
Low-Cost
Software-Defined

Radio
Alex Willis & Anya Svintsitski

Background

● We interned at a place that makes satellites with Software-Defined Radios (SDRs)
○ Alex did SDR hardware, Anya did avionics

● SDRs have revolutionized many fields of wireless communications
● Typically very high budget, complexity and performance
● Some existing cheap products exist but are pretty niche

○ Nothing <$300 that works for networks

What is an SDR?

● RF communication system with software performing signal-processing tasks
● First made in 1987 by the air force, made one module to replace its several radio

architecture which performed integrated communications, navigation, and
identification

● In 1991, the military made SpeakEasy 1, which allowed 2MHz to 2GHz communication

[4]

Benefits of SDRs

● Adaptability for changing standards
● Can communicate over multiple channels simultaneously
● Software development has lower associated costs
● Donʼt have to design different sets of hardware for the same product line with varying

features like frequency bands or modulation schemes

Existing SDRs: High End

● Capable, complex, and expensive
● Based around high-performance FPGAs and data

converters
● USRP (Universal Software Radio Peripheral)

○ Common R&D Tool
○ Expensive ($2,900 - $20,000+)
○ DC - 6 GHz range
○ 25 MHz - 400 MHz usable bandwidth

● Many other devices restricted to defense and
telecommunications companies

[1]

Existing SDRs: Low End

● HackRF One
○ Mid range price ($340)

■ Too expensive for mass deployment
○ Tx and Rx
○ 10 MHz usable bandwidth
○ 1 MHz to 6 GHz carrier

● RTL-SDR
○ Entry level price ($30)
○ 1.6 MHz usable bandwidth
○ Rx only
○ Exploits TV tuner chip
○ Receive over the air AM/FM radio and TV

[2] [3]

Market Void

● Existing SDRs are too expensive to be implemented on large scales
● They require too much power to be used in low-power applications
● Offer much more performance than is necessary to support many applications

○ Many wireless sensors don't need to transmit much data very often
● Some are limited in capability

○ Rx only
○ Limited frequency bands

■ See RTL-SDR

● Non-SDR, low cost, low performance radios are commonplace
○ Do not provide same flexibility as SDR
○ Locked in to specific protocol, modulation scheme, etc

Project Design Objectives

● Create a barebones SDR using smallest number of specialty components
○ Simplified RF Front End (RFFE)

● Keep cost low
○ Fill aforementioned market void

● Bidirectional communication at 1 kbps
○ Modest performance target

■ Suitable for applications such as sensor networks
■ Again, fit market niche

● Target 915 MHz ISM band
● Use commodity microcontroller's onboard DAC and ADC

○ Simulate components already deployed in embedded
applications

○ STM32 32-bit Arm Cortex-M4
○ No need for high performance FPGA

Design Challenges

● Microcontrollers have limited RAM
○ Dictates the length of signal buffers
○ Varies between chips

■ Can alleviate with external memory
● Data converters have limited sample rates

○ Determines usable bandwidth
○ Cannot do Direct Digital Synthesis (DDS)

● SDRs require significant computational resources
○ Target limited bitrate

● Government frequency allocations
○ Extremely limited unlicensed bands
○ 902 MHz - 928 MHz ISM band selected

■ Still has power restrictions

[5]

Data Converter Characterization

● How much useful bandwidth can we get out of the ADC/DAC?
● Limited by samples/second and Nyquist Theorem
● Software-triggered conversion is too slow

○ 900 kHz max
○ Occupies main processor for duration of transmission
○ Subject to interruption

● Using Direct Memory Access (DMA)
○ Leaves main processor free to encode/decode data

■ Or perform other tasks
○ Not subject to same interrupts
○ Can precisely set sample rate using timer
○ 5 MSPS max ADC, 6 MSPS max DAC

■ Using 4.5 MSPS for both
● Yields 2.25 MHz usable bandwidth

Hardware Overview

Hardware Trade-off: Level of Integration
● RF components can be highly integrated (one ASIC)

○ Pros: Lower power, smaller area, less board-level complexity
○ Cons: Little flexibility

Hardware Trade-off: Level of Integration
● Very loosely integrated (discrete components)

○ Pros: Maximum flexibility
○ Cons: Higher power, more board area, higher board-level complexity

Hardware Trade-off: Level of Integration
● Or somewhere in between (Components grouped into multiple devices)

○ Pros: Moderate flexibility, power consumption, complexity, board area
○ Cons: Moderate flexibility, power consumption, complexity, board area

● The approach we pursued

Schematic Block Diagram

Data Converters
● STM32F334 - Arm Cortex-M4 32 bit dev board

○ Onboard 5 MSPS 8-bit ADC
○ Onboard 8-bit DAC
○ Max core clock 72 MHz
○ Supports DMA

