Euphrates: Algorithm-SoC
Co-Design for Low-Power
Mobile Cont/nuous V/S/on

Paper by: Y. Zhu, A. Samajdar, M. Mattina, P. Whatmough, “Euphrates: algorithm-SoC co-design for low-power mobile continuous

vision,” arXiv, Apr. 2018.

Presentation by: Peter Fitchen, Deepen Solanki, Matt Bernath

https://robertdick.org/iesr/papers/zhu18apr.pdf
https://robertdick.org/iesr/papers/zhu18apr.pdf

Abstract

e Continuous CV applications are increasingly reliant on CNNs.
o Mobile/lembedded devices often don’t have compute power and memory needed for SOTA

CNN models.
o Energy and compute efficiency of CNNs can be drastically improved with purpose-built

hardware.
e Euphrates is proposed as an algorithm-based SoC architecture design to

improve performance and energy consumption of continuous CV applications
on mobile/embedded devices.
e Key idea: exploit inherent motion information to reduce dependency on

expensive CNNs.

Introduction

e First, a new algorithm that leverages temporal pixel motion for continuous

vision applications is proposed.
o Lighter-weight than the current state-of-the-art, but with minimal
performance loss.

e Then, the paper describes how an SoC architecture can be co-designed with
the proposed algorithm to implement the model in hardware.

e Argued that continuous vision should be task-anonymous and minimize
waking the main CPU. So, new hardware IP called a motion controller is

introduced.

Introduction

e Euphrates is a proof-of-concept of their SoC architecture co-designed with
their proposed algorithm.

O

©)

Implemented/modelled by a few modifications to existing work.
Evaluated on the tasks of object tracking and object detection and
benchmarked against SOTA models.

66% energy savings with double the object detection rate.

21% energy savings for object tracking.

Both benchmarks incur at best a 1% reduction in accuracy compared to
SOTA models.

Background and Motivation

e Think of continuous CV pipeline in two parts:
o Frontend that prepares pixel and metadata from camera sensor module input for the backend.
o Backend that extracts semantic information for higher level decision making, often with a CNN.
e Frontend hardware includes:
o Camera sensor module and an Image Signal Processor (ISP) unit (typically in the main SoC).
o Raw pixels are converted to RGB/HSV frames that are passed to RAM.
o Proposed algorithm also passes temporal pixel information (metadata) to RAM.
e Backend algorithms are typically expensive CNNs.
o Often utilizes a DSP, GPU, FPU, and/or CPU, depending on what'’s available.

Motion Estimation Using Block-Matching (BM)

e Divides a frame into LxL macroblocks (MB) and search in the previous frame
within a 2D search window (2d+1) pixels for the closest match using Sum of
Absolute Differences.

e \Various BM search strategies have different accuracy vs. compute efficiency
tradeoffs. The most accurate method is to perform an exhaustive search,
which requires L%(2d+1)? operations for each MB.

e Another strategy is the Three Step Search (TSS), which logarithmically
decreases d in steps to only search part of the window. It requires
L2(1+8Iogz(d+1)) operations, which is an 8/9 reduction for d=7.

e The eventual output of BM is a Motion Vector (MV) for each MB. The MV (<u,
v>) describes how each MB moved from the previous frame to the current
frame. MVs are efficient to store since they only require log,(2d+1) bits
(rounded up), which equates to 1 byte for d=7.

Motion Estimation Using Block-Matching (BM)

L Best match
1 in frame N-1
-4 d > \
Macroblock
in frame N

Search window

i 2d + 1

(a) Block-matching. (b) Motion vectors.

Y

Motion-Based Continuous Vision Algorithm

e Key idea is that pixel changes between frames directly encodes motion, and
this temporal information can be used to simplify the motion extrapolation
portion of continuous CV tasks.

e Two important aspects of the proposed algorithm are how and when to
extrapolate from temporal information.

e Frames are categorized in two ways: (1) Inference Frames (lI-frames) and (2)

Extrapolation Frames (E-frames).
o I-frames are those that are passed to expensive CNN algorithms and the like.
o E-frames are those that extrapolate ROls from the previous frame (could be an | or E frame).

