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Introduction

● CMOS device scaling reached bottleneck
Memristors are the future
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What’s a memristor

● Resistor with memory

● Variable resistor, but only has 2 connections

● Remember the resistant it’s set to
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What’s a memristor actually
● Memristor = charge-dependent resistor
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What’s good about a memristor

● Simple => small
● Fast switching
● Long endurance
● Low programming energy

● But: no material can do all these at once
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State of the art (Classical computing)

● Memristors as RAMs = RRAMs
● Combat current memory bottleneck

● Higher speed and density than SRAM or DRAM
● Non-volatile = good for embedded memories
● Can be directly integrated onto processor
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State of the art (Classical computing)
● Problem: sneak current & wire resistance
● Cause inaccuracy and waste energy

memristor-crossbar architecture:
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State of the Art - benefits
● Don’t need rigorous device endurance, since memristive 

elements have years of memory storage

● Can process raw signals directly without the need to convert 
to digital values

○ Reduces energy, latency, and chip area in this application
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State of the art - neural networking

● Memory and compute are collocated

● This is ideal for implementing neural networks

● Direct parallel to neurons connected by weighted synaptic 
connections in real brains

● Overcomes von-neumann bottleneck associated with 
moving weights between memory and the computer
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State of the art - neural networking
● Very efficient reads and writes
● One read is equivalent to a N x (N x M) matrix multiplication
● On traditional computer this would require N x M 

multiply-accumulate operations
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State of the Art - SNNs
● Useful for implementing Spiking Neural Networks (SNNs)

● SNNs try to mimic how synapses in the brain gain potential 
that at some point “spikes” the gets reset

● This allows us to process spatio-temporal data (real time 
sensory data)
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State of the Art - Cellular
● Memristors are also useful for 

implementing cellular neural/nonlinear 
networks 

● In these networks, synapses only 
connect to nearest neighbors, so 
changes propagate over time

● Useful for image processing and 
pattern recognition
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State of the Art - Boltzmann
● Restricted Boltzmann Machines rely on learning the 

probability distribution of the input data (stochastic neural 
network) 

● Computation speed is heavily dominated by fetching 
weight values

● One architecture using memristors solved combinatorial 
optimization problems with 50x increased performance 
and 25x lower energy than a single-threaded multi-core 
system

13



State of the Art - Application
● Pattern recognition and dot-product engines have been made

● How an engineer may utilize a 32x32 memristor array

14Image: “Sparse coding with Memristor networks”



State of the Art - Computation
● The crossbar structure can significantly speed up other 

computations using the same optimizations:
○ vector arithmetic operations
○ linear algebra

● Improves energy efficiency in data congestive systems
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Scaling up and scaling down
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Scaling Up 
Prior academic studies on memristor research 
focused on proving concepts rather practical 
implementation.

Real world implementation requires Scale-Up in 
3 axis

1. Increasing the size of functional memristor 
network.

2. Multi-Tasking Hardware System
3. Reliable Memristor-CMOS Integration.
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1.  Increasing the size of functional memristor network. 

● A practical memory or computing system requires billions of 
functional memristors.
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Requirement
● Improving the yield of memristor 

device fabrication.
● Close collaboration of university 

researchers with industry partners.
● Improving the scalability of the 

hardware.



2. Multi Tasking Hardware System

● Same hardware can be used for different function like Neural 
Network, Arithmetic Operations, Data Storage depending on task 
and data structure.

● Dynamically reconfigurable for different workload in runtime 
through software without hardware modification.
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Challenges
● Arithmetic Operation requires tight 

device distribution compared to 
others.

● Long device endurance cycle 
needed for logic implementation.



3. Reliable Memristor-CMOS Integration

● CMOS circuitry to provide the necessary interface and control operations.
● But Chip-Level Integration through silicon vias doesn’t provide required 

bandwidth.
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Solution
● Monolithic integration of memristor arrays 

directly on top of CMOS circuitry with 
very-high-density local interconnects.

● Cost effective with few additional masks.
● 3 D multi layered memristor integration are 

fabricated layer by layer in stacked fashion 
which significantly increases density.



Scale Down
● Internal ion redistribution in 

response to external stimulation 
drives memristor.
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What does Scale Down mean?

● Doesn’t only mean reducing device size but ability to precisely 
control device operation at atomic level(single atom level).

● This precise control gives high functional density and optimal 
device performance.

● Atomic process address low current trade-offs and provide device 
stability.



Scale In
● Increasing the density of information available for storage and 

processing without area increase.
● Tuning the conductance range of storage memristor by exploiting 

state variables.
● Single Memristor = 5 to 64 Conductance Levels

State Variables
● Density of free electrons, hopping sites, radius of the filamentary 

metallic channel, width of the tunnel barrier

Limitation: Repeatedly control state variables and range of each 
state variable. 
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Scaling up and scaling down

Growth of memristor hardware system functionality and size.
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The role of chemistry and biological details
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Bio-Inspired Computing
● Evolution -> Genetic Algorithms
● Neuron Networks -> Artificial Neural Networks
● Neuron Chemistry -> ??
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Bio-Inspired Computing
● Evolution -> Genetic Algorithms
● Neuron Networks -> Artificial Neural Networks
● Neuron Chemistry -> ??

Key Challenges:
● Hard and expensive to implement at scale
● Unknown benefits of bio-inspired systems
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Bio-Inspired Computing
● Evolution -> Genetic Algorithms
● Neuron Networks -> Artificial Neural Networks
● Neuron Chemistry -> Memristors

Key Challenges:
● Hard and expensive to implement at scale
● Unknown benefits of bio-inspired systems

Memristors

Use 
bio-realist 
devices?
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Bio-Realistic Properties of Memristors

Example: Calcium Effect in neurons

● Spike-timing–dependent plasticity (STDP) is a form of 
synaptic modification thought to constitute a mechanism 
underlying formation of new memories

● The polarity of synaptic changes -> function (relative 
timing between pre- and postsynaptic activity) 
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Bio-Realistic Properties of Memristors

Example: Calcium Effect in neurons
Synapse modified 
based on timing 

difference of spikes

Synaptic plasticity rules with physiological calcium levels https://doi.org/10.1073/pnas.2013663117
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Bio-Realistic Properties of Memristors

Example: Calcium effect mimicked by second-order memristor 
devices

Wang, Z., Joshi, S., Savel’ev, S. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Mater 16, 101–108 (2017)

Memristors 
can help 
realize 
Spiking 
Neural 
Networks!
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Bio-Realistic Properties of Memristors

Example: Neuronal Active Gain

● Dynamic Gain of Neuron
● Small Signals  + Appropriate conditions => High 

Amplification
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Bio-Realistic Properties of Memristors

Example: Neuronal Active Gain -> Local Device Temperature

● Memristor materials such as VO
2
 or NbO

2
 have negative 

temperature coefficient
● This leads to positive feedback loop because of the 

Negative Differential Resistance (NDR)
● Positive feedback -> Small input signal generating large 

response
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Neuristor
The channels consist of:
● Mott memristors (M1 and M2)
● Characteristic parallel capacitance 

(C1 and C2, respectively) 
● Biased with opposite polarity d.c. 

voltage sources

Models 
● Signal Gain
● Spiking timing dependent weights
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Device Challenges and Possible Solutions

34



Device Challenges and Possible Solutions
● While promising, memristors still have material and device 

challenges
○ These challenges are often application specific

● High performance memory applications (DRAM 
Replacement)
○ lower programming current/voltage
○ minimize sneak current
○ minimal device-device and cycle-cycle variability
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● Online training of neural 
networks via back propagation

○ programming bit precision

○ asymmetry in ON vs. OFF 
switching

○ selectively optimizing the 
ON/OFF point can lead to fully 
stuck ON/OFF devices, leading 
to large errors

36Image: “ISAAC: a convolutional neural network accelerator with 
in-situ analog arithmetic in crossbars."

Device Challenges and Possible Solutions



● Offline trained, inference-only neural network 
accelerators

● requires high accuracy of computed 
matrix operations

● computational errors from unideal 
memristors and wire resistance

● a strong model that accounts for 
non-idealities and wire resistance, 
compensating algorithm can eliminate 
these effects
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Naive mapping leads to poor computing accuracy in
real crossbars. This figure shows an example of all voltages across 
devices in a 256×256 crossbar array, positive matrix values are linearly 
mapped to memristor conductance.

Image: “Dot-product engine for neuromorphic computing: programming 
1T1M crossbar to accelerate matrix-vector multiplication."

Device Challenges and Possible Solutions



Conclusions
● Memristors have great potential to push computing 

systems
○ Short term: high density, on chip, non-volatile memory 

improve performance and can find applications in any 
computing task

○ Further Advances: large-scale implementation of 
memristor-based neuromorphic computing systems

○ Long term: memristor-based general-purpose, 
in-memory computing platform
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Thank you. Questions?
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Appendix: SNN Training
● A common learning rule is 

spike-timing-dependant-plasticity

● Strength changes depending on 
causality of synapse firing

● Resulting values are long-term 
potentiation and long-term depression

● The more recently a connection is 
made, the stronger it is
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