm shift means that the classical centralized ML approach
requiring large training datasets is no longer dominant. There
is a growing need for novel distributed learning solutions that
can leverage rich distributed data and computation resources
at the edge without the need for transporting data across the
network. The new framework of distributed learning finds a
wide range of applications especially those related to IoT such
as connected autonomy (e.g., connected vehicles or drones).
In such systems, under the constraint of data privacy, devices
have to find an intelligent way to cooperate in training an
ML model by overcoming their local-data scarcity. In such

0733-8716 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2570-703X
https://orcid.org/0000-0003-0261-0171
https://orcid.org/0000-0002-7725-395X
https://orcid.org/0000-0001-8773-4629
https://orcid.org/0000-0002-2062-131X
https://orcid.org/0000-0003-2247-2458

3580 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

scenarios, the direct exchange of raw data is undesirable due
to privacy concerns, or, in some cases, even infeasible due to
communication and computing constraints.

B. Challenges of Deploying Distributed Learning

Realizing a successful evolution towards distributed learning
requires overcoming several key challenges. The first is to
find methods for distributed learning without raw-data sharing.
This gives rise to an interesting trade-off between privacy and
learning accuracy as regulated by the level of information
exchange among distributed agents. The second challenge
stems from the fact that one common denominator of all
such distributed systems is the need to perform training and
inference of an ML model over wireless links as devices
are usually connected using a cellular network or a wireless
local area network (WLAN). As such, the characteristics of
wireless propagation – interference, noise, and fading – will
now introduce new impediments to the learning process [10].
For example, in [11], it has been shown that bit errors and
communication delay can significantly affect the convergence
and accuracy of distributed learning. Furthermore, it is shown
in [12] that the wireless network architecture can also have
a significant effect on the convergence speed of a learning
algorithm. Hence, the deployment of distributed learning in
wireless networks entails a need for accounting for wireless
factors in the design. A third, related challenge, is the fact
that distributed learning requires many rounds of exchanging
high-dimensional ML model updates or model parameters
between parameter servers and devices. However, the radio
spectrum is a scarce resource. To resolve the conflict calls
for the design of communication-efficient techniques for dis-
tributed learning. The fourth challenge pertains to computing.
Distributed learning requires efficient ways to perform distrib-
uted computation, both over-the-air [13]–[15] and off-the-air.
The delay and efficiency associated with distributed ML and
distributed computing over large scale wireless networks will
directly impact the learning performance. The final challenge
is that efficient distributed learning over wireless systems
requires new distributed optimization frameworks that enable
multiple agents to collaboratively solve complex optimization
problems in a distributed way.

Research efforts aiming at addressing these challenges
have led to the emergence of many important distributed
learning frameworks in the past few years. Perhaps the most
widely-studied one is federated learning (FL) [16] which
enables a group of agents to collaboratively execute a common
learning task by exchanging only their local model parameters
instead of raw data. Thereby, FL helps preserve data privacy
while achieving high learning accuracy. Following the seminal
work in [16], a broad range of FL techniques have been devel-
oped to tackle individual challenges among those mentioned
earlier. At the same time, in the direction of distributed opti-
mization, the framework of multi-agent reinforcement learning
(MARL) [17] is gaining rapidly growing popularity. By com-
bining the concept of RL with deep neural networks (DNNs) as
well as distributed multi-agent control, one can enable a group
of agents to solve a set of distributed optimization problems,

without the need to rely on global information or without
excessive exchange of data. MARL itself faces many unique
challenges including the guarantee of convergence, optimality,
and the support of real-time operations. Both FL and MARL
will have to operate over large-scale wireless systems. This
subjects them to the wireless-related issues as described earlier.

C. Potential Techniques for Deploying Distributed Learning

To achieve very high performance in different dimensions,
6G will feature the integrated design of sensing, commu-
nication, computing, and control. In the context of distrib-
uted learning, the objective of 6G design is no longer rate
maximization but to accelerate the training of ML models
using distributed data [18]–[23]. This requires new algorithms
and techniques for integrated communication and learning.
A first approach is compression and sparsification. Compres-
sion techniques aim at using fewer bits to quantize each
ML model parameter [24]–[26] while the objective of spar-
sification techniques is to transform high-dimensional ML
model updates to their sparse representations by pruning some
relatively unimportant elements [27]–[29]. As a result, they
decrease the size of the ML model parameters or updates
exchanged among devices to reduce the communication over-
head. A second approach is radio resource management
[30], [31] which enables wireless networks to efficiently use
the limited resources such as spectrum, transmit power, and
computational capabilities to complete the distributed learning
process. Over-the-air computation (OAC or AirComp) [32]
is a third approach that provides the needed scalability for
multiple-access in distributed learning to the participation of
many edge devices which is crucial for satisfactory learning
performance. A fourth approach is to develop novel training
methods that jointly consider distributed learning parameters,
wireless network dynamics (e.g., wireless channel conditions),
and wireless network topologies [33] (e.g., locations and
mobility patterns of wireless devices).

D. Outline

In this article, we introduce the challenges, solutions, and
research opportunities associated with distributed learning over
wireless networks. The main focus of this article is the
widely-studied FL framework for distributed learning. In this
context, we first provide a detailed overview of federated
averaging, federated multi-task learning, and model agnostic
meta learning based FL and summarize their drawbacks and
usage. Then, we explore the possibility of performing joint
learning and communications when FL is deployed in wireless
networks. We first introduce four important performance met-
rics to quantify the FL performance over wireless networks and
analyze how wireless factors affect these metrics. Next, we dis-
cuss novel approaches ranging from compression and sparsi-
fication, wireless resource management, FL training method
design, and AirComp, to optimize the FL performance metrics,
while taking into account the need for communication-efficient
learning and effective distributed computing. The discussion
of each approach spans literature review, design example,
and future research opportunities. Next, we delve further

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3581

Fig. 1. Organization.

into communication-efficient FL and present the concept of
federated distillation (FD) and its ramifications. Subsequently,
we discuss the use of distributed learning for inference.
Finally, MARL is introduced as a powerful tool for distributed
learning and optimization.

The rest of this paper is organized as follows. In Section II,
we introduce communication efficient FL. Section III presents
AirComp based FL. In Section IV, we present FD. Section V
introduces distributed inference over wireless networks.
In Section VI, we introduce MARL over wireless networks.
Finally, conclusions are drawn in Section VII.

II. COMMUNICATION EFFICIENT FEDERATED LEARNING

We first introduce the preliminaries of FL. In particular,
we introduce the federated averaging and personalized FL
algorithms. Then, we introduce four important performance
metrics to quantify the performance of FL over wireless
networks and analyze how wireless factors affect these metrics.
We then present the research directions of deploying FL over
wireless networks. Finally, open problems and industry interest
of designing communication efficient FL are introduced.

A. Preliminaries of FL

Consider a set U of U devices orchestrated by a parameter
server (PS) to jointly train a common ML model. We assume
that each participating device i owns a dataset Ki of Ki

training samples, where each training sample k ∈ Ki consists
of an input vector xi,k and a corresponding output vector yi,k.
Next, we introduce different FL problems.

1) Common Federated Learning: The training objective of
common FL is given as follows:

min
m

U�
i=1

pi

Ki

�
k∈Ki

f (m,xi,k,yi,k), (1)

where m ∈ Rd is the ML model that the devices aim to find
collaboratively, f (·) is a loss function that captures the accu-
racy of the considered FL algorithm by building a relationship
between an input vector xi,k and the corresponding output
vector yi,k; pi is a scaling parameter that scales the weight
of device i’s average loss, 1

Ki

�
k∈Ki

f (m,xi,k,yi,k), on the

total training loss with
U�

i=1

pi = 1. Problem (1) is commonly

solved by using iterative distributed optimization techniques
orchestrated by the PS. Federated Averaging (FedAvg) [34]
is the first FL algorithm proposed by Google to solve prob-
lem (1). The training process of FedAvg at iteration t proceeds
as follows:

a. The PS broadcasts the current global model b (t) to all
(or a subset of) the devices.

b. Each device participating in this iteration uses some local
learning method, such as the stochastic gradient descent
(SGD), to train its ML model using locally available data
(called local ML model).

c. Each device sends its updated ML model parameters,
mi (t + 1), to the PS.

d. The PS updates global model as follows: b (t + 1) =
U�

i=1

pi (mi (t + 1) − b (t)) + b (t).

e. Steps from a. to d. are repeated for a certain number of
iterations, or until some convergence criteria is met.

From the training procedure, we observe that, in FedAvg, each
device transmits its model update mi (t + 1) − b (t) to the
PS instead of sending its private dataset, thus promoting data
privacy for devices. Hereinafter, we define the implementation
of steps from b. to d. as one learning step. Meanwhile,
at step b., each device can update its ML model multiple times.
Hereinafter, a device using the SGD method to update its ML
model once is called one local update. Since FedAvg finds

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3582 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

a common ML model for all the devices, the training loss
of each device will be significantly increased when the data
distribution of each device is non independent and identically
distributed (Non-IID).

To deal with Non-IID data, next, we introduce personalized
FL. In particular, we introduce two classical personalized
FL algorithms: federated multi-task learning [35] and model
agnostic meta learning (MAML) based FL [36].

2) Federated Multi-Task Learning: In federated multi-task
learning (FMTL), devices are considered to implement corre-
lated but different learning tasks. In other words, Non-IID data
distributions of devices can be considered as different tasks.
The training purpose of FMTL is given as follows:

min
M,Ω

U�
i=1

�
k∈Ki

f (mi,xi,k,yi,k) + R (M,Ω) , (2)

where M = [m1, . . . ,mU], Ω models the relationship among
different learning tasks of devices, and function R (·) is a regu-
larizer. To solve problem (2), one can use separate problem (2)
into several subproblems so as to enable devices to solve
problem (2) in a distributed manner. For example, the authors
in [35] used a dual method and quadratic approximation to
divide problem (2). Then, each device i can individually
optimize its ML model mi under given Ω while the PS
updates Ω using the updated M. After the devices and the
PS iteratively optimize M and Ω, problem (2) can be solved.

From (1) and (2), we can see that, in FedAvg, devices
will have the same ML model at convergence. In contrast,
in FMTL, devices may have different ML models at conver-
gence. This is due to the fact that for Non-IID data or different
learning tasks, devices with different ML models can achieve
less sum training loss than devices with a common ML model.

3) MAML-Based FL: MAML based FL aims to find an ML
model, using which each device can find a personalized ML
model via one or a few steps of gradient descent iterations.
The training purpose of MAML based FL is given as follows:

min
m

U�
i=1

pi

Ki

�
k∈Ki

f (m − λ∇fi,xi,k,yi,k), (3)

where λ is the learning rate and ∇fi is the gradient descent
of local ML model of device i. From (3), we can see that
MAML based FL aims to find a common ML model for all
devices. Then, the devices can use their own data to update
their common ML models via a few steps of gradient descent
so as to find their personalized ML models.

Given the overview of FedAvg, FMTL, and MAML based
FL, we remark the following:

• FMTL directly optimizes the personalized ML model
of each device while MAML based FL optimizes the
initialization of ML model of each device.

• FedAvg is recommended for processing IID data while
FMTL and MAML based FL are recommended for
processing Non-IID data.

• Choosing between FMTL or MAML based FL depends
on whether the PS knows the relationship among the data
distributions of the devices.

• All FL algorithms must be trained by a distributed
iterative process.

B. Performance Metrics of FL Over Wireless Networks

Next, we introduce four key metrics that evaluate the
performance of FL implemented over wireless networks:
a) training loss, b) convergence time, c) energy consumption,
and d) reliability.

1) Training Loss: Training loss is the value of the loss
functions f (·) defined in (1), (2), and (3). From the FL training
procedure, we can see that the FL training loss depends
on the ML models of all devices. In wireless networks,
devices’ ML models are transmitted over imperfect wireless
links. Therefore, they may experience transmission errors thus
negatively impacting the training loss. Meanwhile, due to
limited energy and computational capacity, only a subset of
devices can participate in FL. Therefore, only a subset of
devices’ ML models can be used to generate the global ML
model thus negatively impacting the training loss.

2) Convergence Time: For FL implemented over wireless
networks, its convergence time T is expressed as

T = (TC + TT) × NT, (4)

where TC is the time that each device used to update its local
ML model at each learning step, TT is the maximum ML
model transmission time per learning step, NT is the number
of learning steps that FL needs to converge. From (4), we can
see that FL convergence time depends on three components:
a) ML parameter transmission delay TT, b) the time TT needed
by each device to train its local ML model, and c) number
of learning steps NT. Here, we need to note that TC and
NT are dependent. In particular, increasing the number of
SGD steps to update a local ML model at each learning step
(e.g., increasing TC) can decrease the number of learning steps
NT that FL needs to converge.

3) Energy Consumption: The energy consumption E of
each device participating the entire FL training is expressed
as

E = (EC + ET) × NT, (5)

where EC is energy consumption of each device training its
ML model at each learning step and ET is the energy consump-
tion of transmitting ML parameters to the PS at each learning
step. From (5), we can see that energy consumption of each
device depends on three components: a) energy consumption
for ML parameter transmission, b) energy consumption for
training local ML model, and c) number of learning steps that
FL needs to converge. Here, since increasing the number of
SGD steps to update a local ML model at each learning step
can decrease the number of learning steps NT that FL needs
to converge, a trade-off exists between EC and NT.

4) Reliability: FL reliability is defined as the probability
of FL achieving a target training loss. For wireless FL, due
to limited wireless resources, only a subset of devices can
participate in the FL training at each learning step. Hence,
the devices that transmit FL parameters to the PS at different
learning steps may be different, which will affect the FL

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3583

TABLE I

SUMMARY OF EFFECTS OF COMMUNICATION FACTORS ON FL METRICS

convergence time and training loss. Meanwhile, imperfect
wireless links will cause errors on the FL parameters used
to generate the global ML model, hence decreasing training
loss.

C. Effects of Wireless Factors on FL Metrics

Given the metrics defined in the previous subsection, we first
explain how wireless network factors such as spectrum, trans-
mit power, and computational capacity affect these FL metrics.
Table I summarizes the relationship between various wireless
factors and FL performance metrics. In Table I, a tick implies
that the communication factor will affect the FL performance
metrics. For example, the spectrum resource allocated to each
device for FL parameter transmission will affect the training
loss, FL parameter transmission time per learning step TC,
Energy consumption of FL parameter transmission EC, and
reliability of FL. Next, we explain how these wireless factors
affect the FL performance metrics as follows:

• Spectrum resource allocated to each device determines
the signal-to-interference-plus-noise ratio (SINR), data
rate, and the probability that the transmitted FL para-
meters include errors. Hence, spectrum resource affects
the training loss, TT, ET, and reliability.

• Computational capacity determines the number of SGD
updates that each device can perform at each learning
step. Hence, computational capacity affects the time and
energy used for local training. Meanwhile, as the number
of SGD updates decreases, the training loss increases and
the number of learning steps that FL needs to converge
increases.

• Transmit power and wireless channel determine the
SINR, data rate, and the probability that the transmitted
FL parameters include errors. Therefore, as the transmit
power of each device increases, the training loss, TT, NT,
and reliability decrease but ET increases.

• In FL, as the number of devices that participate in FL
increases, the training loss and NT decrease while TT

and reliability increase.
• As the size of the FL parameters trained by each

device increases, the FL training loss, reliability, and
the total number of learning steps may decrease. How-
ever, the energy and time used for training FL model
increases.

D. Research Directions of Deploying
FL Over Wireless Networks

Next, we present a comprehensive overview on the key
research directions that must be pursued for practically deploy-
ing FL over wireless networks. For each research direction,
we first outline the key challenges, and then we discuss the
state of the art, while also providing a recent result.

1) Compression and Sparsification: A major challenge in
distributed learning, particularly over wireless channels, is the
communication bottleneck due to the large size of the trained
models. For emerging DNNs with hundreds of millions of
training parameters, transmitting so many locally trained para-
meter values from each participating device to the PS at every
iteration of the learning algorithm over a shared wireless
channel is a significant challenge.

We would like to note here that the transmission of locally
trained model parameters to the PS over a noisy wireless
channel is a joint source-channel coding problem. Indeed,
considering the fact that the PS is interested in the average of
the models, rather than the individual model updates from dif-
ferent devices, this can be classified as a joint source-channel
function computation problem [37], [38]. In general, we do
not have an optimal solution to such a problem, particularly
in the practical finite blocklength regime. The conventional
approach to this problem is to separate the compression of
DNN parameters from the transmission over the channel. This
so-called ‘digital’ approach converts all the local updates into
bits, which are then transmitted over the channel as reliably
as possible, and all the decoded ‘lossy’ reconstructions are
averaged by the PS. A more efficient method would be to
directly map each locally trained model parameter to a channel
input in an ‘analog’ fashion [13]. While we will explore this
approach in Section III in detail, here we focus on digital
schemes, and assume that each device individually compresses
its own parameters.

Numerous communication efficient learning strategies have
been proposed in the ML literature to reduce the amount of
information; that is, the number of bits exchanged between
the devices and the PS per global iteration. We classify
these approaches into two main groups; namely sparsification
and quantization. We would like to highlight that, thanks
to the separation between compression and transmission of
compressed bits to the PS, these strategies are independent of
the communication medium and the communication protocol

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3584 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

employed to exchange model updates between the devices
and the PS, as they mainly focus on reducing the size of
the messages exchanged. Therefore, these techniques can be
incorporated into the resource allocation and device selection
policies that will be presented below.

The objective of sparsification is to transform the
d-dimensional model update m at a device to its sparse
representation m̃ by setting some of its elements to zero. Spar-
sification can also be considered as applying a d-dimensional
mask vector M ∈ {0, 1}d on m, such that m̃ = M ⊗ m,
where ⊗ denotes element-wise multiplication. We can define
the sparsification level of this mask by φ � ||M||1/d, i.e., the
ratio of its non-zero elements to its dimension. Note that,
when conveying a sparse model update to the PS, rather than
conveying the values of all d values of the model update, each
device needs to convey only the values of φd non-zero values
and their locations. Therefore, the lower the sparsification
level, the higher the compression ratio, and the lower the
communication load. It is known that when training a complex
DNN model using stochastic gradient descent methods, model
updates can be highly sparse. Indeed, it has been shown that
when training some of the popular large-scale architectures,
such as ResNet [39] or VGG [40], sparsification levels of
φ ∈ [0.01, 0.001] provides significant reduction in the com-
munication load with almost no loss in their generalization
performance [41], [42].

Top-K sparsification is probably the most common strategy
used in distributed learning. In top-K sparsification, each
device constructs its own sparsification mask Mi,t at each
iteration by identifying the K values in its local update with
the largest absolute values [27]–[29]. A simpler alternative
to top-K is rand-K sparsification [29], which selects the
sparsification mask Mi,t randomly from the set of masks with
sparsification level K . Both rand-K and top-K are biased
compression strategies. In the case of rand-K , unbiased model
updates can be obtained by scaling Mi,t with d/K , albeit at
the expense of increasing the variance, which is not desirable
in practice [29]. Top-K sparsification has been shown to
outperform rand-K in practical applications in terms of both
the test accuracy and the convergence speed; however, top-K
sparsification requires sorting the elements of the model update
vector at each iteration, which can significantly slow down
the learning process. Moreover, as mentioned above, top-K
sparsification requires transmitting the location of the non-zero
values within the model update vector, which increases its
communication load, whereas this is not needed for rand-K if
a pseudo-random generator with a common seed is used across
all the devices to generate the same mask. A time-correlated
sparsification strategy is introduced in [43], where a common
mask is sent from the PS at each iteration to be employed
by all the devices to remove the additional communication
load due to sending locations of the non-zero values, and
instead, each device sends only a limited number of significant
values that are not present in this common mask, enabling
exploration of more efficient masks. This approach exploits
the time correlations between model updates across different
iterations, and can provide up to 2000 times reduction in the
communication load with minimal loss in model accuracy.

We also note that, when employed for distributed training of
DNN architectures, these sparse communication strategies can
be applied to each layer of the network separately, since it
is observed that different layers have different tolerance to
sparsification of their weights [41], [43].

As mentioned above, the weights of a DNN take values
from real numbers, and hence, even after sparsification they
cannot be transmitted to the PS as they are, and must be
quantized. In practice, since even the computing of local
iterations are carried out using 32bit floating point represen-
tations, we can assume that each weight can be conveyed to
the PS perfectly using 32 bits. Quantization techniques aim
at identifying more efficient representations of the network
weights that use less than 32 bits per weight [24]–[26].
At the extreme, only a single bit can be used to represent
only the sign of each element, which would result in a
32 times reduction in the communication load. Sign based
compression techniques for distributed optimization have been
studied for a long time mainly to improve the robustness and
convergence of learning algorithms [44]. It has been recently
shown that simple sign-based quantization together with
majority voting converges to the optimal solution (under cer-
tain assumptions), and provides an extremely communication-
efficient viable alternative in practice as well [45]–[47].
A more advanced vector quantization scheme is considered
in [48].

a) State of the art: Next, we discuss a number of recent
works on the use of compression and sparsification techniques
for deploying FL over wireless networks. The authors in [49]
studied the use of compression and sparsification techniques
for local ML model transmission and analyzed their con-
vergence properties in both homogeneous and heterogeneous
local data distributions settings. In [50], the authors studied
the use of lossy compression for global ML model parameter
transmission. The work in [51] introduced a ternary quantiza-
tion approach for the training and inference stages of devices.
The authors in [52] investigated the fundamental trade-off
between the number of bits needed to encode compressed vec-
tors and the compression error and performed both worst-case
and average-case analysis on the FL convergence. In [53],
the authors designed a hyper-sphere quantization based FL
algorithm so as to achieve a continuum of trade-offs between
communication efficiency and gradient accuracy. The authors
in [54] focused on the design and analysis of physical layer
quantization and transmission methods for wireless FL and
evaluated the impact of various quantization and transmission
options of the ML models on the learning performance. The
work in [55] designed a novel FL algorithm based on random
linear coding and developed efficient power management and
channel usage techniques to manage the trade-offs between
power consumption, communication bit-rate and convergence
rate. In [56], the count sketch is used to compress the local ML
parameters thus overcoming the challenges of sparse device
participation while still achieving high compression rates and
convergence speed. Additional forms of probabilistic scalar
quantization for FL were considered in [26], [57]–[59].

We would like to highlight that, most of the literature on
distributed learning, and particularly its implementation over

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3585

a wireless network, focus on the limitation of the uplink
resources, and study quantization and sparsification of model
updates from the devices while assuming that the global model
from the PS is conveyed perfectly to all the participating
devices. However, in the case of bandwidth-limited wireless
networks, broadcasting the global model to all the wireless
devices can be a challenge as well. The convergence of FL
with noisy downlink transmission of the global model is
studied in [60], and both digital and analog transmission of
global model updates is considered.

b) Representative result: Next, we show a representative
work in [48] that investigates the use of universal vector
quantization for FedAvg. In particular, in their considered
model, each device transmits its gradient parameters over a flat
fading channel with Gaussian noise and interference. To speed
up convergence, the authors first design a probabilistic device
selection scheme based on the ML gradient parameters as
well as the distances between the PS and the devices. Given
the probabilistic device selection scheme, the PS can select
a subset of devices for local FL parameter transmission and
optimize resource allocation for the selected devices. To fur-
ther reduce the FL convergence time, the authors study the
use of universal vector quantization to compress the local FL
model parameters of the selected devices, and particularly,
to represent their FL parameters using a limited number of
bits, such that the PS can still accurately generate the global
ML model via FL parameter aggregation. The motivation
for using universal vector quantization for FedAvg is given
as follows. First, due to the heterogeneous nature of the
training data available at the devices, a-priori knowledge of the
underlying distribution of the local FL model parameters is not
available at the device side, which motivates compressing the
local FL model as a form of universal quantization. Second,
the fact that the PS and the devices communicate repeatedly
allows them to share a source of common randomness, e.g.,
a random seed, enabling the participating devices to implement
low-distortion discretization in a universal manner via random
lattice quantization.

The resulting FL parameter compression scheme consists of
the following steps: As a preliminary step, an L-dimensional
lattice is fixed. Upon FL model parameter transmission, each
device normalizes its local FL model parameters. The normal-
ized result is divided into several L-sized vectors, to which
the devices add a random dither signal randomized in an
i.i.d. fashion from a uniform distribution over the basic cell
of the lattice. The dithered signal is discretized by project-
ing to the nearest lattice point, and the discrete quantity
is further compressed prior to transmission using lossless
entropy coding. The PS decompresses the model updates by
recovering the lattice point, and subtracting the dither signal
from it. The fact that the devices and the PS can generate
the same dither signals relies upon their ability to share a
source of common randomness. The analysis of convergence
of the universal vector quantization based FL is shown in
Theorem 1 of [48], which shows that the quantization error
is mitigated by averaging the local FL parameters at the PS.
This is another reason that the authors used the universal vector
quantization for FL parameter compression.

Fig. 2. Comparison of various quantization based FL [48].

Fig. 2 shows the convergence of the FL algorithms that use
various quantization methods. The universal vector quantiza-
tion scheme with two-dimensional lattices is compared to its
implementation with conventional scalar quantizers, the QSGD
FL algorithm proposed in [57], and the combination of uni-
form quantization with random rotations proposed in [61].
From Fig. 2, we see that the universal vector quantization
based FL outperforms the other quantization based FL meth-
ods. This is because the universal vector quantization based FL
implements substractive dithered lattice quantization, which
reduces the distortion induced by quantizing the FL model
parameters and mitigates its effect on the aggregated global
model.

2) Wireless Resource Management: As shown in Table I,
wireless resources such as spectrum, transmit power, and com-
putational capabilities jointly determine the FL training loss,
convergence time, energy consumption, and reliability. Due
to limited resources in wireless networks, it is necessary to
optimize resource allocation so as to enable wireless networks
to efficiently complete the FL training process. However,
analyzing the effects of resource allocation on the FL perfor-
mance faces several challenges. First, FL training process is
distributed and iterative, but it is challenging to quantify how
each single model update affects the entire training process.
Also, since each device only exchanges its gradient vector with
the PS, the PS does not have any information about devices’
local datasets, and cannot use sample distribution or the values
of the data samples to decide how resource allocation will
affect the FL convergence.

a) State of the art: Now, we discuss a number of recent
works on the optimization of spectrum resources for deploying
FL over wireless networks. In [12], the authors considered
the implementation of FL over a hierarchical network archi-
tecture and they showed that the global convergence can be
accelerated if local training is enabled with the help of small
base stations (BSs), which only occasionally communicate
with the macro BS for global consensus. Meanwhile, local
learning not only speeds up the learning process, but also
reduces the energy consumption of communication due to
short distance transmissions, and increases communication
efficiency by frequency reuse across multiple small cells,

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3586 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

enabling parallel local learning processes. The authors in [62],
[63] study the trade-off between the local ML model updates
and global ML model aggregation so as to minimize the
total energy consumption for local ML model training and
transmission or the FL training loss. The authors in [64] study
the use of gradient statistics to optimize the set of devices that
participate in FL at each training round. The authors in [65]
assume that the local FL model transmitted by the device
can be decoded by the PS only when the SINR is under the
target threshold, and analyzed how user scheduling affects the
FL convergence. The work in [66] designed a FL algorithm
which can handle heterogeneous user data without further
assumptions except strongly convex and smooth loss functions
and then optimized the resource allocation to improve FL
convergence and training loss. The authors in [67] jointly
optimized device scheduling and resource allocation policies to
maximize the model accuracy within a given total training time
budget for latency constrained wireless FL. In [68], the authors
designed a multi-armed bandit based algorithm to select the
devices that must participate in FL without knowing wire-
less channel state information and statistical characteristics
of devices. In [69], data-driven experiments are designed to
show that different temporal device selection patterns lead to
considerably different learning performance. With the obtained
insights, device selection and bandwidth allocation are jointly
optimized utilizing only currently available wireless channel
information.

b) Representative result: In [11], the authors analyzed
how spectrum resource allocation, user selection, and trans-
mit power of each device affects the FL convergence and
optimized these wireless factors to improve FL training loss.
In particular, the authors considered the implementation of
an FedAvg algorithm over a wireless network that consists
of multiple edge devices and one BS. At each learning
step, edge devices will train the local ML models and send
the ML parameters to the BS. The BS acts as a PS to
aggregate the received ML parameters so as to generate the
global ML model and send the model back to all devices.
In the considered model, all ML parameters are transmitted
over wireless flat fading channels with Gaussian noise and
interference. Therefore, the imperfect wireless transmission
will cause errors on the local ML models received by the BS.
To analyze how imperfect wireless transmission affects the FL
convergence, the authors built the relationship between local
ML model transmission and SINR of each wireless link. First,
the authors assumed that the local ML parameters of each
device is transmitted as a single packet. Hence, the imperfect
wireless transmission may cause errors on the transmitted
packets. Meanwhile, the authors assumed that the BS will
directly abandon the erroneous local ML parameters and will
not use them for the global ML model generation. To this end,
the authors can use SINR to derive the probability (called
packet error rate) of each local ML packet including errors
caused by wireless transmission. Given this probability, one
can analyze the expected FL convergence, as follows:

E (F (bt+1) − F (b∗))
≤ At

E (F (b0) − F (b∗))

+
2ζ1

LK

U�
i=1

Ki (1 − ai + aiqi (ri, Pi))
1 − At

1 − A� �� �
Impact of wireless factors on FL convergence

, (6)

where A < 1 is the convergence rate function of
network parameters such as power, bandwidth, and link
quality (see [11, Theorem 1] for expression), F (b) =
U�

i=1

pi

Ki

�
k∈Ki

f (b,xi,k,yi,k), ai, ri, Pi are respectively the

device selection index, resource allocation vector, and transmit
power of device i, qi (ri, Pi) is the probability of the trans-
mitted packet of device i including errors, bt+1 is the global
ML model at learning step t + 1 while b∗ is the optimal
global ML model that can solve problem (1). From (6),
we can see that wireless factors (e.g., ai, ri, Pi) and FL
parameters (e.g., Ki, U ,) jointly determine the FL conver-
gence. From (6), we can also see that as t is large enough,
At

E (F (b0) − F (b∗)) = 0 but the second term will not be
equal to 0. Therefore, we only need to minimize the second
term via optimizing resource allocation and device selection.

Equation (6) captures how the packet error rates and device
selection affect the FL convergence. In a special scenario
where all devices can participate in FL and all transmitted
ML parameters are correct, the FL algorithm can find an
optimal global ML model to solve problem (1). According
to this equation, one can analyze the effects of other wireless
factors (e.g., device mobility, energy harvesting) that is related
to packet error rates on the FL convergence.

