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ABSTRACT

Traditionally, researchers thought that high-precision weights were crucial for
training neural networks with gradient descent. However, recent research has ob-
tained a finer understanding of the role of precision in neural network weights.
One can train a NN with binary weights and activations at train time by augment-
ing the weights with a high-precision continuous latent variable that accumulates
small changes from stochastic gradient descent. However, there is a dearth of the-
oretical analysis to explain why we can effectively capture the features in our data
with binary weights and activations. Our main result is that the neural networks
with binary weights and activations trained using the Courbariaux, Hubara et al.
(2016) method work because of the high-dimensional geometry of binary vectors.
In particular, the continuous vectors that extract out features in these BNNs are
well-approximated by binary vectors in the sense that dot products are approxi-
mately preserved. Compared to previous research that demonstrated the viability
of such BNNs, our work explains why these BNNs work in terms of the geometry
of high-dimensional binary vectors. Our theory serves as a foundation for un-
derstanding not only BNNs but networks that make use of low precision weights
and activations. Furthermore, a better understanding of multilayer binary neural
networks serves as a starting point for generalizing BNNs to other neural network
architectures such as recurrent neural networks.

1 INTRODUCTION

While neural networks have traditionally used relatively costly 32-bit floating point multiplications,
recent work by Courbariaux et al. (2016) and Hubara et al. (2016) has shown that one can effectively
train neural networks that have binary weights and activations that have similar performance to
their continuous counterparts. There are two key ideas in this paper summarized in Fig. 1. First,
associated with each binary weight, wb, is a continuous weight, wc that allows us to accumulate
gradients. Second, we replace the non-differentiable binarize function (bin(x) = 1 if x > 0 and −1
otherwise) with a continuous one for the backward pass. This work is closely related to Rastegari
et al. (2016) which also gives an algorithm for training BNNs and an extensive review of previous
research. While recent work has shown how to train such networks, the existence of neural networks
with binary weights and activations needs to be reconciled with previous work that has sought to
understand weight matrices as extracting out features in the data (e.g. Zeiler & Fergus (2014)).
Summary of contributions:

1. To build our intuition, we show that binarizing a high-dimensional vector with entries orig-
inally chosen uniformly in the interval [−1, 1] changes the direction of that vector a small
amount relative to the angle between two random vectors chosen from the same distribu-
tion. Thus binary vectors form a highly expressive set of feature extractors, contrary to
intuition based on low dimensional geometry.

2. We show empirically that the binarization of such vectors approximately preserves angles
in the neural networks trained using the Courbariaux et al. (2016) method.
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Figure 1: Review of the Courbariaux et al. (2016) BNN Training Algorithm a. A binary neural
network is composed of this binary convolution transformer (green). Ovals correspond to a tensor
and the derivative of the cost with respect to that tensor and rectangles correspond to transformers
that specify forward and backward propagation functions. Associated with each binary weight, wb,
there is a continuous weight, wc, that is used to accumulate gradients. b. Each binarize transformer
has a forward function and a backward function. The forward function simply binarizes the inputs.
In the backward propagation step, we compute the derivative of the cost with respect to the input in
terms of the Jacobian of the forward function and the derivative of the cost with respect to the output
(δu ≡ dC/du where C is the cost function used to train the network). Since the binarize function is
non-differentiable, the backward function is modified.
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Figure 2: Binarization of Random Vectors Approximately Preserves their Direction: In high dimen-
sions, the red and blue curves have almost no overlap. The blue curves show the angle between two
random vectors of dimension n whose entries are chosen uniformly from the interval [−1, 1] (we
choose this distribution because the learning algorithm clips the weights wc to be in this interval).
The red curves show the angle between such a random vector and the binarized version of that vec-
tor. We see that for low dimensions, the angle between a vector and its binarized version has a high
probability of being similar to a pair of two random vectors. However, when we get to a moderately
high dimension, we see that the red and blue curves are well separated.

2 THEORY

In the hyperdimensional computing theory of Kanerva (2009), the key idea is that two random,
high-dimensional vectors whose entries are in the set {−1, 1} are approximately orthogonal. This
is a consequence of the central limit theorem, where the cosine angle between two random vectors
is normally distributed with mean zero and standard deviation proportional to n−0.5. Taking the
inverse cosine of these dot-products gives us angles that are close to π

2 . We apply this approach of
analyzing the geometry of high-dimensional vectors to binary vectors. When we are in a moderately
high dimension, binarizing a vector changes its direction by a small amount relative to the angle
between two random vectors (Fig. 2).

