30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation ^{Widrow et. al.}

Carissa Bush, Vidya Srinivas, Po-Chun Huang, Ming Hung Chen

Introduction

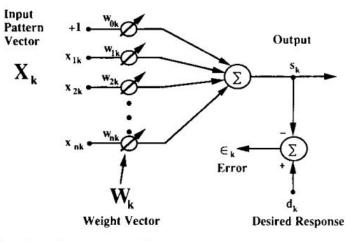
- Machine learning concepts have been around for a while
- Many ideas were discovered, and re-discovered independently again
- Many ideas were biologically-inspired
- Everything started with simple concepts

The Adaptive Linear Combiner

- Outputs a weighted sum of inputs
- Each input has an associated weight
- Weights can be discrete or continuous
- Weights can be adapted

Inputs:
$$\mathbf{X}_{\mathbf{k}} = \begin{bmatrix} x_0 & x_{1k} & x_{2k} & \dots & x_{nk} \end{bmatrix}^{\mathsf{T}}$$

Weights: $\mathbf{W}_{\mathbf{k}} = \begin{bmatrix} w_0 & w_{1k} & w_{2k} & \dots & w_{nk} \end{bmatrix}^{\mathsf{T}}$
Output: $s_k = \mathbf{X}_{\mathbf{k}}^{\mathsf{T}} \mathbf{W}_{\mathbf{k}} = w_0 x_0 + w_{1k} x_{1k} + w_{2k} x_{2k} \dots + w_{nk} x_{nk}$
Desired Response: d_k , Error: ϵ_k



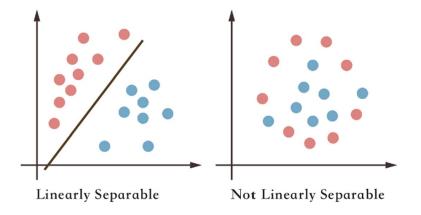
Binary Classification and Linear Separability

Binary Classification

• Target task is to classify input patterns into two groups: positive and negative

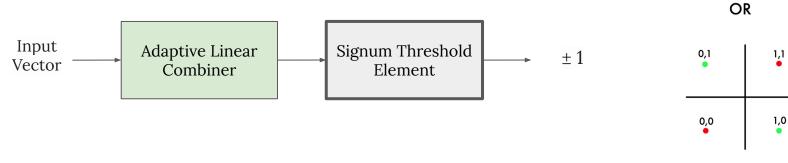
Linear Separability

• A set of input patterns is linearly separable if there exists a line that can separate points with positive labels from points with negative labels



An Adaptive Linear Classifier: Adaline

- Performs binary classification task
- Is able to realize linear separating boundaries
- These boundaries perfectly classify linearly separable datasets



0,1

0,0

1,1

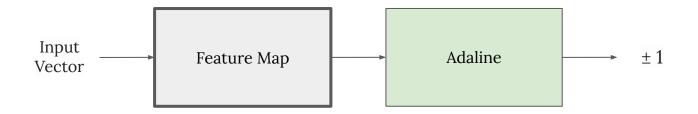
.

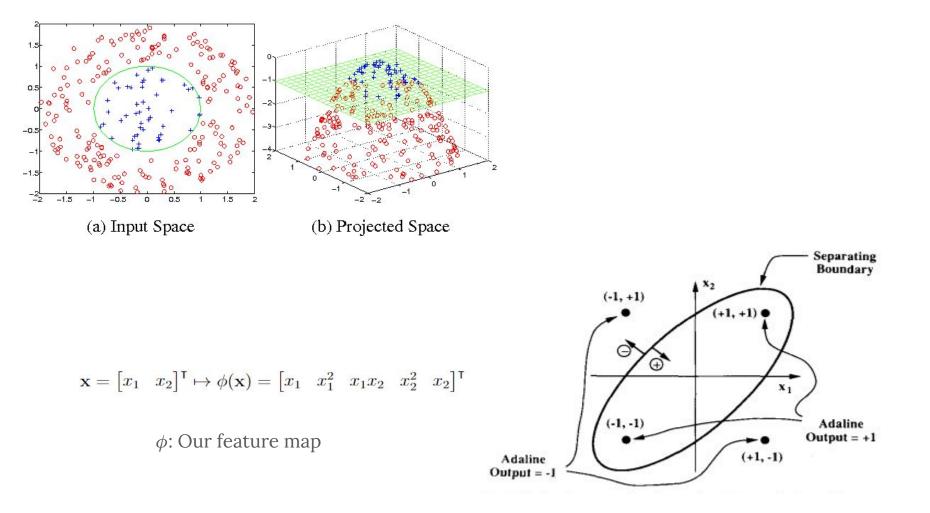
1,0

Realizing Nonlinear Separating Boundaries

Nonlinear Classifiers: Feature Maps

• If the input patterns are not separable in the original input space, map them to a higher-dimensional space where they are linearly separable





