
     

EIE: Efficient Inference Engine on 
Compressed Deep Neural Network

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, 
William J. Dally

 

Presented By Jiachen He, Ben Simpson, Jielun Tan, Xinyang Xu, Boyang Zhang



Intro/Motivation
● Large DNNs (Deep Neural Networks) powerful but consume a lot of energy

○ Energy consumption dominated by DRAM access if there is no data reuse; 
○ no parameter reuse in fully connected (FC) layers in a convolutional neural network (CNN); 
○ uncompressed modern DNNs are so large they must be placed on DRAM
○ Conclusion: large, uncompressed DNNs are not suitable for energy constrained applications 

● SRAM access consumes much less energy than DRAM access
● Previous works focus on accelerating dense, uncompressed models, so if 

energy constrained can only use small models that fit on the on-chip SRAM
● Conclusion: Need to work on compressed models in order to be energy 

efficient



Intro/Motivation
● Processing compressed models with CPU/GPU:

○ Batching improves throughput at a cost of latency, not suitable for embedded applications
○ Irregular pattern of operation hinders effective accelaration

● This paper’s contributions: EIE, an efficient inference engine
○ Dedicated accelerator
○ Processes efficiently on compressed models
○ Exploits the dynamic sparsity of activations to save computation
○ A method to parallelize a sparsified layer across multiple PEs
○ Evaluation



DNN Compression
● Fully Connected (FC) layer heavily involves matrix multiplication

b = f(W*a + v) = f([W v] * [a 1]T)

● Pruning creates a sparse matrix



DNN Compression
Weight sharing

● Weights replaced with four bit index into a table of 16 possible weight values 
(16 bit single-precision floating point numbers)

● Reduce memory usage



DNN Compression

Original FC Layer

Compressed FC Layer

X: Set of columns Wij ≠ 0

Y: Indices aj ≠ 0

S: Weight table



DNN Compression
Compressed Sparse Column (CSC) Format

For each column of W:

v: non-zero weight indexes (0 if sequence of zeros longer than 4 bits of storage)

z: number of zeros before corresponding element in v

v and z are stored together as a pair. Elements in p point to start of each column

Example: Wj = 

v = [1, 2, 0, 3]; z = [2, 0, 15, 2]



DNN Parallelization
● Processing Element k (PEk)

holds all rows Wi where i % N = k

● Scan a to find next non-zero

value (az), broadcast to all PE’s

● Non-zero weights in vz multiplied

 by az value and accumulated in bz



Hardware Implementation

CCU

Central Control Unit

PE

Processing 
Element



Hardware Implementation

CCU

PEPE

PE PE

● CCU determines leading non-zero 
activations

● Broadcast non-zero activations to PEs



Load Balancing via Queuing

CCU

PEa5
5

a2
2

a7
7

a8
8

PEa7
7

a5
5

a8
8Activation Weight: a8

Activation Index: 8



Pointer Read

Use activation index to 
find pointers to weights

● Index: j
● Start Pointer: pj
● End Pointer: pj+1

1 2
2 0
0 15
3 2
5 1

pj

pj+

1

4-bits 4-bits

Number of non-zero weights: pj+1 - pj

Weight 
Code

Separating 
Zeros



Decode

1 2
2 0
0 15
3 2

4-bits 4-bits

Weight 
Code

Separating 
Zeros

0.09375 2
12.75 3

0.0 19
4.15625 22

16-bit fixed 
point

Decoded 
Weight, v

Accumulator 
Index, x



Arithmetic and 
Write

bx = bx + vaj
● Bypass if same accumulator is 

accessed consecutively to 
avoid pipelining hazard

● Register files hold 64 16-bit 
activation values per PE. 

○ 4K for all 64 PEs
● Additional 2 KB activation 

SRAM for holding longer 
vectors 

0.09375 2

Decoded 
Weight, v

Accumulator 
Index, x



Distributed 
Leading 
Non-Zero 
Detection
(LNZD)

● Each PE determines leading non-zero from source 
activations

● One LNZD per four PEs
● Pass LNZ up quad tree to root LNZD node
● CCU is root LNZD node

CCU

PEPE

PE PE



Implementation, Verification, and Evaluation

RTL Implemenation Verilog

Simulation/Verification A custom cycle-accurate C++ simulator

Synthesis Synopsys Design Compiler (DC)
under the TSMC 45nm GP standard VT library
with worst case PVT corner

Layout Synopsys IC Compiler (ICC)

SRAM Modeling Cacti

Power Estimation PrimeTime PX



Implementation, Verification, and Evaluation

Specs

Single PE Area 0.638mm2

Single PE Power 9.157mW

Critical Path Delay 1.15ns

Total SRAM Capacity 162KB per PE

Performance 102 GOP/s
when 64 PEs running 
at 800MHz



Benchmark and Comparison
● Benchmarks

7 DNN models from AlexNet, VGGNet, and NeuralTalk                       
(uncompressed and compressed)

● Comparison

CPU
Intel Core i7 5930k

GPU
NVIDIA GeForce GTX Titan X

mGPU
NVIDIA Tegra K1 



Comparison Results - Performance



Comparison Results - Energy



Design Space Exploration - Queue Depth



Design Space Exploration - SRAM Width



Design Space Exploration - Arithmetic Precision



Workload Partitioning
1. Each PE gets a column of W, still single broadcast

a. Suffers massive load imbalancing issues, need to reduce at the end

2. The method described, each PE gets a row
3. Combined solution of block distribution

a. Complex, still possible load balancing issues



Scalability
● Broadcast latency can be remedied via pipelining
● Larger matrix -> more PEs
● Sparsity larger than 16 zeroes can be alleviated by padding



Related Works
● This work clearly has its advantages over publications 2 years before it

○ DaDianNao and ShiDianNao, the first ones of the accelerators

● However, better performance and efficiency can be achieved by taking the 
outer product instead when it comes to SpMM or SpMV

○ No need to match, maximum reuse, theoretical minimum number of memory operations
○ For those that are interested, please check out S. Pal et al. “OuterSPACE: An Outer Product 

based Sparse Matrix Multiplication Accelerator”, HPCA 2018