This theory leads to a concrete prediction for our neural networks. Suppose that in our data or
some intermediate representation of the input that there is an informative direction, w. The weight
matrices are trying to extract out this informative direction. We hypothesize that w · x is preserved
where w is a weight matrix and x are the activations. In particular, we predict that: x · wb ∼ x · wc
where wb = bin(wc) and ∼ denotes ’proportional to’1 in our neural networks. It is worth noting
that this isn’t going to be true in general, but is a consequence of the conditions set up by the

1This proportionality constant is normalized out because the dot products are followed by a batch normal-
ization layer as in Fig. 1.
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Figure 3: Binarization Preserves Dot Products: In this figure, we verify our hypothesis that binariza-
tion approximately preserves the direction of a vector in high dimension. We train a convolutional
neural network on CIFAR-10. Each figure shows a 2d histogram of the binarized weights times the
activations (horizontal axis) and the continuous weights times the activations (vertical axis). We
see that these dot products are highly correlated, verifying our theory. Note they may differ up to
a scaling constant due to the subsequent batch norm layer. The first figure (labeled as Layer 1)
corresponds to the input and the first weight matrix. Note that the correlation is weaker in lower
dimensions, which is consistent with our theory.

learning algorithm. See 5.1 for a more detailed argument. While we exculde this figure due to space
constraints, we also verify that a similar relationship holds for the binarization of the activations E.g.
wb · xc ∼ wb · xb where xc denotes the pre-binarized (post-batch norm) activations.

3 EXPERIMENTS

In this section, we verify our predictions experimentally. We train a binary neural network on
CIFAR-10 (same as in Courbariaux et al. (2016)). This convolutional neural network has 3 by 3
convolutional filters with numbers of channels: 128, 128, MP, 256, 256, MP, 512, 512 MP (MP is
max pool). Then two fully connected layers with 1024 units each. Each layer has a batch norm
layer in between. At each layer, the dimension of the weight vector in consideration is the patch size
(= 3 ∗ 3 = 9) times the number of channels. We see that the dot products pre and post binarization
are highly correlated (Fig. 3). We also get similar results when training a MLP on MNIST.

4 CONCLUSION

We provide a theory and experimental verification for understanding how we can represent features
in binary neural networks. In particular, we show that the informative directions in our data and
in the intermediate representations formed by the neural network for classification purposes can be
well-approximated by binary vectors when we are in a sufficiently high dimensional space.
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5 SUPPLEMENTARY INFORMATION

5.1 LEARNING DYNAMICS

Here, we discuss in more detail the conditions that the learning algorithm sets up that gives rise
to the preservation of dot products (up to a constant). From a theoretical perspective, the key idea
is as follows. Suppose we have a neural network where there is some transformer v = f(u) (u,
v are vectors). On the forward pass, we use f , but on the backwards pass, we replace f by g.
How does this impact the learning dynamics? In our case, u is the continuous weight, wc, f(u)
is the pointwise binarize function and g(u) is the identity function as in part (b) of Fig. 1. In
particular, suppose that the loss function as a function of the output of f is L(v). Then our updates
are −δui ∼

∑
j ∂jL(f(u)) ∗ ∂igj(u) where ∂jL(v) denotes the partial derivative of L with respect

to the jth component of v and ∂igj(u) denotes the partial derivative of the jth component of g(u)
with respect to ui. Note that the typical gradient would be

∑
j ∂jL(f(u))∗∂ifj(u). In our particular

situation, g is the identity function, so the Jacobian of g is the identity matrix. E.g. ∂igj(u) = δi,j
So our learning dynamics are just −δui ∼ ∂iL(f(u)). The steady state of these equations is when
∂jL(v) = 0 for all j.

Suppose that v∗ ∈ Rn is a minima of L(v). Then the dynamics are stable when there exists a u∗
such that f(u∗) ≈ v∗. This is where the high dimensionality of the problem comes in. The high
dimensionality makes it relatively easy to find an approximate solution to this equation (i.e. we can
approximate the direction of a continuous HD vector, v∗ relatively well with a binary vector f(u∗)).
We also note that the optimization only needs to estimate the direction of v∗ because L(v) = L(kv)
where k is a constant and v is a vector. This relation is true because we use batch norm without
subtracting the mean and then binarize the output of the dot product of the weight vector with the
activations.

Now where do the dot products come in? We can think of the above equations as−δui = ∂iL(u+ε)
where ε is noise that models the fact that f(u) corrupts u. In this case, we can see that these learning
dynamics seek to send u to the minimum of L(v). Thus f(u) and g(u) = u seek to approximate the
informative direction, v∗, which give us the approximate dot product relation.

5.2 COMPARISON TO BINARIZING CONTINUOUSLY TRAINED NETWORKS

Given the set-up in this paper, an important question remains: why does this theory not directly apply
to binarizing pretrained networks? The first thing to note is that in our networks, the magnitude of a
weight vector (and correspondingly the dot products) does not matter because it is divided out by a
batch norm layer and then binarized. So when we train such a BNN, the algorithm is forced to find
a solution where the magnitude of the weight vectors are not used. This is in contrast to a typical
neural network where the network will be trained with the possibility of the magnitude of the dot
products playing an important role. The approach of approximating a continuous weight matrix with
a binary matrix and a scale factor is described in Rastegari et al. (2016).
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