Motion-Based Continuous Vision Algorithm

e How to extrapolate:

O

o

Calculate the average motion vector for each ROI (each pixel inherits the motion vector from
the MB it is part of).
But, this introduces MV noise and doesn’t consider object deformation!

e Handling MV noise:

o

MV noise is modelled by attaching a confidence value to each MV, and this confidence value
is heavily correlated with SAD values. A higher SAD value means lower confidence.

The SAD values are normalized w.r.t. their maximum value and set to fall between 0 and 1.
The confidence for an ROl is then the average of these normalized values.

The MV for an ROI can then be filtered by a weighted average with the MV from the previous
frame. The weighting is determined by the degree of confidence for the current MV. If it is
above a threshold, it is the weight itself, otherwise the weight is set to a default value such as
0.5.

This final MV can then be used to translate the ROI from the previous frame to the current
frame.

However, this still doesn’t model ROI deformation!

Motion-Based Continuous Vision Algorithm

e How to extrapolate:

e Handling Object Deformation:
o Each ROl is actually split into sub-ROlIs that each get their own MV and are updated

accordingly.
o This allows each sub-ROI to move in separate directions (consider a runner’s arms and legs,

for example).
o The final ROl is then the smallest bounding box that still contains each sub-ROI.

Motion-Based Continuous Vision Algorithm

How to extrapolate:
u - average motion vector for an ROI
N - number of pixels in ROI

v. - motion vector for each pixel (inherits from MB) N—
a - confidence value for each MB H = Z Vi /N
SAD - Sum of Absolute Differences for each MB ; SAD;
) . . Oy =] = ———=—
; MB dr:;nfensmn | F 755 % [2
- weight for averaging
R-ROI MVp=B-ur + (1—B) -MVr_,

MYV - Motion Vector for each ROI RF — RF—I _|_MVF

Motion-Based Continuous Vision Algorithm

e Mixing | and E frames can drastically improve compute efficiency.
o Only use expensive CNNs for inference some of the time.

Inference Extrapolation Inference Extrapolation Extrapolation
(I-Frame) (E-Frame) (I-Frame) (E-Frame) (E-Frame)
) o e
to t4 t2 ‘*‘ 13 — t4
< Extrapolation Window =2 » <«—— Extrapolation Window =3 ———»

e However, using too many E-frames will degrade accuracy. Thus the question
becomes how to strike the right balance (i.e. when to extrapolate).

e The notion of an Extrapolation Window (EW) is introduced.
o The number of consecutive E-frames between |-frames + 1.

e Alarger EW improves efficiency, but degrades accuracy.

Motion-Based Continuous Vision Algorithm

e When to extrapolate:

O

Euphrates provides two modes of setting the EW: (1) a constant mode and (2) an adaptive
mode.

Constant mode is straightforward: EW is statically fixed at say 2 (in which case it is roughly
twice as efficient/50% energy savings). But the accuracy tradeoff may not be ideal.

Adaptive mode will still calculate new ROI from extrapolation whenever an I-frame is
processed.

If the results from inference and extrapolation are similar (above a threshold), the EW is
incrementally increased. And if the results differ (or are below a similarity threshold), the EW is
decreased.

Constant mode is advantageous when specific frame rate deadlines must be met, but without
such restrictions adaptive mode will reduce energy consumption with minimal effect on
accuracy.

Architecture Support

Principles

e Avoid unnecessary CPU usage - more architectural support in the vision
pipeline

e The architectural support for the extrapolation functionality should be
decoupled from CNN inference - flexible design, not restricted to limitations of
CNN accelerators and their evolution, CNNs are expensive

Two architectural extensions

e Augment ISP to expose motion vectors to the backend - normally ISP does
pre-processing and forgets
e Motion Controller to coordinate the backend

Camera [MIPICSI | Sensor
Sensor Interface

Legend
. mrAtere et s A iy Wt e
[] Frontend WD W) o
- Pixel Data |
I Backend L .

Fig. 5: Block diagram of the augmented continuous vision subsystem in a mobile SoC.

