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BOTTOM-UP CHEMICAL SYNTHESIS TECHNIQUES

provide a promising path to nanometer-scale conductors

and devices.1 Coupled with suitable assembly proce-

dures,2 these techniques provide a way to integrate dense

wiring and computation at nanometer pitches. At these

nanometer scales, wires are only a few atoms in diameter

and have cross-sectional areas of a few hundred atoms.

This small cross section makes these wires fragile, increas-

ing the likelihood that they will break during assembly.

Moreover, the contact area between nanowires, and

between nanowires and devices, may include only tens

of atoms. Consequently, contact integrity depends on a

few atomic-scale bonds. Because the atomic-scale features

are not perfectly smooth, and the assembly and bond for-

mation are based on statistical processes, some connec-

tions could be poor and effectively unusable. This all

points to a relatively high defect rate, perhaps in the 1%-

to-15% range, for wires and connections.1,3

A natural response to defective fabrication is to design

architectures with a collection of interchangeable

resources and employ post-fabrication programming to

configure components so that they use only functional

resources, thus avoiding the defective resources. As fea-

ture sizes shrink to reach these nanometer scales, how-

ever, defect rates inevitably increase. This necessitates

reducing the size of the architectures’

interchangeable units so that there’s a rea-

sonable chance of yielding each replace-

able unit. At these high defect rates, it is

necessary to employ fine-grained archi-

tectures, which use individual wires or

wire pairs as the unit of interchange.

Nevertheless, an individual nanowire

can have hundreds of junctions. If accep-

tance policies demanded that all junc-

tions be nondefective for the nanowire to be usable,

components with junction defect rates even as high as

1% would not be usable. Fortunately, the nature of logic

and interconnect suggests that only a small fraction of

the junctions must be connected for any particular, con-

figured nanowire. Consequently, a wire with many non-

programmable junction defects can still be useful as

long as it serves a purpose compatible with its nonde-

fective junctions. In architectures that place hundreds

of interchangeable nanowires in arrays—for example,

programmable logic arrays (PLAs)—post-fabrication

mapping routines can assign nanowires to logical func-

tions (for example, product terms) to avoid such

defects. This final assignment then becomes a match-

ing problem between yielded device capabilities and

functional needs.

The architecture we present supports this kind of

fine-grained sparing and resource matching. The base

logic structure is a set of interconnected PLAs. The PLAs

and their interconnect consist of large arrays of inter-

changeable nanowires, which serve as programmable

product and sum terms and as programmable inter-

connect links. Each nanowire can have several defec-

tive programmable junctions. We can test nanowires for

functionality and use only the subset that provides
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appropriate conductivity and electrical characteristics.

We then perform a matching between nanowire junc-

tion programmability and application logic needs to use

almost all the nanowires even though most of them

have defective junctions. We employ seven high-level

strategies to achieve this level of defect tolerance:

■ lightweight configurable cross points,

■ a reliable support superstructure,

■ individual wire sparing,

■ M-choose-N sparing on large sets of interchangeable

resources,

■ matching to use wires with defective cross points,

■ transformations to guarantee cross-point sparseness

that matches defect rates, and

■ on-chip test and configuration support.

Most of these strategies are general and will apply to

many different nanoscale technologies and architec-

tural variations. We ground specifics in our own tech-

nology and architecture work to make the ideas

concrete. A growing number of researchers are propos-

ing and developing such strategies.4,5

Technologies
Our architecture builds on two key emerging tech-

nologies. The first lets us produce parallel rows of wires

only a few nanometers apart, with diameters of only a few

nanometers (say, 3 to 10 nm).2 The second involves non-

volatile, programmable cross points that fit in the space of

the wire crossings between orthogonal arrays of these

tight-pitch wires and can be switched between a high and

low resistance state.1 These cross points enable our first

strategy. They are significantly more lightweight than pro-

grammable cross points in conventional VLSI, which are

an order of magnitude larger than the wire crossing area.

Consequently, we can employ post-fabrication config-

urability at a far richer and finer-grained level than was

viable in conventional VLSI architectures.

For our second strategy, we integrate these nanoscale

conductors with reliable CMOS lithography. The lithog-

raphy provides a reliable support superstructure for

probing and configuring the nanoscale components.

The lithographic components can have feature sizes an

order of magnitude larger than the dense nanowires.

Nevertheless, we can design the CMOS infrastructure so

that it occupies only a modest fraction of the total com-

ponent area. (A more detailed review of the technolo-

gies emerging to produce these dense nanowires and

cross-point switches is available elsewhere.6,7)

Architecture
We can fabricate parallel arrays of tight-pitched

nanowires, but we cannot fabricate arbitrary geometries

with equally tight conductor and device pitches.

Consequently, our architecture’s core logic and routing

exploit crossed arrays of nanowires. Programmable

junctions decorate nanowire crossings in select regions.

At the larger lithographic scale, we define breaks

between nanowires and define regions that can be

processed differently using lithographic etching and

masking. Each nanowire is accessible from lithograph-

ic support wires without relying on any other nanowires.

Figure 1 shows a simple nanoPLA block organization

with no interblock routing. The array forms a two-plane

PLA cycle. Each plane consists of a programmable OR

array followed by a restoration-and-selective-inversion

array. Consequently, each plane is a programmable

NOR. The combination of NOR-NOR planes is essen-

tially an AND-OR PLA with suitable application of

DeMorgan’s laws and signal complementation.

As Figure 1 shows, each horizontal wire forms a

wired OR. Crossed nanowire inputs connected to a hor-

izontal nanowire through a junction programmed into

the low-resistance on state can potentially pull up the

nanowire, whereas inputs connected through high-resis-

tance off junctions do not allow sufficient current to

pass through the junction to pull up the nanowire. We

precharge the nanowire to a low voltage, using the lith-

ographic scale connections (right side of Figure 1) so

that the output is appropriately low when none of the

programmed input nanowires is high.

The vertical nanowires serve as buffers or inverters

to restore and potentially invert the signals formed on

the horizontal, wired-OR nanowires. Each horizontal

nanowire can act as a field-effect gate for a vertical wire

so that each vertical wire output is simply a restored,

potentially inverted, version of a horizontal wire. To

make a vertical wire sensitive to a single input, we use

nanowires that are doped lightly only in the desired con-

trol region and heavily doped elsewhere. The heavily

doped region is oblivious to the field of crossing

nanowires, whereas the lightly doped region can be

controlled by the field of the crossed nanowire. One

way to form these arrays is to grow the doping profile

into individual nanowires during construction and then

assemble a random set of nanowires with their control

regions in different positions.8

We form a decoder between a set of lithographic wires

(see vertical microscale wires A0 through A3 in Figure 1)

and the horizontal nanowires. Each nanowire is doped
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with a unique code, so that the lithographic wires can

charge a single nanowire. This lets the lithographic super-

structure test each nanowire’s connectivity. Furthermore,

we can exploit the restoration connections to set or reset

a single cross point in either the top or bottom OR plane

by using the decoders on these planes to place a differ-

ential voltage across this cross point.

In principle, all the nanowires should be equivalent.

Therefore, we can assign a given OR function to any of

the nanowires within the array, avoiding defective

nanowires. A typical array has 100 nanowires in each

plane. We can program junctions between broken

nanowires and functional nanowires into the discon-

nected state so that broken wires can be ignored.

To build large components, we can extend these

nanoPLA blocks to include I/O to other nanoPLA blocks

and assemble them into a large array, as Figure 2 shows.

The logic structure is basically the same. However, a
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given nanoPLA block now has horizontal input

nanowires from arrays above and below it. By careful-

ly arranging the overlap between these arrays, we can

support arbitrary Manhattan routing (orthogonal rout-

ing on a 2D x, y grid).7 At a high level, this provides a

structure similar to conventional, Island-style FPGAs, 9

where logic blocks consist of lookup tables (LUTs)

rather than PLAs but otherwise comprise bit-level logic

blocks inside a bit-level, configurable network.

Switching occurs through the nanoPLA logic blocks,

and the OR arrays now serve as both wired-OR logic and

crossbar switching points.

A more complete description of these architectures,

their fabrication, and their operation, is available else-

where.7,8 The key features to note include the following:

■ The entire architecture consists of straight nanowires

assembled at tight pitch in regular arrays.

■ These nanowires provide all the logic, restoration,

and interconnect features needed to implement any

computable function entirely at the nanoscale.

■ Programming the inexpensive cross points inside the

junctions between crossing nanowires personalizes

the device to avoid defects and enable the desired

logic operation.

■ Each nanowire connects directly to a lithographic

superstructure for testing and configuration.

Defect model
We abstract our fabrication defects into two groups:

■ disconnected wire defects, and

■ nonprogrammable cross-point defects.

A wire is either functional or defective. A functional

wire has good contacts on both ends and conducts cur-

rent with a resistance that falls within a designated

range. Broken wires cannot conduct current. Poor con-

tacts increase the wire’s resistance. Excessive variation

in nanowire doping from the engineered target places

the wire out of the specified resistance range.

A cross point can be programmable, nonprogramma-

ble, or shorted into the on state. A programmable junction

can be switched between the on- and off-state resistance

ranges. A nonprogrammable junction can be turned off,

but cannot be programmed into the on state. A nonpro-

grammable junction can result from the statistical assem-

bly of too few molecules in the junction or from poor

contacts between some of the molecules in the junction

and either of the attached conductors. A shorted junction

cannot be programmed into the off state. Based on the

physical phenomena involved, we consider nonpro-

grammable junctions far more common than shorted

junctions. Furthermore, process engineers can tune fab-

rication to guarantee this. Consequently, we treat shorted

junctions like a pair of defective wires, and thus avoid

both wires associated with the short. In the remainder of

the article, we will simply distinguish between program-

mable and nonprogrammable junctions.

For the analysis that follows, we assume randomly

distributed defects. This assumption is consistent with

broken wires resulting from assembly strain, poor con-

tacts made by statistical assembly, and statistical distri-

butions of molecules and connections in junctions. The

defect mechanisms anticipated here are very different

from those typically in microscale assemblies, and there

is insufficient experience in manufacturing these arrays

to suggest more sophisticated models (for example,

clustering) at this point.

Wire defects
Our third strategy is individual wire sparing.

Tolerating wire defects simply involves provisioning

adequate spares, separating the good wires from the

bad, and configuring the nanoPLA blocks accordingly.

For a given PLA design, each block must have a mini-

mum number of usable wires (product terms and inter-

connect wires). Because wire losses will occur, we

design the physical array to include more physical wires

to ensure the yield of enough usable wires to meet our

logic requirements.

For the detailed architecture just described, wires

work in pairs. A horizontal OR term wire provides the

programmable computation or programmable inter-

connect; a vertical restoration wire provides signal

restoration and perhaps inversion. If the connections

between each restoration wire and its associated OR

term wire are not programmable, as with doped restora-

tion nanowires, then a defect in either wire results in an

unusable pair. Consequently, each logical OR term or

output yields only when both wires yield. Let Pwire be the

probability that a wire is not defective. The probability

of yielding each OR term is

Por = Pwire
2 (1)

Here, we employ our fourth strategy, M-choose-N

sparing on large sets of interchangeable resources. We

can perform an M-choose-N calculation to determine

the number of wires we must physically populate (N)
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to achieve a given number of functional wires (M) in

the array. The probability that we will yield exactly i

restored OR terms is

Pyield(N, i) = (Ni )(Por)
i(1 – Por)

N–i (2)

That is, there are (N
i ) ways to select i

functional OR terms from N total wires,

and the yield probability of each case is

Por
i(1 – Por)

N–i. The nanoPLA architecture

has an ensemble with at least M items

whenever M or more items yield, so sys-

tem yield is actually the cumulative dis-

tribution function:

(3)

Equation 3 determines the number of

physical wires, N, that we must populate

to achieve the desired probability of

yielding at least M functional OR terms,

PM of N. For our interconnected nanoPLA

blocks, the product terms and intercon-

nect wires are the minimum yield targets,

M, and we calculate a corresponding N

to determine the number of physical

wires we must place in the fabricated

nanoPLA block. Figure 3 plots the N

required to achieve 50%, 99%, and 99.9%

yield rates (PM of N) as a function of Pwire

when building M = 100 wire arrays.

Once we know the number of physi-

cal wires to populate, we can build phys-

ical area models to calculate the size of

a given array. We can then calculate the

area overhead associated with sparing

for a given wire defect rate. Figure 4 plots

the area overhead as a function of Pwire

for a typical array, assuming that the reli-

able, lithographic substrate uses 105-nm

pitch wires (for example, a 45-nm tech-

nology node) and that the nanowires

have a 10-nm pitch. If the design consist-

ed only of nanowires, we’d expect the

area to scale as (N/M)2. However,

because the nanowires make up only a

fraction of the area (see Figure 1), the

area overhead scales more slowly; at 80%

wire yield rate, we see an overhead of

only around 2.4 instead of (1.8)2 = 3.2.

The microscale addressing units and microscale con-

tacts let us identify the addresses of individual, restored

OR term wires. A typical testing routine would sequen-

tially test all possible addresses for nanowires in an array,

P N P PM of N
i

or

i

or

N i

M i N
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attempting to charge one wire at a time for conduction

and restoration. By monitoring the voltage on the

microscale supply contact attached to the far end of a

restoration column (see Figure 1), we can determine if

the address is present and properly restored, and identi-

fy the resistance associated with the nanowire’s signal

path. We record the addresses of each discovered non-

defective wire, and then we use only those addresses

during subsequent device configuration.

Cross-point defects
Because each nanoPLA block wire has around 100

logical junctions, it’s unlikely that any single wire is free of

defective junctions. For example, at a 10% nonprogram-

mable cross-point defect rate, the likelihood of a wire

with 100 junctions having no defects is (0.9)100 = 3 × 10–5.

This suggests only a 0.3% chance that there is even one

defect-free wire in an array of 100 nanowires. Conse-

quently, to cope with these high junction defect rates, the

nanoPLA must use wires even when they contain defec-

tive junctions.

In practice, OR terms are sparsely programmed.

Each OR term receives both the true and complement

sense of each input, and few product terms use every

input to the nanoPLA block. Consequently, most prod-

uct terms need fewer than 50% of their junctions

enabled, and the product term can tolerate nonpro-

grammability defects in the rest.

Our fifth strategy is to match an OR term’s logic to a

nanowire’s defect pattern. An OR term is compatible with

the nanowire’s defect pattern if and only if the OR term’s

inputs are a subset of the nanowire’s nondefective junc-

tions. For example, if a nanoPLA’s logic array (AND or

OR plane) has defective junctions as Figure 5a shows, we

can assign OR term f1 = a + b + c + e to nanowire w4 even

though it has a defective (nonprogrammable) junction

at (w4, d); that is, OR term f1 is compatible with the defect

pattern of nanowire w4. Because OR term inputs are

sparse, a nanowire with defective cross points may still

be compatible with many OR terms. Thus, nanowire

assignment becomes a matching problem.

Algorithms
Assume we have a logic array with a defect pattern

similar to Figure 5a, and we want to program it to the set of

OR terms in Figure 5b. We first determine which OR terms

are compatible with each nanowire’s defect pattern. We

then make a graph, as in Figure 5c, showing which OR

terms can be assigned to which nanowires. The nodes on

the right side of Figure 5c are the OR terms; the nodes on

the left are the nanowires. An edge between an OR term

and a nanowire indicates that the OR term is compatible

with the nanowire’s defect pattern. Next, we try to find a

complete assignment from the OR terms to the nanowires.

Figure 5d shows one possible assignment. Finding an

assignment is equivalent to identifying a bipartite graph

match. Although a standard, optimal bipartite matching

algorithm could find the match, a linear-time greedy

heuristic provides reasonably good results for these defect

rates while running in substantially less time.10

Let F be the set of OR terms, and W the set of

nanowires. Let fi represent an OR term in F, and wj a

nanowire in W. Our heuristic algorithm (shown in Figure

6) picks the fi terms in decreasing order of their fan-in

size (because larger fan-in OR terms are harder to map),

and chooses the wj terms randomly. When the number

of on junctions per nanowire is bound to a constant, the

number of wires tested in line 5 for each OR term fi is a

constant. Consequently, this algorithm runs in linear

time, O(|F |). This is even smaller than the O(|F | × |W |)

operations that the optimal algorithm would need to

diagnose the programmability of the cross points in the

array to construct the full graph for matching.
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Fan-in bounding
For the algorithm in Figure 6 to succeed, there must

be enough nanowires in the logic array so that every OR

term can be assigned to a nanowire. We can derive a

lower bound on the number of spare nanowires we

need in the array based on the OR term fan-in. The prob-

ability that OR term fi can map to a nanowire in the

graph is (Pj)
ci (where ci is the number of inputs to OR

term fi), because all the ci junctions must be program-

mable. The expected number of nanowires connected

to fi in the graph is |W |(Pj)
ci, where |W| is the number of

nanowires. To find a complete assignment from OR

terms to nanowires, the expected size of each OR term’s

node degree must be at least 1. Assuming the ci terms

are bounded by the maximum fan-in, C:

|W |(Pj)
C > 1 (4)

This implies that |W| should be greater than (Pj)
–C.

When C is large, |W| must be unacceptably large. For

example, with Pj = 0.85 and C = 40, the above bound

suggests |W | > 665. Therefore, to allow reasonably sized

logic arrays, C must be bounded. For example, to map

|F | = 100 with little overhead (|W | ≈ 100), we must keep

C < 28, because (0.85)–28 ≈ 95.

Ultimately, we must map all the OR terms in each

array; hence, Equation 4 is a weak bound. In an earlier

work,10 we derived tighter bounds useful for design.

Figure 7 shows the fan-in limits for different area over-

head ratios based on these tighter bounds.

Guaranteeing sparseness during mapping
Our sixth strategy involves using transformations to

guarantee sparseness that matches defect rates. We con-

trol fan-in bound C during logic mapping. A typical step

in mapping for clustered PLA designs such as these

nanoPLA blocks is to group the logic into clusters that

the base logic blocks can implement. For example, a

PLA mapping algorithm (PLAmap) can use a netlist of

PLA block logic clusters to cover the logic while ensur-

ing that none of these clusters exceeds architectural lim-

itations,11 including the maximum number of

■ inputs to a cluster, I ;

■ product terms in each cluster, P ;

■ outputs from a cluster, O ; and

■ product terms that fan in to any OR term, Pmax.

In our nanoPLAs, the critical OR term fan-in limit, C,

corresponds to the number of inputs that fan in to any

particular AND term, Imax, for the AND plane, and Pmax for

the OR plane. Consequently, once we know the effec-

tive defect rate for a given fabrication technology, we

can correctly set Pmax and Imax and synthesize logic clus-

ters guaranteed to meet the appropriate fan-in bounds

(that is, using Equation 4 and the extensions to that equa-

tion presented in our earlier work10). Restricting Imax and

Pmax could increase both the number of blocks that the

circuit needs and the logic depth; we must compare this

situation with the alternative of using less sparse logic

and paying a larger mapping overhead.

Experimental overheads
To characterize the impact of defective cross points,

we mapped 16 of the benchmarks in the Toronto 20 place-

and-route challenge suite (http://www.eecg.toronto.

edu/~vaughn/challenge/challenge.html) to nanoPLA

arrays with varying cross-point and wire defect rates. We
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1 do {
2 fi = unmapped OR term in F with largest fan-in
3 do {
4 wj = nanowire randomly selected from unused nanowires in W
5 if (fi can be mapped to wj )
6 assign fi to wj

7 mark fi as mapped
8 mark wj as used
9 } while (fi unmapped)

10 } while (there are unmapped fi in F)

Figure 6. Greedy algorithm for matching OR terms to

nanowires with potentially defective cross points.
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used PLAmap to create clusters.11 To control Imax, we asked

PLAmap to generate (I = Imax, P = Pmax, O = 1) single-output

covers. We then used T-Vpack (a standard clustering tool

from the University of Toronto originally developed for

packing LUTs into clusters with limited logic, input, and

output capacity) to combine the single-output covers into

I = 20, P = 64 clusters.9

Table 1 shows relative area versus defect rate for the

16 designs. For all designs, the additional overhead of

fan-in bounding and defect tolerance was below 115%,

up to a defect rate of 10% (Pj ≥ 0.9).

The overhead for most designs was modest because

we could map them to bounded fan-in without signifi-

cantly increasing the number of clusters required to

cover the logic task. Table 2 shows how the design sizes

scale as we map to different fan-in bounds, C = Imax =

Pmax. Many of the designs show no increase as we tight-

en the fan-in bound. In many cases, in fact, a larger fan-

in bound can lead to excessive logic duplication and

increased area.11 For a few designs, block count increas-

es considerably as we tighten the fan-in bound, and this

is the major factor accounting for the area overhead

jumps for the ex1010, pdc, s298, and spla benchmarks.

Table 3 summarizes the composite area overhead of

pdc, the design with the largest overhead, as a function

of both wire and junction defects. The composite area

overhead at Pwire = 0.90 and Pj = 0.90 is less than a factor

of 3. After accounting for overheads at these defect

rates, the design achieves more than 100 times greater

density than an FPGA implementation based on 4-input

LUTs in 22-nm CMOS. This density benefit is typical of

these benchmark designs.7

Bootstraps and testing
Our seventh strategy is to provide on-chip test and

configuration support. With larger raw capacities, high

defect rates, stochastic assembly, and fine-grained

resource sparing, the sheer volume of testing required for

nanoPLA arrays would be too large to economically test

with conventional, off-chip testers. Consequently, an on-

chip microprocessor responsible for both manufacturing

tests and local defect remapping must be an integral part

of the component architecture. The microprocessor can

be implemented in reliable CMOS and need only occu-

py a tiny fraction of the die area on the chip. The on-chip

microprocessor can also play an important role during

device configuration. We give the device the logical con-

figuration for each nanoPLA block (the bitstream). The

on-chip microprocessor then runs the algorithm to dis-

cover each nanoPLA block’s present and functional

addresses and to perform the local matching necessary

to assign logical product and sum terms to physical
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Table 1. Relative area versus programmability probability Pj, with 10-nm

nanowire pitch and 105-nm reliable superstructure pitch.

Benchmark design Programmability probability Pj

0.85 0.90 0.95 1.00

alu4 1.81 1.64 1.00 1.00

apex2 1.19 1.19 1.00 1.00

apex4 1.30 1.16 1.00 1.00

bigkey 1.00 1.00 1.00 1.00

clma 1.00 1.00 1.00 1.00

des 1.00 1.00 1.00 1.00

dsip 1.00 1.00 1.00 1.00

elliptic 1.00 1.00 1.00 1.00

ex1010 3.81 2.15 1.00 1.00

ex5p 1.00 1.00 1.00 1.00

frisc 1.00 1.00 1.00 1.00

misex3 1.31 1.31 1.00 1.00

pdc 4.75 1.79 1.00 1.00

s298 1.84 1.84 1.00 1.00

seq 1.20 1.12 1.00 1.00

spla 3.46 1.83 1.00 1.00

Table 2. Number of mapped nanoPLA logic blocks for different

limitations of fan-in bound C.*

NanoPLA-mapped block count for  

                fan-in bound C of                   

Benchmark design 4 6 8 10 12 16 48

alu4 107 110 98 81 52 26 19

apex2 136 150 152 167 179 178 183

apex4 108 115 123 47 48 34 36

bigkey 99 111 139 147 132 165 168

clma 454 513 557 634 663 646 520

des 102 110 114 130 149 158 120

dsip 70 88 82 108 87 108 79

elliptic 162 209 225 289 338 397 262

ex1010 380 404 402 233 272 351 81

ex5p 88 98 50 50 46 30 8

frisc 213 229 244 285 326 376 276

misex3 97 109 105 102 83 44 37

pdc 291 322 267 292 304 160 41

s298 81 85 84 88 90 102 57

seq 121 135 140 143 138 111 76

spla 211 235 201 219 221 109 33
* C = Imax = Pmax, where Imax is the maximum number of inputs that fan in to any

particular AND term, and Pmax is the maximum number of product terms that

fan in to any OR term.
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nanowires. Thus, the device never stores the entire defect

map for the component, but simply rediscovers it one

nanoPLA block at a time. Moreover, it never exposes the

user to the array’s defect details.

NanoPLA block sparing
Atop the individual wire sparing just described, it is

probably still necessary to spare entire nanoPLA blocks.

Larger scale contaminants during assembly or large

cluster faults could leave an entire nanoPLA block unre-

pairable; these defects are not appropriately modeled

as independent, random junction, or wire defects.

Moreover, as we discussed earlier, we can guarantee

high statistical yield of each nanoPLA block, but with

millions of nanoPLA blocks in an array, some blocks

will not be repairable.

Now that we have used the wire-sparing techniques

to bring the yield of the nanoPLA blocks to a respectable

level (for example, PM of N = 99%), we can use the M-

choose-N sparing strategy at a higher level on the

nanoPLA blocks. For example, Lach et al. describe a strat-

egy for tolerating FPGA defects by omitting one logic

block from a k × k tile of FPGA logic blocks and generat-

ing logic configurations that accommodate the failure of

each physical logic block in the tile.12

WE EXPECT that most, if not all, of these strategies will

be essential to almost any technology in which wires

and devices are built from only a few atoms. Our results

suggest that 10% defect rates are tolerable. Higher defect

rates may be manageable but will likely require addi-

tional techniques in the mapping stage. So far, we have

addressed static defects that occur before we map and

perform a computation. At this scale, lifetime defects

(where cross points or wires fail during operation)

could also occur. Consequently, additional techniques

will be needed to detect these new defects as they

occur, guard the integrity of the computation, and rapid-

ly reconfigure around them. ■
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System-on-chip (SoC) design in the forthcoming billion-tran-
sistor era will imply the integration of numerous diverse
semiconductor IP blocks, and multiprocessor platforms will
dominate. As the 2003 International Technology Roadmap
for Semiconductors highlights, “Global synchronization
becomes prohibitively costly due to process variability and
power dissipation, and cross-chip signaling can no longer be
achieved in a single clock cycle.” Networks on chip (NoCs)
are emerging as the design paradigm of choice for the next
generation of SoC applications.
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