RRAM fabric for neuromorphic and in-memory computing applications

Mohammed Zidan and Wei Lu
University of Michigan
Electrical Engineering and Computer Science
The Race Towards Future Computing Solutions

• Conventional computing architectures face challenges including the heat wall, the memory wall and difficulties in continued device scaling.

• Developments in RRAM technology may provide an alternative path that enables:
 • Hybrid memory–logic integration.
 • Bioinspired computing.
 • Efficient in-memory computing.

Two-Terminal Memory Devices and Crossbar Arrays

Resistive memory (RRAM), *memory + resistor* (memristor)

Hysteretic resistive switches and crossbar structures

- Simple structure
 - Formed by two-terminal devices
 - Not limited by transistor scaling
- Ultra-high density
 - NAND-like layout, cell size $4F^2$
 - Terabit potential
- Large connectivity
- Memory, logic/neuromorphic applications
Physically reconfigurable materials and devices: Resistive Memory

ElectroChemical Metallization Cell (ECM, CBRAM)

- Creating “new” materials on the fly
- Active electrode material + inert dielectric
- “Filament” based on electrode material injection and redox at electrodes
- Switching layer facilitates ionic movement

Valency Change Cell (VCM)

- Modulating exiting material properties
- Filament based on oxygen exchange between two oxide layers
- Electrode plays minor role

Yuchao Yang and Wei Lu, Nanoscale, 5, 10076 (2013)
Visualization of Filament

- Ag/SiO₂/Pt structure, sputtered SiO₂ film
- The filament grows from the IE backwards toward the AE
- Branched structures were observed with wider branches pointing to the AE

Driving Ions with Electric Field

\[\Gamma = \frac{1}{\tau} = \nu e^{-E_a'(V)/k_B T} \]

\[E_a'(V) = E_a - V/2n \]

Jo, Kim, Lu *Nano Lett.* 9, 496-500 (2009).

- Filament formation is a thermally activated process.
- Activation energy reduced by applied bias.
- Speed is a ca. exponential function of voltage.

\[\tau(V) = \tau_0 e^{-V/V_0} \]

\[v = 2d\lambda e^{-E_a/k_B T} \left(e^{qE_d/2k_B T} - e^{-qE_d/2k_B T} \right) \]
Resistance Switching Characteristics

- $1e6$ on/off
- $1e8$ W/E endurance
- Switching speed $\sim 10\text{ns}$

Integrated RRAM Crossbar/CMOS System

- Low-temperature process, RRAM array fabricated on top of CMOS
- CMOS provides address mux/demux
- RRAM array: 100nm pitch, 50nm linewidth with density of 10Gbits/cm²
- CMOS units – larger but fewer units needed. 2n CMOS cells control n² memory cells

Integrated Crossbar Array/CMOS System

- Crossbar array operation, array written followed by read
- Programming and reading through integrated CMOS address decoders
- Each bit written with a single pulse

Results from a 40x40 crossbar array integrated on CMOS

From Lab to Fab - Crossbar RRAM Technology

- **CMOS** Compatible
- **3D** Stackable, Scalable Architecture – Low thermal budget process
- **Architectures** proven include multiple Via schemes and Subtractive etching
- **Crossbar Inc** founded in 2010, $100M VC funding to date
- **Commercial Products** offered in 2016 based on 40nm CMOS
Hybrid Integration of Memory with Logic
1T1R and 1TnR 3D stackable memory arrays

- Monolithic logic/memory integration
- Different memory components integrated on the same chip
- Flexibility of speed/density/cost
Different approaches for improving computing efficiency (depending on the application):

- Bring memory as close to logic as possible, still largely based on conventional architecture
- Neuromorphic computing in artificial neural networks
 - More bio-inspired, taking advantage of the internal ionic dynamics at different time scales
 - Other compute applications based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate
RRAM Based Neural Network Hardware

Synapse – reconfigurable two-terminal resistive switches

Co-located memory-compute

High parallelism

Neuromorphic Computing with RRAM Arrays

RRAM perform learning and inference functions

- RRAM weights form dictionary elements (features)
- Image input, Pixel intensity represented by widths of pulses
- Memristor array natively performs matrix operation
 \[\overrightarrow{I} = \overrightarrow{v} \cdot \overrightarrow{\Phi} \]
- Integrate and fire neurons
- Learning achieved by backpropagating spikes

DARPA UPSIDE program
Neural Network for Image Processing based on Sparse Coding

Input image → Neural network → Post processing

1. Network adapt during training following local plasticity rules
2. FF weights form neuron receptive fields (dictionary elements)
3. Output as neuron firing rates

Cost Function:
\[E(t) = \frac{1}{2} \| s(t) - \hat{s}(t) \|^2 + \lambda \sum_m C(a_m(t)) \]
Sparse Coding Implementation in RRAM Array

Forward Pass

Update neurons/activities

\[
y = p^T W
\]

\[
\frac{du}{dt} = \frac{1}{\tau} (-u + p^T \cdot W - a \cdot (W^T W - I))
\]

\[
\frac{du}{dt} = \frac{1}{\tau} (-u + (p - \hat{p})^T W + a)
\]

Backward pass

Update residual

\[
\hat{p} = a W^T
\]

Hardware Implementation

- Checkerboard pattern
- 32 x 32 array
- Direct storage and read out
- No read-verify or re-programming

Training

9 Training Images
128x128px
4x4 patches
Trained in random order

Image Reconstruction with RRAM Crossbar

Different approaches for improving computing efficiency (depending on the application):

- Bring memory as close to logic as possible, still largely based on conventional architecture
- Neuromorphic computing in artificial neural networks
- More bio-inspired, taking advantage of the internal ionic dynamics at different time scales
- Other compute applications based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate
Solving partial-differential equations (PDEs)

A second order Poisson equation as a toy example,

\[\nabla^2 u = -2 \cdot \sin(x) \cdot \cos(y) \]

The problem is solved using finite difference (FD), where matrix can be sliced into a set of few similar slices.

Solving an \(A \cdot x = b \) problem in matrix form

\[I_j = \sum V_i \cdot G_{i,j} \]
Hardware Prototyping

» Hardware Test bench

- The test board consists of: (i) RRAM crossbar, (ii) DACs to control the input signals, (iii) sense amplifiers and ADCs to sample the output current, (iv) MUXs to route the signals, and (v) FPGA to enables the software interface and control.

Solving a toy example

Measured Results for the toy Example

Results Reconstructed as a 3D Animation

• **Memory-Computing Unit (MPU)**
 • “General” purpose by design: the same hardware supports different tasks – low precision or high precision. Not just a neuromorphic accelerator
 • Dense local connection, sparse global connection
 • Run-time, dynamically reconfigurable. Function defined by software.

The Race Towards Future Computing Solutions

- Conventional computing architectures face challenges including the *heat wall*, the *memory wall* and difficulties in continued device scaling.

- Developments in RRAM technology may provide an alternative path that enables:
 - Hybrid memory–logic integration.
 - Bioinspired computing.
 - Efficient in-memory computing.

Summary

Different approaches for improving computing efficiency (depending on the application):

- Bring memory as close to logic as possible, still largely based on conventional architecture
- Neuromorphic computing in artificial neural networks
- More bio-inspired, taking advantage of the internal ionic dynamics at different time scales
- Other tasks based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate