Embedded System Design and Synthesis

Lucid dreaming Homework

Sensor network goals and conditions

Robert Dick

http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan

- Distributed information gathering.
- Frequently no infrastructure.
- Battery-powered, wireless common.
- Battery lifespan of central concern.
- Scavenging also possible.
- Communication and data aggregation important.

Sensor networks Lucid dreaming Homework	Sensor networks Lucid dreaming Homework Recent work
Sensor network hardware power consumption	Sensor network software power consumption
 Power consumption central concern in design/ Processor? RISC μ-controllers common. Wireless protocol? 	 Power consumption central concern in design. Runtime environment? Avoid unnecessary dynamism.

• Low data-rate, simple: proprietary, Zigbee.

Robert Dick

- OS design?
 - Static, eliminate context switches, compile-time analysis.

- Language?
 - Some propose compile-time analysis of everything practical.

bert Dick Embedded System Design and Syr

• Others offer low-overhead run-time solutions.

Key problems

- Low-power design.
- Self-organization.
- Data management, compression, aggregation, and analysis.
- Reliability.
- Ease of design and management.
- Others specific to applications.
- Others?

id dreaming Homowork Recent work

Prototype networks

Biology: monitor sea birds

- Senses: temperature, humidity, infrared
- Developers: Intel, Berkeley
- Size: 150 nodes

Monitor activity of elderly

- Senses: motion, pressure, infrared
- Developer: Intel
- Size: 130 nodes

Credit to Randy Berry for slide.

Prototype networks

Detect source of gunshot

- Senses: sound, shock wave, location
- Developer: DARPA, Vanderbilt
- Size: 45 nodes

Structural integrity monitoring

- Senses: vibration, precise displacement
- Developer: Northwestern University
- Size: Deployed in six buildings, constantly growing

Introduction Recent work

Embedded System Design and Sy

Approximately 30 nodes

reaming Recent wor

Habitat monitoring

Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors, *Wireless Sensor Networks*, chapter 18, pages 399–423. Springer US, 2004

Embedded System Design and Syr

- Application: Monitor petrels on Great Duck Island
- Mica motes used.
- High failure rate.
- 50% packet loss, with spatial and temporal variation.

Sensor networks Lucid dreaming Homework	Introduction Recent work	Sensor networks Lucid dreaming Homework	Introduction Recent work
Virtual machines for sensor r	networks	Wireless demand paging	

P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In *Proceedings of Internation Conference on Architectural Support for Programming Languages and Operating Systems*, October 2002

- How to support rapid in-network programming?
- Virtual machine.
- Great idea if reprogramming frequent compared to normal duty cycle.
- Generally not the case.

Yuvraj Agarwal, Curt Schurgers, and Rajesh Gupta. Dynamic power management using on demand paging for networked embedded systems. In *Proc. Asia & South Pacific Design Automation Conf.*, pages 755–759, January 2005

- Use two wireless interfaces.
- One fast but high-power, one slow but low-power.
- Awaken node using low-power interface.
- Report 20–50% power savings.
- Cannot beat 50% because processor consumes half of power.

Introduction Recent work

• Are there better alternatives?

Routing and media access

Too many routing and media access articles to count. Key problems:

Introduction Recent work

Reliability on unreliable components with varying network structure.

Robert Dick

- Tight power constraints.
- Limited communication rates.
- Self-organization.

Other active areas

- Blind calibration.
- Localization.
- Operating system design: TinyOS, MANTIS OS, etc.
- Simulation environments.
- Efficient implementation of media encoding algorithms.
- Security: encryption power implications.
- Applications: structure monitoring, security, biology, geology.
- Small-scale robotics.
- Biomotion capture.

Sensor networks Lucid dreaming Homework	Introduction, motivation, and past work Lucid dreaming desgin Results	Sensor networks Lucid dreaming Homework Low-power event-driven applications	
conaborators on project		Low power event driven applications	
+ MORTH IF	RN HHHERE	 Conventional sensor network operation: Many real applications must detect unp How? Periodically awaken? Misses events 	
EECS Dept. Sasha Jevtic Robert P. Dick Peter Dinda	Civil and Environmental Engineering Dept. Mat Kotowsky Charles Dowding	Always remain awake? Two days of battery life Goal Always awake but with ultra-low power const	umption
17 Robert Dick	Embedded System Design and Synthesis	19 Robert Dick Embedded Sy	ystem Design and Synthesis
Sensor networks Lucid dreaming Homework	Introduction, motivation, and past work Lucid dreaming desgin Results	Sensor networks Introduction, Lucid dreaming Lucid dreamin Homework Results	motivation, and past work ng desgin
Application: Structural integ	grity monitoring	Detecting dangerous conditions	

- Buildings and bridges have cracks
- Most not dangerous, but could become dangerous
- Widths change in response to vibration
- 300 μm common, 3× width of human hair

Lucid di

- Inspectors monitor cracks to determine when dangerous
 - Expensive
 - Infrequent

Could use wireless sensor networks

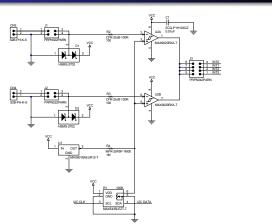
- Inexpensive
- Constant

Problem: Event-driven application. Only a few days of battery life.

