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Paradigm shift is driven by two trends in the evolution of computing:

● IoT networks provide platforms for executing large-scale tasks and 
generating large amounts of valuable data.

● The shift enables the deployment of ML algorithms in the proximity of edge 
devices to distill their collected data into intelligence.

Motivation of Distributed Learning - Introduction



● Find methods for distributed learning without raw-data sharing
● To perform training and inference of an ML model over wireless links
● Requires many rounds of exchanging between servers and devices
● Requires efficient ways to perform distributed computation
● Requires new distributed optimization frameworks to be efficient over wireless 

networks 

Challenges of Deploying Distributed Learning - Introduction



To accelerate the training of ML models using distributed data requires new 
algorithms and techniques for integrated communication and learning.

● Compression and sparsification
● Radio resource management
● Over-the-air computation
● Development of novel training methods

Potential Techniques for Deploying Distributed Learning - Introduction
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Using local parameters rather than raw data in 
learning process

● Decentralized/Collaboration 
● Data privacy
● High learning accuracy
● Distributed Iterative Learning
● Shared model improvement
● …

Federated Learning (FL)

Figure 1: Federated Learning Illustration 
(image not from the paper) [1]



Components of the Federated Learning

● Parameter Server (PS)
● Edge Devices (Ui)
● Datasets (Ki)
● Input Vector (xi) and output vector (yi)

Preliminaries of the Federated Learning



Common Federated Learning algorithm: (Ex. FedAvg)

1. PS broadcast parameters
2. Edge devices do local SGD
3. PS update global model
4. Repeat until iterations limit or model convergence

IID Federated Learning Model



Federated Multi-task Learning (FMTL):

● Use learning task relationships (Ω) to optimize separate tasks (mi).
● Optimize Ω with the updated M(m1…mn).

MAML-Based Federated Learning:

● Gradient descent in separate local devices (Ui)
● Find common ML model for all devices
● Use Ki to update personalized ML models

Non-IID Federated Learning Model (Personalized ML model)



● Training Loss
● Convergence time

○ Parameter transmission delay (TT)
○ Local Training time (TC)
○ Learning Steps (NT)

● Energy consumption
○ Parameter transmission consumption (ET)
○ Local Training consumption (EC)
○ Learning Steps (NT)

● Reliability

Performance Metric of Federated Learning over Wireless Network



Communication 
Factor

Training 
Loss

TT and ET TC and EC NT Reliability

Spectrum 
Resource

✔ ✔ ✔ ✔

Computation 
capacity

✔ ✔ ✔

Transmit Power ✔ ✔ ✔ ✔

Wireless channel ✔ ✔ ✔ ✔

# of devices in FL ✔ ✔ ✔ ✔

Size of parameters 
trained

✔ ✔ ✔ ✔

Size of parameters 
transmitted

✔



Research Directions - Compression and Sparsification
● Training models are large, can’t transmit millions of parameters

○ Reduce number of elements by setting some to 0 via sparsification
○ Top-K sparsification can 2000x reduce load with minimal accuracy loss
○ Quantization adjusts weights so they’re less than 32 bits
○ Areas: 

■ Sign-based quantization together with majority voting 
■ Trade-off between the number of bits needed to encode compressed vectors and 

the compression error
■ FL algorithm to manage the trade-offs between power consumption, 

communication bit-rate and convergence rate



Research Directions - Wireless Resource Management
● Need to optimize resource allocation to efficiently complete the FL 

training process
○ Hard to quantify how each single model update affects the entire training process
○ Parameter server (PS) has no info on device datasets, only gradient vectors, so can’t use 

data stats to decide how resource allocation will affect FL convergence
○ Areas:

■ Trade-off between the local ML model updates and global ML model aggregation 
■ Optimized device scheduling and resource allocation policies to maximize the model 

accuracy within a given total training time budget



Research Directions - FL Training Method Design
● Can adjust the learning parameters to enable efficient FL implementation

○ Wireless device energy and computation is limited, so size of ML model parameters that 
can be trained and transmitted by a device needs to be small and time duration to train is 
short