Architectural-Level Working

1. CPU configures components of the pipeline, initiates task
2. Camera captures images, feeds to ISP
3. ISP — pixel data + metadata, sent to DRAM buffer

4. CNN engine — inference pass — ROls and possibly classification labels
written to dedicated memory mapped registers in the Motion Controller

5. Motion Controller combines CNN data + MV data for E-Frames. Master slave
communication, extrapolation window decision + choosing between | or E results

Motion Controller — Microcontroller-like, has an on-chip SRAM unlike Cortex-M,
no fetch-decode, instead has a programmable sequencer,

Implementation and Experimental Setup

An in-house hardware simulator was created with a methodology similar to
Gemdroid SoC Simulator.

o Simulator comprised of a functional model, performance model, and a power model to evaluate the
continuous vision pipeline.

o Functional model takes video streams to mimic real-time camera capture and implements the
extrapolation algorithm in OpenCV.

o Performance model captures the timing behaviors of pipeline components.

o Power model is created by taking the timings of cross-IP activities, from which SoC events are
tabulated and used for energy estimations.

m Real device components were measured and used in the power estimation model.

Software was evaluated using two popular mobile continuous vision scenarios:
o Obiject detection scenario was evaluated using a custom dataset extracted from real video streams
and was compared to Tiny YOLO.
o Visual tracking scenario used CNN-based tracker called MDNet with two tracking benchmarks:
m Object Tracking Benchmark (OTB) 100
m VOT 2014

Table 1: Details about the modeled vision SoC.

Component

Specification

Camera Sensor

ON Semi AR1335, 1080p @ 60 FPS

ISP

768 MHz, 1080p @ 60 FPS

NN Accelerator
(NNX)

24 x 24 systolic MAC array
1.5 MB double-buffered local SRAM
3-channel, 128bit AXI4 DMA Engine

Motion Controller
(MC)

4-wide SIMD datapath
8KB local SRAM buffer
3-channel, 128bit AXI14 DMA Engine

DRAM

4-channel LPDDR3, 25.6 GB/s peak BW

Evaluation: Object Detection

(o]

o
-
o

_— 70 0.7
PP Ao e, m Backend i B L® I P
& b = Memory las 60 0.6 ‘30
<60 - B Frontend QE’
c
o [@©
B = YOLOV2 0.6 e
® 4| o EW2 w g
(i I EW-4 £ 0.4H o
g | —EwWs S 5
Ezo- === EW-16 E
z | == EW-32 0.2 o
= Tiny YOLO z
0 L L = 0.0
0.0 0.2 0.4 0.6 0.8 1.0 O\’O &
K\
loU Threshold
(a) Average precision comparison. (b) Energy and FPS comparison. (c) Compute and memory comparison.

Fig. 9: Average precision, normalized energy consumption, and FPS comparisons between various object detection schemes. Energy is
broken-down into three main components: backend (CNN engine and motion controller), main memory, and frontend (sensor and ISP).

Evaluation: Object Tracking

-
o
o

1.0 100 100
[@ Backend _
B Memory 3,
9 =0 - 0:81 @ Frontend 180 g = 80
Py S 3 Py
T 60 2 0.6 o T 60
14 w n;? 14
@]) ?
® 40 Eo4 = ® 40
3 3 ‘ X 3
> < ~ 3 — EW-A
50 0.2 > @20 --- EW-2
e EW-4
0 0.0 0 0 —
0.0 0.2 0.4 0.6 0.8 1.0 S VPO A 0 40 80 120
& N Y N N .
loU Threshold N2 Video Sequence
(a) Success rate comparison. (b) Normalized energy consumption and (c) Success rate for all 125 video se-
inference rate comparison. guences under an loU ratio of 0.5.

Fig. 10: Accuracy loss and energy saving comparisons between baseline MDNet and various Euphrates configurations for OTB 100 and VOT
2014 datasets. Energy is dissected into three parts: backend (CNN engine and motion controller), main memory, and frontend (sensor and ISP).

Related Work

e CNN based models that use MVs as training input (Zhang, Chadha, TSN)

e YOLO — entire image in one go, regression problem.

e Fast YOLO — requires training a separate CNN, does not perform
extrapolation

e Sliding window based methods

e Current research focus — design better accelerators, memory utilization,
better tooling

e Euphrates — Motion extrapolation replaces inferencing.

Discussion

e Researchers note that Euphrates is least effective when dealing with scenes

with fast moving and blurred objects.
o They suspect it’s due to the limited scope of search window size in BM.
o Unfortunately increasing the search window rapidly increases computational overhead.
o Aframe rate increase could improve performance.

e Researchers also suggest using sensor fusion algorithms with data from other
sources, such as IMUs for more accurate motion estimation.

Questions ?

