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We propose a theory of the early processing in the mammalian visual 
pathway. The theory is formulated in the language of information the- 
ory and hypothesizes that the goal of this processing is to recode in 
order to reduce a ”generalized redundancy” subject to a constraint that 
specifies the amount of average information preserved. In the limit of 
no noise, this theory becomes equivalent to Barlow’s redundancy re- 
duction hypothesis, but it leads to very different computational strate- 
gies when noise is present. A tractable approach for finding the op- 
timal encoding is to solve the problem in successive stages where at 
each stage the optimization is performed within a restricted class of 
transfer functions. We explicitly find the solution for the class of en- 
codings to which the parvocellular retinal processing belongs, namely 
linear and nondivegent transformations. The solution shows agree- 
ment with the experimentally observed transfer functions at all levels 
of signal to noise. 

In the mammalian visual pathway, data from the photoreceptors are 
processed sequentially through successive layers of neurons in the retina 
and in the visual cortex. The early stages of this processing (the retina 
and the first few layers of the visual cortex) exhibit a significant de- 
gree of universality; they are very similar in many species and do not 
change as a mature animal learns new visual perceptual skills. This 
suggests that the early stages of the visual pathway are solving a very 
general problem in data processing, which is independent of the details 
of each species’ perceptual needs. In the first part of this paper, we 
formulate a theory of early visual processing that identifies this general 
problem. 

The theory is formulated in the language of information theory (Shan- 
non and Weaver 1949) and was inspired by Barlow’s redundancy reduc- 
tion hypothesis for perception (Barlow 1961, 1989). Barlow’s hypothesis 
is, however, applicable only to noiseless channels that are unrealistic. The 
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theory that we develop here is formulated for noisy channels. It agrees 
with Barlow’s hypothesis in the limit of no noise but it leads to different 
computational strategies when noise is present. Our theory hypothesizes 
that the goal of visual processing is to recode the sensory data in order 
to reduce a redundancy measure, defined below, subject to a constraint 
that fixes the amount of average information maintained. The present 
work is an outgrowth of an earlier publication in which we addressed 
some of these issues (Atick and Redlich 1989). However, in that work the 
role of noise was not rigorously formulated, and although all solutions 
exhibited there did well in reducing redundancy, they were not proven to 
be optimal. For a related attempt to understand neural processing from 
information theory see Linsker (1986,1989) (see also Uttley 1979). 

The problem of finding the optimal redundancy reducing code among 
all possible codes is most likely impossible to solve. A more tractable 
strategy is to reduce redundancy in successive stages, where at each stage 
one finds the optimal code within a restricted class. This appears to be 
the mechanism used in the visual pathway. For example, in the ”par- 
vocellular” portion of the pathway, which is believed to be concerned 
with detailed form recognition, the first recoding (the output of the reti- 
nal ganglion cells) can be characterized as linear and nondivergent (code 
dimension is unchanged). At the next stage, the recoding of the simple 
cells is still substantially linear but is divergent (for a review see Orban 
1984). In this paper, we solve the problem of redundancy reduction for 
the class of linear and nondivergent codes and we find that the optimal 
solution is remarkably similar to the experimentally observed ganglion 
cell recoding. We leave the solution for the next stage of linear diver- 
gent codes, where one expects a simple cell like solution, for a future 
publication. 

1 Formulation of the Theory 

For concreteness, we shall start by formulating our theory within the 
specific context of retinal processing. The theory in its more general 
context will become clear later when we state our redundancy reduction 
hypothesis. It is helpful to think of the retinal processing in terms of a 
pair of communication channels, as pictured in Figure 1. In this flow 
chart, the center box represents the retinal transfer function A,  with the 
signal z representing the visual input including noise v, and y the output 
of the ganglion cells. Here, we do not concern ourselves with the detailed 
implementation of this transfer function by the retina, which involves a 
fairly complicated interaction between the photoreceptors and the layers 
of cells leading to the ganglion cells. 

