
High-Performance 
Operating System 

Controlled Online Memory 
Compression 

LEI YANG and ROBERT P. DICK Northwestern University 
HARIS LEKATSAS and SRIMAT CHAKRADHAR NEC Laboratories America

Yi Wang



INTRODUCTION



Overview

● Design of modern embedded systems:

○ minimize size, cost and power consumption

○ maximize functionality

■ increase flexibility and features

● increase memory requirements

● Add physical RAM

○ increase size, cost and power consumption

● Make better use of physical memory via memory compression



Memory Compression Motivation and Introduction

● Memory compression techniques comparison:

○ hardware-based:

■ require the design special-purpose 

compression-decompression hardware 

○ software-based:

■ not require dedicated hardware

● simplify design process

● reduce time-to-market and design cost

○ more easily apply to existing embedded systems



Memory Compression Motivation and Introduction

● Disadvantage of software-based techniques:

○ high performance and power consumption penalties

○ practical issues like managing migration between 

compressed and uncompressed portions of memory

● Two techniques presented to further improve performance of 

online software-based memory compression



Memory Compression Motivation and Introduction

● Pattern-based partial match compression algorithm (PBPM)

○ efficiently compress data pages in RAM

○ twice as fast as best compression algorithms

○ competitive compression ratio

● Adaptive memory management scheme

○ predictively allocate memory for compressed data

○ further increase available memory to applications by up to 

13%



Memory Compression Motivation and Introduction

● Demonstration/evaluation:

○ possible to increase available application memory by 2.5x

○ without hardware or application change

○ negligible performance and power consumption penalties



RELATED WORK AND 
CONTRIBUTIONS



Hardware-Based Memory Compression
● Code compression techniques

○ store instructions in compressed format in ROM

■ offline and slow compression 

○ decompress during execution

■ fast, done by special hardware

● Main memory compression

○ insert hardware compression and decompression unit 

between cache and RAM

○ data stored uncompressed in cache

○ data compressed when transferred to memory



Software-Based Memory Compression
● Compressed caching

○ introduce software-based cache to virtual memory system

○ use part of memory to store data in compressed format

● Swap compression

○ compress swapped pages and store in memory region that 

act as cache between memory and disk

● Neither designed or evaluated for use in embedded systems

○ use compression algorithms that impose high overheads

○ require hard disk as a backing store



Compression Algorithms for In-RAM Data
● Compression techniques can be lossy or lossless

● Online memory compression requires lossless algorithms

○ many existing not suitable for applications in embedded 

systems

● Example

○ LZO [Oberhumer]:

■ very fast general-purpose lossless compression algorithm

■ work well on memory data



OVERVIEW OF CRAMES



CRAMES design goal

● Memory requirements overran the initial 

estimate.

● Increase available memory by compression.



CRAMES implementation

● Loadable Linux kernel module.

● Store swapped-out pages in 

compressed format.

● Compressed memory maintained in a 

linked list



CRAMES interface
Read operation:

- Locate block using index mapping table, decompress it, and copy 
to requested buffer.

Write operation:

- Locate block using index mapping table, determines whether to 
discard old block, and compress the new block

Free:

- Accessed by the only owner of the block.
- Kernel notify the CRAMES to eliminate from compressed memory.



Design Challenges of CRAMES
Which part of memory to compress?

- Selection and scheduling of pages.

How to compress?

- Compression algorithm.

Where to put the compressed memory?

- How much space to allocate for the compressed memory.

- How to manage the allocated space for compressed memory 

with different sizes.



CRAMES: Which part to compress?

LRU policy for choosing pages to compress.

Frequently used pages in uncompressed area.

Least recently used memory in compressed area.



PATTERN-BASED PARTIAL 
MATCH COMPRESSION



Background (LZO)

First consideration: LZO algorithm

Advantage: 

● significantly faster than many other general-purpose 

compression algorithms



Background (LZO)
First consideration: LZO algorithm

Disadvantage: 

● not designed for memory compression 

○ not fully exploit the regularities of in-RAM data

● requires 64KB of working memory for compression 

○ significant overhead on embedded systems



Background (PBPM)
● Better result possible for online memory compression

● Extremely fast and well-suited for memory compression

● Observation: frequently encountered data patterns can be 

encoded with fewer bits to save space.

