Archetype-Based Design: Sensor Network Programming for Application Experts, Not Just Programming Experts

Lan S. Bai[†], Robert P. Dick[†], Peter A. Dinda[‡]

†University of Michigan

‡ Northwestern University

Motivation Most sensor network needs from application experts. • E.g., civil engineers, biologists, geologists, and farmers.

All existing applications are implemented in collaboration with embedded system experts.

Application experts generally are novice programmers.

Even basic sensor network design is difficult for them.

Hire embedded system experts or give up.

Disadvantages: cost and disconnection.

Introduction Archetype-based design WASP: an archetype-specific programming language User study User study	Archetype-based design Design concepts WASP: an archetype-specific programming language Sensor network taxonomy
Past work	Our idea
General-purpose, node-level languages.	Goal: Make designing a substantial sensor network so easy that those without programming experience can do it.
NesC, TinyScript, BASIC.	Archetype-specific programming languages.
Macroprogramming languages. • TinyDB, SwissQM, Regiment, Pleiades, ATaG.	 Divide design space into regions defined by shared language feature requirements. One specialized language for one archetype.
Application-specific languages. • NETSHM for structural health monitoring.	 Program template (examples with annotations and parameters). This keeps each language simple and easy to learn.
Patterned after LabVIEW or Excel.	User-driven design: test the influence of language on correctness and implementation time.
	Ours is the first project to evaluate this.
Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts	6 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts

Archetype-bas

Survey of existing wireless sensor network deployments

Design concepts Sensor network taxonomy

23 deployments studied (FireWxNet [Hartung], Golden gate bridge [Kim], etc.).

All developed in collaboration with embedded system experts.

What's the pure application logic?

17 application characteristics identified, e.g., mobility, network lifetime.

8 affect language complexity.

Arch WASP: an archetype-specific prog Design concepts Sensor network taxonomy

Archetype classification

Identified eight high-impact characteristics

- Mobility
- Initiation of sampling (periodic, event-driven, or both)
- Initiation of data transmission (periodic, event-driven, or both)
- Actuation: triggers events?

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡

- Interactivity: respond to commands during operation?
- Data interpretation: in-network data processing?
- Data aggregation: should data be aggregated across multiple sensor nodes?
- Node homogeneity

Design concepts Sensor network taxono

Clustering results

Chose to use automated technique.

Used k-means to avoid human bias.

Arch.	Size	Mobil.	Samp.	Data	Actuat.	Interac.	Data	Data	Homo-
				trans.			interp.	agg.	geneous
									Y
2	6	stat.	*	event	Ν	*	Y	*	Y
3	4	mobile	per.	*	*	N	*	*	Y
4	3	mobile	per.	*	*	Ý	*	N	N
5	1	stat.	hybrid	hybrid	Ν	Y	Y	Y	Y
6	1	stat.	event	hybrid	Y	Y	Ν	Y	Y
7	1	mobile	per.	event	Ν	N	Y	Y	Ν

Archetype-based design WASP: an archetype-specific programming language

WASP compiler and simulator

Designed language for most widely encountered archetype.

WASP: Wireless sensor network Archetype-Specific Programming language.

Node-level code segment specifies sampling and local data processing. Operations apply to time series data that are local to a single node.

Network-level code segment specifies data filtering, aggregation, transmission through network.

Operations apply to most recent data from all the nodes in the network.

Separation of concerns: node-level + network-level.

Archetype-based design WASP: an archetype-specific programming language User study Example application

EP compiler and simulator EP2

WASP: an archetype-specific programming languag User stud

WASP language WASP compiler and

WASP code for example application

Sample temperature every 2 seconds from all the nodes in the network. Transmit the node identification numbers and the most recent temperature readings from nodes where the current temperature increased by more than 10% during the last 10 seconds.