Although the input z is the actual input to the visual system, we have 
introduced an earlier input communication channel in the flow diagram 
with s representing an ideal signal. This earlier communication channel 
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Figure 1: Schematic diagram showing the three stages of processing that the 
ideal signal s undergoes before it is converted to the output y. v (6 ) is the noise 
in the input (output) channel. 
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is taken to be the source of all forms of noise v in the signal 2, including 
quantum fluctuations, intrinsic noise introduced by the biological hard- 
ware, and semantic noise already present in the images. It must be kept 
in mind, however, that neither noise nor ideal signal is a universal concept, 
but depend on what is useful visual information to a particular organ- 
ism in a particular environment. Here we assume that, minimally, the 
ideal signal does not include noise v in the form of completely random 
fluctuations. It is reasonable to expect this minimal definition of noise to 
apply to the early visual processing of all organisms. 

In this paper, we take the input z to be the discrete photoreceptor 
sampling of the two-dimensional luminosity distribution on the retina. 
For simplicity, we use a Cartesian coordinate system in which the sampled 
signal at point n = (711,712) is z[n]. However, all of the results below can 
be rederived, including the sampling, starting with spatially continuous 
signals, by taking into account the optical modulation transfer function 
of the eye (see the analysis in Atick and Redlich 1990). 

The output y is the recoded signal A z  plus the noise 6 in the output 
channel. This channel may be thought of as the optic nerve. Since the 
recoding of z into y is linear and nondivergent, its most general form can 
be written as y[m] = C, A[m, n] z[n] + 6[m], where the transfer function 
A[m, n] is a square matrix. 

In order to formulate our hypothesis, we need to define some quan- 
tities from information theory (Shannon and Weaver 1949) that measure 
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how well the visual system is communicating information about the 
visual scenes. We first define the mutual information I ( z ,  s )  between the 
ideal signal s and the actual signal z: 

with a similar formula for I ( y , s ) .  In equation 1.1, P(s )  [or P(x) l  is the 
probability of the occurrence of a particular visual signal s[n] (or x[n]), 
and P(z ,  s) is the probability of the joint occurrence of s[n] together with 
z[n]. I ( z ,  s) measures the actual amount of useful information available 
at the level of the photoreceptors z, given that the desired signal is s. 
Likewise, 1 ( y ,  s) measures the useful information available in the signal y. 
Also, for continuous signals, the mutual information is a well-defined, 
coordinate invariant quantity. 

To calculate the mutual information I(., s) explicitly, it is necessary to 
know something about the probabilities P(s) ,  P ( z ) ,  and P ( z ,  s). These 
probability functions, together with the relationship y = A z + 6, are also 
sufficient to calculate the mutual information I (y ,  s). Although P(s) ,  
P ( z ) ,  and P(x ,  s) cannot be known completely, we do assume knowledge 
of the second-order correlators (s[n] s [m]), (z[n]z [m] ), and (z[n] s[m] ), 
where ( ) denotes the average over the ensemble of all visual scenes. 
We assume that these correlators are of the form 

where &[n, m] is some yet unspecified correlation matrix, and we have 
defined (v[n]v[m]) = N26,,,. Using z = s + v, equations 1.2 imply 
that there are no correlations between the noise v and s. Given these 
correlators, we assume that the probability distributions are those with 
maximal entropy: 

P(u)  = [ ( 2 ~ ) ~  det(R,,)] 

for u = s, x, y and R,,[n, m] = (u[n] u[m]) (d is the dimension of n). We 
have included here the mean ii = (u), although in all of our results i t  
drops out. Equation 1.3 can also be used to determine the joint proba- 
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bilities P(z ,  s) and P(y, s), since these are equal to P(zzs )  and P(zys) for 
the larger sets of stochastic variables z,, = (z,s) and zys = (y,s) whose 
correlators R,, are calculated from R,,, R,,, R,,, R,,, and Ry,. 

