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The Race Towards Future Computing Solutions

• Conventional computing architectures face 
challenges including the heat wall, the memory wall
and difficulties in continued device scaling. 

M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1:  22–29 (2018)

• Developments in RRAM technology may 
provide an alternative path that enables:
• Hybrid memory–logic integration.
• Bioinspired computing.
• Efficient in-memory computing. 

Lu Group
U. Michigan

Two-Terminal Memory Devices and Crossbar Arrays

Hysteretic resistive switches and crossbar structures

– Simple structure 

• Formed by two-terminal devices 

• Not limited by transistor scaling

– Ultra-high density 

• NAND-like layout, cell size 4F2

• Terabit potential

– Large connectivity

– Memory, logic/neuromorphic applications
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Resistive memory (RRAM), memory + resistor (memristor)
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Physically reconfigurable materials and 

devices: Resistive Memory

ElectroChemical Metallization Cell (ECM, CBRAM)

“0” “1”

Oxide layer 1

Oxide layer 2

• Creating “new” materials on 

the fly

• Active electrode material + 

inert dielectric

• “Filament” based on 

electrode material injection 

and redox at electrodes

• Switching layer facilitates 

ionic movement

• Modulating exiting 

material properties

• Filament based on oxygen 

exchange between two 

oxide layers

• Electrode plays minor role

Valency Change Cell (VCM)

Yuchao Yang and Wei Lu, Nanoscale, 5, 10076 (2013)
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•Ag/SiO2/Pt structure, sputtered SiO2 film 
•The filament grows from the IE backwards toward 
the AE
•Branched structures were observed with wider 
branches pointing to the AE

Visualization of Filament

Partially formed filaments
Completed filament
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Y. Yang, Gao, Chang, Gaba, Pan, and W. Lu, Nature Communications, 3, 732, 2012.
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Jo, Kim, Lu Nano Lett. 9, 496-500 (2009).

•Filament formation is a thermally activated process.

•Activation energy reduced by applied bias.

•Speed is a ca. exponential function of voltage.
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Resistance Switching Characteristics

Kim, Jo, W. Lu, Appl. Phys. Lett. 96, 053106 (2010)

Jo, Kim, W. Lu, Nano Lett., 8, 392 (2008) 

➢ 1e6 on/off
➢ 1e8 W/E endurance
➢ Switching speed ~10ns
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Integrated RRAM Crossbar/CMOS System

Kim, Gaba, Wheeler, Cruz-Albrecht, Srivinara, W. Lu Nano Lett., 12, 389–395 (2012).

CMOS

Crossbar

array

500nm

•Low-temperature process, RRAM 
array fabricated on top of CMOS
•CMOS provides address 
mux/demux
•RRAM array: 100nm pitch, 50nm 
linewidth with density of 
10Gbits/cm2

•CMOS units – larger but fewer 
units needed. 2n CMOS cells control 
n2 memory cells

8
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- Crossbar array operation, array written followed by read
- Programming and reading through integrated CMOS address decoders
- Each bit written with a single pulse

Results from a 40x40 crossbar array integrated on CMOS

Integrated Crossbar Array/CMOS System

Stored/retrieved array 1 Stored/retrieved array 2

Kim, Gaba, Wheeler, Cruz-Albrecht, Srivinara, W. Lu Nano Lett., 12, 389–395 (2012). Lu Group
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• CMOS Compatible 

• 3D Stackable, Scalable Architecture – Low thermal budget process

• Architectures proven include multiple Via schemes and Subtractive etching

• Crossbar Inc founded in 2010, $100M VC funding to date

• Commercial Products offered in 2016 based on 40nm CMOS

From Lab to Fab - Crossbar RRAM Technology
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Hybrid Integration of Memory with Logic
1T1R and 1TnR 3D stackable memory arrays

• Monolithic logic/memory integration

• Different memory components integrated on the same chip

• Flexibility of speed/density/cost
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Different approaches for improving computing efficiency

(depending on the application):

Improving Computing Efficiency using RRAM 

Arrays

• Bring memory as close to logic as possible, still largely based 

on conventional architecture

• Neuromorphic computing in artificial neural networks

• More bio-inspired, taking advantage of the internal ionic 

dynamics at different time scales

• Other compute applications based on vector-matrix 

multiplications

Towards a general in-memory computing fabric based on a common 

physical substrate
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Synapse – reconfigurable two-terminal resistive switches

RRAM Based Neural Network Hardware

pre-neuron

post-neuron

ions

S. H. Jo, T. Chang, I. Ebong, B. Bhavitavya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010).

Co-located 

memory-

compute

High 

parallelism
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Neuromorphic Computing with RRAM 