Used in our user study as Task 3.

local:

sample temperature every 2 sec into mytemp mintemp = min_time(mytemp[0:4]) every 2 sec thresh = mintemp * 1.1 every 2 sec

n S. Bai†, Robert P. Dick†, Peter A. Dinda‡

network: collect nodeid, mytemp where mytemp > thresh

Introduction Archetype-based design WASP compiler and sim WASP: an archetype-specific programming language WASP2

Lines of code for example applications in different

ert P. Dick†. Peter A. Dinda‡

languages

Language	Τ1	Τ2	Т3
WASP	5	7	7
TinySQL	3	4	9
TinyTemplate	49	66	55
TinyScript	49	66	55
NesC	141	453	384

WASP development environment

n S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application

Archetype-based design WASP WASP: an archetype-specific programming language User study

WASP2 development environment

4	Variable		Exp	ression	Period		Sample
1	mylight	-	light		1 sec		Function
2	mypressue	=	pressure				Expressio
3	height	-	mypressu	ie/100+2			
4	my_avg_light	=	avg_time(mytight(0:3()	4 sec		Eult
	colle	ct	group nodes by	node filteri	ng group filter	ing maximum delay	Add
1	height avg(my_	avg_light)	height.			eventually	
Ī			-1				Edit

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Ac

ng languag

			Archet	ype-base	ed design
WASP:	archetype-	-specific	progra	imming	language

User study I

Goal

- Evaluate usability of WASP and four alternatives.
- Impact of specialized languages, programming template, programming model on programmer productivity?

Protocol

- Test subjects: 28 novice programmers from various fields.
- Three tasks representative of Archetype 1.
- Randomly assign one language and two tasks to each user.
- 30 minutes for tutorial, 40 minutes for each task.
- Functional simulation for user to check correctness.
- Users provide feedbacks on tutorial, language, etc.
 Lan S. Baif, Robert P. Dickt, Peter A. Dindat
 Sensor Network Programming I

User	study	Ш	

Demographics of test subjects

- 12/28 no programming experience.
- $\bullet~3/28$ wrote at most 500 lines of C++/C/Matlab program.
- 12/28 some experience with C++/C/Matlab/Fortran.
- Researchers in biomedical engineering, civil engineering, chemistry, business and many other fields.

Archetype-based design WASP: an archetype-specific programming language **User study**

User study III

Languages

- WASP (Our archetype-specific language).
- TinyScript (General-purpose, node-level, event-driven).
- TinyTemplate (Archetype-specific TinyScript with template).
- SwissQM (SQL-like, graphic interface for composing queries).

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Exp

• TinySQL (Language for TinyDB, SQL-like).

	1.		
	Archetyp pe-specific program	Introduction pe-based design nming language User study	

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡

User study results

Language	Success rate			Develop time (min)			
	T1	Τ2	Т3	T1	Т2	Т3	
	3/3	3/3		5.7	11.3	N.A.	
				34	N.A.	N.A.	
				N.A.	N.A.	N.A.	
	3/3	3/4	2/3				

* Does not support temporal queries.

- WASP and TinySQL are close for T1 and T2, but WASP is easier for T3.
- TinyTemplate, TinyScript: low success rates for archetype.
- Average development time of WASP2 is 47% of WASP.
- 22 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application

Archetype-based design WASP: an archetype-specific programming language User study

Compilation and evaluation on test bed

WASP parser generates fragments of NesC code.				
NesC skeleton and library for Archetype I.				
Python script combines them and generates complete TinyOS code.				
Compile TinyOS code to executables.				
Tested 3 tasks with multihop network of TelosB nodes.				

Sensor Network Programming for Appl

Archetype-based desig WASP: an archetype-specific programming languag User stur

Conclusion

To open sensor network to application experts

- Design with novice programmers in mind.
- Evaluate languages with user studies.

Sensor network taxonomy and archetype-specific languages.

WASP programming language for the most frequently encountered archetype.

User study shows novice programmers are more likely to succeed for the most commonly encountered archetype with WASP than other evaluated languages.

rt P. Dick†, Peter A. Dinda‡ Sensor Network F

WASP: an archetype-specific programming language User study
Future work
Languages for other archetypes.
Wireless sensor network synthesis from archetype-specific languages.
Project website http://absynth-project.org/.

Archetype-based design WASP: an archetype-specific programming language **User study**

TinySQL development environment

rt P. Dick†. Peter A. Dinda‡

Archetype-based design WASP: an archetype-specific programming language User study

TinyScript development environment

rt P. Dick†. Peter A. Dinda‡

Introduction Archetype-based design WASP: an archetype-specific programming language User study	
Survey recults	

Language	Tutorial	Task	Env.	Understand	Lang
				lang.	easy
SwissQM	5.7	5.7	5	5.7	6
TinyScript	4.4	5.4	4.2	3.8	3.2
TinySQL	4.6	5.8	5.6	4	4.8
TinyTemplate	5.2	5.6	4.6	2.8	3.2
WASP	4.4	5.4	5.8	4.2	4.6
WASP2	4.4	6.2	5.8	5.2	4.8

Archetype-based design WASP: an archetype-specific programming language User study

TinySQL code for example application

select sensors.nid, temp from sensors, rtemp where sensors.nid = rtemp.nid and mint * 1.1 < temp period 2 s

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Exp

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda[±] Sensor Network Programming for Application Experts

create storage point rtemp size 5 as select nid, min(temp) as mint from sensors group by nid period 2 s

33

Archetype-based design WASP: an archetype-specific programming language User study

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Net

Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Net

TinyScript code for example application: Bcast handler I

buffer received; buffer sendbuf; private i; private size; if id() = 0 then bclear(received); received = bcastbuf(); size = bsize(received); for i = 0 until i >= size sendbuf[] = received[i]; next i end if

Marchetype-based design WASP: an archetype-specific programming language User study Introduction Archetype-based design WASP: an archetype-specific programming language User study TinyScript code for example application: Timer handler I TinyScript code for example application: Timer handler II		
TinyScript code for example application: Timer handler I TinyScript code for example application: Timer handler II private mytemp; else	Introduction Archetype-based design WASP: an archetype-specific programming language User study	Introduction Archetype-based design WASP: an archetype-specific programming language User study
private mytemp; else	TinyScript code for example application: Timer handler I	TinyScript code for example application: Timer handler II
private mytemp,	nrivate mytemp.	else
private myid: $val = data[0];$	private mytemp,	val = data[0];
buffer data: for $i = 0$ until $i \ge size-1$	buffer data:	for $i = 0$ until $i \ge size-1$
buffer sendbuf; $data[i] = data[i+1];$	buffer sendbuf;	data[i] = data[i+1];
private val; if data[i] < val then	private val;	if data $[i] < val$ then
private size; val = data[i];	private size;	val = data[i];
private i; end if	private i;	end if
next i		next i
mytemp = int(temp()); data[i] = mytemp;	mytemp = int(temp());	data[i] = mytemp;
myid = id(); $val = val * 2;$ $if mutum 2, multiplication$	myid = id();	val = val + 2;
if mytemp $>$ valition		ir mytemp > vai then
size = bsize(data);	size = bsize(data);	sendbuf[] = myta, sendbuf[] = mytamp:
if size < 4 then $if myid <> 0$ then	If size < 4 then	if myid $<> 0$ then
data[] = hytemp,	data[] = mytemp,	
11 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts 32 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts	31 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts	32 Lan S. Bai†, Robert P. Dick†, Peter A. Dinda‡ Sensor Network Programming for Application Experts

Archetype-based design	Archetype-based design
WASP: an archetype-specific programming language	WASP: an archetype-specific programming language
User study	User study
TinyScript code for example application: Timer handler III	TinyScript code for example application: Boot handler I
<pre>bcast(sendbuf); bclear(sendbuf); end if end if if myid = 0 then uart(sendbuf); bclear(sendbuf); end if</pre>	<pre>shared time; shared period; time = 0; period = 2; settimer0(period);</pre>

34