Energy-Efficient Communication Protocol for Wireless Microsensor Networks

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," in *Proc. Hawii Int. Conf. on System Sciences*, 2000.

Presented by Stefany Escobedo, Ricky Lin, Alyssa Scheske

Contents

- 1. Introduction
- 2. First Order Radio Model
- 3. Energy Analysis: Routing Protocols
- 4. LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details
- 5. Simulations & Results
- 6. Future Works
- 7. Comments

Introduction

- Wireless distributed sensor network
- Advantage and disadvantage of massive cheap sensor network
- Conventional distributed sensor network protocols
- LEACH (Low-Energy Adaptive Clustering Hierarchy) Simulation

First Order Radio Model: Model Assumptions

- 1. Symmetry: Energy required to transmit a message between two nodes is **same** for a given signal-to-noise ratio (SNR).
- 2. All sensors are sensing the environment at a fixed rate.
- 3. Radio characteristics (50 nJ/bit, 100 pJ/bit/m²)
- 4. r^2 energy loss due to channel transmission

First Order Radio Model

Operation	Energy Dissipated
Transmitter Electronics $(E_{Tx-elec})$ Receiver Electronics $(E_{Rx-elec})$ $(E_{Tx-elec} = E_{Px-elec} = E_{elec})$	50 nJ/bit
$\frac{(DT_x - etec}{Transmit Amplifier} (\epsilon_{amp})$	100 pJ/bit/m ²

To **transmit** a k-bit message with a distance d:

$$E_{Tx}(k,d) = E_{Tx-elec}(k) + E_{Tx-amp}(k,d)$$
$$E_{Tx}(k,d) = E_{elec} * k + \epsilon_{amp} * k * d^2$$

To **receive** a k-bit message:

$$E_{Rx}(k) = E_{Rx-elec}(k)$$

$$E_{Rx}(k) = E_{elec} * k$$
NOT LOW COST!

Energy Analysis: Routing Protocols

- Direct communication for each node
 - Require a large amount of transmit power
 - Optimal in some situations
- Minimum-energy routing protocol
 - Nodes transmit data to the base station through intermediate nodes
 - Intermediate nodes are chosen based on minimization of the transmit amplifier energy
 - Minimum-transmission-energy (MTE) routing protocol is used

Energy Analysis (Cont.)

• Evaluation of two methods on a linear network

• Direct:
$$E_{direct} = E_{Tx}(k, d = n * r) = k(E_{elec} + \epsilon_{amp}n^2r^2)$$

• MTE:
$$E_{MTE} = n * E_{Tx}(k, d = r) + (n - 1) * E_{Rx}(k) = k((2n - 1)E_{elec} + \epsilon_{amp}nr^2)$$

$$E_{direct} < E_{MTE}$$

$$E_{elec} + \epsilon_{amp} n^2 r^2 < (2n-1)E_{elec} + \epsilon_{amp} n r^2$$

$$\frac{E_{elec}}{\epsilon_{amp}} > \frac{r^2 n}{2}$$

Most energy-efficient protocol depends on **network topology** and **radio parameters**

Base Station

n nodes

Energy Analysis (Cont.)

- Shortcoming of MTE routing protocol
 - Cascading effect
 - Nodes closest to the base station die out quickly
 - Energy required to transmit the remaining data to base station increases
 - As nodes die, that area of environment is no longer monitored
- 100-node simulation is run to compare these two protocols
 - The figure of system lifetime using direct transmission and MTE routing with 0.5
 J/node is shown on top-right corner

LEACH: Prior Work

- Static-clustering algorithm
 - Fixed cluster-heads
 - Whole cluster stops working if a cluster-head dies
- Adaptive-clustering algorithm
 - Prior work: the Near Term Digital Radio (NTDR) project
 - LEACH Low-Energy Adaptive Clustering Hierarchy

LEACH: Algorithm Assumptions

- Advertisement Phase
 - All nodes begin with the same amount of energy
 - Being a cluster-head removes approximately the same amount of energy for each node
 - Symmetric propagation channels

Introduction	
First Order Radio Model	
Energy Analysis: Routing Protocols	
LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details	
Simulations & Results	
Future Works	
Comments	

- Advertisement Phase: cluster-head election
 - Node n chooses a random number between 0 and 1. If the number is less than T(n), then it becomes a cluster-head for that round

$$T(n) = \begin{cases} \frac{P}{1 - P * (rmod\frac{1}{P})} & \text{if } n \in G\\ 0 & \text{otherwise} \end{cases}$$

• Broadcast advertisement using a CSMA MAC protocol

Introduction
First Order Radio Model
Energy Analysis: Routing Protocols
LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details
Simulations & Results
Future Works
Comments

- Cluster Set-up Phase: joining a cluster
 - Choose cluster-heads based on their signal strengths
 - Inform the cluster-head using a CSMA MAC protocol again

Introduction
First Order Radio Model
Energy Analysis: Routing Protocols
LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details
Simulations & Results
Future Works
Comments

- Schedule Creation: telling each node when to transmit data
 - TDMA (Time-division Multiple Access) scheduling
 - Broadcast schedules and specific in-cluster CDMA communication codes

Introduction
First Order Radio Model
Energy Analysis: Routing Protocols
LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details
Simulations & Results
Future Works
Comments

- Data Transmission:
 - Cluster-head receives data from nodes based on the TDMA schedule
 - With transmission time pre-allocated, non-cluster-head nodes can be turned off
 - Cluster-head compresses data into a single signal, e.g. beamforming
 - Cluster-head transmits data to the global base station

Introduction
First Order Radio Model
Energy Analysis: Routing Protocols
LEACH: Low-Energy Adaptive Clustering Hierarchy & Algorithm Details
Simulations & Results
Future Works
Comments

- Round time expired:
 - Determined by a priori
 - Next round begins with each node determining if it should be a cluster head for this round

- Determining high-energy cluster-head position
 - LEACH includes randomized rotation
 - Single sensors' battery are not drained, energy consumption is distributed with each rotation
 - Possibility for non-optimal cluster-head positions

- Simulation on determining optimal number of clusters
 - Same 100-node random network
 - Energy dissipation: $E_{elec} = 50 \text{ nJ/bit}$
 - Computation cost: 5 nJ/bit/message
 - 2000 bits per message

- System priori sets the optimal percentage \hat{N} of cluster-heads to have in the system
- Note that 0% and 100% cluster-heads have the same energy efficiency as direct communication

- Simulation on comparison of direct, MTE, and LEACH protocols
 - LEACH can achieve 7x~8x reduction in energy compared to direct communication and 4x~8x compared to MTE routing
 - \circ $\,$ $\,$ Main energy saving is due to lossy compression $\,$
 - TDMA Scheduling allows each non-cluster-head node turns off transmitter except during its transmit time
- Total system energy dissipated using direct communication, MTE routing, and LEACH as network diameter and electronics energy vary

- Lifetime result using LEACH does not vary significantly with different energy thresholds and different initial energy of nodes
 - ~8 times longer for the first node to die
 - ~3 times longer for the last node to die
- Simulations results do not account for any necessary routing start-up costs.

Future Work

• Radio model protocol to implement an "event-driven" simulation for sensor to only TX data

if an event occurs in their environment

- LEACH algorithm advertisement phase will include an energy-based threshold to account for non-uniform energy node
- Hierarchical clustering/multiple clusters to form super cluster-heads
 - Explore no support from base station to save energy using same protocol

- The overhead of the LEACH algorithm was not quantified: what is the energy cost of running "Setup phase" of LEACH and normal LEACH data transmission?
- Did not present any detail for base station communication protocols
- Not clear about when it is ok to sacrifice accuracy for energy efficiency

Questions?