Past structural integrity work

- N. Kurata, B. F. Spencer Jr., M. Ruiz-Sandoval, Y. Miyamoto, and Y. Sako. A study on building risk monitoring using wireless sensor network MICA mote. In *Proc. Int. Conf. on Structural Health Monitoring and Intelligent Infrastructure*, pages 353–357, November 2003
- J. P. Lynch, K. H. Law, A. S. Kiremidjian, T. W. Kenny,
 E. Carryer, and A. Partridge. The design of a wireless sensing unit for structural health monitoring. In *Proc. Int. Wkshp. on Structural Health Monitoring*, September 2001
- Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for structural monitoring. In *Proc. Conf.* on *Embedded and Networked Sensor Systems*, November 2004

Short battery life. Two-day deployments and explosives. Robert Dick Embedded System Design and Synthesis


Lucid dreami Homewo

Past low-power event detection work

- B Schott, M Bajura, J Czarnaski, J Flidr, T Tho, and L Wang. A modular power-aware microsensor with > 1000× dynamic power range. In *Proc. Int. Conf. Information Processing in Sensor Networks*, pages 469–474, April 2005
 Wake-up timer based
- P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless sensor network platform for detecting rare, random, and ephemeral events. In *Proc. Int. Conf. Information Processing* in Sensor Networks, April 2005
 - Big project, rebuilt sensor nodes from scratch
 - However, low-power event detection is hard
 - 880-19,400 μW

Schematic

Sensor networks Lucid dreaming Homework

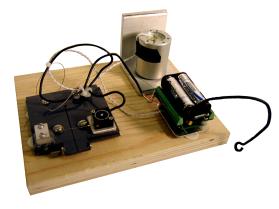
Robert Dick Embedded System Design and Synth

Sensor networks Lucid dreaming Homework

Vibration event

Embedded System Design and Synth

Robert Dick


Embedded Sy

n Design and S

Robert Dick

Lucid dreaming Demonstration board

System in case

Lucid dreaming

Introduction, motivatio

Sensor networks Lucid dreaming Homework

Web interface screen shot

🌪 Getting Started 🔂 Latest Headlines		
AUTONOMO	DUS CRACK MONITORING - EVANSTON	
INFRAS	TRUCTURE TECHNOLOGY INSTITUTE	tì
ITI Home Background	Wireless Instrument Data Apr 30, 2006 to May 5, 2006	
Introduction	Mote 4 (Sun Porch) Temperature	
Definition of Crack Displacement Sensors and Equipment Location Pictures of House Westher Data Today Wireless Data Acquisition Introduction	3 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	
Live Data CONTACT US	Mote 4 (Sun Porch) Humidity	
ITI 2133 Sheridan Road Evanston, Illinois 60208 Tel: 847.491.4338	100 100 190 190 190 190	
Fax: 847.467.2056		

		on, motivation, and past work aming desgin				
Power values for mote hardware						
Variable	Description	Example value for ACM				
PAVG_LD	•	·				
P _{AVG_SO}	Average power consumption for polling solu	ution $3.0 \times 10^{-2} \text{ W}$				
PAVG_PR	Average power consumption for event prediction No example value					
P _{RT}	Power consumption of mote radio in transmitting state $3.0 \times 10^{-2} W$					
P _{AC}	Power consumption of mote CPU in active	state $2.4 \times 10^{-2} \text{W}$				
P _{ZZ}	Power consumption of mote CPU in sleeping	g state $3.0 \times 10^{-5} \text{W}$				
P_{S1}	Power consumption of primary sensor and data acquisition system $$5.7\times10^{-3}W$$					
P_{S2}	Power consumption of secondary/wakeup sensor 0 W					
P_{MW}	Power consumption of Shake 'n Wake hardware $$1.6\times10^{-5}W$$					
F _{DC}	$_{C}$ Average frequency of an event resulting in data collection $1.2 \times 10^{-4} \text{Hz}$					
F _{MC}	Average frequency of a communication transm	mission $1.2 \times 10^{-5} \text{ Hz}$				
D _{DC}	Average duration of an event resulting in data of	collection 3.0 s				
D _{MC}	Average duration of a communication transn	nission 104.0 s				
F _{TP}	Average frequency of true positives	No example value				

Lucid di Results

Robert Dick Embedded System Design and Sy

Power reduction

- - Always on: 24 mW
 - Lucid dreaming hardware: 16.5 µW
 - Best existing work: 2.64 mW
 - \bullet Lucid dreaming in system: $121.8\,\mu W$

Lucid dr Implications

Original situation

Missed events or battery replacement after a few days

Current status

- Battery life of months
- Many boards fabricated
- Deployed in multiple buildings already

Reading and mini-project presentations I

Lucid dr Hor

- 13 October: Mini-project presentations. 5–7 minutes per team member.
- Due 11 October: Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. off-chip memory: the data partitioning problem in embeddeed processor-based systems. *ACM Trans. Embedded Computing Systems*, 5(3):682–704, July 2000.
- Due 13 October: Mini-project presentation.
- Due 14 October (emailing the summary is fine): M. Tim Jones. Anatomy of real-time Linux architectures. Technical report, IBM DeveloperWorks, April 2008 (this is fun and light reading).

Embedded System Design and Synthe

• Due 20 October: Mini-project report.

Reading and mini-project presentations II

 Due 20 October: Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors, *Wireless Sensor Networks*, chapter 18, pages 399–423. Springer US, 2004.

Embedded System Design and Syn

• Due 25 October: Main project proposal.