Arrays

RRAM perform learning and inference functions 

• RRAM weights form 

dictionary elements 

(features)

• Image input, Pixel 

intensity represented 

by widths of pulses 

• Memristor array 

natively performs 

matrix operation

• Integrate and fire 

neurons

• Learning achieved 

by backpropagating

spikes

DARPA UPSIDE program
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Neural Network for Image Processing 

based on Sparse Coding

Pixel 
inputs

Neuron 
spikes IM:

1. Network adapt during 
training following local 
plasticity rules

2. FF weights form neuron 
receptive fields (dictionary 
elements)

3. Output as neuron firing 
rates

Input 
image

Adaptive 
Synaptic 
weights

neurons

FF weights 

Cost Function:

Inhibitory connections 
16
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Sparse Coding Implementation in RRAM Array

Forward Pass Backward pass

Update neurons/activities Update residual

Neuron membrane potential

Sheridan et al., Nature Nanotechnology, 

12, 784–789 (2017)
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Hardware Implementation

32x32 

memristor 

array

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
 

• Checkerboard pattern

• 32 x 32 array

• Direct storage and read out

• No read-verify or re-programming

Sheridan et al., Nature Nanotechnology 12, 

784–789 (2017)
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Training

• 9 Training Images

• 128x128px

• 4x4 patches

• Trained in random order

18Sheridan et al., Nature Nanotechnology 12, 784–789 (2017)
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Image Reconstruction with RRAM Crossbar

Sheridan et al., Nature Nanotechnology 12, 784–789 (2017)
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Different approaches for improving computing efficiency

(depending on the application):

Improving Computing Efficiency using RRAM 

Arrays

• Bring memory as close to logic as possible, still largely based 

on conventional architecture

• Neuromorphic computing in artificial neural networks

• More bio-inspired, taking advantage of the internal ionic 

dynamics at different time scales

• Other compute applications based on vector-matrix 

multiplications

Towards a general in-memory computing fabric based on a common 

physical substrate
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Arithmetic Applications: Numerical Simulation

a cb

𝛻2𝑢 = −2 ∙ sin 𝑥 ∙ cos 𝑦

• A second order Poisson equation as a toy example, 

• The problem is solved using finite difference (FD), where 
matrix can be sliced into a set of few similar slices.

Solving partial-differential equations (PDEs)

Solving an A·x=b problem in matrix form
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Hardware Prototyping

» Hardware Test bench
• The test board consists of: (i) RRAM crossbar, (ii) DACs to control the input

signals, (iii) sense amplifiers and ADCs to sample the output current, (iv) MUXs to
route the signals, and (v) FPGA to enables the software interface and control.

M. A. Zidan, Y.J. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner, & W. D. Lu, Nature 

Electronics, 1, 411–420 (2018)
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Hardware Prototyping

Measured Results for the toy Example

» Solving a toy example 
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M. A. Zidan, Y.J. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner, & W. D. Lu, Nature 

Electronics, 1, 411–420 (2018)
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» Results Reconstructed as a 3D Animation

M. A. Zidan, Y.J. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner, & W. D. Lu, Nature 

Electronics, , 1, 411–420 (2018)
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• Memory-Computing Unit (MPU)

• “General” purpose by design: the same hardware supports different tasks –

low precision or high precision. Not just an neuromorphic accelerator

• Dense local connection, sparse global connection

• Run-time, dynamically reconfigurable. Function defined by software.

General In-Memory Computing Fabric

M. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu, IEEE Trans 
Multi-Scale Comp Sys, DOI 10.1109/TMSCS.2017.2721160 (2017)

M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1:  22–29 (2018)
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The Race Towards Future Computing Solutions

• Conventional computing architectures face 
challenges including the heat wall, the memory wall
and difficulties in continued device scaling. 

M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1:  22–29 (2018)

• Developments in RRAM technology may 
provide an alternative path that enables:
• Hybrid memory–logic integration.
• Bioinspired computing.
• Efficient in-memory computing. 

M. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu, IEEE Trans 
Multi-Scale Comp Sys, DOI 10.1109/TMSCS.2017.2721160 (2017)
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Different approaches for improving computing efficiency

(depending on the application):

Summary

• Bring memory as close to logic as possible, still largely based 

on conventional architecture

• Neuromorphic computing in artificial neural networks

• More bio-inspired, taking advantage of the internal ionic 

dynamics at different time scales

• Other tasks based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common 

physical substrate