Nonlinear Classifiers: Feature Maps

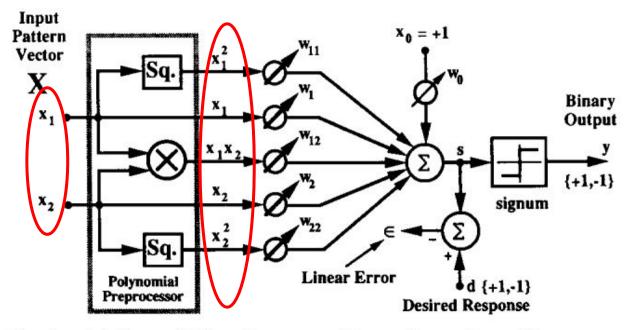
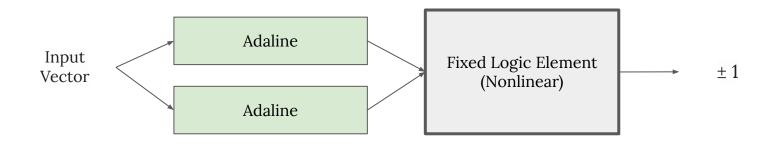
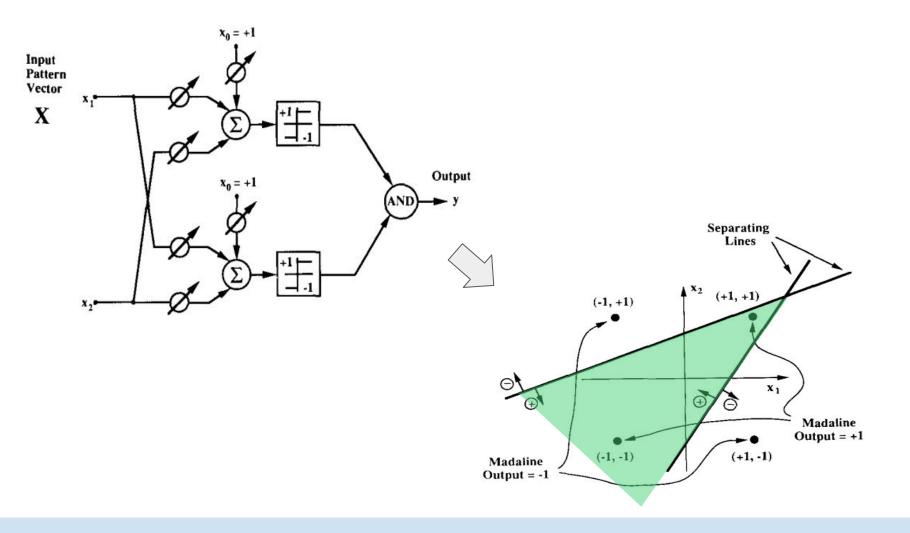


Fig. 6. Adaline with inputs mapped through nonlinearities.

Nonlinear Classifiers: Madaline I

• If the input patterns are not separable in the original input space, use a nonlinear combination of linear separating boundaries to realize a nonlinear separating boundary





Nonlinear Classifiers: Feedforward Networks

• Combines multiple Adalines in layers and feeds outputs of one layer to inputs of the next layer



Adaptation - the Minimal Disturbance Principle

Error-correction (EC) rules

 Alter the weights of a network to correct error in the output response to <u>the present input</u> <u>pattern</u>

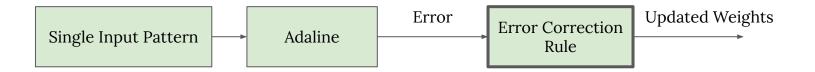
Steepest descent (SD) rules

- Alter the weights of a network by gradient descent
- Reduce error averaged over <u>all</u> <u>input patterns</u>

Error Correction Rules: Single Threshold Element

EC Single Threshold Element

- Every new input pattern starts a new adaptation cycle
- Goal is to update weights to reduce error
- Linear rules will make corrections directly proportional to the error
- Nonlinear rules will make corrections that are not directly proportional to the error