It is not difficult to show, using the explicit expressions for the various 
probability distributions, that 

1 { det [A(& + N2)AT + N i ]  

2 det (AN2AT + Nz)  
I ( y , s )  = -log 

(In 1.5, we used (6[n] 6[m]) = N@,,,.) The mutual informations depend 
on both the amount of noise and on the amount of correlations in the sig- 
nals. Noise has the effect of reducing I ( z ,  s) [or I ( y ,  s)] because it causes 
uncertainty in what is known about s at IC (or y). In fact, infinite noise 
reduces I ( z ,  s) and I(y, s) to zero. This becomes clear in equations 1.4 
and 1.5 as N 2  goes to infinity, since then the ratio of determinants goes 
to one causing I to vanish. 

Increasing spatial correlations in equations 1.4 and 1.5 also has the 
effect of reducing I because correlations reduce the information in the 
signals. Correlations indicate that some scenes are far more common 
than others, and an ensemble with this property has lower average in- 
formation than one in which all messages are equally probable. The effect 
of increasing correlations is most easily seen, for example, in I ( z ,  s) in the 
limit of N 2  very small, in which case I ( z ,  s) - log[det(&)]. If the average 
signal strengths (s2\n]) are held constant, then log[det(&)] is maximum 
when RO is diagonal (no correlations) and vanishes when the signal is 
completely correlated, that is, &[n,m] = constant, b' n, m. In fact, by 
Wegner's theorem (Bodewig 1956, p. 71), for positive definite matrices 
(correlation matrices are always positive definite) det( Ro) 5 K(&)%%, with 
equality only when & is completely diagonal. 

Having introduced a measure I ( y ,  s) of the actual average information 
available at y, we now define the channel capacity Cout(y) which measures 
the maximal amount of information that could flow through the output 
channel. Here, we define the capacity COut(y) as the maximum of I(y, w) 
varying freely over the probabilities P(w) of the inputs to the output 
channel, holding the average signal strengths (y2[n]) fixed: 
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where y = w + 6 and (R,,),, are the diagonal elements of the autocorre- 
lator of w (w is a dummy variable, which in Fig. 1 corresponds to Ax). A 
constraint of this sort is necessary to obtain a finite capacity for contin- 
uous signals and is equivalent to holding constant the average "power" 
expenditure or the variance in the number of electrochemical spikes sent 
along each fiber of the optic nerve.' Using Wegner's theorem, (1.6) the 
maximum occurs for the probability distribution P(w) for which R,,, or 
equivalently R,,, is diagonal: 

which for y = A z  + 6 is explicitly 

At this point, we are ready to state our generalized redundancy re- 
duction hypothesis. We propose that the purpose of the recoding A of 
the visual signal in the early visual system is to minimize the "redundancy" 

(1.9) 

subject to the constraint that I ( y ,  s )  be equal to the minimum average informa- 
tion l* that must be retained to meet an organism's needs. I(y, s )  is therefore 
constrained to be a fixed quantity and redundancy is reduced by choosing 
an A that minimizes C,,,(y). To avoid confusion, we should emphasize 
that C,,, is fixed only at fixed "power," but can be lowered by choosing 
A to lower the output "power." 

Although, in practice we do not know precisely what the minimal 
I* is, we assume here that it is the information available to the retina, 
I ( z ,  s), lowered slightly by the presence of the additional noise 6 in the 
output channel. We therefore choose the constraint 

(1.10) 

but our results below do not depend qualitatively on this precise form for 
the constraint. Since I' does not depend on A,  it can be determined from 
physiological data, and then used to predict independent experiments 
(see Atick and Redlich 1990). 