● Mechanism:

○ Scan through input data by word

○ Exploit frequent patterns within each word

○ Search for complete and partial matches with dictionary 

entries



Background (PBPM)
● Mechanism:

○ Very frequent patterns:

■ encoded using special bit sequences 

■ much shorter than the original data

○ Less frequent patterns:

■ stored in a dictionary

■ encoded using the index of their location in dictionary

○ Least frequent patterns:

■ just stored in dictionary



In-RAM Data Patterns

● Regularities of in-RAM data:

○ pages usually zero-filled after being allocated

○ zeroes commonly encountered during memory 

compression

● Evaluate relative frequencies of patterns



In-RAM Data Patterns



In-RAM Data Patterns

● Different dictionary sizes and layouts tested

● Most frequent patterns and most effective dictionary 

layouts for PBPM selected

● A small two-way set-associative dictionary of 16 

recently seen words



In-RAM Data Patterns
● Represent each word with four symbols, each 

representing a byte

● Representation:

○ ‘z’: a zero byte

○ ‘x’: an arbitrary byte

○ ‘m’: a byte that matches a dictionary entry

● Example:

○ “zzzz”: an all-zero word

○ “mmmx”: a partial match with a dictionary entry



In-RAM Data Patterns



In-RAM Data Patterns
● Hash-mapped dictionary:

○ allow fast search and update operations

○ the third byte of a word is hash-mapped to a 256

entry table 

■ achieve decent hashing quality with low 

computational overhead

○ contain random indices within the range of the 

dictionary



In-RAM Data Patterns

Only four matched patterns 
need to be considered:
● “mmmm”
● “mmmx”
● “mmxx”
● “xmxx”



In-RAM Data Patterns

● Possible to consider non-byte-aligned partial matches

● Sufficient to exploit the partial similarities among in-RAM 

data while permitting efficient implementation 

(experimental result)



PBPM Compression Algorithm

● Scan through a page (usually 4KB), for each word:

○ first condition met

■ encode with special bit sequence

○ second condition met

■ check whether fully or partially matches a 

dictionary entry

■ inserted into the dictionary location 

indicated by hashing on its third byte.



PBPM Compression Algorithm

● Scan through a page (usually 4KB), for each word:

○ third condition met:

■ no match at all

■ just inserted into the dictionary

● Set-associative dictionary provides the benefits of 

both LRU replacement and speed

● Oldest of the dictionary entries sharing one hash 

target index is replaced



PBPM Compression Algorithm
● Neither the hash table nor the dictionary need be stored 

with the compressed data

● Hash table is static and the dynamic dictionary

is regenerated automatically during decompression

● Decompressor 

○ read through the compressed output

○ decode the format based on the patterns given 

○ add entries to the dictionary upon a partial

match or dictionary miss



Software Acceleration

● Store output of all compressed words in one flat 

array (tape)

● Example:

○ for pattern “mmmm”:

■ two-bit code 01 sent to the output tape

■ four-bit index bbbb sent to the output tape

■ separate tapes used for code, index, and 

data



Software Acceleration

● Code length may be either two-bit or four-bit

● Two tapes for codes, each of which consists of 

two-bit sequences

● Example: 

○ for pattern “mmmx”:

■ first two-bit code 10 sent to tape

■ second two-bit code 11 sent to tape

■ index and data send to tape meanwhile



Software Acceleration
● Acceleration technique

○ for code tapes and index tapes

○ allow fast bit operations

● Mechanism:

○ store each two-bit code in the lowest two bits of a byte

○ pack the codes four words at a time after all collected

○ shifting the second word by two bits, the third word by 

four bits, and the fourth word by six bits

○ perform a logical “or” of these four words



Software Acceleration



Software Acceleration
● Minimizes the total number of shifts required to pack all 

two-bit sequences

● Four-byte shifts may be carried out in parallel on 32-bit 

architectures

● Similar technique applied to the index tape, which contains 

four-bit sequences



Word Alignment
● High performance loads or stores of nonaligned data objects 

not supported by some processors

● Example:

○ access to a four-byte word with an address that is not 

evenly divisible by four

■ may be illegal

■ or impose substantial performance penalties



Word Alignment
● Data length may vary for different patterns

● Data tape consists of onebyte, two-byte, and four-byte 

sequences

● May impose substantial overhead for those processors

● Two alignment schemes implemented to solve the problem



Word Alignment
● Scheme:

○ separate aligned tapes:

■ separate data tapes for one-byte, two-byte and 

four-byte data

■ copy two to the end of one

■ short tapes -> little copying -> low performance 

overhead



Word Alignment
● Scheme:

○ single word-aligned tape:

■ maintain only one data tape

■ write data to it in word-aligned manner

■ three pointers maintained to record positions of the 

next available one-byte, two-byte, and four-byte 

locations

■ check and update pointer reduce performance

■ no need for coping tapes



Word Alignment
● Compare two alignment techniques and original PBPM (no 

consideration for the alignment problem)

● Separate vs. single:

○ smaller performance overhead



Word Alignment
● Seperate vs. original:

○ 15% compression time increase

○ no effect on decompression time

● Single vs. original:

○ 30% compression time increase

○ 67% decompression time increase

●



Word Alignment
● Conclusion:

○ For architectures that suffer high performance 

overheads on misaligned accesses:

■ use separate aligned tapes

○ Otherwise:

■ use non-aligned PBPM



ADAPTIVE COMPRESSED 
MEMORY MANAGEMENT



Memory management: How much to allocate 
for the compressed memory?
● Uncompressed/compressed deadlock

○ No space to compress the uncompressed data

● Predictively request additional memory

○ So that CRAMES can always make space for memory 

request

● CRAMES request space when compressed area exceed fill rate



Memory management: How to manage the 
compressed memory space?
● Unlike memory pages, compressed memory are fragmented 

due to compression.

