The Race Towards Future Computing Solutions

RRAM fabric for neuromorphic and in-memory computing applications

Mohammed Zidan and Wei Lu

University of Michigan Electrical Engineering and Computer Science

- Conventional computing architectures face challenges including the heat wall, the memory wall and difficulties in continued device scaling.
- Developments in RRAM technology may provide an alternative path that enables:
 - Hybrid memory–logic integration. •
 - Bioinspired computing.
 - . Efficient in-memory computing.

Moore's Lav

Memory Wall Heat Wall

M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1: 22-29 (2018)

Lu Group U. Michigan

Ľ

Two-Terminal Memory Devices and Crossbar Arrays

Physically reconfigurable materials and devices: Resistive Memory

"0"

- NAND-like layout, cell size 4F²
- · Terabit potential
- Large connectivity
- Memory, logic/neuromorphic applications

 Electrode plays minor role
Lu Group Yuchao Yang and Wei Lu, Nanoscale, 5, 10076 (2013) U. Michigan

``1^

oxide layers

Visualization of Filament

Driving lons with Electric Field

•Ag/SiO₂/Pt structure, sputtered SiO₂ film •The filament grows from the IE backwards toward the AE •Branched structures were observed with wider branches pointing to the AE

Partially formed filaments

Lu Group Y. Yang, Gao, Chang, Gaba, Pan, and W. Lu, Nature Communications, 3, 732, 2012. 5 ^{Lu} المستقدمة ال

Jo, Kim, Lu Nano Lett. 9, 496-500 (2009).

 Filament formation is a thermally activated process. Activation energy reduced by applied bias. •Speed is a ca. exponential function of voltage

Resistance Switching Characteristics

Jo, Kim, W. Lu, Nano Lett., 8, 392 (2008)

Integrated RRAM Crossbar/CMOS System

Kim, Jo, W. Lu, *Appl. Phys. Lett.* 96, 053106 (2010) Lu Group Kim, Gaba, Wheeler, Cruz-Albrecht, Srivinara, W. Lu *Nano Lett.*, 12, 389–395 (2012).

U. Michigan

Integrated Crossbar Array/CMOS System

- Crossbar array operation, array written followed by read
- Programming and reading through integrated CMOS address decoders
- Each bit written with a single pulse

Kim, Gaba, Wheeler, Cruz-Albrecht, Srivinara, W. Lu Nano Lett., 12, 389–395 (2012).

From Lab to Fab - Crossbar RRAM Technology

- CMOS Compatible
- 3D Stackable, Scalable Architecture Low thermal budget process
- · Architectures proven include multiple Via schemes and Subtractive etching
- Crossbar Inc founded in 2010, \$100M VC funding to date
- Commercial Products offered in 2016 based on 40nm CMOS

Cressbar

Lu Group U. Michigan

Hybrid Integration of Memory with Logic 1T1R and 1TnR 3D stackable memory arrays

U. Michigan

Embedded memory with	SCM with 1T1R or 1TnR	Mass storage	FPGC configurable logic,
1T1R		with 1TnR	CPU with 1T1R
Code/Config/ NVRAM Memory	SCM/Mass Sto		M2 M2 Periphery

- Monolithic logic/memory integration
- Different memory components integrated on the same chip
- Flexibility of speed/density/cost

Improving Computing Efficiency using RRAM Arrays

- Bring memory as close to logic as possible, still largely based on conventional architecture
- · Neuromorphic computing in artificial neural networks
- More bio-inspired, taking advantage of the internal ionic dynamics at different time scales
- Other compute applications based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate

> Lu Group U. Michigan

RRAM Based Neural Network Hardware

Neuromorphic Computing with RRAM Arrays

Synapse - reconfigurable two-terminal resistive switches

U. Michigan S. H. Jo, T. Chang, I. Ebong, B. Bhavitavya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010).

Hardware Implementation

- **Checkerboard pattern**
- 32 x 32 array •
- **Direct storage and read out**
- No read-verify or re-programming
- Sheridan et al., Nature Nanotechnology 12, 784–789 (2017)

Lu Group U. Michigan Training images

Training

Sheridan et al., Nature Nanotechnology 12, 784 -789 (2017) 9 Training Images 128x128px 4x4 patches Trained in random order

> Lu Group U. Michigan 18

Image Reconstruction with RRAM Crossbar

Arrays

Improving Computing Efficiency using RRAM

Different approaches for improving computing efficiency (depending on the application):

- Bring memory as close to logic as possible, still largely based on conventional architecture
- · Neuromorphic computing in artificial neural networks
- More bio-inspired, taking advantage of the internal ionic . dynamics at different time scales
- · Other compute applications based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate

> Lu Group U. Michigan

Sheridan et al., Nature Nanotechnology 12, 784–789 (2017)

Lu Group U. Michigan

Arithmetic Applications: Numerical Simulation

Hardware Prototyping

» Hardware Test bench

Solving partial-differential equations (PDEs)

Solving an A[·]x=b problem in matrix form

• A second order Poisson equation as a toy example,

$$\nabla^2 u = -2 \cdot \sin(x) \cdot \cos(y)$$

• The problem is solved using finite difference (FD), where matrix can be sliced into a set of few similar slices.

• The test board consists of: (i) RRAM crossbar, (ii) DACs to control the input signals, (iii) sense amplifiers and ADCs to sample the output current, (iv) MUXs to route the signals, and (v) FPGA to enables the software interface and control.

M. A. Zidan, Y.J. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner, & W. D. Lu, Nature Electronics, 1, 411–420 (2018)

Lu Group U. Michigan

Hardware Prototyping

Lu Group

U. Michigan

» Results Reconstructed as a 3D Animation

(\mathbf{E})

General In-Memory Computing Fabric

The Race Towards Future Computing Solutions

Memory-Computing Unit (MPU)

- "General" purpose by design: the same hardware supports different tasks low precision or high precision. Not just an neuromorphic accelerator
- Dense local connection, sparse global connection
- Run-time, dynamically reconfigurable. Function defined by software.

M. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu, IEEE Trans Multi-Scale Comp Sys, DOI 10.1109/TMSCS.2017.2721160 (2017)

M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1: 22–29 (2018)

Lu Group U. Michigan M. A. Zidan, J. P. Strachan, and W. D. Lu, Nature Electronics 1: 22–29 (2018) M. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu, IEEE Trans Multi-Scale Comp Sys, DOI 10.1109/TMSCS.2017.2721160 (2017)

Lu Group U. Michigan

1 Better Memory/Storage

×,

Moore's La

② Bio-Inspired Computing

③ In-Memory Computing

Memory Wall Heat Wall

Summary

Different approaches for improving computing efficiency (depending on the application):

- Bring memory as close to logic as possible, still largely based on conventional architecture
- · Neuromorphic computing in artificial neural networks
- More bio-inspired, taking advantage of the internal ionic dynamics at different time scales
- Other tasks based on vector-matrix multiplications

Towards a general in-memory computing fabric based on a common physical substrate

Lu Group U. Michigan