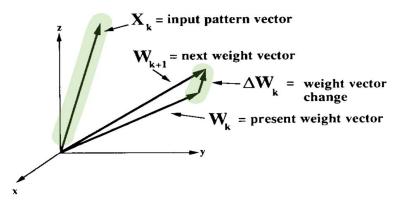


EC Single Threshold Element: α-LMS

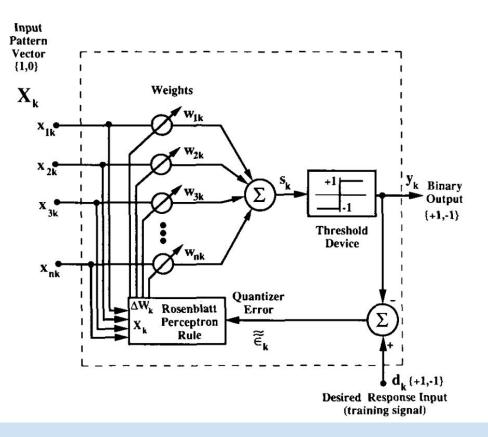
- Weight update is independent of input pattern magnitude
- Choice of α controls stability and speed of convergence

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k + \alpha \frac{\epsilon_k \boldsymbol{X}_k}{|\boldsymbol{X}_k|^2}.$$

 $\begin{array}{l} \alpha : \mbox{ Error correction constant} \\ {\bf X_k} : \mbox{ Inputs} \\ {\bf W_k} : \mbox{ Weights} \\ \epsilon_k : \mbox{ Error} \end{array}$



EC Single Threshold Element: Perceptron Rule



 $\tilde{\tilde{\epsilon}}$: quantizer error d_k : desired response y_k : output of quantizer

EC Single Threshold Element: Perceptron Rule

- Adds or subtracts input patterns to weights to correct for error
- Guaranteed to converge for any linearly separable input patterns
- No guarantees of convergence for input patterns that aren't linearly separable

$$\mathbf{W_{k}} = \mathbf{W_{k+1}} = \begin{cases} \mathbf{W_{k}} + \mathbf{x_{i}} & \tilde{\tilde{\epsilon}} > 0 \\ \mathbf{W_{k}} - \mathbf{x_{i}} & \tilde{\tilde{\epsilon}} < 0 \\ \mathbf{W_{k}} & \tilde{\tilde{\epsilon}} = 0 \end{cases}$$

$$\bar{\tilde{\epsilon}}_k \triangleq d_k - y_k.$$

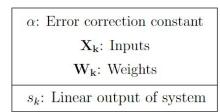
 $\tilde{\tilde{\epsilon}}$: quantizer error d_k : desired response y_k : output of quantizer \mathbf{x}_i : *i*th input pattern

EC Single Threshold Element: May's Rules

- All desired responses are +1 or -1
- Defines a "dead zone" or margin around 0, denoted by \pm_{γ}

Increment Adaptation Rule

- Input pattern falls outside margin: weight vector is <u>adapted by Perceptron rule</u>
- Input pattern falls within margin: weight vector is adapted by normalized variant of fixed increment Perceptron rule



 $\tilde{\tilde{\epsilon}}$: quantizer error d_k : desired response

$$\boldsymbol{W}_{k+1} = \begin{cases} \boldsymbol{W}_k + \alpha \tilde{\tilde{\epsilon}}_k \frac{X_k}{2|X_k|^2} & \text{if } |s_k| \ge \gamma \\ \\ \boldsymbol{W}_k + \alpha d_k \frac{X_k}{|X_k|^2} & \text{if } |s_k| < \gamma \end{cases}$$

EC Single Threshold Element: May's Rules

Modified Relaxation Adaptation Rule

- Input pattern falls outside margin and correctly classified: weight vector is <u>not</u> <u>modified</u>
- Input pattern falls within margin or is misclassified: weight vector is adapted by normalized variant of fixed increment Perceptron rule
- If γ (dead-zone) is set to ∞ , this turns into α -LMS

