
Euphrates: Algorithm-SoC 
Co-Design for Low-Power 
Mobile Continuous Vision

Paper by: Y. Zhu, A. Samajdar, M. Mattina, P. Whatmough, “Euphrates: algorithm-SoC co-design for low-power mobile continuous 
vision,” arXiv, Apr. 2018.

Presentation by: Peter Fitchen, Deepen Solanki, Matt Bernath

https://robertdick.org/iesr/papers/zhu18apr.pdf
https://robertdick.org/iesr/papers/zhu18apr.pdf


Abstract
● Continuous CV applications are increasingly reliant on CNNs.

○ Mobile/embedded devices often don’t have compute power and memory needed for SOTA 
CNN models.

○ Energy and compute efficiency of CNNs can be drastically improved with purpose-built 
hardware.

● Euphrates is proposed as an algorithm-based SoC architecture design to 
improve performance and energy consumption of continuous CV applications 
on mobile/embedded devices.

● Key idea: exploit inherent motion information to reduce dependency on 
expensive CNNs.



Introduction
● First, a new algorithm that leverages temporal pixel motion for continuous 

vision applications is proposed. 
○ Lighter-weight than the current state-of-the-art, but with minimal 

performance loss.
● Then, the paper describes how an SoC architecture can be co-designed with 

the proposed algorithm to implement the model in hardware.
● Argued that continuous vision should be task-anonymous and minimize 

waking the main CPU. So, new hardware IP called a motion controller is 
introduced. 



Introduction
● Euphrates is a proof-of-concept of their SoC architecture co-designed with 

their proposed algorithm.
○ Implemented/modelled by a few modifications to existing work.
○ Evaluated on the tasks of object tracking and object detection and 

benchmarked against SOTA models.
○ 66% energy savings with double the object detection rate.
○ 21% energy savings for object tracking.
○ Both benchmarks incur at best a 1% reduction in accuracy compared to 

SOTA models.



Background and Motivation
● Think of continuous CV pipeline in two parts:

○ Frontend that prepares pixel and metadata from camera sensor module input for the backend.
○ Backend that extracts semantic information for higher level decision making, often with a CNN.

● Frontend hardware includes:
○ Camera sensor module and an Image Signal Processor (ISP) unit (typically in the main SoC).
○ Raw pixels are converted to RGB/HSV frames that are passed to RAM.
○ Proposed algorithm also passes temporal pixel information (metadata) to RAM.

● Backend algorithms are typically expensive CNNs.
○ Often utilizes a DSP, GPU, FPU, and/or CPU, depending on what’s available.



Motion Estimation Using Block-Matching (BM)
● Divides a frame into LxL macroblocks (MB) and search in the previous frame 

within a 2D search window (2d+1) pixels for the closest match using Sum of 
Absolute Differences.

● Various BM search strategies have different accuracy vs. compute efficiency 
tradeoffs. The most accurate method is to perform an exhaustive search, 
which requires L2(2d+1)2 operations for each MB.

● Another strategy is the Three Step Search (TSS), which logarithmically 
decreases d in steps to only search part of the window. It requires 
L2(1+8log2(d+1)) operations, which is an 8/9 reduction for d=7.

● The eventual output of BM is a Motion Vector (MV) for each MB. The MV (<u, 
v>) describes how each MB moved from the previous frame to the current 
frame. MVs are efficient to store since they only require log2(2d+1) bits 
(rounded up), which equates to 1 byte for d=7.



Motion Estimation Using Block-Matching (BM)



Motion-Based Continuous Vision Algorithm
● Key idea is that pixel changes between frames directly encodes motion, and 

this temporal information can be used to simplify the motion extrapolation 
portion of continuous CV tasks.

● Two important aspects of the proposed algorithm are how and when to 
extrapolate from temporal information.

● Frames are categorized in two ways: (1) Inference Frames (I-frames) and (2) 
Extrapolation Frames (E-frames).

○ I-frames are those that are passed to expensive CNN algorithms and the like.
○ E-frames are those that extrapolate ROIs from the previous frame (could be an I or E frame).



Motion-Based Continuous Vision Algorithm
● How to extrapolate:

○ Calculate the average motion vector for each ROI (each pixel inherits the motion vector from 
the MB it is part of).

○ But, this introduces MV noise and doesn’t consider object deformation!

● Handling MV noise:
○ MV noise is modelled by attaching a confidence value to each MV, and this confidence value 

is heavily correlated with SAD values. A higher SAD value means lower confidence.
○ The SAD values are normalized w.r.t. their maximum value and set to fall between 0 and 1. 

The confidence for an ROI is then the average of these normalized values.
○ The MV for an ROI can then be filtered by a weighted average with the MV from the previous 

frame. The weighting is determined by the degree of confidence for the current MV. If it is 
above a threshold, it is the weight itself, otherwise the weight is set to a default value such as 
0.5.

○ This final MV can then be used to translate the ROI from the previous frame to the current 
frame.