Filtering
● 5th order LC Chebyshev low pass filter
● Cutoff frequency at 2 MHz

○ Obey Nyquist limit of data converters

Frequency Conversion
● MAMXSS0012 Passive Mixer

○ 200 MHz - 1 GHz RF and LO
○ DC(!) - 200 MHz IF

● MAX2623 Voltage Controlled Oscillator
○ Tuning range 885 MHz to 950 MHz which covers entire 900 MHz ISM band

Frequency Conversion

Front End
● Skyworks SKY66423-11 Front End Module

○ Includes TX/RX Switching
○ Power Amplifier with 29 dB gain
○ Low Noise Amplifier with 18 dB gain

● Taoglas 915 MHz Bandpass filters
○ +/- 5 MHz 3 dB Bandwidth

Front End

Hardware Layout

Digital Modulation Basics

● Encode a sequence of bits on a carrier wave
● Number of states can vary between 2 and 4096+

○ Higher numbers require very high performance equipment
● Amplitude (ASK), Phase (PSK), and Frequency (FSK) keying possible

○ As well as combinations such as QAM (Quadrature Amplitude Modulation)

[6]

Basic ASK

● Amplitude Shift Keying (ASK) is the simplest form of digital modulation
○ Digital counterpart to AM

● States represented by the amplitude of the carrier wave at a given time
● Chosen as a starting point due to its simplicity

○ Proof of concept

AFSK Implementation - TX (DAC)

● Generate carrier signal on system start
○ Re-use computation
○ Cost of RAM usage

● For each transmission:
○ Read in desired 8-bit message
○ Mask carrier signal using target data to

create transmittable waveform
○ Initiate DMA transfer

■ Outputs buffer to DAC at 4.5 MSPS

AFSK Implementation - RX (ADC)

● For each transmission:
○ Initiate ADC conversion
○ Fill buffer with samples using DMA

■ 4.5 MSPS
○ Find moving windowed amplitude

■ Effectively the signal envelope
○ Sample decoded envelope to get

encoded data
○ Return received 8b data

Performance

● Transmit Side
○ Modulating 8 bits of data takes 169 us
○ Theoretical max of 47.34 kbps

● Receive Side
○ Demodulating 8 bits of data takes 705 us
○ Theoretical limit of 11.35 kbps

● Currently limited by receive signal processing and demodulation
● 11.35 kbps exceeds baseline design target of 1 kbps
● Room for improvement with more sophisticated modulation and demodulation

○ Increase density of symbols in time
○ Increase number of symbol states

■ 4+ ASK
■ PSK/FSK

Power Consumption

● Transmit (Microcontroller) - 105 mW
● Receive (Microcontroller) - 89 mW
● RF Components

○ Not yet tested, these are estimates
○ Front End

■ 924 mW Tx
■ 17 mW Rx

○ VCO - 26 mW

● Total Transmit - 1055 mW = 93 uW/bit*
● Total Receive - 132 mW = 12 uW/bit*

● All active components have sleep states drawing < 1 mW

* Assuming best-case 11.35 kbps data rate

Cost Breakdown

● Microcontroller and PCB - $0
○ Presumed to already exist in target application

■ Assuming MCU has capable ADC and DAC
● Front End RFIC - $2.94
● Mixer (x2) - $5.46
● VCO - $6.84
● Bandpass Filters (x2) - $3.08
● Passives - ~ $1

● Total of $19.32
● All costs given in single quantity, will significantly reduce at volume
● Can likely optimize components further for cost

○ Remove bidirectional communication capability

Ongoing and Future Work

● Ongoing this semester:
○ Connect RF hardware to microcontroller and test
○ Range testing
○ Validate power consumption estimates
○ Perform additional testing

■ Throughput
■ Error rate

● Future development efforts
○ Explore additional modulation schemes

■ Definite room for performance improvement
○ Integrate microcontroller and RF hardware into single board
○ Add support for standard SDR software toolchains

■ GNU Radio

Conclusion

● SDRs offer a lot of flexibility
● Not many consumer products exist, those that do are not affordable and often have

niche targeted use cases
● Have tested ADC/DAC, need to test with RF hardware integration

Thank you!
Any questions?

References

[1] USRP:
https://www.ettus.com/all-products/un200-kit/

[2] HackRF One:
https://greatscottgadgets.com/hackrf/one/

[3] RTL SDR:
https://www.rtl-sdr.com/about-rtl-sdr/

[4] SDR Architecture:
http://www.analogictips.com/wp-content/uploads/2017/12/WHTH_FAQ-Receiver-Architectures_Pt2_Fig2.jpg

[5] Frequency Allocation:
https://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf

[6] QAM graphic
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation

https://www.ettus.com/all-products/un200-kit/
https://greatscottgadgets.com/hackrf/one/
https://www.rtl-sdr.com/about-rtl-sdr/
http://www.analogictips.com/wp-content/uploads/2017/12/WHTH_FAQ-Receiver-Architectures_Pt2_Fig2.jpg
https://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation