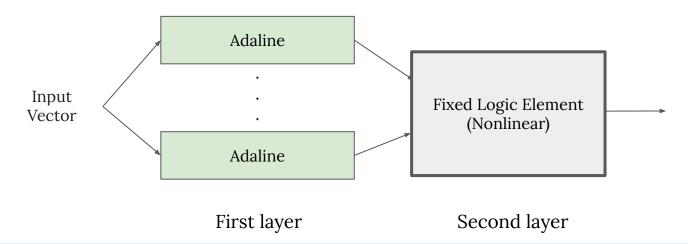
$$W_{k+1} = \begin{cases} W_k & \text{if } \tilde{\tilde{\epsilon}}_k = 0 \text{ and } |s_k| \ge \gamma \\ W_k + \alpha \epsilon_k \frac{X_k}{|X_k|^2} & \text{otherwise} \end{cases}$$

α :	Error correction constant		
	$\mathbf{X}_{\mathbf{k}}$: Inputs		
	$\mathbf{W}_{\mathbf{k}}$: Weights		
	$\tilde{\tilde{\epsilon}}$: quantizer error		
s_k :	Linear output of system		

Error Correction Rules - Multi-Element Networks

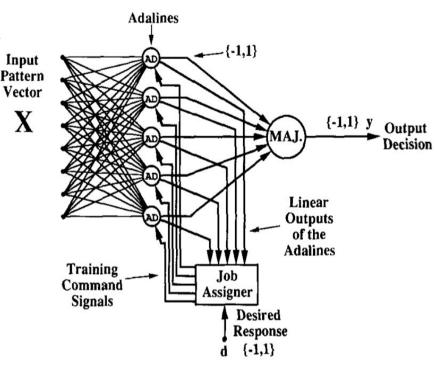
Madaline Rule I (MRI)

- Allows the adaptation of a first-layer element because the logic element is fixed
- The second layer consists of a single fixed-threshold-logic element which may be OR gate, AND gate, majority-vote-taker, etc.



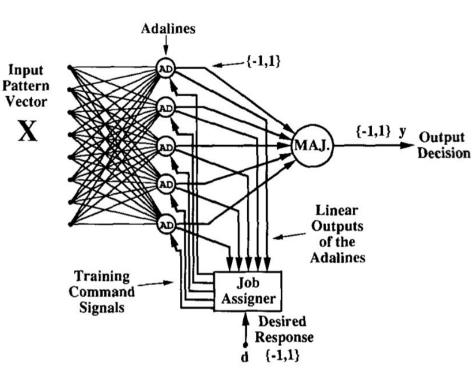
Madaline Rule I: Adaptation

- The weights of the Adalines are initially set to small random values Pattern
- Weight vector can be adapted by any of **X** the single error-correction rules
 - Reverse the Adaline's output
 - \circ α -LMS
 - Perceptron
- **Main idea:** Assign responsibility to the Adaline or Adalines that can most easily assume it



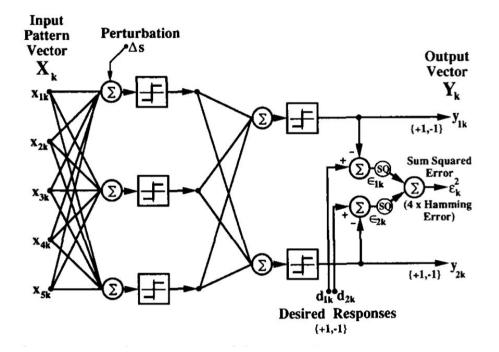
Madaline Rule I

- Job assigner assigns responsibility
- Load sharing is important
- Pattern presentation sequence should be random
- The adaptation process could hang up in local optima
- Obeys the minimal disturbance rule



Madaline Rule II (MRII)

- Extended from MRI
- Used for multilayer binary networks
- Weights are initially set to small random values
- Training patterns are presented in a random sequence
- Could hang up in local optima

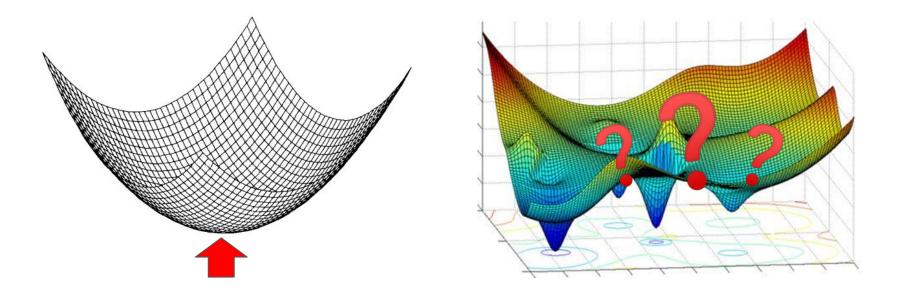


Madaline Rule II: Adaptation

- The goal is to reduce Hamming error
- If the network produces an error, adapt first layer
 - Trial adaptation: inverting its binary output
 - \circ Done without adaptation: add a perturbation Δs
 - $\circ~$ If output error is reduced, remove perturbation Δs and adapt selected Adalines by $\alpha\text{-LMS}$
 - If the error is not reduces, no weight adaptation
- Exhaust all Adalines in first layer
- Repeat for all layers