3) FL Training Method Design: Beyond the use of wireless
techniques, one can design novel FL training methods and
adjust the learning parameters (e.g., step size) to enable FL to
be efficiently implemented over wireless networks. Naturally,
wireless devices have a limited amount of energy and com-
putational resources for ML model training and transmission.
In consequence, the size of ML model parameters that can be
trained and transmitted by a wireless device is typically small
and the time duration that the wireless devices can be used
for training FL is typically short. Hence, while designing FL
training methods, the energy, computation, and training time
constraints need to be explicitly taken into account. Mean-
while, FL training methods determine the network topologies
formed by the devices thus significantly affecting the FL train-
ing complexity and the FL convergence time. In consequence,
designing FL training methods also needs to jointly consider
the locations and mobility patterns of wireless devices as well
as wireless channel conditions.

a) State of the art: Designing communication efficient
FL training methods has been studied from various perspec-
tives. In particular, an error feedback based SignSGD update
method is proposed in [47] to improve both convergence and
generalization. In [12], hierarchical FL is proposed, where
devices are grouped into clusters, and devices within each
cluster carry out local learning with the help of a small BS or
a cluster head, while a global model is trained at the macro
BS. This framework is extended in [70], which designed a
training method for a multi-layer FL network. The authors
in [71] and [72] proposed a gradient aggregation method
so as to decrease the number of devices that must transmit

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3587

the local ML parameters to the PS thus reducing the FL
communication overhead. In [73], the authors introduced a
non-parametric generalized Bayesian inference framework for
FL so as to reduce the number of learning steps that FL
needs to converge. The authors in [74] proposed a post-local
SGD update method that enables each device to update its
ML parameters once in the initial multiple learning steps
while update its ML parameters several times in the following
learning steps. This post-local SGD method can significantly
improve the generalization performance and communication
efficiency. The work in [75] designed a parallel restarted SGD
method using which each device will average its ML model
every certain learning steps and perform local SGDs to update
its ML model in other learning steps. In [76], the authors
designed a personalized FL algorithm using Moreau envelopes
as each device’s regularized loss function which can decouple
personalized ML model optimization from the global model
learning in a bi-level problem stylized for personalized FL.
The work in [77] addressed the FL problem, in which the
users are distributed and partitioned into clusters. In particular,
the authors proposed a new framework dubbed the iterative
federated clustering algorithm, which alternately estimates
the cluster identities of the users and optimizes model para-
meters for the user clusters via gradient descent. In [78],
the authors studied FL over wireless device-to-device networks
by providing theoretical insights into the performance of
digital and analog implementations of decentralized stochastic
gradient descent. The authors in [79] designed a novel FL
optimization objective inspired by fair resource allocation in
wireless networks that encourages more uniform accuracy
distributions across devices. The work in [80] developed a
one-shot unsupervised federated clustering scheme based on
the Lloyd’s method used for k-means clustering.

b) Representative result: To include more devices to
participate in FL and reduce the devices’ reliance on the PS,
the authors in [81] used decentralized averaging methods to
update the local ML model of each device. In particular, using
the decentralized averaging methods, each device only needs
to transmit its local ML parameters to its neighboring devices.
Each device can use the ML parameters of its neighboring
devices to estimate the global ML model. Therefore, using the
decentralized averaging methods can reduce the communica-
tion overhead of FL parameter transmission. Meanwhile, since
each device only needs to connect to its neighboring devices,
the devices that cannot connect to the PS due to limited
energy and wireless resources may be able to be associated
with their neighboring devices so as to participate in FL
training. Therefore, using the decentralized averaging methods
for local ML model update can include more wireless devices
to participate in FL training. Meanwhile, using decentralized
averaging methods, the devices can form different network
topologies to further improve FL parameter transmission time
and ML model inaccuracy caused by imperfect wireless trans-
mission. Finally, since each device shares its ML parameters
with only its neighboring devices and the PS cannot know
the ML parameters of all devices, privacy against the PS
can be improved (assuming the neighbouring devices are
trustworthy).

Fig. 3. Simulation system and result to show the performance of the FL with
the lazy metropolis update method. In this figure, a red digit is the distance
between two adjacent devices [81].

To show the performance of the FL with the decentralized
averaging method, particularly the lazy Metropolis update
method (called the FL with lazy Metropolis hereinafter),
we implemented a preliminary simulation for a network that
consists of one BS that is acted as a PS and six devices,
as shown in Fig. 3(a). In Fig. 3(a), the green and purple lines
respectively represent the local ML parameter transmission
of original FL and the FL with lazy Metropolis. Due to the
transmission delay requirement, only 4 devices can participate
in original FL. For the FL with the lazy Metropolis update
method, 6 devices can participate in the FL training process
since the devices that use the lazy Metropolis update method
can connect to their neighboring devices. Therefore, from
Fig. 3(b), we can see that the FL with lazy Metropolis
outperforms the original FL in terms of identification accuracy.
In fact, the FL with lazy Metropolis can also reduce the energy
consumption for device b since it only needs to transmit its
ML model parameters to device a instead of the BS.

E. Open Problems of Deploying FL Over Wireless Networks

Given the general research directions and challenges of
deploying FL over wireless networks, next, we discuss open
research problems.

1) Convergence Analysis: FL convergence analysis results
show the effects of wireless factors on key learning metrics;
and hence, can be used to optimize the allocation of wireless
resources and on deciding other wireless system parameters.
For convergence analysis, there is a need to analyze how
wireless factors affect the convergence of realistic FL with
non-convex local ML models and loss function. Most existing
works [11], [62]–[65] use distributed optimization methods to
analyze the effects of wireless factors on the FL convergence,

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3588 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

assuming that the FL loss function is strongly convex and
twice-continuously differentiable, and its gradient is uniformly
Lipschitz continuous. However, realistic FL algorithms may
not satisfy these conditions. Meanwhile, the convergence
analysis should characterize the dynamics caused by SGD
updates for local ML models, wireless channels, and device
mobility. In addition, instead of finding the upper and lower
convergence bounds in the existing works, the designed con-
vergence analysis methods must find an exact convergence
value and show the exact number of learning steps needed to
converge.

2) Wireless Resource Management: While there have been
an increasing number of studies on the optimization of wire-
less resource allocation for FL, there are still several many
open problems, including: 1) considering the optimization of
resource allocation based on the mobility patterns of devices,
2) jointly considering resource allocation, compression scheme
design, and learning parameter (e.g. step size) adjustment so
as to simultaneously reduce the time used for ML parameter
training and transmission, 3) optimizing resource allocation
for the devices that participate in FL, while guaranteeing
the quality-of-service of other cellular-connected devices, and
4) adopting suitable frequency bands (e.g., mmWave and Thz
bands) for local and global ML parameter transmission.

3) Compression and Sparsification: For developing
compression and sparsification schemes to improve FL
performance metrics, there are several key problems. First,
in wireless networks, link characteristics of each device will
be different (e.g., different data rates). Hence, to efficiently use
wireless resources for FL model transmission, it is necessary
to design novel heterogeneous compression schemes that
enable each device to encode its local FL model using
different number of bits or different coding techniques.
Second, since one can use gradient vectors to recover the
raw data, called gradient leakage [82], it is necessary to
design new compression or sparsification schemes that
optimize FL performance metrics while considering data
leakage. Although designing complicated compression or
sparsification schemes can significantly reduce data leakage,
it also introduces processing latency. Therefore, there is a
need to design new compression or sparsification schemes
that can significantly reduce data leakage while reducing FL
convergence time.

4) FL Training Method Design: Designing efficient FL
training methods requires addressing a number of key prob-
lems. A fundamental problem is to enable the devices to
form an optimal network topology that maximizes various FL
performance metrics and trade-offs. This is a challenging prob-
lem since the solution must jointly account for the network
topology, device heterogeneity, wireless dynamics, FL learning
parameters (e.g., the data size of local ML model), and
multiple dependent FL performance metrics. Other important
open problems include: 1) designing asynchronous training
methods while considering the network topology optimization,
2) designing FL training methods for devices that may not
completely know the network architecture, other device loca-
tions, and network composition; and hence, can connect only
to a limited number of devices, 3) designing mobility-aware

FL training methods, and 4) designing FL training methods
that optimize FL performance metrics over wireless links while
preventing data leakage.

F. Industry Interest

As we have already mentioned, centralized based algorithms
cannot fulfill the low latency demands of near real time
applications of 5G and beyond cellular networks, while at the
same time satisfying security and privacy requirements. There-
fore, approaches that keep local data on resource-constrained
edge nodes (such as mobile phones, IoT devices or radio
sites) and employ edge computation to learn a shared model
for prediction have become increasingly attractive for the
networking and IoT industry, and in recent years it have
appeared several implementations of distributed ML.

In April 2017, Google published a blog post [83] describ-
ing they had successfully tested an FL method with many
Android mobile devices. Using a federated averaging algo-
rithm, a global model had been trained and deployed on
Android mobiles to suggest search queries based on typing
context from Android Gboard. The mobile used the model
stored on the device to predict search queries (such as sug-
gesting next words and expressions) but training and model
update would only take place once the mobile was connected
to WiFi and charging. As such it was ensured that only the
user has a copy of their data.

Besides Google, many other industrial researchers have also
recently started exploring FL. Intel [84] used FL to do medical
imagining where personal data used for training a global model
is kept local. During MWC 2019 ByteLake and Lenovo [85]
have demonstrated FL IoT industry application that enables
IoT devices in 5G networks to learn from each other as well as
makes it possible to leverage local ML models on IoT devices.

As we discuss in this paper, despite the apparent oppor-
tunities FL offers in wireless networks it is still in its early
stages, as there exist several critical challenges that need to
be researched, especially for large scale telecom application,
such as computational resource allocation for training FL
models at edge devices, selection of users for FL, energy
efficiency of FL implementation, spectrum resource allocation
for FL parameter transmission, and design of communication-
efficient FL. Nevertheless, the telecom industry has recently
started industrially applying distributed ML to improve pri-
vacy when using ML for network optimization, time-series
forecasting [86], predictive maintenance and quality of expe-
rience (QoE) modeling [87], [88]. To better understand the
potential of FL in a telecom environment, the Ericsson authors
in [88] have tested it on a number of use cases, migrating the
models from conventional, centralized ML to FL, using the
accuracy of the original model as a baseline. Their research has
indicated that the usage of a simple neural network results in
a significant reduction in network utilization, due to the sharp
drop in the amount of data that needs to be shared. Besides
being improved by 5G techniques, FL has also been integrated
in the 5G Network Data Analytics (NWDA) architecture where
it has been used to deal with 5G problems such as Network

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3589

Data Analytics Function (NWDAF) [89], in order to improve
privacy.

III. FL WITH OVER-THE-AIR COMPUTATION

As discussed earlier, one challenge confronting the imple-
mentation of FL in wireless networks, called federated
edge learning (FEEL), is to overcome the communica-
tion bottleneck, which arises from many devices uploading
high-dimensional model updates (locally trained models or
stochastic gradients) to a PS. Researchers have attempted to
reduce the resultant communication latency using different
approaches such as excluding slow devices (“stragglers”) [90],
[91], selecting only those devices whose updates can signifi-
cantly accelerate learning [71], [92], or compressing updates
by exploiting their sparsity using the techniques outlined in
Subsection II-D.1. An alternative approach of our interest in
this section is to design new multiple access schemes targeting
FEEL. The main drawback of the classic orthogonal-access
schemes (e.g., OFDMA or TDMA) is that they do not scale
well with the number of devices. Specifically, the required
radio resources increase linearly with the number of trans-
mitters, or else the latency will grow linearly. A recently
emerged approach, called over-the-air computation, which is
also known as AirComp, can provide the needed scalability for
multi-access in FEEL. Fundamental limits of OAC have been
studied in [93], [94] from an information theoretic perspective.
A similar idea was considered in [95] for the distributed
estimation of a discrete variable. OAC is applied to wireless
communications in [96]–[98]. Specifically, the deployment of
AirComp to support FEEL, termed AirComp-FEEL, exploits
the wave-form superposition property of a multi-access
channel together with simultaneous transmission to real-
ize over-the-air model/gradient aggregation [13]–[15]. Given
simultaneous access, the latency becomes independent of
the number of devices. This overcomes the communication
bottleneck to facilitate the implementation of FEEL over
many devices. In this section, we shall first discuss the basic
principle and techniques of AirComp, and then explore its
deployment in a communication-efficient FEEL system.

A. AirComp Principle and Techniques

1) AirComp Principle: The mentioned idea of AirComp is
elaborated as follows. Given simultaneous time-synchronized
transmission by devices, their signals are superimposed over-
the-air and their weighted sum, called the aggregated signal,
is received by the PS, where the weights correspond to the
channel coefficients. For AirComp-FEEL, it is desirable to
have uniform weights so that the aggregated signal is not
biased towards any device, and can be easily converted to the
desired average of the transmitted signals (i.e., model updates).
To make this possible requires each device to modulate its
signal using linear analog modulation and to invert its fading
channel by transmission-power control. The former operation
is necessary to exploit the channel’s analog-waveform super-
position property and the latter aligns the received magnitudes
of individual signal components, called magnitude alignment.

One may question the optimality of the use of seemingly prim-
itive analog modulation compared with sophisticated digital
modulation and coding. Interestingly, from the information-
theoretic perspective, it was shown in [37] that AirComp
can be optimal in terms of minimizing the mean squared
error (MSE) distortion if all the multi-access channels and
sources are Gaussian and independent.

Though FEEL requires only over-the-air averaging, Air-
Comp is capable of computing a broad class of so called
nomographic functions [38], [96]. They are characterized by a
post-processing function of a summation form with each term
being a pre-processing function of an individual data sample.
Besides averaging, other examples include arithmetic mean,
weighted sum, geometric mean, polynomial, and Euclidean
norm. Consequently, except for averaging, the implementa-
tion of AirComp of a nomographic function usually requires
pre-processing of data before transmission and post-processing
at the receiver. For a general function, it can be decomposed
as a summation form of nomographic functions [99]. This
suggests the possibility of approximately computing a general
function with AirComp.

A key requirement for implementing AirComp is time syn-
chronization of devices’ transmissions. Such requirements also
exist for uplink transmission (e.g., TDMA and SC-FDMA)
in practical systems (e.g., LTE and 5G). In such systems,
a key synchronization mechanism is called “timing advance”,
which can be also adopted for AirComp synchronization. The
technique of timing advance involves each device estimating
the corresponding propagation delay and then transmitting in
advance to “cancel” the delay. Thereby, different signals can
arrive at the BS in their assigned slots (in the case of TDMA)
or overlap with sufficiently small misalignment (in the cases
of SC-FDMA and AirComp). Considering a synchronization
channel for the purpose of propagation-delay estimation, its
accuracy is proportional to the channel bandwidth [100]. For
instance, the estimation error is no larger than 0.1 microsecond
for a bandwidth of 1 MHz. If AirComp is deployed in a
broadband OFDM system (see the next sub-section), the error
gives rise to only a phase shift to a symbol received over a
sub-channel so long as the error is shorter than the cyclic prefix
(CP). Then the phase shift can be compensated by sub-channel
equalization. In an LTE system, the CP length is several
microseconds, and hence more than sufficient for coping
with synchronization errors. This suggests the feasibility of
AirComp deployment in practical systems. The impact of
potential remaining synchronization errors on the performance
of AirComp and techniques to tackle them have been recently
studied in [101].

The distortion of digital modulation originates from quanti-
zation and decoding errors. In contrast, for AirComp, the main
source of signal distortion is channel noise and interfer-
ence that directly perturb analog modulated signals. Hence,
a commonly used performance metric for AirComp is the
MSE distortion of received functional values with respect to
the ground-truth. In the context of AirComp-FEEL, channel
noise and interference perturb the model updates and their
effects can be evaluated using the relevant metric of learning
performance. Finally, it is worth mentioning that AirComp is

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3590 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

Fig. 4. The principle of AirComp [98].

similar to non-orthogonal multiple access (NOMA) in both
being simultaneous-access schemes. However, the distinction
of AirComp is the harnessing of “inference” for functional
computation via devices’ cooperation. On the other hand,
NOMA attempts to suppress inference as the devices (sub-
scribers) transmitting independent data compete for the use of
radio resources.

2) Broadband AirComp: In a practical broadband system,
the spectrum is divided into sub-carriers using the OFDM
modulation. The deployment of AirComp-FEEL in such
a system involves simultaneous over-the-air aggregation of
model-update coefficients transmitted over sub-carriers sub-
ject to power constraints of individual devices. The channel
inversion discussed in the preceding sub-section need be
generalized to the case of multiple sub-carriers as follows.
Consider a specific uploading device. For each OFDM symbol,
ideally each sub-carrier is linearly analog modulated with a
single model/gradient element, whose power is determined by
channel inversion. However, due to the power constraint, it is
impractical to invert those sub-carriers in deep fade; hence they
are excluded from transmission, called channel truncation.
AirComp requires all devices to have fixed and identical map-
pings between update coefficients to sub-carriers. As a result,
channel truncation results in the erasure of coefficients mapped
to sub-carriers in deep fade as they cannot be remapped to
other sub-carriers. Channel truncation can potentially have a
near-far problem where the fraction of erased coefficients,
called truncation ratio, is much larger for a nearer device from
the PS (hence with larger severe path loss) than a faraway
device (will smaller loss). The problem introduces bias and
degrades the learning performance. One solution is to apply

channel truncation based only on small-scale fading with two-
fold advantages: 1) approximately equalizing truncation ratios
among devices, and 2) allowing the PS to exploit data even
at faraway devices. The resultant scheme of truncated channel
inversion scales the symbol transmitted over the m-th sub-
carrier by a coefficient p

(m)
k given as:

p
(m)
k =

⎧⎨
⎩

η

r
− α

2
k h

(m)
k

, |h(m)
k |2 ≥ gth

0, otherwise
(7)

where r
−α

2
k is the path loss and h

(m)
k the fading gain. The

parameter η represents the aligned received magnitude of
different signal components and is chosen by observing indi-
vidual power constraints of all devices. Next, given truncated
channel inversion, the PS demodulates a certain number of
OFDM symbols and thereby receives from the sub-carriers
an over-the-air aggregated model update. This is then used to
update the global model.

3) MIMO AirComp: MIMO (or multi-antenna) communi-
cation is widely adopted in practical systems (e.g., LTE and
5G) to support high-rate access by spatial multiplexing of
data streams. The deployment of AirComp-FEEL in a MIMO
system can leverage spatial multiplexing to reduce the com-
munication latency by a factor equal to the multiplexing gain.
Realizing the benefit requires the design MIMO AirComp,
a technique multiplexing parallel over-the-air aggregation or
equivalently AirComp of vector symbols, each comprising
multiple update coefficients. The main distinction of MIMO
AirComp is the use of receive beamforming, called aggre-
gation beamforming, to enhance the received signal-to-noise

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3591

Fig. 5. The AirComp-FEEL system.

ratios (SNRs) of aggregated observations from the PS array.
The intuition behind the design of aggregation beamforming is
that in terms of subspace distance, the beamformer should be
steered aways from the relatively strong MIMO link and closer
to those relatively weaker links. The purpose is to enhance
the received SNRs of the latter at the cost of those of the
former, thereby equalizating their channel gains. This facili-
tates the subsequent spatial magnitude alignment to enhance
post-aggregation SNRs. Given the aggregation beamformer,
the effective MIMO channel can be inverted at each device
to implement spatial magnitude alignment after aggregation
beamforming. Finding the optimal aggregation beamformer
is a non-convex program and intractable. An approximate
solution can be found in closed form though to mathematically
express the above design intuition. Specifically, the received
SNRs of spatial data streams from an individual MIMO link
as observed after aggregation beamforming can be approxi-
mated using the smallest SNR, corresponding to the weakest
eigenmode of the effective channel. Using the approximation,
an approximate of the optimal aggregation beamformer can be
obtained as the first L left eigenvectors of the following matrix:
G = λ2

min,kUkUH
k where λ2

min,k is the smallest singular value
of the k-th link and Uk its left L × 1 eigen subspace [38].
The matrix suggests that the aggregation beamformer is a
weighted centroid of the eigen subspaces of individual MIMO
links, where the weights are their smallest eigenvalues. This
is aligned with the design intuition mentioned above.

B. Design of AirComp Federated Learning

Consider the AirComp-FEEL system in Fig. 5. In this
section, we discuss several issues concerning the design of
such a system.

1) Model Update Distortion: Given the deployment of
broadband AirComp, the received aggregated model update at
the PS is distorted in two ways. First, the local-model update
transmitted by each device may lose some coefficients due
to truncated channel inversion in (7). Second, the uncoded

aggregated update is directly perturbed by channel noise.
There exist a trade-off between these two factors. The sub-
carrier/coefficient truncation ratio can be reduced by lowering
the truncation threshold in (7). As a result, sub-carriers with
small gains are used for transmission, and thus involved in
channel inversion, consuming more transmission power. Due
to individual devices’ fixed power budgets, the magnitude
alignment factor, η in (7), has to be reduced. This leads to
reduction on the received SNR and more noisy aggregated
update received by the PS. For this reason, there exists a
trade-off between the truncation ratio of each local-model
update and the received SNR. In system design, such a
trade-off should be balanced so as to regulate the overall dis-
tortion to prevent it from significantly degrading the learning
performance. The operating point on this trade-off may also be
adjusted along the iterations of the learning process as more
accurate estimates of the model updates are needed as the
learning process gradually converges to its optimal value.

2) Device Scheduling: In a conventional radio-access sys-
tem, its throughput or link reliability can be enhanced
by scheduling cell-interior users at the cost of quality-of-
service of cell-edge users. In the context of AirComp FEEL,
the penalty of doing so is some loss of data diversity since
the data at cell-edge devices cannot be exploited for model
training, which can significantly reduce the generalization
power of the learned model. To elaborate, due to the required
signal-magnitude alignment in AirComp, the received SNR
of aggregated model update is dominated by the weakest
link among the participating devices. Consequently, including
faraway devices with severe path loss can expose model
updates to strong noise, and hence potentially slow down
convergence and reduce model accuracy. On the other hand,
including more devices, which are data sources, means more
training data; from this perspective, they may have the opposite
effects from the above. Therefore, designing a scheduling
scheme for AirComp FEEL needs to balance this trade-off
between update quality and data quantity. For example, when
the device density is high, the path-loss threshold for selecting

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

contributing devices can be raised and vice versa. On the
other hand, mobility can alleviate this issue even when only
cell-interior devices are employed. They are mobile and hence
change over rounds, which benefits model training by provid-
ing data diversity. In the scenario with low mobility, one can
also alleviate the issue by alternating cell-edge and cell-interior
devices over different rounds [14].

3) Coding Against Interference: Existing AirComp with
uncoded linear analog modulation exposes model training
to interference and potential attacks. Most existing works
target single-cell systems and overcomes the noise effect by
increasing the transmission power. However, in the scenar-
ios of multi-cell networks or multiple coexisting services,
the signal-to-interference ratios are independent of power.
Besides coping with interference, making FEEL secure is
equally important. This motivates the need of coding in
AirComp. Possible methods include scrambling signals using
pseudo-random spreading codes from spread spectrum or
encoding the signals using Shannon-Kotelnikov mappings
from joint source-channel coding [102], prior to their transmis-
sion. Both coding schemes have the potential of providing the
desired property that AirComp remains feasible after coding so
long as participating devices apply an identical code (spreading
code or Shannon-Kotelnikov mapping) while interference is
suppressed by despreading/decoding at the BS.

4) Power Control: Channel inversion is adopted in typical
AirComp to realize magnitude alignment [103]. Its drawbacks
are to either exclude devices with weak links from FEEL at the
cost of data diversity or consume too much power by inverting
such links. In other words, channel-inversion transmission is
sub-optimal in terms of minimizing the errors in aggregated
gradients/models. Targeting a sensor system with i.i.d. data
sources, it was shown in [104] that the optimal power-control
policy for error minimization exhibits a threshold based struc-
ture: when its channel gain is below a fixed threshold, a device
should transmit with full power; otherwise it should adopt
channel inversion. Nevertheless, the assumption of i.i.d. data
sources does not hold for AirComp FEEL since stochastic
gradients or local models of different devices are highly
correlated. It is proposed in [105] that information on gradient
distribution can be exploited in power control for AirComp
FEEL. While this provides significant gains in learning accu-
racy, the optimal power-control strategy in general remains an
open problem.

C. Representative Result

Next, we introduce a concrete example that analyzes the
how wireless channels affects the convergence of AirComp
FEEL. We consider the implementation of “signSGD” in a
broadband system supporting AirComp FEEL. This requires
the replacement of analog linear modulation with binary mod-
ulation (BPSK). In this case, the decision at the PS depends on
the sign of the received signal, and corresponds to an “‘over-
the-air majority voting” scheme that converts the received
aggregated gradient into a binary vector [45]. Given a general
loss function, a common metric measuring the level of model
convergence is the averaged (aggregated) gradient norm over

rounds, denoted as Ḡ. The expectation of Ḡ for the considered
system can be analyzed as a function of given numbers of
rounds and devices, which quantifies the convergence speed.
Specifically, it is shown in [106] that

E
�
Ḡ

� ≤ a√
N

f1 +

1√
K

f2 + b

�
, (8)

where the factors f1 and f2/K correspond to the descent
using ground-truth gradients and the expected deviation of an
aggregated gradient from its ground truth. The two parameters
a and b capture the effects of wireless channels. In the ideal
case with perfect channels, the parameters take on the values
of a = 1 and b = 0. If the channels are AWGN, they are given
as follows:

aAWGN =
1

1 − 1
K

√
SNR

, bAWGN =
f2

K
√

SNR
(9)

where the SNR refers to transmit SNR of a device. One can
observe that they converge to their ideal-channel counterparts
as the factor K

√
SNR grows, where K suppresses noise

by aggregation and SNR by increasing signal power. If the
channel has fading, then a transmitted local gradient can be
truncated as we discussed. Let α denote the probability that a
sub-carrier is truncated. Then, the two parameters in this case
are given as

aFAD =
1

1 − (1 − α)K − 2
αK

√
SNRav

, bFAD =
2f2

αK
√

SNRav
.

(10)

One can see that fading slows down the convergence rate
with respect to the AWGN channel since aFAD > aAWGN and
bFAD > bAWGN. If the truncation probability α = 0, the speeds
for both cases are equal since fading is not severe, or the
transmission power is sufficiently large to counteract it.

The analysis of convergence speed is useful for estimating
the required number of communication rounds for model
training. For FEEL, an alternative and perhaps more practical
performance metric that can account for multi-access latency
is the learning latency (in seconds). It accumulates per-round
latency over the total rounds, which is determined by the
convergence analysis. On one hand, AirComp achieves a lower
model accuracy than the conventional digital orthogonal access
due to lack of coding. On the other hand, when there are many
devices, AirComp dramatically reduces multi-access latency
with respect to the latter. To have an idea on their relative
performance, some experimental results from [14] are shown
in Fig. 6. The experiment simulates the AirComp-FEEL sys-
tem in Fig. 5 over broadband channels with 100 edge devices.
The task is to train a convolutional neural network using the
distributed MNIST data for handwritten digit recognition. The
update aggregation is performed by AirComp or OFDMA
with adaptive modulation over a broadband channel consisting
of 1000 orthogonal sub-channels. FEEL is implemented with
local-model uploading. For OFDMA, local-model parameters
are quantized using a 16-bit scalar quantizer. The bit sequences
of a local model are modulated onto sub-carriers using the
classic scheme of adaptive QAM modulation targeting a
target bit-error-rate of 10−3. The average received SNR is set

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3593

Fig. 6. Learning accuracy and latency comparisons between FEEL with AirComp and digital OFDMA [14].

as 10 dB. One can observe from Fig. 6 that under such settings,
compared with digital transmission, AirComp can reduce the
communication latency by a factor approximately equal to
the number of devices without significant loss of the learning
accuracy.

D. State-of-the-Art and Research Opportunities

The next-generation IoT is expected to connect tens of bil-
lions of edge devices and bring to them computing capabilities
and intelligence. Among many others, a specific class of IoT
applications has emerged, which requires an edge PS (which
can be a BS) to aggregate data distributed at devices with wire-
less connectivity, termed wireless data aggregation (WDA).
Such applications include distributed learning, the topic of this
article, as well as vehicle platooning, drone swarm control, and
distributed sensing. In such applications, a PS is interested in
computing a function of distributed data generated by devices.
The applications are either data intensive (e.g., distributed
learning) or latency critical (e.g., vehicle platooning). The
requirements have motivated researchers to develop AirComp
to enable efficient WDA over many devices [98]. In the area
of FEEL, researchers overcome the communication bottleneck
by applying AirComp to implement over-the-air aggregation
of local updates.

1) Analog Compression: Another challenge in AirComp is
to enable learning in a broadband communication scenario.
When the model updates are transmitted in an uncoded fash-
ion, each iteration of the learning process requires as many
channel resources as the model dimension, which can be very
large in modern deep learning architectures. For example,
architectures used for machine vision applications typically
have millions of parameters; well-known AlexNet, ResNet50,
and VGG16 architectures have 50, 26, and 138 million para-
meters, respectively. Models for natural language processing
applications typically have much larger networks, with even
billions of parameters. Therefore, training such large networks
with uncoded transmission would require extremely large
bandwidth, often not available at the network edge. This
challenge is overcome in [13] by exploiting the sparsity of

the model updates. However, note that, sparsification in the
case of digital communication of the model updates requires
the additional transmission of the index information of the
transmitted model parameters from each device, adding a
significant additional communication load. In [13], the authors
employ random projection of the sparsified model updates at
the devices, which allows the devices to significantly reduce
the bandwidth requirement without sacrificing the perfor-
mance. The authors in [107] first analyzed how user selection
and transmit power affect the convergence of AirComp based
FL and then optimized these wireless factors to improve the
performance of AirComp based FL. The work in [108] studied
the use of 1-bit compressive sensing (CS) for analog ML
model aggregation thus reduce the size of FL parameters
transmitted over wireless links. The work in [109] used a
Markovian probability model to characterize the temporal
structure of the local ML parameter aggregation over a series
of learning steps. Based on the Markovian model, the authors
developed a turbo message passing algorithm to efficiently
recover the desired global ML model from all the historical
noisy observations at the PS.

As we discussed previously, researchers have also designed
AirComp FEEL systems over multiple-antenna channels [38],
[110], [111]. While the beamforming vectors are optimized
in [38] to exploit the available multiple antennas for FL, it is
shown in [112] that if there are sufficiently many receive
antennas at the PS, this can compensate for the lack of channel
state information at the transmitter. It is further shown in [112]
that, since only the summation of the transmitted symbols
needs to be decoded at the receiver, this also reduces the
channel state estimation requirements at the receivers, which
only needs an estimate of the sum channel gain from the
devices to each antenna.

2) Privacy in FL With AirComp: Another important poten-
tial benefit of AirComp in the FL setting is regarding privacy.
Even though FL has been proposed as a privacy-sensitive
learning paradigm as the devices only transmit their model
updates to the PS and the datasets remain localized, it has
been shown that the gradient information can reveal signifi-
cant information about the datasets, called gradient leakage

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3594 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

[82], [113]. Several works have proposed privacy mecha-
nisms to prevent gradient leakage. In particular, differential
privacy (DP) is used as a rigorous privacy measure in this
context [114]. A common method to provide DP guarantees
is to add noise to data before sharing it with third parties. In the
digital implementation of FL, each device can add noise to its
local gradient estimate before sharing it with the PS [115],
which results in a trade-off between privacy and the accuracy
of learning. However, note that, the gradients (or, model
updates) in the case of AirComp are received at the PS with
additional channel noise. Several recent works have developed
privacy-aware AirComp schemes based on this observation.
In [116], if the channel noise is not sufficient to satisfy the DP
target, some of the devices transmit additional noise, benefiting
all the devices. Instead, in [117] and [118], transmit power is
adjusted for the same privacy guarantee. The authors in [119]
showed that jointly optimizing both wireless aggregation and
user sampling can further improve differential privacy. Hence,
the authors designed a private wireless gradient aggregation
scheme that relies on the device selection scheme to improve
differential privacy. While these works benefit mainly from the
presence of channel noise, and depend critically on the perfect
channel knowledge at the transmitters, in [120], the authors
exploit the anonymity provided by AirComp for privacy, which
prevents the PS to detect which devices are participating in
each round.

AirComp FEEL is still in its nascent stage. There exist
many promising research opportunities. For example, Air-
Comp FEEL can be wirelessly powered to lengthen devices’
short battery lives due to intensive computation. As another
example, efficient channel feedback based on the AirComp
principle can be designed to suppress the excessive feed-
back overhead when devices are many [38]. Furthermore,
the deployment of AirComp FEEL in a multi-cell system
exposes learning performance to the effect of inter-cell inter-
ference. Quantifying the effect can provide useful guidelines
for network designers.

IV. FEDERATED DISTILLATION

Although FL is communication-efficient by nature, it still
requires the exchange of large models over the air. Indeed
modern DNN architectures often have a large number of
model parameters. For instance, GPT-3 model is a state-of-
the-art NN architecture for natural language processing (NLP)
tasks, and has 175 billion parameters corresponding to over
350GB [121]. Exchanging the sheer amount of deep NN
model parameters is costly, hindering frequent communica-
tions particularly under limited wireless resources. To address
this problem, we introduce FD.

A. Preliminaries

FD only exchanges the models’ outputs whose dimensions
are much smaller than the model sizes (e.g., 10 classes in the
MNIST dataset). For instance, in a classification task, each
device runs local iterations while storing the average model
output (i.e., logit) per class. Then at a regular interval, these
local average outputs are uploaded to the PS aggregating and

averaging the local average output across devices per class.
Subsequently, the resultant global average outputs are down-
loaded by each device. Finally, to transfer the downloaded
global knowledge into local models, each device runs local
iterations with its own loss function in addition to a regularizer
measuring the gap between its own prediction output of a
training sample and the global average output for the given
class of the sample. Such regularization method is called
knowledge distillation (KD).

B. State-of-the-Art

While FD was proposed in [122], its effectiveness is not lim-
ited to simple classification tasks under a perfectly controlled
environment. In [123], FD is extended to an RL application
by replacing the aforementioned pre-class averaging step of
FD with an averaging operations across neighboring states
for an RL task. In [124] and [125], FD is implemented in a
wireless fading channel, demonstrating comparable accuracy
under channel fluctuations and outages with much less payload
sizes compared to FL. The authors in [126] used transfer
learning to design a novel FD algorithm which enables edge
devices to uniquely design their own ML models. The work
in [127] used ensemble distillation for robust model fusion.
The designed distillation framework leverages unlabeled data
or artificially generated examples to aggregate knowledge from
all the received ML models. In [128], the authors applied the
new proposed Noise-Free Differential Privacy mechanism into
an FD framework thus effectively protecting the privacy of
local data with the least sacrifice of the model utility. In [129],
a new technique called mix2FLD was proposed whereby local
model outputs are uploaded to a PS in the uplink whereas
global model parameters are downloaded in the downlink as
in FL. To preserve privacy while not compromising accuracy,
linearly mixed-up local samples are uploaded, and inversely
mixed up across different devices at the PS. For a comprehen-
sive survey on the topic, please refer to [130].

C. Representative Result

To see the effectiveness of FD, we consider the MNIST
(hand-written 0-9 images) classification task performed by
10 devices. Figure 8 illustrates the performance of FD for
both cases of an IID local dataset and a non-IID dataset
whose local data samples are imbalanced across labels. The
result shows that for different numbers of devices, FD can
always reduce around 10,000x communication payload sizes
per communication round compared to FL. Considering both
fast convergence and payload size reduction, FD reduces the
total communication cost until convergence by over 40,000x
compared to FL. Nonetheless, FD still comes at the cost
of compromising accuracy, particularly under non-IID data
distributions.

D. Summary and Research Opportunities

As shown in the previous section, FD is a very efficient
way of training models in a communication-efficient manner,
which comes on par with the performance of FL. Preliminary

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3595

Fig. 7. A schematic illustration of FD with 3 devices and 2 labels in a classification task.

Fig. 8. Comparison between FD and FL in terms of (a) test accuracy and
(b) sum communication cost of all devices per epoch, under an IID or non-IID
MNIST data.

results on MNIST show that FD consumes 10,000x smaller
communication cost while FD achieving 95% accuracy of FL
under IID datasets. Moreover FD achieves 82% accuracy of
FL under non-IID datasets. FD is still in its infancy and several
interesting future directions include the co-design of wireless
communication and FD as opposed to treating them separately.

Another natural extension is to investigate the cost-benefits of
model quantization, distillation and their inherent trade-offs.

Beyond supervised learning, FD can be extended towards
RL whereby edge nodes collaboratively train a model of their
policy and/or value function while taking into account privacy,
resource constraints and the inherent nature of wireless con-
nectivity. The learning can be carried out either leveraging
a centralized server as in FL or in a totally distributed
manner. The challenges in RL are more pertinent in that the
environment is non-stationary and the data is non-IID. In both
supervised and reinforcement learning setting a theoretical
proof of convergence in non-linear networks remains an open
problem.

V. DISTRIBUTED INFERENCE OVER WIRELESS NETWORKS

While we have so far focused on the training aspect of ML
at the wireless edge, another important component of edge
learning is the inference stage. Once an ML model is trained
using the available data, this model is then used to make
inferences (classification or regression) on new data samples.
In standard settings, training is considered to be the most
computationally demanding phase of ML problems; and hence,
most research has focused on improving the efficiency of dis-
tributed training; however, in the case of wireless edge devices
and networks, inference is also challenging due to the power
and complexity limitations of edge devices, and the latency
requirements of the applications. This is particularly the case
for inference using complex DNN models, whose dimen-
sions can easily run into hundreds of millions. For example,
the popular residual network architecture ResNet-50 for image
classification applications consists of 50 convolutional layers,
and requires close to 100 megabytes of memory for storage
and approximately 4 giga floating point operations (FLOPS)
for each image. As an extreme example, the GPT-3 model
trained for natural language processing has 175 billion para-
meters. Implementing such models on edge devices, especially
within the time frames required by most edge applications is
not feasible due to memory and computational limitations of

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3596 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

edge devices. For example, in autonomous vehicles immediate
detection of obstacles is critical to avoid accidents, putting
stringent latency constraints on the inference task; however,
the on-board processing units on a small drone may not be
capable of carrying out large DNN inference in a timely
manner. Similarly, data rates and processing speeds required in
certain applications, such as particle physics experiments [131]
or in wireless communications [132] can make online infer-
ence extremely challenging. In other scenarios, even when the
processing capabilities of the devices or the data volume and
latency constraints do not pose a significant challenge, it may
not be possible to carry out inference locally if the data to
make the inference on is distributed. For example, intelligence
for surveillance applications may require images from multiple
cameras, or in retrieval tasks, inference may require access
to a database available in a remote server [133]. Similarly
to federated training, communication becomes indispensable
in such scenarios, and we need to guarantee that distributed
inference can still be accomplished within the accuracy and
latency constraints of the underlying application. With a few
exceptions [133]–[135], so far the physical layer aspects of
distributed edge inference have been mostly ignored.

A. Fundamental Limits

From an information theoretic perspective, distributed infer-
ence over wireless channels can be treated as a joint
source-channel coding version of remote rate-distortion prob-
lem [136], [137]. Here, the label to be inferred can be con-
sidered as the required reconstruction based on the available
data sample. The distortion measure can either be log loss
in the case of classification, or squared error distortion in
the case of regression. Such an interpretation is followed
in [138] by further simplifying the inference task as a dis-
tributed binary hypothesis testing (HT) problem. Consider, for
example, an observer, that has independent identically distrib-
uted (i.i.d.) samples of a random variable. The observer can
communicate over a noisy channel to a remote decision maker,
which wants to make a decision regarding the underlying
probability distribution governing the data samples observed
by the observer. Assuming a binary hypothesis testing sce-
nario, e.g., the samples come from one of the two candidate
distributions, it is shown in [139] that separation is optimal;
that is, the simple scheme in which the observer locally
performs optimal Neyman-Pearson test and communicates its
decision to the tester using the best channel code for the two
messages, achieves the best asymptotic error-exponent.

Since we do not impose any computational constraints at
the observer, this result is aligned with the intuition that the
inference should be made locally at the observer as it has
access to all the relevant data, and the implication of this result
is that remote inference does not have a substantial impact on
the performance, as long as the local decision can be conveyed
to the remote decision maker reliably. However, the problem
becomes significantly more challenging if both the observer
and the decision maker have their own local observations,
correlated with each other, and the goal is to make a decision
on their joint distribution. In this scenario, since the observer

has access only to its own observations, it cannot make a local
decision no matter how much processing power it has; instead
it must convey some features of its observations to help the
decision maker to make the correct decision.

It is known that when the goal of the decision maker is
to reconstruct the observation of the observer within some
distortion constraint, rather than deciding on their joint dis-
tribution, separate source-channel coding is asymptotically
optimal [140]; that is, it is optimal for the observer to first
compress its observations into as few bits as possible satisfying
the distortion constraint, and then to transmit these bits to
the decision maker reliably using a capacity-achieving channel
code. An interesting question here is whether such a scheme
is still optimal when the goal is to make a decision on
the joint distribution rather then reconstruction the source
samples, such as the case in most ML problems. We note
here that, even though hypothesis testing can also be viewed
as a rate-distortion problem with a particular distortion metric,
it is not an additive metric as in standard rate-distortion
problems, that is, the distortion between the original source
vector and its reconstruction measured by the sum of the
distortions between individual elements. It is shown in [138]
that the optimality of separation breaks down in the remote
hypothesis testing problem. Interestingly, it is also shown
in [138] that the optimal error exponent can be achieved by a
separation-based scheme for the special case of testing against
independence; that is, when deciding whether the samples
at the observer and the decision maker come from a known
distribution or are independent of each other. This result shows
that communication and inference cannot be separated even in
the asymptotic limit without loss of optimality. On the other
hand, how to design such joint schemes is mostly an open area
of research.

B. Neural Network Compression and Acceleration

From a practical point of view, since state-of-the-art per-
formance is achieved by DNNs in most practical inference
problems, the research has focused on implementing neural
network inference on edge devices under the aforementioned
constraints on the computational capabilities and memory
of the devices, and the available power and bandwidth for
communications. A possible approach to solve this problem is
model architecture optimization, where the goal is to adjust the
size and complexity of DNN architectures to the constraints
of the edge device without sacrificing their performance.
There are several approaches to achieve this in the literature.
A more straightforward approach, similarly to those used for
reducing the communication load during training, is to employ
parameter pruning and quantization in order to reduce and
remove redundant parameters that do not have a significant
impact on the performance. It was discovered early on that
pruning can reduce the network complexity and help address
the overfitting problem [141]–[143]. Today there are many
advanced pruning algorithms, and we refer the reader to [144]
for a detailed survey. Another effective approach is to impose
sparsity constraints during training, through which we directly
obtain a sparse network architecture, rather than trying to

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3597

reduce a complex network to a sparse one through pruning
[145], [146]. Network quantization, instead of removing some
of the weights, tries to reduce the number of bits required to
represent the network weights. In [147] and [148], fixed-point
representations are employed, and it is shown that very low
precision is sufficient not just for inference based on trained
networks but also for training them. Some works focused
on training neural networks with only a single-bit binary
weights [149], [150], showing that DNNs can still perform
well, significantly reducing their complexity and memory
requirements. In [151], by stochastically binarizing the weights
the authors convert multiplications to sign changes, which
further simplifies network operations.

DNN compression can also be treated as a standard source
compression problem, and vector quantization techniques can
be employed for codebook-based compression to reduce the
memory requirements. Hashing is used in [152], while [153]
employed vector quantization. Huffman coding is applied
in [154] to further reduce the redundancy in quantized network
weights.

C. Joint Edge-Device Inference

While offloading data to the edge server for inference is
one end of the spectrum, fully local inference using the
above compression techniques can be considered as the other
end. But, there can be a wide variety of solutions that lie
in between, where we benefit from the local computation
capabilities of the edge devices, but rather than carrying
out full-fledged local inference, we also benefit from the
edge servers, and the devices and the edge servers carry out
inference tasks in a cooperative manner. A standard approach
for edge-device cooperative inference is to split the DNN
architecture into two, where the first several layers are carried
out on the device, while the remainder are offloaded to the
edge server. Such a distributed DNN architecture was first
proposed in [155], where a small DNN model is deployed
on end devices while a larger NN model is employed in
the cloud. For each inference query, the device first rapidly
performs local inference using the local model for initial
feature extraction, and even completes the inference if the
model is confident based on the local features. Otherwise,
the end device forwards the result of the local operations to the
cloud, which performs further processing and final classifica-
tion. This approach, by adaptively deciding on the offloading,
provides a better use of the local resources and reduces the
communication load compared to always offloading to the
cloud, but also increases the accuracy compared to fully local
inference. Moreover, since only the features that are required
for the inference task are offloaded to the edge server, there
is an inherent privacy protection as well.

In a parallel work, the neurosurgeon approach in [156]
proposed joint computation between the edge device and
the edge server by partitioning the layers between the two.
By characterizing the per-layer execution time and the amount
of data that needs to be conveyed to the edge server at the
output of each layer, neurosurgeon decides how to divide
a complex DNN architecture between the device and the

server. This approach is further extended in [157] where the
computations in a DNN are modeled as a directed acyclic
graph, and the optimal computation scheduling between the
edge device and server are studied for a large class of
DNN architectures. It is shown in [157] that for generative
and autoencoder models, multiple data transfers between the
device and the cloud may be required.

It is observed in [156], [157] that, in some DNN architec-
tures, particularly those used for classification tasks, the data
size at the output of the initial layers may be even larger
than the input size. This would mean that carrying out the
initial layers locally at the edge device might increase the
communication cost. Lossless compression of the features
using Portable Network Graphics (PNG) algorithm [158] is
considered in [157]. Further reduction in the communication
load can be achieved by using lossy compression. In [159],
authors propose applying JPEG compression on the features
before transmitting them to the edge server. On the other
hand, standard image compression codecs have been designed
for visual quality of the reconstructed image; and hence,
they may remove high-frequency components of the features
that are important for the classification task. In [160], rather
than employing standard compression codes, quantized feature
maps are compressed using Huffmann coding. Alternatively,
in the BottleNet architecture proposed in [161], a learnable
feature reduction unit is introduced prior to JPEG compression
to make sure only the most relevant features are compressed
and forwarded to the edge server.

More recently, in [134], [162], [163] pruning techniques
have been combined with DNN splitting to further reduce the
computational load on the edge device. Thanks to pruning,
more layers can be computed at the edge device within the
latency and computational constraints. Pruning also provides
a certain level compression by removing some of the less
significant features.

D. Joint Edge-Device Inference Over a Wireless Channel

Above approaches abstract out the wireless channel as
an error-free ideal bit-pipe, and focus only on the feature
compression problem, ignoring the impacts of communication
in terms of latency, complexity, or reliability. However, lossy
transmission of feature vectors to the edge server over a
wireless channel is essentially a joint source-channel cod-
ing (JSCC) problem, and separation is known to be suboptimal
under strict latency constraints imposed by inference prob-
lems [164].

While JSCC has been studied extensively in the literature,
past work mainly focus on the transmission of image or
video sources, following a model-driven approach exploiting
particular properties of the underlying source and channel
statistics [165], [166]. Recently, an alternative fully data-
driven DNN-based scheme, called DeepJSCC, has been intro-
duced [167]. DeepJSCC not only beats state-of-the-art image
transmission schemes (e.g., BPG image compression + LDPC
channel coding) in many scenarios, particularly in terms
of perception sensitive quality measures (e.g., structured
similarity index measure, SSIM), but also provides ‘graceful

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3598 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

degradation’ with channel quality, making it attractive for
many edge inference applications where the ultra low latency
requirements may render channel estimation infeasible. Note
also that, these works only consider the latency and the
complexity of the operations pertaining to the DNN layers,
while ignoring those associated with channel coding/ decoding
and modulation, which can be substantial, particularly if we
want to operate at a rate close to the capacity of the underlying
channel with low probability of error. DeepJSCC significantly
reduces the coding/decoding delay compared to conventional
digital schemes. Yet another advantage of employing Deep-
JSCC for edge inference is that, as opposed to conventional
digital compression schemes like JPEG of BPG, DeepJSCC
has the flexibility to adapt to specific source or channel
domains through training. This makes DeepJSCC especially
attractive for edge inference as we do not have compression
schemes designed for generic feature vectors, whose statistics
would change from application to application.

A remote wireless inference problem is considered in [133],
where wireless image retrieval is studied. In the scenario
considered, the image of a person captured by a remote camera
is to be identified within a database available at an edge
server. Here, the camera cannot make a local decision as it
does not have access to the database. In [133], two approaches
are proposed, both employing DNNs for remote inference:
a task-oriented DNN-based compression scheme for digital
transmission and a DNN-based analog JSCC approach. It is
observed that the proposed JSCC approach, which maps the
feature vectors directly to channel inputs (no explicit compres-
sion or channel coding is carried out), performs significantly
better.

In [135], the authors employ JSCC for the joint mobile
device- edge server inference problem, and called the new
architecture BottleNet++, as this combines the approach
in [161] with DeepJSCC. A significant improvement in com-
pression efficiency is achieved by BottleNet++ compared to
directly transmitting the compressed feature vectors. In [134],
pruning is employed jointly with DeepJSCC, and it is shown
that an order of magnitude reduction in required channel
bandwidth is possible compared to [135].

VI. MULTI-AGENT REINFORCEMENT LEARNING OVER

WIRELESS NETWORKS

The previous sections introduced the implementation of
supervised learning algorithms over wireless networks. Next,
we introduce the implementation of RL for wireless network
control and optimization.

A. Preliminaries of RL

RL enables the wireless devices to learn the control and
management strategies such as resource allocation schemes
by interacting with their dynamic wireless environment [17].
Next, we introduce three basic RL algorithms that are gener-
ally used for wireless networks.

1) Single Agent RL: The formal model of a single agent RL
can be described as a Markov decision process (MDP) [17].
Hence, the model of a single agent RL consists of four

components: agent, state, action, and reward. The agent refers
to the device that implements the RL algorithm. The state
describes the environment observed by the agent at each time
slot. A reward evaluates the immediate effect of an action
given a state.

Single agent RL enables the agent to find a policy that max-
imizes the expected discounted reward while only receiving
the immediate reward at each learning step. During the single
agent RL training process, the agent first observes its current
state, and then performs an action. As a result, the agent
receives its immediate reward together with its new state. The
immediate reward and new state are used to update the agent’s
policy. This process will be repeated until the agent finds a
policy that can maximize the expected discounted reward.

In wireless networks, single agent RL algorithms can be
considered as the centralized algorithms used for network con-
trol and optimization. In particular, single RL algorithms that
are implemented by a central controller are mainly used for
solving non-convex or time dependent optimization problems.
For example, one can use single RL algorithms to optimize
the trajectory of an unmanned aerial vehicle [168], [169].
However, as the number of mobile devices that are considered
by single agent RL increases, the action and state space of
the single agent RL will significantly increase thus increasing
the training complexity and decreasing the convergence speed.
Meanwhile, as the number of the considered devices increases,
the overhead of collecting state information of all devices
increases which further increases the training complexity of
single agent RL. Therefore, it is necessary to design distributed
RL that can be jointly implemented by multiple devices.

2) Independent Multi-Agent RL: Independent multi-agent
RL is the simplest MARL algorithm. In the independent
MARL, each device implements the single-agent RL individ-
ually. In consequence, each device aims to maximize its own
expected discounted reward without considering other devices.
Given the simple implementation, the agents that perform
independent MARL does not need to share any RL infor-
mation with other devices. Therefore, in wireless networks,
independent MARL are generally used for the devices or the
BSs that cannot communicate with each other. Since the agents
do not share any RL information, independent MARL are not
guaranteed to converge and it also cannot find a local optimal
solution to maximize the sum expected discounted reward of
all agents.

3) Collaborative Multi-Agent RL: Collaborative MARL
requires the agents to share some RL information with other
agents. In particular, each agent can share its reward, RL model
parameters, action, and state with other agents. For different
collaborative RL algorithms, they may share different RL
information. For example, the collaborative MARL designed
in [170] requires the agents to share their state and action
information. In contrast, value decomposition network [171]
requires the agents to share their rewards. The training
complexity and performance of a collaborative MARL algo-
rithm depends on the information that each agent needs
to share. The authors in [172] had compared the training
complexity and performance of different collaborative MARL
algorithms.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3599

B. State-of-the-Art

Now, we discuss a number of recent works on the use of
RL algorithms for network control and optimization. In [173]
and [174], the authors provided a comprehensive survey for
the use of RL for solving wireless communication problems.
The authors in [175] proposed a single-agent RL algorithm
for optimizing the movement and transmit power of the UAV,
phase shifts of the reconfigurable intelligent surfaces (RIS),
and the dynamic decoding order. In particular, the authors
in [170] designed the recurrent neural network based MARL
algorithms for spectrum resource allocation. Using game
theory, the designed RL algorithm is proved to converge
to a mixed-strategy Nash equilibrium. The authors in [176]
designed an independent MARL algorithm for optimizing
the spectral efficiencies of BSs and verified that collabora-
tive MARL can achieve better performance than independent
MARL. The work in [177] developed a novel MARL algo-
rithm that enables the central controller to use the experience
collected from edge devices for training an ML model. The
trained ML model will be distributed to edge devices for net-
work performance optimization. The authors in [178] studied
the use of cooperative MARL for modulation and demodu-
lation design. In [179], the authors designed a voting-based
MARL algorithm that uses a primal-dual algorithm to find the
optimal policy for large scale IoT systems. The work in [180]
designed a hierarchical federated MARL algorithm for jointly
optimizing user association and scheduling. All of the previous
works in [170], [173]–[180] are focused on the design of novel
RL algorithms for solving wireless communication problems
and they did not consider the issues of implementing RL
algorithms over resource constrained wireless networks.

Recently, the works in [181]–[185] focused on the design
of novel communication efficient RL algorithms. In partic-
ular, the authors in [181] proposed a novel policy gradient
method for MARL so as to reduce its convergence time.
In [182], the authors designed a randomized communication-
efficient multi-agent actor-critic algorithm in which a net-
work of multiple agents aim to cooperatively maximize the
globally averaged reward through communication with only
local neighbors. Meanwhile, the designed algorithm enables
each edge device to transmit only two scalar-valued variables
for cooperative training at each learning step. The work
in [184] proposed a novel model-based RL algorithm that
can effectively optimize a policy offline using 10-20 times
fewer data than prior works. The authors in [185] propose
a deep MARL framework in which agents learn how to
schedule themselves, how to encode the messages, and how
to select actions based on received messages. Meanwhile,
the designed RL framework is capable of deciding which
agents should be entitled to broadcasting their messages by
learning the importance of each agent’s partially observed
information.

C. Representative Result

One representative result on the development of MARL
for UAV trajectory design can be found in the work [171].
In the considered model, a team of UAVs is dispatched

Fig. 9. Convergence of the VD-MARL algorithm [171].

to cooperatively serve several clusters of ground users that
have dynamic and unpredictable uplink access demands. The
UAVs must cooperatively navigate to maximize coverage of
the dynamic requests of the ground users. This trajectory
design problem is formulated as an optimization framework
whose goal is to find optimal trajectories that maximize the
fraction of users served by all UAVs (called successful service
rate hereinafter). Traditional optimization algorithms such as
branch and bound are not suitable to solve this problem as the
successful service rate achieved by each UAV is unpredictable
due to the dynamic and unpredictable uplink access demands
of ground users. Hence, we designed a novel MARL called
VD-MARL that merges the concept of value decomposition
network, model agnostic meta-learning, with the policy gra-
dient framework to optimize the trajectories of all UAVs.
The proposed MARL algorithm enables each UAV to use the
successful service rate achieved by all UAVs to estimate the
expected successful service rate achieved by all UAVs over all
states thus finding the local optimal trajectories for all UAVs.
In particular, implementing VD-MARL, each UAV only needs
to share its reward with other UAVs and hence, the overhead of
RL information exchange among multiple UAVs significantly
reduces.

Fig. 9 shows the convergence of the VD-MARL algo-
rithm. In this figure, we consider three RL algorithms: a) the
proposed VD-MARL algorithm, b) the independent MARL
algorithm based on actor critic, and c) QMIX in [186]. From
Fig. 9, we can see that VD-MARL improve the successful
service rate by up to 54% compared to the independent MARL
algorithm. This is because the VD-MARL can find a team
optimal strategy to maximize the successful service rate of
all UAVs. The independent MARL algorithm, however, find
a strategy that maximize each UAV’s individual successful
service rate. This figure also shows that VD-MARL improves
the convergence speed by up to 31% compared to the QMIX
algorithm. This stems from the fact that the neural network
in QMIX used to estimate the estimated future team reward
remarkably increases the complexity of QMIX.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3600 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

D. Research Opportunities

Using MARL for improving wireless network performance
requires addressing a number of key problems including:

1) Convergence Analysis: To analyze the optimality of RL
solutions as well as the time and energy used for training
RL algorithms, one important problem is to analyze the RL
convergence. The existing works have used MDP to analyze
the convergence of the single agent RL algorithms and game
theory for simple MARL convergence analysis. However,
none of these existing works can analyze the convergence of
advance MARL algorithms such as QMIX due to complex RL
information exchange and neural network updates. Therefore,
in this problem, there are several issues including: 1) whether
the studied MARL algorithm can find the optimal solution,
2) the number of iterations that MARL needs to converge,
3) how the number of MARL agents affects the convergence,
4) how approximation errors caused by ML models affects the
MARL convergence.

2) Optimization of Wireless Networks for MARL Implemen-
tation: In wireless networks, the MARL convergence depends
not only on the RL parameters such as the size of ML model
but also on the wireless networking factors such as limited
number of resource blocks (RBs), imperfect RL parameter
transmission, and limited transmit power and computational
power of devices. In particular, the number of RBs determines
the number of devices that can perform MARL algorithm.
Meanwhile, the dynamic wireless channels may cause errors
on the transmitted RL parameters. In addition, the limited
transmit power and computational power will significantly
affect the time used for the RL model update and RL parameter
transmission. Therefore, key problems in the implementation
of MARL over wireless networks exists in many areas such
as 1) optimization of RB allocation and device scheduling for
RL parameter transmission, 2) reliable and energy efficient RL
parameter transmission, 3) joint optimization of RL training
methods and wireless resource allocation for minimizing RL
convergence time, 4) coding and decoding method design, and
5) the deployment of advanced wireless techniques such as
terahertz and intelligent reflecting surface.

VII. CONCLUSION

In this paper, we have provided a comprehensive study of
the deployment of distributed learning over wireless networks.
We have introduced four distributed learning frameworks,
namely, FL, FD, distributed inference, and MARL. For each
learning framework, we have introduced the motivation for
deploying it over wireless networks. Meanwhile, we have
presented a detailed literature review, an illustrative example,
and future research opportunities for each distributed learn-
ing framework. Such an in-depth study on the deployment
of distributed learning over wireless networks provides the
guidelines for optimizing, designing, and operating distributed
learning based wireless communication systems.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J.-A. Zhang,
“The roadmap to 6G: AI empowered wireless networks,” IEEE Com-
mun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.

[2] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future
of wireless communications systems,” IEEE Access, vol. 8,
pp. 133995–134030, 2020.

[3] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G
be?” Nature Electron., vol. 3, no. 1, pp. 20–29, Jan. 2020.

[4] J. Posner, L. Tseng, M. Aloqaily, and Y. Jararweh, “Federated learning
in vehicular networks: Opportunities and solutions,” IEEE Netw.,
vol. 35, no. 2, pp. 152–159, Mar. 2021.

[5] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge AI: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Netw., vol. 33, no. 5,
pp. 156–165, Sep. 2019.

[6] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,”
IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.

[7] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato,
“Federated learning for 6G communications: Challenges, methods,
and future directions,” China Commun., vol. 17, no. 9, pp. 105–118,
Sep. 2020.

[8] Z. Zhao, C. Feng, H. H. Yang, and X. Luo, “Federated-learning-
enabled intelligent fog radio access networks: Fundamental theory, key
techniques, and future trends,” IEEE Wireless Commun., vol. 27, no. 2,
pp. 22–28, Apr. 2020.

[9] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Commun., vol. 27, no. 2, pp. 72–80, Apr. 2020.

[10] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2nd Quart., 2021.

[11] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, Jan. 2021.

[12] M. S. H. Abad, E. Ozfatura, D. Gündüz, and O. Ercetin, “Hierarchical
federated learning ACROSS heterogeneous cellular networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona,
Spain, May 2020, pp. 8866–8870.

[13] M. M. Amiri and D. Gündüz, “Machine learning at the wireless
edge: Distributed stochastic gradient descent over-the-air,” IEEE Trans.
Signal Process., vol. 68, pp. 2155–2169, Mar. 2020.

[14] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, Jan. 2020.

[15] M. M. Amiri and D. Gündüz, “Federated learning over wireless
fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3546–3557, May 2020.

[16] K. Bonawitz et al., “Towards federated learning at scale: System
design,” in Proc. Syst. Mach. Learn. Conf., Stanford, CA, USA,
Feb. 2019.

[17] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive
survey of multiagent reinforcement learning,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Feb. 2008.

[18] A. Tak and S. Cherkaoui, “Federated edge learning: Design issues and
challenges,” IEEE Netw., vol. 35, no. 2, pp. 252–258, Mar. 2021.

[19] C. Shen, J. Xu, S. Zheng, and X. Chen, “Resource rationing for
wireless federated learning: Concept, benefits, and challenges,” 2021,
arXiv:2104.06990. [Online]. Available: http://arxiv.org/abs/2104.06990

[20] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.

[21] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[22] K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated
machine learning for intelligent IoT via reconfigurable intelligent
surface,” IEEE Netw., vol. 34, no. 5, pp. 16–22, Sep. 2020.

[23] J. Park et al., “Communication-efficient and distributed learning over
wireless networks: Principles and applications,” Proc. IEEE, vol. 109,
no. 5, pp. 796–819, May 2021.

[24] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. Interspeech, Singapore, Sep. 2014.

[25] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. Interspeech, Dresden, Germany, Sep. 2015.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3601

[26] W. Wen et al., “TernGrad: Ternary gradients to reduce communication
in distributed deep learning,” in Proc. Adv. Neural Inf. Process. Syst.,
Long Beach, CA, USA, Dec. 2017, pp. 1–13.

[27] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Copenhagen, Denmark, Sep. 2017.

[28] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2018,
pp. 5976–5986.

[29] S. U. Stich, J. B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC,
Canada, Dec. 2018, pp. 4448–4459.

[30] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[31] Y. Sun, W. Shi, X. Huang, S. Zhou, and Z. Niu, “Edge learning
with timeliness constraints: Challenges and solutions,” IEEE Commun.
Mag., vol. 58, no. 12, pp. 27–33, Dec. 2020.

[32] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning
based communication over the air,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 132–143, Feb. 2018.

[33] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 41–47, Dec. 2020.

[34] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. Int. Conf. Artif. Intell. Statist., Ft. Lauderdale, FL,
USA, Apr. 2017.

[35] V. Smith, C. K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Feder-
ated multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst.,
Long Beach, CA, USA, Dec. 2017.

[36] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, Dec. 2020,
pp. 3557–3568.

[37] M. Gastpar, “Uncoded transmission is exactly optimal for a simple
Gaussian ‘sensor’ network,” IEEE Trans. Inf. Theory, vol. 54, no. 11,
pp. 2008–2017, Nov. 2008.

[38] G. Zhu and K. Huang, “MIMO over-the-air computation for high-
mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6089–6103, Aug. 2019.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. Int. Conf. Learn. Repre-
sentation, San Diego, CA, USA, May 2015.

[41] N. F. Eghlidi and M. Jaggi, “Sparse communication for training deep
networks,” arXiv:2009.09271, 2020. https://arxiv.org/abs/2009.09271

[42] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Proc. Adv. Neural
Inf. Process. Syst., Montreal, QC, Canada, Dec. 2018.

[43] E. Ozfatura, K. Ozfatura, and D. Gündüz, “Time-correlated spar-
sification for communication-efficient federated learning,” 2021,
arXiv:2101.08837. [Online]. Available: http://arxiv.org/abs/2101.08837

[44] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. IEEE Int.
Conf. Neural Netw., San Francisco, CA, USA, Mar. 1993.

[45] J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anand-
kumar, “SignSGD: Compressed optimisation for non-convex prob-
lems,” in Proc. Int. Conf. Mach. Learn., Stockholm, Sweden,
Jul. 2018.

[46] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar,
“signSGD with majority vote is communication efficient and fault
tolerant,” in Proc. Int. Conf. Learn. Represent., New Orleans, LA, USA,
May 2019.

[47] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes SignSGD and other gradient compression schemes,” in Proc. Int.
Conf. Mach. Learn., Long Beach, CA, USA, Jun. 2019.

[48] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui, “Com-
munication efficient federated learning,” Proc. Nat. Acad. Sci. USA,
vol. 118, no. 17, Apr. 2021.

[49] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi,
“Federated learning with compression: Unified analysis and sharp
guarantees,” in Proc. Int. Conf. Artif. Intell. Statist., vol. 130, Apr. 2021,
pp. 2350–2358.

[50] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar,
“Expanding the reach of federated learning by reducing client
resource requirements,” 2018, arXiv:1812.07210. [Online]. Available:
http://arxiv.org/abs/1812.07210

[51] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary compres-
sion for communication-efficient federated learning,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Dec. 9, 2021, doi:
10.1109/TNNLS.2020.3041185.

[52] A. Albasyoni, M. Safaryan, L. Condat, and P. Richtárik, “Optimal
gradient compression for distributed and federated learning,” 2020,
arXiv:2010.03246. [Online]. Available: http://arxiv.org/abs/2010.03246

[53] X. Dai et al., “Hyper-sphere quantization: Communication-efficient
SGD for federated learning,” 2019, arXiv:1911.04655. [Online]. Avail-
able: http://arxiv.org/abs/1911.04655

[54] S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and
downlink communications for federated learning,” IEEE J. Sel. Areas
Commun., vol. 39, no. 7, pp. 2150–2167, Jul. 2021.

[55] A. Abdi, Y. M. Saidutta, and F. Fekri, “Analog compression and
communication for federated learning over wireless MAC,” in Proc.
IEEE 21st Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), Atlanta, GA, USA, May 2020.

[56] D. Rothchild et al., “FetchSGD: Communication-efficient federated
learning with sketching,” in Proc. Int. Conf. Mach. Learn., Jul. 2020.

[57] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA, USA,
Dec. 2017, pp. 1709–1720.

[58] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and
P. Richtarik, “Natural compression for distributed deep learning,” 2019,
arXiv:1905.10988. [Online]. Available: http://arxiv.org/abs/1905.10988

[59] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, “FedPAQ: A communication-efficient federated learning
method with periodic averaging and quantization,” in Proc. Int. Conf.
Artif. Intell. Statist., Palermo, Italy, Oct. 2020.

[60] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor,
“Convergence of federated learning over a noisy downlink,” IEEE
Trans. Wireless Commun., early access, Aug. 17, 2021, doi:
10.1109/TWC.2021.3103874.

[61] J. Konečný, H. Brendan McMahan, D. Ramage, and P. Richtárik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527. [Online]. Available:
http://arxiv.org/abs/1610.02527

[62] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE Conf. Comput. Commun. (IEEE INFO-
COM), Paris, France, Apr. 2019.

[63] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 3,
pp. 1205–1221, Jun. 2019.

[64] R. Balakrishnan, M. Akdeniz, S. Dhakal, and N. Himayat, “Resource
management and fairness for federated learning over wireless edge
networks,” in Proc. IEEE 21st Int. Workshop Signal Process. Adv.
Wireless Commun. (SPAWC), Atlanta, GA, USA, May 2020.

[65] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 317–333, Jan. 2020.

[66] C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[67] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device
scheduling and resource allocation for latency constrained wireless
federated learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 453–467, Jan. 2021.

[68] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7108–7123,
Nov. 2020.

[69] J. Xu and H. Wang, “Client selection and bandwidth allocation
in wireless federated learning networks: A long-term perspective,”
IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1188–1200,
Feb. 2021.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2020.3041185
http://dx.doi.org/10.1109/TWC.2021.3103874

3602 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

[70] S. Hosseinalipour et al., “Multi-stage hybrid federated learning over
large-scale D2D-enabled fog networks,” 2020, arXiv:2007.09511.
[Online]. Available: http://arxiv.org/abs/2007.09511

[71] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Proc. Adv.
Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2018.

[72] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-efficient
distributed learning via lazily aggregated quantized gradients,” in
Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2019,
pp. 1–20.

[73] R. Kassab and O. Simeone, “Federated generalized Bayesian
learning via distributed stein variational gradient descent,” 2020,
arXiv:2009.06419. [Online]. Available: http://arxiv.org/abs/2009.06419

[74] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large
mini-batches, use local SGD,” in Proc. Int. Conf. Learn. Represent.,
Addis Ababa, Ethiopia, Apr. 2020.

[75] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proc. AAAI Conf. Artif. Intell., Honolulu,
HI, USA, Jan. 2019.

[76] C. T. Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with Moreau envelopes,” in Proc. Adv. Neural Inf. Process. Syst.,
Dec. 2020, pp. 21394–21405.

[77] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2020.

[78] H. Xing, O. Simeone, and S. Bi, “Federated learning over
wireless device-to-device networks: Algorithms and convergence
analysis,” 2021, arXiv:2101.12704. [Online]. Available: http://arxiv.
org/abs/2101.12704

[79] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation
in federated learning,” in Proc. Int. Conf. Learn. Represent., Apr. 2020.

[80] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot
federated clustering,” in Proc. Int. Conf. Mach. Learn., Jul. 2021.

[81] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 48–54, Dec. 2020.

[82] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2019.

[83] B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google Res. Blog,
vol. 3, Apr. 2017.

[84] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas,
“Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation,” in Proc. Int.
MICCAI Brainlesion Workshop, Granada, Spain, Sep. 2018.

[85] M. Rojek and R. Daigle. (2019). AI FL for IoT. Presentation
at MWC 2019. Accessed: Jan. 17, 2021. [Online]. Available:
https://www.slideshare.net/byteLAKE/bytelake-and-lenovo-presenting-
federated-learning-at-mwc-2019

[86] F. D. González, “FL for time series forecasting using LSTM net-
works: Exploiting similarities through clustering,” M.S. thesis, School
Elect. Eng. Comput. Sci., KTH Roy. Inst. Technol., Stockholm,
Sweden, 2019. Accessed: Jan. 17, 2021. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665

[87] S. Ickin, K. Vandikas, and M. Fiedler, “Privacy preserving QoE
modeling using collaborative learning,” in Proc. 4th Internet-QoE
Workshop QoE-based Anal. Manage. Data Commun. Netw. (Internet-
QoE), Cabo San Lucas, Mexico, Oct. 2019.

[88] K. Vandikas, S. Ickin, G. Dixit, M. Buisman, and J. Åkeson.
(2019). Privacy-Aware Machine Learning With Low Network
Footprint. Ericsson Technology Review. Accessed: Jan. 17, 2021.
[Online]. Available: https://www.ericsson.com/en/ericsson-
technologyreview/archive/2019/privacy-aware-machine-learning

[89] M. Isaksson and K. Norrman, “Secure federated learning in 5G mobile
networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Taipei, Taiwan, Dec. 2020.

[90] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisit-
ing distributed synchronous SGD,” 2016, arXiv:1604.00981. [Online].
Available: http://arxiv.org/abs/1604.00981

[91] J. Xu, S.-L. Huang, L. Song, and T. Lan, “Gradient coding: Avoiding
stragglers in distributed learning,” in Proc. Int. Conf. Mach. Learn.,
Sydney, NSW, Australia, May 2021.

[92] M. Kamp et al., “Efficient decentralized deep learning by dynamic
model averaging,” 2018, arXiv:1807.03210. [Online]. Available:
http://arxiv.org/abs/1807.03210

[93] B. Nazer and M. Gastpar, “Computation over multiple-access chan-
nels,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516,
Oct. 2007.

[94] R. Soundararajan and S. Vishwanath, “Communicating linear functions
of correlated Gaussian sources over a MAC,” IEEE Trans. Inf. Theory,
vol. 58, no. 3, pp. 1853–1860, Mar. 2012.

[95] G. Mergen and L. Tong, “Type based estimation over multiaccess
channels,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 613–626,
Feb. 2006.

[96] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Trans. Commun., vol. 61,
no. 9, pp. 3863–3877, Sep. 2013.

[97] L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Over-the-air
computation for IoT networks: Computing multiple functions with
antenna arrays,” IEEE Internet Things J., vol. 5, no. 6, pp. 5296–5306,
Dec. 2018.

[98] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for
wireless data aggregation in massive IoT,” 2020, arXiv:2009.02181.
[Online]. Available: http://arxiv.org/abs/2009.02181

[99] R. C. Buck, “Approximate complexity and functional representation,”
J. Math. Anal. Appl., vol. 70, no. 1, pp. 280–298, Jul. 1979.

[100] G. Arunabha, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamen-
tals LTE (Prentice-Hall Communications Engineering and Emerging
Technologies Series). London, U.K.: Pearson, 2010.

[101] Y. Shao, D. Gündüz, and S. C. Liew, “Federated edge learning
with misaligned over-the-air computation,” 2021, arXiv:2102.13604.
[Online]. Available: http://arxiv.org/abs/2102.13604

[102] F. Hekland, P. Floor, and T. Ramstad, “Shannon-kotel-nikov mappings
in joint source-channel coding,” IEEE Trans. Commun., vol. 57, no. 1,
pp. 94–105, Jan. 2009.

[103] X. Cao, G. Zhu, J. Xu, and S. Cui, “Optimized power control for over-
the-air federated edge learning,” 2020, arXiv:2011.05587. [Online].
Available: http://arxiv.org/abs/2011.05587

[104] X. Cao, G. Zhu, J. Xu, and K. Huang, “Optimal power control for
over-the-air computation in fading channels,” IEEE Trans. Wireless
Commun., vol. 19, no. 11, pp. 7498–7513, Nov. 2020.

[105] N. Zhang and M. Tao, “Gradient statistics aware power control for over-
the-air federated learning,” IEEE Trans. Wireless Commun., vol. 20,
no. 8, pp. 5115–5128, Aug. 2021.

[106] G. Zhu, Y. Du, D. Gunduz, and K. Huang, “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 3,
pp. 2120–2135, Mar. 2021.

[107] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Joint optimization of commu-
nications and federated learning over the air,” 2021, arXiv:2104.03490.
[Online]. Available: http://arxiv.org/abs/2104.03490

[108] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “1-bit compressive sensing
for efficient federated learning over the air,” 2021, arXiv:2103.16055.
[Online]. Available: http://arxiv.org/abs/2103.16055

[109] D. Fan, X. Yuan, and Y.-J. A. Zhang, “Temporal-structure-assisted
gradient aggregation for over-the-air federated edge learning,” 2021,
arXiv:2103.02270. [Online]. Available: http://arxiv.org/abs/2103.02270

[110] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[111] S. Wang, Y. Hong, R. Wang, Q. Hao, Y.-C. Wu, and D. W. K. Ng,
“Edge federated learning via unit-modulus over-the-air computation
(extended version),” 2021, arXiv:2101.12051. [Online]. Available:
http://arxiv.org/abs/2101.12051

[112] M. M. Amiri, T. M. Duman, D. Gündüz, S. R. Kulkarni, and
H. V. Poor, “Collaborative machine learning at the wireless edge with
blind transmitters,” IEEE Trans. Wireless Commun., early access, 2021.

[113] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploit-
ing unintended feature leakage in collaborative learning,” in Proc.
IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2019.

[114] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4,
pp. 211–407, Aug. 2014.

[115] M. Abadi et al., “Deep learning with differential privacy,” in Proc.
Conf. Comput. Commun. Secur. (ACM SIGSAC), Vienna, Austria,
Oct. 2016.

[116] M. Seif, R. Tandon, and M. Li, “Wireless federated learning with
local differential privacy,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Los Angeles, CA, USA, Jun. 2020.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3603

[117] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Differentially
private AirComp federated learning with power adaptation harnessing
receiver noise,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Taipei, Taiwan, Dec. 2020.

[118] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 170–185, Jan. 2021.

[119] M. Seif, W.-T. Chang, and R. Tandon, “Privacy amplification for
federated learning via user sampling and wireless aggregation,” 2021,
arXiv:2103.01953. [Online]. Available: http://arxiv.org/abs/2103.01953

[120] B. Hasircioglu and D. Gündüz, “Private wireless federated learning
with anonymous over-the-air computation,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021.

[121] T. B. Brown, B. Mann, and N. Ryder, “Language models are few-shot
learners,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2020.

[122] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S. L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-IID private data,” in Proc. Adv.
Neural Inf. Process. Syst. Workshop Mach. Learn. Phone Consum.
Devices, Montreal, QC, Canada, Dec. 2018.

[123] H. Cha, J. Park, H. Kim, M. Bennis, and S. L. Kim, “Federated
reinforcement distillation with proxy experience replay memory,” IEEE
Intell. Syst., vol. 35, no. 4, pp. 94–101, Jul./Aug. 2021.

[124] J.-H. Ahn, O. Simeone, and J. Kang, “Cooperative learning VIA
federated distillation OVER fading channels,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain,
May 2020.

[125] J.-H. Ahn, O. Simeone, and J. Kang, “Wireless federated distillation
for distributed edge learning with heterogeneous data,” in Proc. IEEE
30th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC),
Istanbul, Turkey, Sep. 2019.

[126] D. Li and J. Wang, “FedMD: Heterogenous federated learning via
model distillation,” in Proc. Adv. Neural Inf. Process. Syst. Work-
shop Federated Learn. Data Privacy Confidentiality, Vancouver, BC,
Canada, Dec. 2019.

[127] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in Proc. Adv. Neural Inf.
Process. Syst., Vancouver, BC, Canada, Dec. 2019.

[128] L. Sun and L. Lyu, “Federated model distillation with noise-free
differential privacy,” in Proc. 13th Int. Joint Conf. Artif. Intell.,
Aug. 2021.

[129] S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S.-L. Kim,
“Mix2FLD: Downlink federated learning after uplink federated dis-
tillation with two-way mixup,” IEEE Commun. Lett., vol. 24, no. 10,
pp. 2211–2215, Oct. 2021.

[130] H. Seo, J. Park, S. Oh, M. Bennis, and S.-L. Kim, “Federated
knowledge distillation,” 2020, arXiv:2011.02367. [Online]. Available:
http://arxiv.org/abs/2011.02367

[131] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics,” J. Instrum., vol. 13, no. 7, Jul. 2018, Art. no. P07027.

[132] S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C. Eldar,
“Fast deep learning for automatic modulation classification,” 2019,
arXiv:1901.05850. [Online]. Available: http://arxiv.org/abs/1901.05850

[133] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless image
retrieval at the edge,” IEEE J. Sel. Areas Commun., vol. 39, no. 1,
pp. 89–100, Jan. 2021.

[134] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Joint device-edge
inference over wireless links with pruning,” in Proc. IEEE 21st
Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
May 2020.

[135] J. Shao and J. Zhang, “BottleNet++: An end-to-end approach for
feature compression in device-edge co-inference systems,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2020.

[136] R. Dobrushin and B. Tsybakov, “Information transmission with addi-
tional noise,” IRE Trans. Inf. Theory, vol. 8, no. 5, pp. 293–304,
Sep. 1962.

[137] J. K. Wolf and J. Ziv, “Transmission of noisy information to a noisy
receiver with minimum distortion,” IEEE Trans. Inf. Theory, vol. IT-16,
no. 4, pp. 406–411, Jul. 1970.

[138] S. Sreekumar and D. Gündüz, “Distributed hypothesis testing over
discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 66, no. 4,
pp. 2044–2066, Apr. 2020.

[139] S. Sreekumar and D. Gündüz, “Hypothesis testing over a noisy
channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 2019.

[140] N. Merhav and S. Shamai, “On joint source-channel coding for the
Wyner-Ziv source and the Gel’fand-Pinsker channel,” IEEE Trans. Inf.
Theory, vol. 49, no. 11, pp. 2844–2855, Nov. 2003.

[141] S. Hanson and L. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Proc. Adv. Neural Inf. Process.
Syst., Denver, CO, USA, Nov. 1989.

[142] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Proc.
Adv. Neural Inf. Process. Syst., Denver, CO, USA, Nov. 1990.