The reader should be cautioned that equation 1.9 is not the conven- 
tional definition of redundancy for the total channel from s to y. The 
standard redundancy would be R = 1 - I(y,s)/CtOt(y) where C,,, is 
the maximum of I ( y ,  s) varying freely over the input probabilities P(s) ,  

R = 1 - I ( Y ,  S)/CO,t(Y) 

I ( y ,  s )  = I* = I ( z  + 6, s) 

'Since a ganglion cell has a nonvanishing mean output, "power" here is actually the 
cell's dynamic range. 
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keeping (y2) fixed. In contrast to Ctot, C,,, is directly related to the 
”power” in the optic fiber, so reducing equation 1.9 in the manner just 
described always leads to lower ”power” expenditure. Also, since C,,, > 
Got, lowering C,,, necessarily lowers the “power” expenditure at all 
stages up to y, which is why we feel equation 1.9 could be biologically 
more significant. 

Our hypothesis is similar to Barlow’s redundancy reduction hypoth- 
esis (Barlow 1961), with the two becoming identical when the system 
is free of noise v. In this limit, redundancy is reduced by diagonaliz- 
ing the correlation matrix rC, by choosing the transfer matrix A such 
that 4, = A&AT is diagonal. With R,, diagonal, the relationship 
det(R,,) 5 IIz(Ryy)Ez becomes an equality giving C(y) = I ( y , s )  so the 
redundancy (1.9) is eliminated. [In reality, the redundancy (1.9) is a 
lower bound reflecting the fact that we chose probability distributions 
which take into account only second-order correlators. More complete 
knowledge of P ( s )  would lower I(z, s) and I(y, s) and therefore in- 
crease 72.1 

Where reducing R in equation 1.9 differs considerably from Barlow’s 
hypothesis is in the manner of redundancy reduction when noise is sig- 
nificant. Under those circumstances, R in equation 1.9 is sizable, not 
because of correlations in the signal, but because much of the channel 
capacity is wasted carrying noise. Reducing equation 1.9 when the noise 
is large has the effect of increasing the signal-to-noise ratio. To do this the 
system actually increases correlations (more precisely increases the ampli- 
tude of the correlated signal relative to the noise amplitude), since cor- 
relations are what distinguish signal from noise. For large enough noise, 
more is gained by lowering the noise in this way than is lost by increas- 
ing correlations. For an intermediate regime, where signal and noise are 
comparable, our principle leads to a compromise solution, which locally 
accentuates correlations, but on a larger scale reduces them. All these 
facts can be seen by examining the properties of the explicit solution 
given below. 

Before we proceed, it should also be noted that Linsker (1986) has 
hypothesized that the purpose of the encoding A should be to maximize 
the mutual information I(y, s), subject to some constraints. This differs 
from the principle in this paper which focuses on lowering the output 
channel capacity while maintaining the minimum information needed by 
the organism. While both principles may be useful to gain insight into 
the purposes of neural processing in various portions of the brain, in 
the early visual processing, we beIieve that the primary evolutionary 
pressure has been to reduce output channel capacity. For example, due 
to much lower resolution in peripheral vision, the amount of information 
arriving at the retina is far greater than the information kept. It is difficult 
to believe that this design is a consequence of inherent local biological 
hardware constraints, since higher resolution hardware is clearly feasible, 
as seen in the fovea. 
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2 Explicit Solution 

To actually minimize R we use a lagrange multiplier X to implement the 
constraint (equation 1 .lo) and minimize 

(2.1) 

with respect to the transfer function A, where C(y), [(a, s), and [(y, s )  are 
given in equations 1.8, 1.4, and 1.5, respectively. One important property 
of R[n, m] (in equation 1.2) that we shall assume is translation invariance, 
R[n, m] = R[n - m], which is a consequence of the homogeneity of the 
ensemble of all visual scenes. We can take advantage of this symmetry 
to simplify our formulas by assuming A[n,m] = A[n - m]. With this 
assumption, the diagonal elements (Ryy)8i in equation 1.7 are all equal 
and hence minimizing C(Y) is equivalent to minimizing the simpler ex- 
pression Tr( A R AT). 