Steepest Descent Rules: Single Threshold Element

Steepest Descent Rules - Motivation



Steepest Descent Rules - The µ-LMS algorithm

- Crude gradient used in place of the actual gradient
- Instantaneous gradient determined from a single input pattern

$$W_{k+1} = W_k + \mu(-\hat{\nabla}_k) = W_k - \mu \frac{\partial \epsilon_k^2}{\partial W_k}.$$

- μ is the learning constant that determines stability and convergence rate
- For the mean-squared error, this equation is:

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k - 2\mu\epsilon_k \frac{\partial\epsilon_k}{\partial\boldsymbol{W}_k}$$

Steepest Descent Rules - α -LMS and μ -LMS Comparison

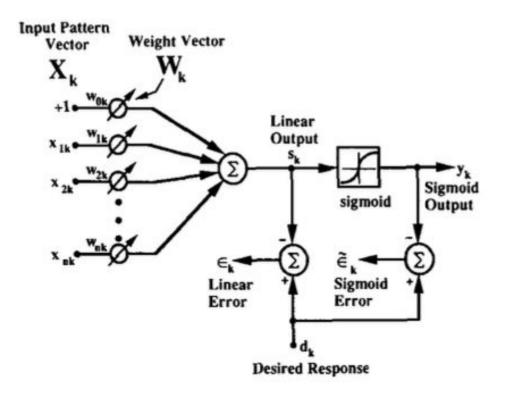
$$W_{k+1} = W_k + \alpha \frac{\epsilon_k X_k}{|X_k|^2}.$$

$$W_{k+1} = W_k + 2\mu \epsilon_k X_k.$$

$$\mu\text{-LMS}$$

LMS instantaneous gradient	LMS instantaneous gradient
self-normalizing	not self-normalizing
more difficult to analyze	easier to analyze
faster convergence	slower convergence
may converge to biased point	always converges in mean to minimum

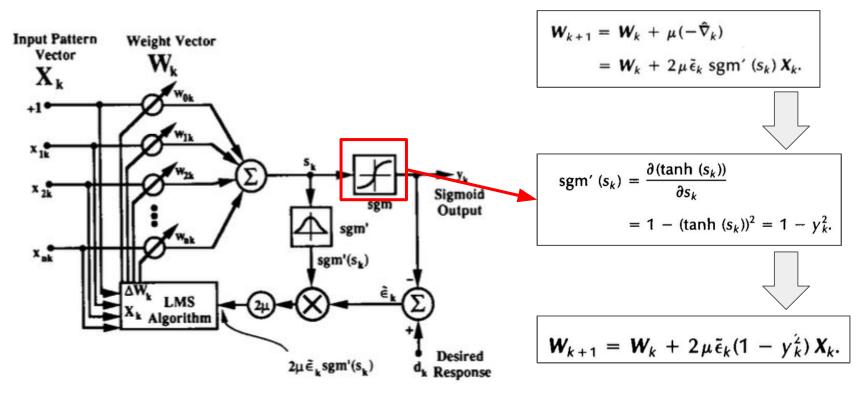
Steepest Descent Rules - Adaline with Sigmoid



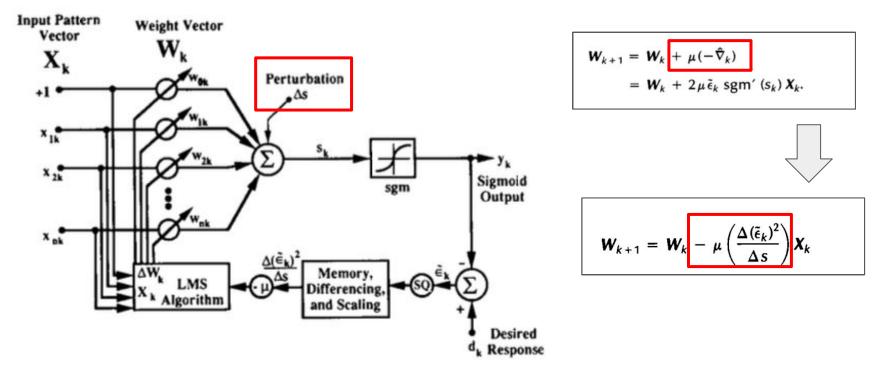
$$y_k = \tanh(s_k) = \left(\frac{1 - e^{-2s_k}}{1 + e^{-2s_k}}\right).$$