○ However, this still doesn’t model ROI deformation!



Motion-Based Continuous Vision Algorithm
● How to extrapolate:
● Handling Object Deformation:

○ Each ROI is actually split into sub-ROIs that each get their own MV and are updated 
accordingly. 

○ This allows each sub-ROI to move in separate directions (consider a runner’s arms and legs, 
for example). 

○ The final ROI is then the smallest bounding box that still contains each sub-ROI.



Motion-Based Continuous Vision Algorithm
How to extrapolate:
𝜇 - average motion vector for an ROI
N - number of pixels in ROI
vi - motion vector for each pixel (inherits from MB)
𝜶 - confidence value for each MB
SAD - Sum of Absolute Differences for each MB
L - MB dimension
𝜷 - weight for averaging
R - ROI
MV - Motion Vector for each ROI



● Mixing I and E frames can drastically improve compute efficiency.
○ Only use expensive CNNs for inference some of the time.

● However, using too many E-frames will degrade accuracy. Thus the question 
becomes how to strike the right balance (i.e. when to extrapolate).

● The notion of an Extrapolation Window (EW) is introduced.
○ The number of consecutive E-frames between I-frames + 1.

● A larger EW improves efficiency, but degrades accuracy.

Motion-Based Continuous Vision Algorithm



● When to extrapolate:
○ Euphrates provides two modes of setting the EW: (1) a constant mode and (2) an adaptive 

mode.
○ Constant mode is straightforward: EW is statically fixed at say 2 (in which case it is roughly 

twice as efficient/50% energy savings). But the accuracy tradeoff may not be ideal.
○ Adaptive mode will still calculate new ROI from extrapolation whenever an I-frame is 

processed. 
○ If the results from inference and extrapolation are similar (above a threshold), the EW is 

incrementally increased. And if the results differ (or are below a similarity threshold), the EW is 
decreased.

○ Constant mode is advantageous when specific frame rate deadlines must be met, but without 
such restrictions adaptive mode will reduce energy consumption with minimal effect on 
accuracy.

Motion-Based Continuous Vision Algorithm



Architecture Support
Principles

● Avoid unnecessary CPU usage - more architectural support in the vision 
pipeline

● The architectural support for the extrapolation functionality should be 
decoupled from CNN inference - flexible design, not restricted to limitations of 
CNN accelerators and their evolution, CNNs are expensive

Two architectural extensions  

● Augment ISP to expose motion vectors to the backend - normally ISP does 
pre-processing and forgets

● Motion Controller to coordinate the backend 





Architectural-Level Working
1. CPU configures components of the pipeline, initiates task
2. Camera captures images, feeds to ISP
3. ISP → pixel data + metadata, sent to DRAM buffer 

---------------------------------------------------------------------------------------------------------------------------------------------------

 4.   CNN engine → inference pass → ROIs and possibly classification labels       
written to dedicated memory mapped registers in the Motion Controller
 5.   Motion Controller combines CNN data + MV data for E-Frames. Master slave 
communication, extrapolation window decision + choosing between I or E results 

  

Motion Controller → Microcontroller-like, has an on-chip SRAM unlike Cortex-M,  
no fetch-decode, instead has a programmable sequencer, 



Implementation and Experimental Setup
● An in-house hardware simulator was created with a methodology similar to 

Gemdroid SoC Simulator. 
○ Simulator comprised of a functional model, performance model, and a power model to evaluate the 

continuous vision pipeline.
○ Functional model takes video streams to mimic real-time camera capture and implements the 

extrapolation algorithm in OpenCV.
○ Performance model captures the timing behaviors of pipeline components.
○ Power model is created by taking the timings of cross-IP activities, from which SoC events are 

tabulated and used for energy estimations.
■ Real device components were measured and used in the power estimation model.

● Software was evaluated using two popular mobile continuous vision scenarios:
○ Object detection scenario was evaluated using a custom dataset extracted from real video streams 

and was compared to Tiny YOLO.
○ Visual tracking scenario used CNN-based tracker called MDNet with two tracking benchmarks:

■ Object Tracking Benchmark (OTB) 100
■ VOT 2014





Evaluation: Object Detection



Evaluation: Object Tracking



Related Work
● CNN based models that use MVs as training input (Zhang, Chadha, TSN)
● YOLO → entire image in one go, regression problem. 
● Fast YOLO → requires training a separate CNN, does not perform 

extrapolation
● Sliding window based methods
● Current research focus → design better accelerators, memory utilization, 

better tooling
● Euphrates → Motion extrapolation replaces inferencing.   



Discussion
● Researchers note that Euphrates is least effective when dealing with scenes 

with fast moving and blurred objects.
○ They suspect it’s due to the limited scope of search window size in BM.
○ Unfortunately increasing the search window rapidly increases computational overhead.
○ A frame rate increase could improve performance.

● Researchers also suggest using sensor fusion algorithms with data from other 
sources, such as IMUs for more accurate motion estimation.



Questions ?