● Kernel Memory Allocation problem: trade-off between 

allocation speed and memory usage.

● Resource Map allocator was used for best tradeoff.



EVALUATION



Overview
● Evaluation methodology and results of the techniques 

proposed for high-performance online memory compression

● Experimental setup

○ Sharp Zaurus SL-5600 PDA

○ battery-powered embedded system running an 

embedded version of Linux

○ 400 MHz Intel XScale PXA250 processor, 32 MB of flash 

memory, and 32 MB of RAM



Quality and Speed of the PBPM Algorithm
● Comparison of the compression ratio and speed

● PBPM vs. fastest mode of LZO and LZRW1-A (among the 

fastest of the available LZRW algorithms)



Quality and Speed of the PBPM Algorithm
● Block size = page size (4096 KB) for online memory 

compression



Quality and Speed of the PBPM Algorithm
● Result for PBPM:

○ 200% speedup over both

○ competitive compression ratio (44% to 34%/39%)

○



Effectiveness of Adaptive Memory Management
● Continuously requests memory in 1 MB blocks until a 

request fails

● Comparison of total memory allocated and execution time

● A-CRAMES (with adaptive memory management enabled) 

vs. CRAMES vs. without CRAMES



Effectiveness of Adaptive Memory Management



Effectiveness of Adaptive Memory Management
● Result:

○ without CRAMES:

■ 16 MB of memory provided

○ CRAMES:

■ 33 MB of memory provided

■ no delay observed

○ A-CRAMES:

■ 38 MB of memory provided (13% more)

■ without performance penalty

● help to prevent online memory compression deadlock



Probability of Running out of Memory
● Overall memory compression ratio influenced by the 

running applications

● Possible that under some workloads, some applications 

will write relatively incompressible data to memory

○ prevent CRAMES and PBPM from achieving the 

predicted aggregate system-wide compression ratio

■ prevent running applications from allocating 

additional memory



Probability of Running out of Memory
● Probability equivalent to the one of the aggregate 

compression ratio of in-RAM data exceeding the target 

compression ratio when deciding the amount of physical 

RAM in the embedded system

● Approximate the probability of exceeding the target 

compression ratio (assuming 50%) by using statistical 

techniques



Probability of Running out of Memory
● The probability of 

exceeding our target 

compression ratio of 50% 

can be estimated as the 

area under the aggregate 

PDF

● 3.40 × 10^(−158)



Probability of Running out of Memory
● Conclusion:

○ although no guarantee that a particular set of 

applications produce pages with an aggregate 

compression ratio below a particular target 

compression ratio

○ is unlikely to pose a problem for CRAMES and PBPM



Overall Performance of CRAMES
● With CRAMES, embedded system could: 

○ be designed with less RAM

○ still support desired applications 

○ with some potential performance and energy 

consumption overheads

● When under substantial memory pressure

○ PBPM and adaptive memory management minimize 

these overheads



Overall Performance of CRAMES
● To evaluate the impact of using CRAMES to reduce 

physical RAM

○ artificially constrained the memory size of with a 

kernel module

○ permanently reserves a certain amount of physical 

memory

● Measure and compare the runtimes, power 

consumptions, and energy consumptions of four batch 

benchmarks



Overall Performance of CRAMES
● Comparison of performance numbers of benchmarks

● Without compression vs. LZO compression vs. PBPM 

compression

● Under different memory constraints

● Adaptive memory management enabled for both LZO 

and PBPM for fair comparison



Overall Performance of CRAMES



Overall Performance of CRAMES
● Result:

○ both LZO and PBPM impose only small power 

consumption overheads on the applications

○ performance overheads of both compression 

algorithms insignificant when system memory not 

reduced dramatically

○ performance difference between LZO and PBPM 

becomes obvious when system under tight memory 

constraints



Overall Performance of CRAMES
● Result (compared to the base case):

○ PBPM:

■ average performance penalty of 0.2%

■ worst-case performance penalty of 9.2%

○ LZO:

■ average performance penalty of 9.5%

■ worst-case performance penalty of 29%



CONCLUSION



Conclusion
● High-performance OS-controlled memory compression can 

assist embedded system designers to optimize hardware 

design

● PBPM (efficient compression algorithm for use in OS 

controlled memory compression)

○ compression ratios competitive with existing algorithms

○ significantly better performance when system memory 

under tight constraints



Conclusion
● Adaptive compressed memory management scheme

○ prevent online memory compression deadlock

○ further increase the amount of usable memory

● Experimental results:

○ using these two techniques allows applications to execute 

with only slight penalties

○ even when available RAM reduced to 40% of original size

● No changes to applications or hardware required