$$\bar{\epsilon}_k \triangleq d_k - \gamma_k = d_k - \operatorname{sgm}(s_k).$$

Steepest Descent Rules - Backpropagation



Steepest Descent Rules - MRIII Algorithm



Steepest Descent Rules - Nonlinear Elements

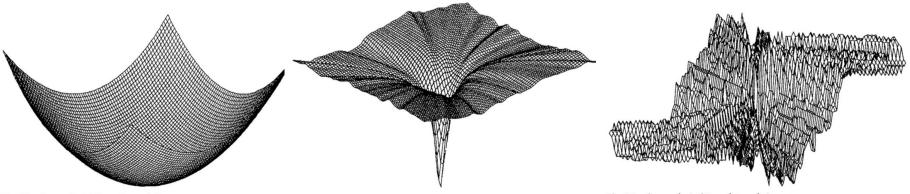


Fig. 22. Example MSE surface of linear error.

Fig. 23. Example MSE surface of sigmoid error.

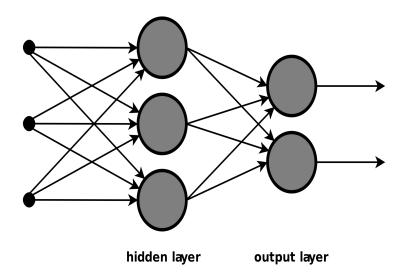
Fig. 24. Example MSE surface of signum error.

linear error $= \epsilon = d - s$ sigmoid error $= \overline{\epsilon} = d - \text{sgm}(s)$ signum error $= \overline{\overline{\epsilon}} = d - \text{sgn}(\text{sgm}(s))$ = d - sgn(s).

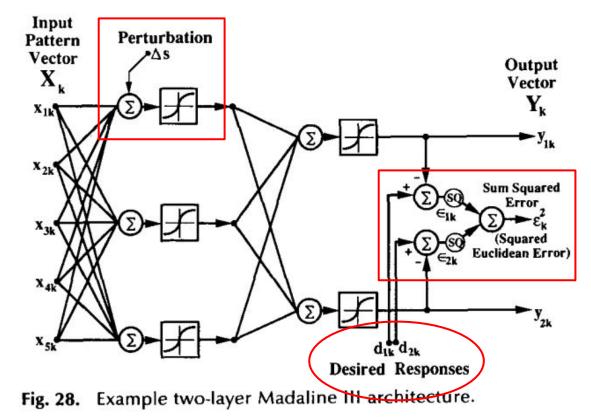
Steepest Descent Rules - Multi-Element Networks

Backpropagation

- Process:
 - $\circ \quad \text{Input} \to \text{Output}$
 - Find errors of the output
 - Sweep the effects of the errors backwards through the network to associate a "squared error derivative" (δ) with each Adaline
 - Use the δ to determine the gradient
 - Update the weights based on the gradient
 - Repeat for all layers



Multi-Element Networks: Madaline Rule III



MRIII vs Backpropagation

- MRIII essentially equivalent to Backpropagation
 - Same arguments for each of the Adaline elements
 - The Δ s, perturbation, is small
 - Adaption is applied to all elements in the network at once

MRII vs. MRIII

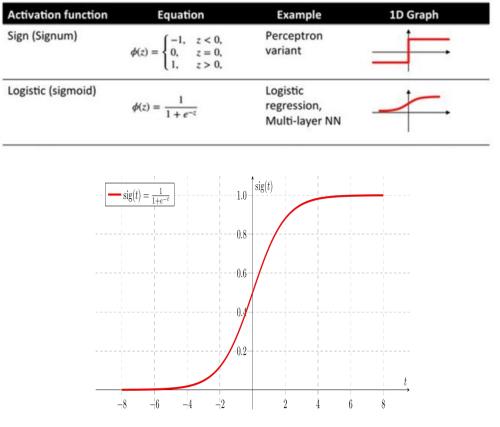
MRII:

- Discontinuous and nonlinear
- Not possible to use instantaneous gradients to update weights
- Problems with running into local minima

MRIII:

 All Adalines are adapted

 Those with analog sums closest to zero are usually adapted stronger



What is still being used today

- Different methods are best in different applications
- Used Less:
 - Linear Classification
 - Single elements
 - Single-layer
- Used More:
 - Multi-layer
 - Multi-element
 - Backpropagation

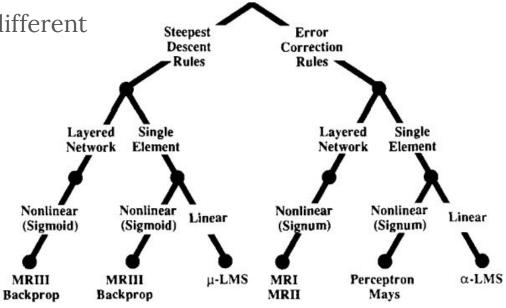


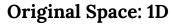
Fig. 33. Learning rules.

Questions?

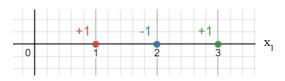
Appendix

Nonlinear Classifiers: Feature Maps

• Consider the following example



Mapped Space: 2D

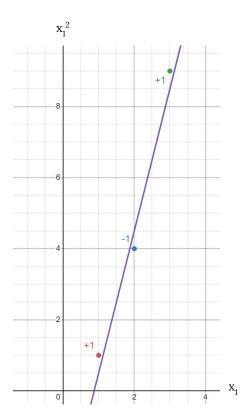


Points: 1, 2, 3

Mapped Points
•
$$1 \rightarrow (1, 1)$$

• $2 \rightarrow (2,4)$
• $3 \rightarrow (3,9)$

Linear boundary: $x_1^2 - 4x_1 + 3.5$



Feature Map:
$$\mathbf{x} = [x_1] \mapsto \phi(\mathbf{x}) = \mathbf{x} = [x_1, x_1^2]$$

Multi-Element Networks: Backpropagation

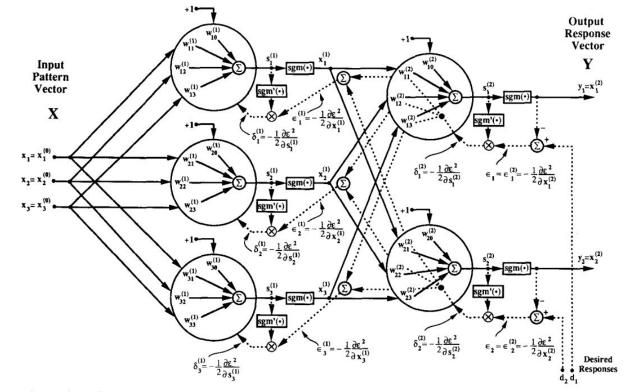
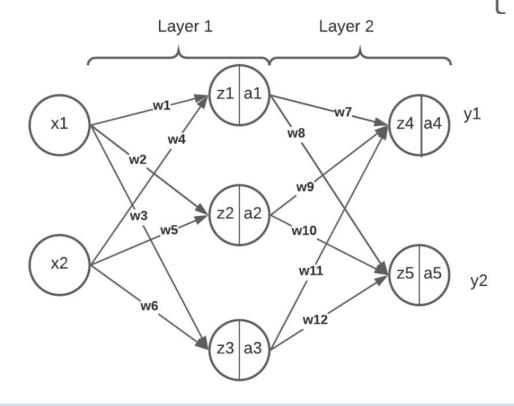


Fig. 25. Example two-layer backpropagation network architecture.

Backpropagation Example



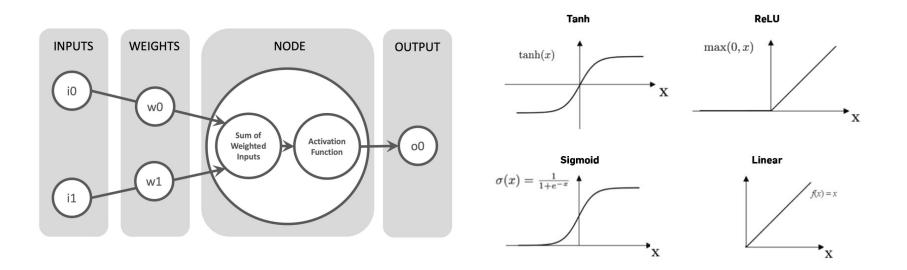
W ^[1] v1 w4 v2 w5 v3 w6	$\begin{bmatrix} z^{[1]} & a^{[1]} \\ z^{1} & a^{1} \\ z^{2} & a^{2} \\ z^{3} & a^{3} \end{bmatrix}$	w ^[2] w7 w9 w11 w8 w10 w12	$\left \begin{bmatrix} z^{[2]} \\ z_4 \\ z_5 \end{bmatrix} \right $	a ^[2] [a4 a5
,	$\frac{\partial z_4}{\partial w_7} =$	$\frac{\partial z_5}{\partial w_8} = a$	<i>u</i> ₁	
$dz^{[2]} = da^{[2]} \odot g'(z^{[2]})$				
$dw^{[2]} = dz^{[2]} \cdot (a^{[1]})^T$				
	$da^{[1]} = (u$	$(v^{[2]})^T \cdot dz$	[2]	
	$dz^{[1]} = dc$	$a^{[1]} \odot g'($	$z^{[1]})$	

w1

w2 w3

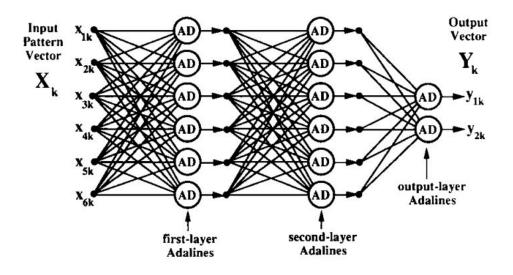
Nonlinear Classifiers: Feedforward Networks

• Different layers can have different activation functions

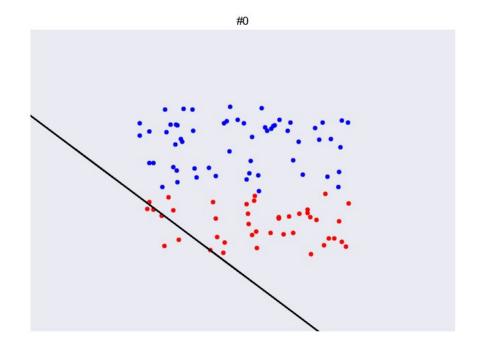


Nonlinear Classifiers: Adaptation

- Can compute error signal at output vector
- Adaptation of output layer possible
- What do we do about adaptation of hidden layers?



EC Single Threshold Element: Perceptron Rule



Steepest Descent Rules - The µ-LMS algorithm $= (d_{\mu} - \boldsymbol{X}_{\mu}^{T} \boldsymbol{W}_{\mu})^{2}$ $\boldsymbol{W}_{k+1} = \boldsymbol{W}_k + \boldsymbol{\mu}(-\nabla_k)$ $= d_k^2 - 2d_k X_k^T W_k + W_k^T X_k X_k^T W_k.$ $E[\epsilon_k^2]_{W=W_k} = E[d_k^2] - 2E[d_k \boldsymbol{X}_k^T] \boldsymbol{W}_k$ + $W_k^{\mathsf{T}} E[X_k X_k^{\mathsf{T}}] W_k$. $\nabla_{k} \triangleq \begin{cases} \frac{\partial E[\epsilon_{k}^{2}]}{\partial w_{0k}} \\ \vdots \\ \frac{\partial E[\epsilon_{k}^{2}]}{\partial w_{nk}} \end{cases} = -2P + 2RW_{k}.$ $W^* = R^{-1}P.$

Steepest Descent Rules - The µ-LMS algorithm

. 2

$$W_{k+1} = W_k + \mu(-\hat{\nabla}_k) = W_k - \mu \frac{\partial \epsilon_k^2}{\partial W_k}.$$

$$W_{k+1} = W_k - 2\mu\epsilon_k \frac{\partial\epsilon_k}{\partial W_k} \qquad X_k$$
$$= W_k - 2\mu\epsilon_k \frac{\partial(d_k - W_k^T X_k)}{\partial W_k}$$
$$\hat{\nabla}_k = \frac{\partial\epsilon_k^2}{\partial W_k} = \begin{cases} \frac{\partial\epsilon_k^2}{\partial w_{0k}} \\ \vdots \\ \vdots \\ \frac{\epsilon_k^2}{\partial W_{0k}} \end{cases} \end{cases} .$$

• The learning constant μ determines stability and convergence rate

$$0 < \mu < \frac{1}{\text{trace } [R]} , \text{ the algorithm}$$

converges mean to $\boldsymbol{W}^{\!*}$

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k + 2\mu\epsilon_k\boldsymbol{X}_k.$$