EECS 507 Project Presentation Electronic Nose in Food Storage Container

Group Member: Allanah Matthews

Agenda

- 1. Introduction
- 2. Related work
- 3. What is an electronic nose?
- 4. Project design
- 5. Results
- 6. Practicality
- 7. Challenges
- 8. Future Work

Background and motivation

- Food timing is important
- Peak time = most nutritious
- Decay = less nutrients
 - More microbes
 - Illness and death
- Food safety big sector

Related Work

MIT Velcro-like food sensor (mechanical system)

- Color-changing array of silk microneedles
- detects spoilage and bacterial contamination

Peres - Electronic nose

- Measures Volatile organic compounds
- Results in an App

Smart Expiry Food Tracking System

 Timer based on date of expiration What is an electronic nose (e-nose)?

Project Idea

- Food storage container with embedded electronic nose
 - Average person
 - Max Impact
 - Integrated
 - Reusable
 - Avoid touching food
 - Metal & chemicals

Why?

• Not re-creating an electronic nose

- After preparation monitoring
 - \circ ~ Is the food still good to consume?

System Diagram

System Diagram

NDIR CO2 Sensor

Accelerometer

Algorithm

5 stages

1) Initialization and Reset:

- a) Make sure sensors are functional
- b) Initial baseline reading

2) Data Acquisition:

a) Turn on sensors, collect data, turn off

3) Data Processing:

- a) Process data and Store result if drastically different
- b) Food is bad?i) Flag
- 4) Sleep stage:
 - a) Sensors off
 - b) Check accelerometer as an interrupt
 - c) LED for bad food

Addressing Embedded System Constraints

- Low power
 - Used sensors that don't need to heat up
 - Sensors aren't on all the time
 - methods to limit time LED is on
- Small
 - Prototype is not small or portable
- Cost
 - Prototype is not cheap
- Real-time constraints
 - Check as frequent as needed
- Limited memory
 - Few data points
- Market?
 - Hobbyists and medical researchers

Food 1 (Single Slice of Bread) - Results

Food 1 (Single Slice of Bread) - Analysis

- Expected Exponential curve
- Threshold
 - Hour 174 ~ 1k per hour
 - Hour 184 ~ 2k
- Visible mold growth at 169
- Repeated thrice
 - Accuracy = 80.7432 %
 - Threshold of 169 Hours

Food 2 (Half a Banana) - Results

Food 2 (Half a Banana) - Analysis

- The banana gives off CO2 at different rates
 - Respiration
- Gives off a lot of CO2
- Started growing mold at hour 105
- No distinct threshold

Major Change!

- Rate of change cannot be used in the same way
 - New Algorithm K-NN classifier
 - Thresholds
 - From day 4-5.5 classified as bad

• Embedded system wise

- Increase in memory
- Increase in power
- Increase in time

K-NN Algorithm

Unripe

Overripe

Ripe

Classify into 3 categories:

Process: Use trained classifier to classify new data point

K-NN Algorithm

- Accuracy: 89.11% with K= 3
- Avoidance of class 1

Practicality

- System was about ideal
 - Human Interaction
 - Gas Exchange
 - Food Lifespan time
 - Food Lifespan Fresh to Unsafe

Challenges

- Maxing sensor input
- Overabundance of data points
- I²C
 - Conflicting addresses
 - Pull up-resistance
- Vagueness in food niche

Future Work

- Combine multiple sensors
- Dynamic thresholds
 - Different scales
 - Different food
- Know food type
 - Manual entries
 - Sense food
 - Master meat or dairy
- Feedback
 - Phone notifications

Citations

Questions?