Using the identity log(detB) = Tr(1ogB) for any positive definite 
matrix B, and replacing C(y) by Tr(A R AT), equation 2.1 becomes 

E{A) = C(Y) - W(Y, 3) - I ( Z  + 6, s)l 

1 
E{A} = - J R  dwA(w) R(w) A(-w) N i  --* 

1 A(w)R(w)A(-w) + N i  
A(w)N2A(-w) + N i  

N 2  + N; (2.2) 

where all variables are defined in momentum space through the standard 
discrete two-dimensional fourier transform, for example, 

A(w) = A ( q ,  w2) = e-Zm'WA[m] 
m 

It is straightforward to see from equation 2.2 that the optimal transfer 
function A(w) satisfies the following quadratic equation: 

where we have defined F(w) = A(w).A(-w)/N;. The fact that A appears 
only through F ,  is a manifestation of the original invariances of I and 
C under orthogonal transformations on the transfer function A[m], that 
is, under A + U A with UT U = 1. Equation 2.3 has only one positive 
solution for F ,  which is given explicitly by 

(2.4) 



316 Joseph J. Atick and A. Norman Redlich 

where X is determined by solving I(y, s )  = I(z + 6, s). After eliminating 
F the latter equation becomes 

In general, equation 2.5 must be solved for X numerically. 
The fact that the transfer function A appears only through F leads 

to a multitude of degenerate solutions for A, related to each other by 
orthogonal transformations. What chooses among them has to be some 
principle of minimum effort in implementing such a transfer function. 
For example, some of the solutions are nonlocal (by local we mean a 
neighborhood of a point n on the input grid is mapped to the neighbor- 
hood of the corresponding point n on the output grid), so they require 
more elaborate hardware to implement; hence we examine local solu- 
tions. Among these is a unique solution satisfying A(w) = A(-w), which 
implies that it is rotationally invariant in coordinate space. We compare 
it to the observed retinal transfer function (ganglion kernel), known to 
be rotat'ionally symmetric. 

Since rotation symmetry is known to be broken at the simple cell level, 
it is significant that this formalism is also capable of producing solutions 
that are not rotationally invariant even when the correlation function is. 
It may be that the new features of the class of transfer functions at that 
level (for example, divergence factor) will lift the degeneracy in favor of 
the nonsymmetric solutions. (In fact, in one dimension we find solutions 
that break parity and look like one-dimensional simple cells kernels.) 

The rotationally invariant solution is obtained by taking the square 
root of F in equation 2.4 (we take the positive square root, corresponding 
to on-center cells). In what follows, we examine some of its most impor- 
tant properties. To be specific, we parameterize the correlation function 
by a decaying exponential 

with D the correlation length measured in acuity units and S the signal 
amplitude. We have done numerical integration of equations 2.4 and 2.5 
and determined A[m] for several values of the parameters. In Figure 2, 
we display one typical solution, which was obtained with SIN = 2.0, 
D = 50, and N6 = 0.025. In that figure, empty disks represent positive 
(excitatory), while solid disks represent negative (inhibitory) components 
of A[m]. Also, the logarithm of the area of a disk is directly related to the 
amplitude of the component of A[m] at that location. As one can see, the 
solution has a strong and rather broad excitatory center with a weaker 
and more diffuse surround. A very significant feature of the theoretical 
profiles is their insensitivity to D (and to N&), which is necessary to 
account for the fact that the observed profiles measured in acuity units 
are similar in different species and at different eccentricities. 
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Figure 2: Optimal transfer function, A[m], for nondivergent linear codes, with 
D = 50, SIN = 2, and Nn = 0.025. Open disks denote positive (excitatory) 
components of A[m] while solid disks denote negative (inhibitory) components. 
The area of a disk is directly related to the logarithm of A[m] at that location. 