[143] B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe, “Opti-
mal Brain Surgeon: Extensions and performance comparison,” in
Proc. Adv. Neural Inf. Process. Syst., San Francisco, CA, USA,
Jul. 1993.

[144] J. Liu, S. Tripathi, U. Kurup, and M. Shah, “Pruning algo-
rithms to accelerate convolutional neural networks for edge appli-
cations: A survey,” 2020, arXiv:2005.04275. [Online]. Available:
http://arxiv.org/abs/2005.04275

[145] V. Lebedev and V. Lempitsky, “Fast ConvNets using group-wise brain
damage,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016.

[146] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., Barcelona, Spain, Dec. 2016.

[147] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. Int. Conf. Mach.
Learn., Lille, France, Jul. 2015.

[148] M. Courbariaux, Y. Bengio, and J. P. David, “Training deep neural
networks with low precision multiplications,” in Proc. Int. Conf. Learn.
Represent. Workshop, San Diego, CA, USA, May 2015.

[149] M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada,
Dec. 2015.

[150] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or −1,” 2016,
arXiv:1602.02830. [Online]. Available: http://arxiv.org/abs/1602.02830

[151] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural net-
works with few multiplications,” in Proc. Int. Conf. Learn. Represent.,
San Juan, Puerto Rico, May 2016.

[152] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” in Proc. Int.
Conf. Mach. Learn., Lille, France, Jul. 2015.

[153] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convo-
lutional networks using vector quantization,” 2014, arXiv:1412.6115.
[Online]. Available: http://arxiv.org/abs/1412.6115

[154] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent., San Juan, Puerto Rico,
May 2016.

[155] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA,
USA, Jun. 2017.

[156] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. Int. Conf. Architectural Program.
Lang. Operating Syst., Xi’an, China, Apr. 2017.

[157] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN:
An efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Trans. Mobile Comput., vol. 20, no. 2,
pp. 565–576, Feb. 2021.

[158] Portable Network Graphics (PNG). Accessed: Jun. 11, 2019. [Online].
Available: http://www.libpng.org/pub/png

[159] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding
for resource-constrained Internet-of-Things platforms,” in Proc. 15th
IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Auckland,
New Zealand, Nov. 2018.

[160] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD:
Joint accuracy-and latency-aware deep structure decoupling for edge-
cloud execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst.
(ICPADS), Singapore, Dec. 2018.

[161] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep
learning architecture for intelligent mobile cloud computing services,”
in Proc. IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED),
Lausanne, Switzerland, Jul. 2019.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

3604 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 12, DECEMBER 2021

[162] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving
device-edge cooperative inference of deep learning via 2-step pruning,”
in Proc. IEEE Conf. Comput. Commun. Workshops, Paris, France,
Apr. 2019.

[163] J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 20–26, Dec. 2020.

[164] A. El Gamal and Y. H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[165] R. E. Van Dyck and D. J. Miller, “Transport of wireless video using
separate, concatenated, and joint source-channel coding,” Proc. IEEE,
vol. 87, no. 10, pp. 1734–1750, Oct. 1999.

[166] G. Cheung and A. Zakhor, “Joint source/channel coding of scalable
video over noisy channels,” in Proc. Space Technol. Appl. Int. forum
(STAIF), Lausanne, Switzerland, 1997.

[167] D. B. Kurka and D. Gündüz, “DeepJSCC-f : Deep joint source-channel
coding of images with feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 1,
no. 1, pp. 178–193, Dec. 2020.

[168] C. You, X. Peng, and R. Zhang, “3D trajectory design for UAV-
enabled data harvesting in probabilistic LoS channel,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA,
Dec. 2019.

[169] D. Ebrahimi, S. Sharafeddine, P.-H. Ho, and C. Assi, “Autonomous
UAV trajectory for localizing ground objects: A reinforcement learning
approach,” IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1312–1324,
Apr. 2021.

[170] M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless net-
works: Quality-of-service model and learning-based resource man-
agement,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5621–5635,
Nov. 2018.

[171] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed
multi-agent meta learning for trajectory design in wireless drone net-
works,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3177–3192,
Oct. 2021.

[172] Pytorch Implementations of the Multi-Agent Reinforcement Learning
Algorithms. Accessed: Apr. 2021. [Online]. Available: https://github.
com/starry-sky6688/StarCraft

[173] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[174] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for AI-enabled wireless networks: A tutorial,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1226–1252, 2nd Quart., 2021.

[175] X. Liu, Y. Liu, and Y. Chen, “Machine learning empowered tra-
jectory and passive beamforming design in UAV-RIS wireless net-
works,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2042–2055,
Jul. 2020.

[176] M. Bennis, S. M. Perlaza, P. Blasco, Z. Han, and H. V. Poor,
“Self-organization in small cell networks: A reinforcement learn-
ing approach,” IEEE Trans. Wireless Commun., vol. 12, no. 7,
pp. 3202–3212, Jul. 2013.

[177] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[178] C. de Vrieze, S. Barratt, D. Tsai, and A. Sahai, “Coop-
erative multi-agent reinforcement learning for low-level wire-
less communication,” 2018, arXiv:1801.04541. [Online]. Available:
http://arxiv.org/abs/1801.04541

[179] Y. Xu, Z. Deng, M. Wang, W. Xu, A. M.-C. So, and S. Cui, “Voting-
based multiagent reinforcement learning for intelligent IoT,” IEEE
Internet Things J., vol. 8, no. 4, pp. 2681–2693, Feb. 2021.

[180] F. Hu, Y. Deng, and A. H. Aghvami, “Correlation-aware cooperative
multigroup broadcast 360◦ video delivery network: A hierarchical deep
reinforcement learning approach,” 2020, arXiv:2010.11347. [Online].
Available: http://arxiv.org/abs/2010.11347

[181] T. Chen, K. Zhang, G. B. Giannakis, and T. Basar, “Communication-
efficient policy gradient methods for distributed reinforcement learn-
ing,” IEEE Trans. Control Netw. Syst., early access, May 6, 2021, doi:
10.1109/TCNS.2021.3078100.

[182] Y. Lin et al., “A communication-efficient multi-agent actor-critic algo-
rithm for distributed reinforcement learning,” in Proc. IEEE 58th Conf.
Decis. Control (CDC), Dec. 2019.

[183] T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum, and S. Gu,
“Deployment-efficient reinforcement learning via model-based offline
optimization,” in Proc. Int. Conf. Learn. Represent., May 2020.

[184] M. Agarwal, B. Ganguly, and V. Aggarwal, “Communication efficient
parallel reinforcement learning,” in Proc. Conf. Uncertainty Artif.
Intell., Jul. 2021.

[185] D. Kim et al., “Learning to schedule communication in multi-
agent reinforcement learning,” in Proc. Int. Conf. Learn. Represent.,
New Orleans, LA, USA, May 2019.

[186] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic value function factorisation for
deep multi-agent reinforcement learning,” in Proc. Conf. Mach. Learn.,
Stockholm, Sweden, Jul. 2018.

Mingzhe Chen (Member, IEEE) received the Ph.D.
degree from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2019. From
2016 to 2019, he was a Visiting Researcher at the
Department of Electrical and Computer Engineer-
ing, Virginia Tech. He is currently a Post-Doctoral
Research Associate with the Department of Electri-
cal and Computer Engineering, Princeton University.
His research interests include federated learning,
reinforcement learning, virtual reality, unmanned
aerial vehicles, and wireless networks. He was a

recipient of the 2021 IEEE ComSoc Young Author Best Paper Award.
He received three conference best paper awards at IEEE ICC in 2020, IEEE
GLOBECOM in 2020, and IEEE WCNC in 2021. He currently serves as
a Guest Editor for IEEE JOURNAL ON SELECTED AREAS IN COMMUNI-
CATIONS (JSAC) Special Issue on “Distributed learning over wireless edge
networks.”

Deniz Gündüz (Senior Member, IEEE) received
the B.S. degree in electrical and electronics engi-
neering from METU, Turkey, in 2002, and the
M.S. and Ph.D. degrees in electrical engineering
from the NYU Tandon School of Engineering (for-
merly Polytechnic University) in 2004 and 2007,
respectively.

After his Ph.D., he served as a Post-Doctoral
Research Associate at Princeton University, as a
Consulting Assistant Professor at Stanford Uni-
versity, and as a Research Associate at CTTC,

Barcelona, Spain. In September 2012, he joined the Department of Electrical
and Electronic Engineering, Imperial College London, U.K., where he is
currently a Professor of information processing, and serves as the Deputy Head
of the Intelligent Systems and Networks Group. He is also a part-time Faculty
Member of the University of Modena and Reggio Emilia, Italy, and has held
visiting positions at the University of Padova (2018–2020) and Princeton
University (2009–2012). His research interests include the areas of com-
munications and information theory, machine learning, and privacy. He was
a recipient of the IEEE Communications Society—Communication Theory
Technical Committee (CTTC) Early Achievement Award in 2017, a Starting
Grant of the European Research Council (ERC) in 2016, and several best
paper awards. He is a Distinguished Lecturer of the IEEE Information Theory
Society (2020–2022). He is an Area Editor of the IEEE TRANSACTIONS ON
INFORMATION THEORY, IEEE TRANSACTIONS ON COMMUNICATIONS, and
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC)
Special Series on “Machine learning in communications and networks.”
He also serves as an Editor for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCNS.2021.3078100

CHEN et al.: DISTRIBUTED LEARNING IN WIRELESS NETWORKS: RECENT PROGRESS AND FUTURE CHALLENGES 3605

Kaibin Huang (Fellow, IEEE) received the B.Eng.
and M.Eng. degrees in electrical engineering from
the National University of Singapore and the Ph.D.
degree from The University of Texas at Austin.
He is currently an Associate Professor with the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Hong Kong.
He received the IEEE Communication Society’s
2021 Best Survey Paper, the 2019 Best Tutorial
Paper, the 2019 Asia-Pacific Outstanding Paper,
the 2015 Asia-Pacific Best Paper Award, and the

best paper awards at IEEE GLOBECOM 2006 and IEEE/CIC ICCC 2018.
He also received the Outstanding Teaching Award from Yonsei University,
South Korea, in 2011. He has been named as a Highly Cited Researcher
by the Clarivate Analytics in 2019 and 2020. He served as the Lead
Chair for the Wireless Communications Symposium of IEEE GLOBECOM
2017 and the Communication Theory Symposium of IEEE GLOBECOM
2014, and the TPC Co-Chair for IEEE PIMRC 2017 and IEEE CTW 2013.
He is also an Executive Editor of IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, an Associate Editor of IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, and an Area Editor of IEEE TRANSACTIONS
ON GREEN COMMUNICATIONS AND NETWORKING. Previously, he served
on the Editorial Board for IEEE WIRELESS COMMUNICATIONS LETTERS.
He has guest edited special issues on IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS, IEEE JOURNAL OF SELECTED TOPICS IN

SIGNAL PROCESSING, and IEEE Communications Magazine. He is also a
Distinguished Lecturer of the IEEE Communications Society and the IEEE
Vehicular Technology Society, and a Research Fellow of Hong Kong Research
Grants Council.

Walid Saad (Fellow, IEEE) received the Ph.D.
degree from the University of Oslo in 2010. He is
currently a Professor with the Department of Elec-
trical and Computer Engineering, Virginia Tech,
where he leads the Network sciEnce, Wireless, and
Security (NEWS) laboratory. His research inter-
ests include wireless networks, machine learning,
game theory, security, unmanned aerial vehicles,
cyber-physical systems, and network science. From
2015 to 2017, he was named the Stephen O. Lane
Junior Faculty Fellow at Virginia Tech, and in 2017,

he was a Faculty Fellow of the College of Engineering. He is an IEEE
Distinguished Lecturer. He was also a recipient of the NSF CAREER Award
in 2013, the AFOSR Summer Faculty Fellowship in 2014, and the Young
Investigator Award from the Office of Naval Research (ONR) in 2015.
He was the author/coauthor of ten conference best paper awards at WiOpt
in 2009, ICIMP in 2010, IEEE WCNC in 2012, IEEE PIMRC in 2015, IEEE
SmartGridComm in 2015, EuCNC in 2017, IEEE GLOBECOM in 2018,
IFIP NTMS in 2019, IEEE ICC in 2020, and IEEE GLOBECOM in 2020.
He was a recipient of the 2015 Fred W. Ellersick Prize from the IEEE
Communications Society, the 2017 IEEE ComSoc Best Young Professional in
Academia Award, the 2018 IEEE ComSoc Radio Communications Committee
Early Achievement Award, and the 2019 IEEE ComSoc Communication
Theory Technical Committee. He was also a coauthor of the 2019 IEEE
Communications Society Young Author Best Paper and the 2021 IEEE
Communications Society Young Author Best Paper. He received the Dean’s
Award for Research Excellence from Virginia Tech in 2019. He currently
serves as an Editor for the IEEE TRANSACTIONS ON MOBILE COMPUTING,
the IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,
and the IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND

NETWORKING. He is also the Editor-at-Large of the IEEE TRANSACTIONS

ON COMMUNICATIONS.

Mehdi Bennis (Fellow, IEEE) is currently a Pro-
fessor with the Centre for Wireless Communica-
tions, University of Oulu, Finland, an Academy of
Finland Research Fellow, and the Head of the Intel-
ligent Connectivity and Networks/Systems Group
(ICON). He has published more than 200 research
papers in international conferences, journals, and
book chapters. His main research interests include
radio resource management, heterogeneous net-
works, game theory, and distributed machine learn-
ing in 5G networks and beyond. He was a recipient

of several prestigious awards, including the 2015 Fred W. Ellersick Prize
from the IEEE Communications Society, the 2016 Best Tutorial Prize from
the IEEE Communications Society, the 2017 EURASIP Best paper Award for
the Journal of Wireless Communications and Networking, the all-University
of Oulu Award for Research, the 2019 IEEE ComSoc Radio Communications
Committee Early Achievement Award, and the 2020 Clarviate Highly Cited
Researcher by the Web of Science. He is an Editor of IEEE TRANSACTIONS

ON COMMUNICATIONS (TCOM) and the Specialty Chief Editor for data
science for communications in the Frontiers in Communications and Networks
journal.

Aneta Vulgarakis Feljan (Member, IEEE) received
the Ph.D. degree in computer science from
Mälardalen University, Sweden, in 2012, focused
on component-based modeling and formal analysis
of real-time embedded systems. She is currently
a Senior Research Manager in artificial intelli-
gence at Ericsson Research. Before joining Ericsson
Research, she was a Scientist at ABB Corporate
Research. She is the coauthor of more than 40
refereed publications on software engineering and
AI topics. She is a co-inventor of over 50 patent

families. She is an editor, an organizer, and a program committee member in
many top-ranked journals, conferences, and workshops, as well as a keynote
speaker and a panelist on multiple events organized by industry and academia.
Her main research interests include AI-based cyber-physical systems and the
combination of model-driven and data-driven AI. Her paper “A Component
Model for Control-Intensive Distributed Embedded Systems” was awarded
the ICSA 2018 Most Influential Paper Award.

H. Vincent Poor (Life Fellow, IEEE) received the
Ph.D. degree in EECS from Princeton University
in 1977. From 1977 to 1990, he was on the faculty
of the University of Illinois at Urbana-Champaign.
Since 1990, he has been on the faculty at Princeton,
where he is currently the Michael Henry Strater
University Professor. From 2006 to 2016, he served
as the Dean of Princeton’s School of Engineering
and Applied Science. He has also held visiting
appointments at several other universities, includ-
ing most recently at Berkeley and Cambridge. His

research interests are in the areas of information theory, machine learning, and
network science, and their applications in wireless networks, energy systems,
and related fields. Among his publications in these areas is the forthcoming
book Machine Learning and Wireless Communications (Cambridge University
Press). He is a member of the National Academy of Engineering and the
National Academy of Sciences and is a foreign member of the Chinese
Academy of Sciences, The Royal Society, and other national and international
academies. He received the IEEE Alexander Graham Bell Medal in 2017.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2022 at 17:08:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