○ Areas:
■ Hierarchical FL with device clusters, local learning carried out by devices within each 

cluster with help of small base station (BS) or cluster head, while a global model is 
trained at the macro BS

■ Decentralized averaging methods to update the local ML model of each device - 
each device only needs to transmit its local ML parameters to its neighboring 
devices and then averages the global ML model



Open Problems of Deploying FL Over Wireless Networks
● Convergence Analysis - need to analyze how wireless factors affect the convergence of 

realistic FL with local ML models and loss function, existing models make unrealistic 
assumptions about FL loss function

● Wireless resource management - current research doesn’t account for mobility 
patterns of devices; adopting suitable frequency bands

● Compression and sparsification - Need heterogeneous compression schemes that 
consider link characteristics of each device will be different; need to design new 
schemes that consider data leakage

● FL Training Method Design - need to enable the devices to form an optimal network 
topology that maximizes many FL performance trade-offs; designing asynchronous 
training methods while considering the network topology optimization



Industry Interest
● Centralized based algorithms have high latency, can’t work for things like 

5G which are near-real time while also satisfying privacy needs
○ Makes keeping data on edge devices (ie, smart phones) attractive

● In 2017, Google made a global model had been trained and deployed on 
Android devices to suggest search queries based on typing context from 
Android Gboard, training update occurred over WiFi 

● Major potential interest in telecom industry - one paper citing significant 
reduction in network utilization, due to the sharp drop in the amount of 
data that needs to be shared
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● FD is introduced to avoid exchanging the entire DNN model parameters.

● Knowledge distillation (KD) is the process of transferring knowledge from a 
large model to a smaller one. While large models have higher knowledge 
capacity than small models.

Federated Distillation - Preliminaries



● Comparison between FD and FL in terms of test accuracy and sum communication 
cost of all devices per epoch, under an IID or non-IID MNIST data.

Federated Distillation - Representative Result
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● Several implementations of reinforcement learning (RL)
● The most basic: Single Agent RL
● Teach through a Markov decision process

○ Main components: state, action, reward
● Goal is to maximize expected discounted reward

Reinforcement Learning - Single Agent RL

Environment

Agent

Reward

State

Action



● Strengths of RL
○ non-convex problems
○ time dependent optimization problems

● Weaknesses of Single-Agent RL
○ As the # of devices increases, so does complexity
○ Complicated state space
○ Overhead communicating to every device

Reinforcement Learning - Single Agent RL



● A simple solution: make each device its own independent agent
● Each device maximizes without considering others
● Useful for base stations that can’t communicate together
● Drawbacks:

○ Not guaranteed to converge
○ Cannot maximize the sum expected reward of all agents

Reinforcement Learning - Independent Multi-Agent RL (MARL)

Environment

Agent NAgent 1



● Can overcome this with Collaborative MARL
● Agents share any combination of parameters

○ Reward, RL model parameters, action, state
○ Reward is the most important one

● Trade off between complexity and performance
○ Dependant on how much each agents shares

Reinforcement Learning - Collaborative Multi-Agent RL (MARL)

Environment

Agent 2Agent 1
Reward



● Clusters of users with unpredictable uplink access commands
● Can’t use branch and bound because of random variation
● Authors proposed VD-MARL, which shares rewards

○ Low overhead
○ 54% better than independent

● QMIX is significantly more complex
○ 31% slower convergence

Reinforcement Learning - UAV Trajectory Design



● Can predict convergence on single agent RL algorithms
○ Game theory

● Harder to predict more complex algorithms like QMIX
○ Will it converge?
○ How does # of agents affect convergence?

● Efficient wireless communication
○ optimization of resource block allocation
○ reliable and efficient transmission

Reinforcement Learning - Areas of Research
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Conclusions
This paper:

● Introduced four distributed learning frameworks and the motivation 
behind: FL, FD, distributed inference, and MARL.

● Mainly focus on the FL framework for distributed learning.
● Provided detailed overview of federated averaging, federated multi-task 

learning, and model agnostic meta learning based FL and summarize their 
drawbacks and usage.

● Explored the possibility of performing joint learning and communications 
when FL is deployed in wireless networks.



Questions?



[1] https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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