
Phantasos: A Framework for FPGA based
Hardware-in-the-Loop Testing

Karthik Karyamapudi

Introduction

Testing embedded systems firmware is hard
(citation needed)

Introduction
● With regular software

○ Can create test harnesses with code
○ Create stubs which emulate the behavior of production environment
○ Automate inputs and outputs
○ Define desired behavior
○ Repeat tests as many times as necessary

Introduction
● Why can’t we do the same for embedded systems?

○ Embedded systems firmware is, well, embedded
○ Placed in a potentially remote, physical environment with complicated

behavior

Options
● Test parts of the firmware independently offline

○ Does not model system-wide behavior
○ Need to structure firmware around this

● Use virtual machine to simulate the entire system at once
○ Needs accurate model of target core + interconnect + peripherals
○ Might not capture hardware behavior such as errata

● Hardware-in-the-Loop Testing
○ Runs firmware directly on the target hardware

Hardware-in-the-Loop Testing
● Already used in automotive, power management, aerospace, etc.
● Typically expensive, specialized test harnesses
● Connected to custom hardware
● Not practical for simpler applications
● Generally focuses on control systems with Simulink

Copyright National
Instruments

Hardware-in-the-Loop Testing

Simulated Environment Target Platform

Sensors

Actuators

UI

HiL Testing w/ Phantasos

Simulated Environment Target Platform

Sensors

Actuators

UI

Linux System FPGA Real Device

Hardware Setup

Raspberry Pi 3B

Lattice ECP5 85k Devkit

STM32 Nucleo

USB

GPIO

USB

GPIO

Phantasos Architecture

Hardware Description
(phantasos.yaml)

Test Scenario
(CMake Project)

Firmware Image
(firmware.elf)

FPGA Bitstream

Simulation
Program

Firmware Image

Inputs Test Package

C++ Library

phantasos-bitstream

Software Tools
● openOCD - Debugging tool used for embedded systems

Able to flash target system with image being tested

● openFPGAloader - Loads bitstream into FPGA
● Amaranth HDL - enables hardware definition from Python
● Yosys + NextPnR - Synthesizes bitstream from hardware definition
● All open source!

phantasos-build
● Python tool developed for generating bitstream, software

interface, and initialization script from hardware definitions

%YAML 1.1

platform: ECP55GEVN

target: NucleoF4

peripherals:

- name: mastRange

 type: PulseWidthUltrasonic

 conn: ARDUINO

 pins:

 echo: D7

 trig: D6

Phantasos.h

top.bit

run.sh

phantasos-build
● Peripheral implementations are queried by the YAML file
● Have both C++ software library as well as FPGA logic
● Currently implemented:

○ HC-SR04 Ultrasonic Sensor
○ HD44780 Liquid Crystal Display Controller
○ General Purpose Input/Output
○ PWM Capture

Phantasos Data Flow

- name: mastRange

 type: PulseWidthUltrasonic

 conn: ARDUINO

 pins:

 echo: D7

 trig: D6

Define Peripheral

// set ultrasonic distance

mastRange.setDistance(testDistance);

Simulation uses Peripheral API
void PulseWidthUltrasonic::setDistance(float cm){

 pulseWidthUs = cm*2*29.1545;

}

Peripheral Library communicates with
FPGA fabric through Phantasos runtime

control register

pulseWidthValue = Signal(16, reset=38000)

with m.If(self.pulseWidthUsCSR .w_stb):

 m.d.sync += pulseWidthValue .eq(self.pulseWidthUsCSR .w_data)

m.d.comb += self.pulseWidthUsCSR .r_data.eq(pulseWidthValue)

Peripheral logic
receives value

ultrasonic.attach(6, 7);

ultrasonic.getDistanceCM();

Firmware interacts with
emulated device

Phantasos Data Flow
● Communication with FPGA fabric is done through RPi’s SPI

interface
● Each peripheral has registers and events connected through

internal parallel bus
● Address space and interrupt numbers within FPGA are all tracked

automatically and propagated to the software library

Example: Ultrasonic Rangefinder

Example: Ultrasonic Rangefinder

Raspberry Pi
3B

Lattice ECP5 85k Devkit

USB

GPIO

USB

GPIO

ma
st
Ra
ng
e.
se
tD
is
ta
nc
e(
te
st
Di
st
an
ce
);

pu
ls
eW
id
th
Va
lu
e

=
Si
gn
al
(1
6,
 r
es
et
=3
80
00
)

wi
th
 m
.I
f(
se
lf
.p
ul
se
Wi
dt
hU
sC
SR

.w
_s
tb
):

m.
d.
sy
nc
 +
=

pu
ls
eW
id
th
Va
lu
e .

eq
(s
el
f.
pu
ls
eW
id
th
Us
CS
R .

w_
da
ta
)

m.
d.
co
mb
 +
=

se
lf
.p
ul
se
Wi
dt
hU
sC
SR

.r
_d
at
a.
eq
(p
ul
se
Wi
dt
hV
al
ue

)

Example: Ultrasonic Rangefinder
● Uses the ultrasonic sensor and LCD display modules
● Sweeps the value of the sensor and reads the value on the display

Example: Maze Navigation

Example: Maze Navigation
● Environment is simulated using MuJoCo library from DeepMind
● Uses same modules for range sensor and display
● Uses PWM and GPIO to model H-bridge motor drivers

Benefits
● Flexibility of hardware configuration
● One device per platform, no hardware development cost for

custom test harness
● Could be rented out instead of purchased
● Phantasos modules can be reused without HDL or protocol

knowledge

● Use as part of CI/CD flow for firmware projects
○ Initial intention for this project

● Prototyping platform for earlier in development process
● Educational/Competitive purposes, checking a firmware project

automatically

Applications

● Implementation Limitations
○ Small bandwidth across SPI
○ No analog signal support

● Inherent Limitations
○ No recreation of mechanical, thermal, electrical stresses
○ Non-deterministic behavior

Limitations

● Add support for a faster I/O, Xilinx Zynq or PCI card maybe
● Add analog I/O support to hardware
● Integration into testing frameworks, GitHub Actions

○ Network multiple boards for multi-agent tests
● Expand module library

Future Work

Questions

