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Overview

® Design of modern embedded systems:
O minimize size, cost and power consumption
o maximize functionality

m increase flexibility and features
® increase memory requirements
e Add physical RAM
O increase size, cost and power consumption
e Make better use of physical memory via memory compression




Memory Compression Motivation and Introduction

e Memory compression techniques comparison:
o hardware-based:
m require the design special-purpose
compression-decompression hardware
o software-based:
m not require dedicated hardware
e simplify design process
® reduce time-to-market and design cost

o more easily apply to existing embedded systems




Memory Compression Motivation and Introduction

e Disadvantage of software-based techniques:

o high performance and power consumption penalties
o practical issues like managing migration between

compressed and uncompressed portions of memory
e Two techniques presented to further improve performance of
online software-based memory compression




Memory Compression Motivation and Introduction

® Pattern-based partial match compression algorithm (PBPM)
o efficiently compress data pages in RAM
O twice as fast as best compression algorithms

O competitive compression ratio
e Adaptive memory management scheme

o predictively allocate memory for compressed data

o further increase available memory to applications by up to
13%




Memory Compression Motivation and Introduction

e Demonstration/evaluation:
o possible to increase available application memory by 2.5x
o without hardware or application change

o negligible performance and power consumption penalties







Hardware-Based Memory Compression

e Code compression techniques
o store instructions in compressed format in ROM
m offline and slow compression
o decompress during execution
m fast, done by special hardware
e Main memory compression
o insert hardware compression and decompression unit
between cache and RAM
o data stored uncompressed in cache

data compressed when transferred to memory




Software-Based Memory Compression

e Compressed caching

o introduce software-based cache to virtual memory system
O use part of memory to store data in compressed format
® Swap compression
o compress swapped pages and store in memory region that
act as cache between memory and disk
e Neither designed or evaluated for use in embedded systems
O use compression algorithms that impose high overheads
o require hard disk as a backing store




Compression Algorithms for In-RAM Data

e Compression techniques can be lossy or lossless

® Online memory compression requires lossless algorithms

O many existing not suitable for applications in embedded

systems

® Example

o LZO [Oberhumer]:
m very fast general-purpose lossless compression algorithm
m work well on memory data







CRAMES design goal

e Memory requirements overran the initial
estimate.

® Increase available memory by compression. =]




CRAMES implementation

® Loadable Linux kernel module.

® Store swapped-out pages in

compressed format.
® Compressed memory maintained in a
linked list
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CRAMES interface

Read operation:

- Locate block using index mapping table, decompress it, and copy
to requested buffer.

Write operation:

- Locate block using index mapping table, determines whether to
discard old block, and compress the new block

Free:

- Accessed by the only owner of the block.
- Kernel notify the CRAMES to eliminate from compressed memory.




Design Challenges of CRAMES

Which part of memory to compress?

- Selection and scheduling of pages.
How to compress?

- Compression algorithm.
Where to put the compressed memory?

- How much space to allocate for the compressed memory.
- How to manage the allocated space for compressed memory

with different sizes.




CRAMES: Which part to compress?

LRU policy for choosing pages to compress.

Frequently used pages in uncompressed area.

Least recently used memory in compressed area.







Background (LZO)

First consideration: LZO algorithm
Advantage:

e significantly faster than many other general-purpose
compression algorithms




Background (LZO)

First consideration: LZO algorithm

Disadvantage:

® not designed for memory compression

O not fully exploit the regularities of in-RAM data

® requires 64KB of working memory for compression

O significant overhead on embedded systems




Background (PBPM)

Better result possible for online memory compression

e Extremely fast and well-suited for memory compression
e Observation: frequently encountered data patterns can be

encoded with fewer bits to save space.

e Mechanism:

o Scan through input data by word

o Exploit frequent patterns within each word

o Search for complete and partial matches with dictionary
entries




Background (PBPM)

® Mechanism:

o Very frequent patterns:

m encoded using special bit sequences

m much shorter than the original data
o Less frequent patterns:

m storedin a dictionary

m encoded using the index of their location in dictionary
o Least frequent patterns:

m just stored in dictionary




In-RAM Data Patterns

Regularities of in-RAM data:
o pages usually zero-filled after being allocated

o zeroes commonly encountered during memory

compression
Evaluate relative frequencies of patterns




In-RAM Data Patterns
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In-RAM Data Patterns