To get more insight into this solution, let us qualitatively examine 
its behavior as we change SIN (for a detailed quantitative comparison 
with physiological data see Atick and Redlich 1990). For that, we find 
it more convenient to integrate out one of the dimensions (note this is 
not the same as solving the problem in one dimension). The resulting 
profile, corresponding to Figure 2, is shown in Figure 3b. In Figure 3, we 
have also plotted the result for two other values of S I N ,  namely for low 
and high noise regimes (Fig. 3a and c, respectively). These show that an 
interpolation is happening as SIN  changes between the two extremes. 
Analytically, we can also see this from equation 2.4 for any & by taking 
the limit NIS + 0, where A(w) becomes equal to 

One recognizes that this is the square root of the solution one gets by 
carrying out prediction on the inputs, a signal processing technique whch 
we advocated for this regime of noise (see also Srinivasan et al. 1982) 
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Figure 3: (a-c) Optimal solution at three different values of SIN. These profiles 
have been produced from the two-dimensional solution by summing over one 
direction and normalizing the resulting profile such that the height central point 
is equal to the center height in the two-dimensional solution. 

as a redundancy reduction technique in our previous paper (Atick and 
Redlich 1989). The spatial profiles for the square root solution are very 
similar to the prediction profiles, albeit a bit more spread out in the 
surround region. This type of profile reduces redundancy by reducing 
the amount of correlations present in the signal. 

In the other regime, where noise is very large compared to the signal, 
the solution for A(w) - (&/N2)*/4 and has the same qualitative features 
as the smoothing solution (Atick and Redlich 1989) which in that limit is 
Asmoothg = &/N2.  Smoothing increases the signal to noise of the out- 
put and, in our earlier work, we argued that it is a good redundancy 
reducing technique in that noise regime. Moreover, in that work, we 
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argued that to maintain redundancy reduction at all signal-to-noise lev- 
els a process that interpolates between prediction and smoothing has to 
take place. We proposed a convolution of the prediction and the smooth- 
ing profiles as a possible interpolation (SPI-coding), which was shown 
to be better than either prediction or smoothing. In the present analy- 
sis, the optimal redundancy reducing transfer function is derived, and, 
although it is not identical to SPI-coding, it does have many of the same 
qualitative properties, such as the interpolation just mentioned and the 
overall center-surround organization. 

The profiles in Figures 2 and 3 are very similar to the kernels of 
ganglions measured in experiments on cats and monkeys. We have been 
able to fit these to the phenomenological difference of gaussian kernel for 
ganglions (Enroth-Cugell and Robson 1966). The fits are very good with 
parameters that fall within the range that has been recorded. Another 
significant way in which the theory agrees with experiment is in the be- 
havior of the kernels as SIN is decreased. In the theoretical profiles, one 
finds that the size of the center increases, the surround spreads out until 
it disappears, and finally the overall scale of the profile diminishes as the 
noise becomes very large. In experiment, these changes have been noted 
as the luminosity of the incoming light (and hence the signal to noise) is 
decreased and the retina adapts to the lower intensity (see, for example, 
Enroth-Cugell and Robson 1966). This active process, in the language of 
the current theory is an adjustment of the optimal redundancy reducing 
processing to the SIN level. 

In closing, we should mention that many of the techniques used to 
derive optimal encoding for the spatial properties of visual signals can 
be directly applied to temporal properties. In that case, for low noise the 
theory would lead to a reduction of temporal correlations, which would 
have the effect of taking the time derivative, while in the high noise 
case, the theory would lead to integration. Both types of processing play 
a significant role in visual perception, and it will be interesting to see 
how well they can be accounted for by the theory. Another issue that 
should be addressed is the question of how biological organisms evolved 
over time to have optimal redundancy reducing neural systems. In our 
previous paper, we discovered an anti-Hebbian unsupervised learning 
routine which converges to the prediction configuration and a Hebbian 
routine which converges to the smoothing profiles. We expect that there 
exist reasonably local learning algorithms that converge to the optimal 
solutions described here. 
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