Different dictionary sizes and layouts tested
e Most frequent patterns and most effective dictionary
layouts for PBPM selected

e A small two-way set-associative dictionary of 16
recently seen words




In-RAM Data Patterns

® Represent each word with four symbols, each
representing a byte
® Representation:
o ‘z’:azero byte
o ‘x’:an arbitrary byte
o ‘m’: a byte that matches a dictionary entry
e Example:
o “zzzz”: an all-zero word
o  “mmmx”: a partial match with a dictionary entry




In-RAM Data Patterns
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In-RAM Data Patterns

e Hash-mapped dictionary:
o allow fast search and update operations

o the third byte of a word is hash-mapped to a 256
entry table
m achieve decent hashing quality with low
computational overhead
o contain random indices within the range of the
dictionary




In-RAM Data Patterns

Table I. Pattern Encoding in PBPM

Code Pattern Output Size (bits) Frequency
00 2222 00 2 38.0%
01 XXXX 01BBBB 34 21.6%
10 mmmm 10bbbb 6 11.2%
1100 ZZZX 1100B 12 9.3%
1101 mmxx 1101bbbbBB 24 8.9%
1110 mmmx 1110bbbbB 16 7.7%
$111 ZXZX 1111BB 20 3.1%

Only four matched patterns
need to be considered:
“Mmmmm”

“mmmx”
“mmxx”
“xmxx”




In-RAM Data Patterns

Possible to consider non-byte-aligned partial matches

e Sufficient to exploit the partial similarities among in-RAM
data while permitting efficient implementation

(experimental result)




PBPM Compression Algorithm

e Scan through a page (usually 4KB), for each word:

o first condition met

m encode with special bit sequence

o second condition met
m check whether fully or partially matches a
dictionary entry
m inserted into the dictionary location
indicated by hashing on its third byte.

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream

1: for word in range of IN do
2: if word = zzzz then

3 TAPE < 00

4: else if word = zzzz then
5 TAPE « 1100

6: DATA <« B

7: elseif word = zzzz then
8 TAPE < 1111

9: DATA < BB

10: else

11:  mmmm < DICT[hash(word)]
12: if word = mmmm then

13: TAPE < 10

14: INDX « bbbb

15: else if word = mmmz then
16: TAPE < 1110

17: INDX < bbbb

18: DATA < B

19: Insert word to DICT
20: else if word = mmzz then
21: TAPE < 1101

22: INDX <« bbbb

23: DATA < BB

24, Insertword to DICT |
25: else

26:.  TAPE < 01

27: DATA « BBBB

28: Insert word to DICT
T end 1l

30: end if
31: end for
32: OUT <« Pack(TAPE,DATA,INDX)




PBPM Compression Algorithm

Scan through a page (usually 4KB), for each word:
o third condition met:

m no match at all

m justinserted into the dictionary

® Set-associative dictionary provides the benefits of

both LRU replacement and speed

e Oldest of the dictionary entries sharing one hash

target index is replaced

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream

1: for word in range of IN do
2: if word = zzzz then

3 TAPE < 00

4: else if word = zzzz then
5 TAPE « 1100

6: DATA <« B

7: elseif word = zzzz then
8

TAPE < 1111
9: DATA < BB
10: else

11:  mmmm < DICT[hash(word)]
12: if word = mmmm then

13: TAPE < 10

14: INDX « bbbb

15: else if word = mmmz then
16: TAPE < 1110

17: INDX < bbbb

18: DATA < B

19: Insert word to DICT
20: else if word = mmzz then
21: TAPE < 1101

22: INDX <« bbbb

23: DATA < BB

24, Insertword to DICT |
25: else

26:.  TAPE < 01

27: DATA « BBBB

28: Insert word to DICT
T end 1l

30: end if
31: end for
32: OUT <« Pack(TAPE,DATA,INDX)




PBPM Compression Algorithm

Neither the hash table nor the dictionary need be stored
with the compressed data

Hash table is static and the dynamic dictionary

is regenerated automatically during decompression
Decompressor

o read through the compressed output

o decode the format based on the patterns given

o add entries to the dictionary upon a partial

match or dictionary miss




Software Acceleration

e Store output of all compressed words in one flat
array (tape)

e Example:

o for pattern “mmmm”:
m two-bit code 01 sent to the output tape
m four-bit index bbbb sent to the output tape
m separate tapes used for code, index, and
data

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream

1: for word in range of IN do
2: if word = zzzz then

3: TAPE « 00
4: else if word = zzzz then
5: TAPE « 1100
6: DATA <« B
7: elseif word = zzzz then
8: TAPE < 1111
9: DATA < BB
10: else

11:  mmmm < DICT[hash(word)]
12: if word = mmmm then

13: TAPE < 10

14: INDX « bbbb

15: else if word = mmmz then
16: TAPE < 1110

17: INDX < bbbb

18: DATA < B

19: Insert word to DICT
20: else if word = mmzz then
21: TAPE < 1101

22: INDX <« bbbb

23: DATA < BB

24, Insertuord to DICT |
25: else
26: TAPE < 01
27: DATA <« BBBB
28: Insert word to DICT
T end 1l
30: end if

31: end for
32: OUT <« Pack(TAPE,DATA,INDX)




Software Acceleration

e Code length may be either two-bit or four-bit
e Two tapes for codes, each of which consists of

two-bit sequences

e Example:
o for pattern “mmmx”:
m first two-bit code 10 sent to tape
m second two-bit code 11 sent to tape
m index and data send to tape meanwhile

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream

1: for word in range of IN do
2: if word = zzzz then

3: TAPE « 00

4: else if word = zzzz then
5: TAPE « 1100

6: DATA <« B

7: elseif word = zzzz then
8: TAPE < 1111

9: DATA < BB
10: else

11:  mmmm < DICT[hash(word)]
12: if word = mmmm then

13: TAPE < 10

14: INDX « bbbb

15: else if word = mmmz then
16: TAPE < 1110

17: INDX < bbbb

18: DATA < B

19: Insert word to DICT
20: else if word = mmzz then
21: TAPE < 1101

22: INDX <« bbbb

23: DATA < BB

24, Insertword to DICT |
25: else

26:.  TAPE < 01

27: DATA « BBBB

28: Insert word to DICT
T end 1l

30: end if
31: end for
32: OUT <« Pack(TAPE,DATA,INDX)




Software Acceleration

® Acceleration technique
o for code tapes and index tapes
o allow fast bit operations

® Mechanism:

o store each two-bit code in the lowest two bits of a byte
o pack the codes four words at a time after all collected
o shifting the second word by two bits, the third word by
four bits, and the fourth word by six bits
perform a logical “or” of these four words




2 bits «—
4 bits «——

6 bits «—

Word 1
Word 2
Word 3
Word 4

Result

Software Acceleration

Byte 1 Byte 2 Byte 3 Byte 4
oo oo oo oo
01 o1 01 01
1]0 1]o 1]o0 1]o0
1)1 il 1)1 11
! Shift
oo [o]o oo oo
o1 o1 o1 o1
1]0 1{o 1]0 1]0
1|1 1|1 11 11

! | Logic OR
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Software Acceleration

e Minimizes the total number of shifts required to pack all

two-bit sequences

® Four-byte shifts may be carried out in parallel on 32-bit

architectures
e Similar technique applied to the index tape, which contains
four-bit sequences




Word Alignment

e High performance loads or stores of nonaligned data objects
not supported by some processors
e Example:

O access to a four-byte word with an address that is not

evenly divisible by four
m may beillegal
m or impose substantial performance penalties




Word Alignment

Data length may vary for different patterns

e Data tape consists of onebyte, two-byte, and four-byte
sequences

e May impose substantial overhead for those processors

Two alignment schemes implemented to solve the problem




Word Alignment

e Scheme:

o separate aligned tapes:
m separate data tapes for one-byte, two-byte and

four-byte data

copy two to the end of one
short tapes -> little copying -> low performance
overhead




Word Alignment

e Scheme:

o single word-aligned tape:

m maintain only one data tape

m write data to it in word-aligned manner

m three pointers maintained to record positions of the
next available one-byte, two-byte, and four-byte
locations

m check and update pointer reduce performance

no need for coping tapes




Word Alignment

e Separate vs. single:

e Compare two alignment techniques and original PBPM (no
consideration for the alignment problem)

o smaller performance overhead

Non-aligned PBPM (us)
Compress Decompress

Separate aligned tapes (us)
Compress Decompress

Single aligned tape (us)
Compress Decompress

average 12.99 10.94
stdev. 3.05 3.08

14.94 10.94
1.79 2.20

16.89 18.26
3.77 4.44




Word Alignment

e Seperate vs. original:
o 15% compression time increase
o no effect on decompression time
e Single vs. original:
o 30% compression time increase
o 67% decompression time increase

Non-aligned PBPM (us) | Separate aligned tapes (us) | Single aligned tape (us)

Compress Decompress | Compress Decompress Compress Decompress
average 12.99 10.94 14.94 10.94 16.89 18.26
stdev. 3.05 3.08 1.79 2.20 3.77 4.44




Word Alignment

e Conclusion:

o For architectures that suffer high performance
overheads on misaligned accesses:
m use separate aligned tapes

o Otherwise:
m use non-aligned PBPM

Non-aligned PBPM (us) | Separate aligned tapes (us) | Single aligned tape (us)
Compress Decompress | Compress Decompress Compress Decompress
average 12.99 10.94 14.94 10.94 16.89 18.26
stdev. 3.05 3.08 1.79 2.20 3.77 4.44







Memory management: How much to allocate
for the compressed memory?

e Uncompressed/compressed deadlock
o No space to compress the uncompressed data
e Predictively request additional memory
o So that CRAMES can always make space for memory
request
e CRAMES request space when compressed area exceed fill rate




Memory management: How to manage the
compressed memory space?

Unlike memory pages, compressed memory are fragmented
due to compression.

Kernel Memory Allocation problem: trade-off between
allocation speed and memory usage.

Resource Map allocator was used for best tradeoff.







Overview

e Evaluation methodology and results of the techniques

proposed for high-performance online memory compression
e Experimental setup

o Sharp Zaurus SL-5600 PDA
o battery-powered embedded system running an

embedded version of Linux
o 400 MHz Intel XScale PXA250 processor, 32 MB of flash
memory, and 32 MB of RAM




Quality and Speed of the PBPM Algorithm

e Comparison of the compression ratio and speed
® PBPM vs. fastest mode of LZO and LZRW1-A (among the

fastest of the available LZRW algorithms)
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Quality and Speed of the PBPM Algorithm

® Block size = page size (4096 KB) for online memory
compression
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Quality and Speed of the PBPM Algorithm

e Result for PBPM:
o 200% speedup over both
o competitive compression ratio (44% to 34%/39%)
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Effectiveness of Adaptive Memory Management

Continuously requests memory in 1 MB blocks until a
request fails
e Comparison of total memory allocated and execution time

e A-CRAMES (with adaptive memory management enabled)
vs. CRAMES vs. without CRAMES




Effectiveness of Adaptive Memory Management
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Effectiveness of Adaptive Memory Management

e Result:
o without CRAMES:
m 16 MB of memory provided
o CRAMES:
m 33 MB of memory provided

m no delay observed
o A-CRAMES:
m 38 MB of memory provided (13% more)
m without performance penalty
e help to prevent online memory compression deadlock




Probability of Running out of Memory

e Overall memory compression ratio influenced by the
running applications
e Possible that under some workloads, some applications

will write relatively incompressible data to memory
o prevent CRAMES and PBPM from achieving the
predicted aggregate system-wide compression ratio

m prevent running applications from allocating
additional memory




Probability of Running out of Memory

e Probability equivalent to the one of the aggregate
compression ratio of in-RAM data exceeding the target

compression ratio when deciding the amount of physical
RAM in the embedded system
e Approximate the probability of exceeding the target

compression ratio (assuming 50%) by using statistical
techniques
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Probability of Running out of Memory

e Conclusion:
o although no guarantee that a particular set of
applications produce pages with an aggregate
compression ratio below a particular target
compression ratio
is unlikely to pose a problem for CRAMES and PBPM




Overall Performance of CRAMES

e With CRAMES, embedded system could:
o be designed with less RAM
o still support desired applications

o with some potential performance and energy

consumption overheads
e When under substantial memory pressure
o PBPM and adaptive memory management minimize
these overheads




Overall Performance of CRAMES

e To evaluate the impact of using CRAMES to reduce
physical RAM
o artificially constrained the memory size of with a

kernel module

o permanently reserves a certain amount of physical
memory
e Measure and compare the runtimes, power
consumptions, and energy consumptions of four batch
benchmarks




Overall Performance of CRAMES

Comparison of performance numbers of benchmarks

e Without compression vs. LZO compression vs. PBPM
compression

e Under different memory constraints

e Adaptive memory management enabled for both LZO
and PBPM for fair comparison




Overall Performance of CRAMES

Table III. Performance of CRAMES with PBPM and Adaptive Allocation

RAM Adpem Jpeg Mpeg2 Matrix Mul.

(MB)| w.o. LZO PBPM| wo. LZO PBPM| wo. LZO PBPM| wo. LZO PBPM
Execution Time (seconds)
8 483 169 143| 071 026 0.23]| 79.35 8030 77.96 na 39.26 38.68
9 369 135 126| 044 021 0.21| 76.80 76.83 74.04 na 3740 38.24
10 141 134 136| 023 021 0.21]| 79.06 7693 75.32 | 59.11 39.56 37.18
11 137 140 140| 026 0.25 0.21]| 80.57 76.81 76.83 | 44.44 38.42 4265
12 137 131 132| 024 021 0.19]| 76.79 7694 76.95| 41.72 38.73 43.96
20 131 130 130 0.23 0.21 0.22]| 76.60 76.77 76.76 | 43.02 41.41 4297
Power Consumption (Watts)
8 2.13 2.13 2.13| 215 216 2.15| 241 241 251 na 2.26 2.29
9 210 2.10 2.13]| 215 202 207 241 240 250| na 2.26 2.29
10 2.09 210 2.09| 2.00 199 204 239 240 248 224 225 229
4 [ 212 209 213| 205 204 207 2.40 2.40 2.50 226 225 229
12 209 213 211] 203 205 210 2.40 2.41 2.55 225 225 229
20 2.11 2.09 2.18| 215 202 224 242 243 257 228 227 229
Energy Consumption (Joules)

8 1034 360 3.04| 151 0.56 0.49[190.99 19342 19571 | n.a 88.74 88.62
9 775 284 268 094 042 0.43(185.38 184.55 185.10 na 84.70 87.64
10 294 279 285| 047 042 0.42(188.62 184.34 186.42 [131.05 88.99 85.01
11 2.89 293 297| 054 052 0.44(193.10 184.69 191.94 [100.01 86.38 97.79
12 286 279 279| 049 043 0.41(184.45 185.74 196.33 | 93.65 86.94 100.81
2.75 272 282| 048 0.43 0.49|185.72 186.56 197.26 94.07 98.39




Overall Performance of CRAMES

® Result:

o both LZO and PBPM impose only small power
consumption overheads on the applications

o performance overheads of both compression
algorithms insignificant when system memory not
reduced dramatically

o performance difference between LZO and PBPM

becomes obvious when system under tight memory

constraints




Overall Performance of CRAMES

® Result (compared to the base case):
o PBPM:
m average performance penalty of 0.2%

m worst-case performance penalty of 9.2%
o LZO:
m average performance penalty of 9.5%

m worst-case performance penalty of 29%







Conclusion

High-performance OS-controlled memory compression can
assist embedded system designers to optimize hardware
design

PBPM (efficient compression algorithm for use in OS
controlled memory compression)

O compression ratios competitive with existing algorithms
o significantly better performance when system memory
under tight constraints




Conclusion

e Adaptive compressed memory management scheme
o prevent online memory compression deadlock
o further increase the amount of usable memory

® Experimental results:

o using these two techniques allows applications to execute
with only slight penalties
o even when available RAM reduced to 40% of original size
® No changes to applications or hardware required




